National Library of Energy BETA

Sample records for ovonic hydrogen systems

  1. Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems...

    Open Energy Info (EERE)

    Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name: Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place:...

  2. Ovonic Battery Company Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery...

  3. Rochester Hills, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Rochester Hills, Michigan Energy Conversion Devices Inc aka ECD Ovonics Luma Resources LLC Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC...

  4. United Solar Ovonic LLC Unisolar | Open Energy Information

    Open Energy Info (EERE)

    US-based manufacturer of flexible amorphous silicon PV laminates; the main division of Energy Conversion Devices, aka ECD Ovonics. Leading supplier of flexible PV for rooftop...

  5. Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Informatio...

    Open Energy Info (EERE)

    Devices Inc (aka ECD Ovonics) Place: Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based materials developer and holding company for thin-film silicon...

  6. Michigan's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Conversion Devices Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Guardian Industries Guardian Industries Corp Luma Resources LLC Ovonic Hydrogen Systems LLC...

  7. Hydrogen purification system

    DOE Patents [OSTI]

    Golben, Peter Mark

    2010-06-15

    The present invention provides a system to purify hydrogen involving the use of a hydride compressor and catalytic converters combined with a process controller.

  8. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  9. Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

  10. Hydrogen Storage System Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Challenges Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles October 29 th , 2015 Mike Veenstra Ford Research & Advanced Engineering Production fuel cell vehicles are being produced or planned by every major automotive OEM Toyota Honda Hyundai (credit: SA / ANL) Customer Expectations Driving Range Refueling Time Cargo Space Vehicle Weight Durability Cost Safety 0.0 2.0 4.0 6.0 8.0 10.0 Gasoline Hydrogen (700 bar) Natural

  11. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  12. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  13. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  14. Hydrogen Systems Analysis Workshop (SAW)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy sponsored a Hydrogen Systems Analysis Workshop (SAW) in Washington, DC, July 28-29, 2004. Attendees included government officials, analysts, and managers from DOE, the...

  15. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSIIPSI...

  16. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    SciTech Connect (OSTI)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

  17. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  18. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  19. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. Polymer system for gettering hydrogen

    DOE Patents [OSTI]

    Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  1. Method and System for Hydrogen Evolution and Storage

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2008-10-21

    A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  2. Method and system for hydrogen evolution and storage

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

    2012-12-11

    A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

  3. Hydrogen Systems Analysis | Department of Energy

    Energy Savers [EERE]

    Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of

  4. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect (OSTI)

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  5. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  6. Overview of interstate hydrogen pipeline systems.

    SciTech Connect (OSTI)

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

  7. Self-powered Hydrogen + Oxygen Injection System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-powered Hydrogen + Oxygen Injection System Self-powered Hydrogen + Oxygen Injection System Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by ...

  8. Hydrogen Storage Systems Analysis Meeting: Summary Report, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 This report highlights DOE's systems analysis work related to hydrogen storage materials and process ...

  9. System for thermochemical hydrogen production

    DOE Patents [OSTI]

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  10. Cryogenic Hydrogen Storage Systems Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Systems Workshop Agenda Cryogenic Hydrogen Storage Systems Workshop Agenda Agenda for the second day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_day2_agenda.pdf More Documents & Publications Compressed Hydrogen Storage Workshop Agenda Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary

  11. Functional design criteria for standard hydrogen monitoring system portable platform

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-01-17

    Functional design description for a Standard-E cabinet arrangement Standard Hydrogen Monitoring System Portable Platform.

  12. On-Board Hydrogen Gas Production System For Stirling Engines...

    Office of Scientific and Technical Information (OSTI)

    By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in ...

  13. Cost Analysis of Hydrogen Storage Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by Stephen Lasher on cost analysis of hydrogen storage systems. PDF icon wkshpstoragelasher.pdf More Documents & Publications Analyses of Hydrogen Storage Materials ...

  14. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This animation demonstrates the multiple safety systems in hydrogen-fueled vehicles that detect and prevent the accidental release of hydrogen. View text version of animation....

  15. Novel, Ceramic Membrane System For Hydrogen Separation

    SciTech Connect (OSTI)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  16. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to design, fabricate, evaluate, and optimize a laboratory-scale microchannel reactor/heat exchanger system with thin-film or particulate catalysts for hydrogenation of o-nitroanisole and other nitro aromatic compounds, under moderate temperature and pressure.

  17. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  18. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueled transportation systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Systems and methods for selective hydrogen transport and measurement

    DOE Patents [OSTI]

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  20. Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meeting: Summary Report, March 29, 2005 Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005 This report highlights DOE's systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems. PDF icon ssawg_mtg.pdf More Documents & Publications Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 Hydrgoen Storage Systems Analysis

  1. Integrated Ceramic Membrane System for Hydrogen Production

    SciTech Connect (OSTI)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900C, and 2) Sequential OTM and HTM reactors in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

  2. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. PDF icon ssawg_summary_report_0608.pdf More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

  3. Energy Department Awards $7 Million to Advance Hydrogen Storage Systems |

    Office of Environmental Management (EM)

    Department of Energy Million to Advance Hydrogen Storage Systems Energy Department Awards $7 Million to Advance Hydrogen Storage Systems May 19, 2014 - 1:43pm Addthis The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. These advances in hydrogen storage will be

  4. A New Hydrogen Processing Demonstration System | Department of Energy

    Office of Environmental Management (EM)

    A New Hydrogen Processing Demonstration System A New Hydrogen Processing Demonstration System Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon A New Hydrogen Processing Demonstration System More Documents & Publications Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Overview of Tritium Activities at the Laboratory for Laser Energetics Advances in Design of the Next Generation Hydride Bed

  5. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2015 FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be

  6. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    2004-07-01

    Energy-Efficient Catalytic Hydrogenation Reactions. Hydrogenation reactions are very versatile and account for 10% to 20% of all reactions in the pharmaceutical industry.

  7. Autothermal hydrogen storage and delivery systems

    DOE Patents [OSTI]

    Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

    2011-08-23

    Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

  8. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  9. Renewable Hydrogen Production from Biological Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy from Biological Systems Renewable Hydrogen Production from Biological Systems Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_posewitz.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report

  10. Systems and methods for generation of hydrogen peroxide vapor

    DOE Patents [OSTI]

    Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

    2014-12-02

    A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

  11. Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF icon ssawg_summary_report.pdf More Documents & Publications Hydrgoen Storage Systems Analysis Working Group Meeting Summary Report Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006 Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report

  12. Borazine-boron nitride hybrid hydrogen storage system

    DOE Patents [OSTI]

    Narula, Chaitanya K. (Knoxville, TN) [Knoxville, TN; Simonson, J. Michael (Knoxville, TN) [Knoxville, TN; Maya, Leon (Knoxville, TN) [Knoxville, TN; Paine, Robert T. (Albuquerque, NM) [Albuquerque, NM

    2008-04-22

    A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

  13. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

  14. Technical Assessment of Compressed Hydrogen Storage Tank Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report describing the U.S. Department of Energy's (DOE) assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were

  15. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of June 11, 2008, biannual meeting of the Hydrogen Storage Systems Analysis Working Group. PDF icon ssawgsummaryreport0608.pdf More Documents & Publications Hydrgoen...

  16. Hydrogen Storage Systems Anlaysis Working Group Meeting, December...

    Broader source: Energy.gov (indexed) [DOE]

    summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C. ssawgminutes1206.pdf More Documents & Publications Hydrgoen Storage...

  17. Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

    Broader source: Energy.gov [DOE]

    This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C.

  18. Hydrogen Storage Systems Analysis Working Group Meeting: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes. PDF ...

  19. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  20. Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen

    Broader source: Energy.gov [DOE]

    Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

  1. Safe Detector System for Hydrogen Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detector System for Hydrogen Leaks Safe Detector System for Hydrogen Leaks 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon scsp_03_lieberman.pdf More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  2. Engineering report standard hydrogen monitoring system problems

    SciTech Connect (OSTI)

    Golberg, R.L.

    1996-09-25

    Engineering Report to document moisture problems found during the sampling of the vapors in the dome space for hydrogen in the storage tanks and a recommended solution.

  3. Biological Systems for Hydrogen Photoproduction (Poster)

    SciTech Connect (OSTI)

    Ghirardi, M.; King, P.; Maness, P. C.; Seibert, M.

    2006-05-01

    Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

  4. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  5. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  6. Methods and Systems for the Production of Hydrogen - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Methods and Systems for the Production of Hydrogen Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has developed a novel process for producing hydrogen using a reduced outlet temperature of Very High Temperature Gas Cooled Reactor. This process uses a combination of hydrogen recycle, a molten salt or helium, and a supercritical CO2 cycle. This method preheats the feed, reduces pumping power in the primary side and/or thermal transmission

  7. Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

  8. Sandia Energy - ECIS, Boeing, Caltrans, and Others: Fuel-Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its alpha predecessor. The beta unit uses metal hydride storage tanks, designed by Ovonic Hydrogen Systems, which allow the units to run around 60 hours longer than the alpha...

  9. Methods and systems for the production of hydrogen

    DOE Patents [OSTI]

    Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  10. A manual of recommended practices for hydrogen energy systems

    SciTech Connect (OSTI)

    Hoagland, W.; Leach, S.

    1997-12-31

    Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

  11. On-Board Hydrogen Gas Production System For Stirling Engines

    DOE Patents [OSTI]

    Johansson, Lennart N. (Ann Arbor, MI)

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  12. NREL: Energy Systems Integration - ESIF Fueling Robot Automates Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hose Reliability Testing ESIF Fueling Robot Automates Hydrogen Hose Reliability Testing Watch how an automated robot in the Energy Systems Integration Facility (ESIF) mimics fueling action to test hydrogen hoses for durability in real-world conditions. Text version Learn more about this work in this fact sheet. Printable Version Energy Systems Integration Home Capabilities Research & Development Facilities Working with Us Publications News Newsletter Energy Systems Integration News

  13. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelCell Energy, June 2011 | Department of Energy Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel of FuelCell Energy, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon

  14. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  15. Systems Engineering of Chemical Hydrogen Storage, Pressure Vessel and Balance of Plant for Onboard Hydrogen Storage

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Simmons, Kevin L.; Weimar, Mark R.

    2014-09-02

    This is the annual report for the Hydrogen Storage Engineering Center of Excellence project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done with cryo-sorbent based and chemical-based hydrogen storage materials. Balance of plant components were developed, proof-of-concept testing performed, system costs estimated, and transient models validated as part of this work.

  16. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007...

  17. Webinar: Update to the 700 bar Compressed Hydrogen Storage System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. ...

  18. Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley

  19. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016.

  20. Standard-E hydrogen monitoring system field acceptance testprocedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-02-01

    The purpose of this document is to demonstrate that the Standard-E Hydrogen Monitoring Systems (SHMS-E) installed on the Waste Tank Farms in the Hanford 200 Areas are constructed as intended by the design.

  1. Cold weather hydrogen generation system and method of operation

    DOE Patents [OSTI]

    Dreier, Ken Wayne (Madison, CT); Kowalski, Michael Thomas (Seymour, CT); Porter, Stephen Charles (Burlington, CT); Chow, Oscar Ken (Simsbury, CT); Borland, Nicholas Paul (Montpelier, VT); Goyette, Stephen Arthur (New Hartford, CT)

    2010-12-14

    A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

  2. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  3. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  4. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Onboard Hydrogen Storage Systems for Transportation Applications Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_storage.pdf More Documents & Publications Status & Direction for Onboard Hydrogen Storage US DRIVE Hydrogen Storage Technical Team Roadmap

  5. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. hydrogen

    National Nuclear Security Administration (NNSA)

    3%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  7. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    SciTech Connect (OSTI)

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  8. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energys (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panels initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panels recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panels work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called cabinets, but for simplicity, they are all referred to as enclosures in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical basis be developed to enable code bodies to write requirements for the range of enclosures from the smallest to the largest.

  9. DOE Technical Targets for Hydrogen Storage Systems for Material Handling

    Office of Environmental Management (EM)

    Equipment | Department of Energy Material Handling Equipment DOE Technical Targets for Hydrogen Storage Systems for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  10. DOE Technical Targets for Hydrogen Storage Systems for Portable Power

    Office of Environmental Management (EM)

    Equipment | Department of Energy Portable Power Equipment DOE Technical Targets for Hydrogen Storage Systems for Portable Power Equipment These tables summarize hydrogen storage technical performance targets for portable power applications. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab assessments.

  11. Parameter study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    Sandia National Laboratories has developed a vehicle-scale prototype hydrogen storage system as part of a Work For Others project funded by General Motors. This Demonstration System was developed using the complex metal hydride sodium alanate. For the current work, we have continued our evaluation of the GM Demonstration System to provide learning to DOE's hydrogen storage programs, specifically the new Hydrogen Storage Engineering Center of Excellence. Baseline refueling data during testing for GM was taken over a narrow range of optimized parameter values. Further testing was conducted over a broader range. Parameters considered included hydrogen pressure and coolant flow rate. This data confirmed the choice of design pressure of the Demonstration System, but indicated that the system was over-designed for cooling. Baseline hydrogen delivery data was insufficient to map out delivery rate as a function of temperature and capacity for the full-scale system. A more rigorous matrix of tests was performed to better define delivery capabilities. These studies were compared with 1-D and 2-D coupled multi-physics modeling results. The relative merits of these models are discussed along with opportunities for improved efficiency or reduced mass and volume.

  12. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  13. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon ...

  14. Standard-E hydrogen monitoring system shop acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-10-02

    The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

  15. Durability study of a vehicle-scale hydrogen storage system.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

    2010-11-01

    Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

  16. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. Thomas, Ph.D., President Franklin D. Lomax, Ph.D, CTO & Principal Investigator, and Maxim Lyubovski, Ph.D.

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  17. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, Stanley E. (Evans, GA)

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  18. Thin-film fiber optic hydrogen and temperature sensor system

    DOE Patents [OSTI]

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  19. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  20. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets ...

  1. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 04_h2gen_low-cost_h2_distributed_production_systems.pdf More Documents & Publications Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

  2. On-Board Hydrogen Gas Production System For Stirling Engines (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: On-Board Hydrogen Gas Production System For Stirling Engines Citation Details In-Document Search Title: On-Board Hydrogen Gas Production System For Stirling Engines A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated

  3. Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Awards $4.6 Million to Advance Hydrogen Storage Systems Energy Department Awards $4.6 Million to Advance Hydrogen Storage Systems April 8, 2015 - 2:54pm Addthis The Energy Department today announced up to $4.6 million for four projects to develop advanced hydrogen storage materials that have potential to enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles. Advanced hydrogen storage systems will be

  4. Systems and methods for selective hydrogen transport and measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal 568,582 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search Systems and

  5. SYSTEMS AND METHODS FOR SELECTIVE HYDROGEN TRANSPORT AND MEASUREMENT -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal 20024715 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Return to Search SYSTEMS AND METHODS FOR

  6. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  7. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program ...

  8. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

  9. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. DOE Hydrogen and Fuel Cells...

  10. Standard hydrogen monitoring system - E operation and maintenance manual

    SciTech Connect (OSTI)

    Schneider, T.C.

    1997-06-01

    The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System- E (SHMS-E) used in the 200E and 20OW area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course for SHMS, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted.

  11. Manufacturing R&D for systems that will produce and distribute hydrogen |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for systems that will produce and distribute hydrogen Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_production.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Roadmap on Manufacturing R&D for the Hydrogen Economy 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell

  12. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, Inc. 10/1/2010 - 9/30/2011 Pinakin Patel FuelCell Energy Inc. ppatel@fce.com 203-825-6072 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 2 FCE Overview * Leading fuel cell developer for over 40 years - MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products) - Over 700 million kWh of clean power produced world-wide (>50 installations) - Renewable fuels: over

  13. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  14. Element One Reduces Cost of Hydrogen Leak Detection Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Element One Reduces Cost of Hydrogen Leak Detection Systems Element One Reduces Cost of Hydrogen Leak Detection Systems August 25, 2014 - 1:47pm Addthis Element One, Inc. of Boulder, Colorado, has patented unique hydrogen leak detection materials that form the basis for a wide array of very low-cost hydrogen detection systems. Applied as a thin film, or incorporated into paints and inks, the materials change color and conductivity to alert users to the presence of hydrogen at

  15. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and

  16. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost -

    Office of Environmental Management (EM)

    2014 | Department of Energy 4014: Fuel Cell System Cost - 2014 DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. PDF icon DOE Hydrogen and Fuel Cells Program Record # 14014 More Documents & Publications Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013

  17. Hydrogen Macro System Model User Guide, Version 1.2.1

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

    2009-07-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  18. Analyses of Hydrogen Storage Materials and On-Board Systems

    Broader source: Energy.gov [DOE]

    Presentation by Stephen Lasher of TIAX for Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007.

  19. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  20. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications | Department of Energy Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the

  1. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect (OSTI)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  2. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  3. ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS

    SciTech Connect (OSTI)

    Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

    2011-07-18

    The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

  4. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Broader source: Energy.gov [DOE]

    This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

  5. U.S. Department of Energy Hydrogen Component and System Qualification Workshop- Presentations

    Broader source: Energy.gov [DOE]

    These presentations were given at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  6. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Broader source: Energy.gov [DOE]

    Technical report describing the US Department of Energy's (DOE) assessment of the performance and cost of organic liquid based hydrogen storage systems for automotive applications.

  7. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  8. Hydrogen, CNG, and HCNG Dispenser System – Prototype Report

    SciTech Connect (OSTI)

    James Francfort

    2005-02-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

  9. Hydrogen storage and supply system - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and ...

  10. Analyses of Compressed Hydrogen On-Board Storage Systems

    Broader source: Energy.gov [DOE]

    Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

  11. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  12. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  13. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    DOE Patents [OSTI]

    Fliermans; , Carl B.

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  14. Webinar February 25: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  15. Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. EST. Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  16. Two step novel hydrogen system using additives to enhance hydrogen release from the hydrolysis of alane and activated aluminum

    DOE Patents [OSTI]

    Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore

    2015-12-01

    A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.

  17. HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS

    SciTech Connect (OSTI)

    Hardy, B; Donald L. Anton, D

    2008-12-22

    There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

  18. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect (OSTI)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

  19. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOE Patents [OSTI]

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  20. Technical Assessment of Compressed Hydrogen Storage Tank Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks with design pressures of ...

  1. Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration

    SciTech Connect (OSTI)

    Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

    2009-03-01

    The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

  2. Membrane-based systems for carbon capture and hydrogen purification

    SciTech Connect (OSTI)

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

  3. Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen

    SciTech Connect (OSTI)

    Alan C. Cooper

    2012-05-03

    This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

  4. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    SciTech Connect (OSTI)

    Weyman, Philip D; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being brought to life from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80 C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

  5. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect (OSTI)

    Hua, Thanh; Ahluwalia, Rajesh; Peng, J. -K; Kromer, Matt; Lasher, Stephen; McKenney, Kurtis; Law, Karen; Sinha, Jayanti

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  6. Engineering an Adsorbent-Based Hydrogen Storage System: What Have We Learned?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Don Siegel, 1 Bruce Hardy, 2 and the HSECoE Team 1 System Architect-Adsorbent System, Mechanical Engineering Department, University of Michigan 2 Savanah River National Laboratory Hydrogen)Storage)Summit,)) Golden,)CO)-)January)27928,)2015) Overview' * For)the)past)5)years)the)HSECoE)has)been)developing) hydrogen)storage)systems)based)on)adsorbent,)metal) hydride,)and)chemical)hydride)media) * As)we)near)the)Center's)conclusion,)we)seek)to)translate)

  7. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projection | Department of Energy Update to the 700 bar Compressed Hydrogen Storage System Cost Projection Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection January 26, 2016 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time. Strategic Analysis will present results of its cost analysis

  8. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinakin Patel / Fred Jahnke FuelCell Energy, Inc . U.S. DOE Advanced Manufacturing Office Peer Review Meeting � Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective � � Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs up to 25%. � Many industrial sites import liquid hydrogen, power and natural gas at

  9. System for exchange of hydrogen between liquid and solid phases

    DOE Patents [OSTI]

    Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

    1985-02-22

    The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  10. System for exchange of hydrogen between liquid and solid phases

    DOE Patents [OSTI]

    Reilly, James J.; Grohse, Edward W.; Johnson, John R.; Winsche, deceased, Warren E.

    1988-01-01

    The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  11. The Influence of Building Location on Combined Heat and Power/ Hydrogen (Tri-Generation) System Cost, Hydrogen Output and Efficiency (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Hydrogen Association Meeting Darlene M. Steward Mike Penev National Renewable Energy Laboratory Columbia, SC March 30 - April 3, 2009 NREL/PR-560-45628 The Influence of Building Location on Combined Heat and Power/ Hydrogen (Tri-Generation) System Cost, Hydrogen Output and Efficiency This presentation does not contain any proprietary, confidential, or otherwise restricted information National Renewable Energy Laboratory Innovation for Our Energy Future Acknowledgements Development of

  12. Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" held on January 21, 2016.

  13. Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems- Workshop Summary Report

    Broader source: Energy.gov [DOE]

    Summary report from the Compressed and Cryo-Hydrogen Storage Systems Workshops held February 14-15, 2011, in Crystal City, Virginia. Report summarizes the discussions that took place in the breakout sessions and describes major findings of the workshops.

  14. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The re

  15. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

  16. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  17. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Transportation Applications: 2012 Update | Department of Energy of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status

  18. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    SciTech Connect (OSTI)

    van Hassel, Bart A.

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the Phase 1 to Phase 2 review in favor of studying the slurry-form of AB as it appeared to be difficult to transport a solid form of AB through the thermolysis reactor. UTRC demonstrated the operation of a compact GLS in the laboratory at a scale that would be required for the actual automotive application. The GLS met the targets for weight and volume. UTRC also reported about the unresolved issue associated with the high vapor pressure of fluids that could be used for making a slurry-form of AB. Work on the GLS was halted after the Phase 2 to Phase 3 review as the off-board regeneration efficiency of the spent AB was below the DOE target of 60%. UTRC contributed to the design of an adsorbent-based hydrogen storage system through measurements of the thermal conductivity of a compacted form of Metal Organic Framework (MOF) number 5 and through the development and sizing of a particulate filter. Thermal conductivity is important for the design of the modular adsorbent tank insert (MATI), as developed by Oregon State University (OSU), in order to enable a rapid refueling process. Stringent hydrogen quality requirements can only be met with an efficient particulate filtration system. UTRC developed a method to size the particulate filter by taking into account the effect of the pressure drop on the hydrogen adsorption process in the tank. UTRC raised awareness about the potential use of materials-based H2 storage systems in applications outside the traditional light-duty vehicle market segment by presenting at several conferences about niche application opportunities in Unmanned Aerial Vehicles (UAV), Autonomous Underwater Vehicles (AUV), portable power and others.

  19. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  20. Slurry-Based Chemical Hydrogen Storage Systems for Automotive Fuel Cell Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Semelsberger, Troy; Simmons, Kevin L.; Van Hassel, Bart A.

    2014-05-30

    In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80 kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE developed set of system level targets for on-board storage. While most of the DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry is majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance of plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry.

  1. Method and system for producing hydrogen using sodium ion separation membranes

    DOE Patents [OSTI]

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M; Frost, Lyman

    2013-05-21

    A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.

  2. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  3. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

    2010-05-01

    On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  4. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOE Patents [OSTI]

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  5. Panel 1, Towards Sustainable Energy Systems: The Role of Large-Scale Hydrogen Storage in Germany

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanno Butsch | Head of International Cooperation NOW GmbH National Organization Hydrogen and Fuel Cell Technology Towards sustainable energy systems - The role of large scale hydrogen storage in Germany May 14th, 2014 | Sacramento Political background for the transition to renewable energies 2 * Climate protection: Global responsibility for the next generation. * Energy security: More independency from fossil fuels. * Securing the economy: Creating new markets and jobs through innovations. Three

  6. Experimental "Wind to Hydrogen" System Up and Running - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Experimental "Wind to Hydrogen" System Up and Running December 14, 2006 Xcel Energy (NYSE:XEL) and the U.S. Department of Energy's National Renewable Energy Laboratory today unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen, offering what may become an important new template for future energy production. Several dozen journalists, environmental leaders, government officials and Xcel Energy managers today toured the joint

  7. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Advancing Systems and Technologies to Produce Cleaner Fuels Technology Assessments Bioenergy Conversion Biomass Feedstocks and Logistics Gas Hydrates Research and Development Hydrogen Production and Delivery Natural Gas Delivery Infrastructure Offshore Safety and Spill Reduction Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the

  8. Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system

    SciTech Connect (OSTI)

    Edenburn, M.W.

    1990-07-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

  9. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect (OSTI)

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  10. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  11. Spectroscopic ellipsometry on Si/SiO{sub 2}/graphene tri-layer system exposed to downstream hydrogen plasma: Effects of hydrogenation and chemical sputtering

    SciTech Connect (OSTI)

    Eren, Baran; Fu, Wangyang; Marot, Laurent Calame, Michel; Steiner, Roland; Meyer, Ernst

    2015-01-05

    In this work, the optical response of graphene to hydrogen plasma treatment is investigated with spectroscopic ellipsometry measurements. Although the electronic transport properties and Raman spectrum of graphene change after plasma hydrogenation, ellipsometric parameters of the Si/SiO2/graphene tri-layer system do not change. This is attributed to plasma hydrogenated graphene still being electrically conductive, since the light absorption of conducting 2D materials does not depend on the electronic band structure. A change in the light transmission can only be observed when higher energy hydrogen ions (30?eV) are employed, which chemically sputter the graphene layer. An optical contrast is still apparent after sputtering due to the remaining traces of graphene and hydrocarbons on the surface. In brief, plasma treatment does not change the light transmission of graphene; and when it does, this is actually due to plasma damage rather than plasma hydrogenation.

  12. Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

  13. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    SciTech Connect (OSTI)

    Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

    2013-11-01

    Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

  14. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  15. Ultra Efficient Combined Heat, Hydrogen, and Power System

    SciTech Connect (OSTI)

    2010-10-28

    Description of CHHP system which utilizes a high-temperature fuel cell to provide on-site process reducing gas, clean power, and heat.

  16. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  17. "Stationary Flowing Liquid Lithium System For Pumping Out Atomic Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotopes and Ions" Leonid E. Zakharov and Charles Gentile | Princeton Plasma Physics Lab Stationary Flowing Liquid Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed loop for liquid lithium flow between the lithium supply vessel, vacuum chamber, and the collector vessel. The flow is driven by argon gas pressure and by gravity and controlled by freeze valves. The system does not

  18. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive

  19. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Screening Data System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel cell system contaminants studies, which were performed in collaboration with General Motors, the University of South Carolina, and the Colorado School of Mines. Select from the drop-down lists of materials to see the screening data collected from multiple methods. You can also view the data

  20. POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time.

  1. Novel Hydrogen Production Systems Operative at Thermodynamic Extremes

    SciTech Connect (OSTI)

    Gunsalus, Robert

    2012-11-30

    We have employed a suite of molecular, bioinformatics, and biochemical tools to interrogate the thermodynamically limiting steps of H{sub 2} production from fatty acids in syntrophic communities. We also developed a new microbial model system that generates high H{sub 2} concentrations (over 17% of the gas phase) with high H{sub 2} yields of over 3 moles H{sub 2} per mole glucose. Lastly, a systems-based study of biohydrogen production in model anaerobic consortia was performed to begin identifying key regulated steps as a precursor to modeling co-metabolism. The results of these studies significantly expand our ability to predict and model systems for H{sub 2} production in novel anaerobes that are currently very poorly documented or understood.

  2. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

  3. National Energy Modeling System with Hydrogen Model (NEMS-H2)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling System with Hydrogen Model (NEMS-H2) (OnLocation, Inc. 1 ) Objectives Estimate the energy, economic, and environmental impacts of alternative energy policies and different assumptions about energy markets. Key Attributes & Strengths NEMS-H2 is an integrated model that reflects feedbacks within the overall energy system. It is detailed and technology-rich, which allows the testing of various alternative technology assumptions. Platform, Requirements & Availability NEMS-H2 is a

  4. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect (OSTI)

    Ahluwalia, Rajesh; Hua, T. Q.; Peng, J. -K.; Lasher, S.; McKenney, Kurtis; Sinha, J.

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  5. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    SciTech Connect (OSTI)

    Thomas, C.E.

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  6. System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2010-06-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current (AC) to direct current (DC) conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  7. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOE Patents [OSTI]

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  8. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  9. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  10. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  11. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  12. Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology A. Kostival, C. Rivkin, W. Buttner, and R. Burgess National Renewable Energy Laboratory Technical Report NREL/TP-5400-60175 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  13. High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level Computational Chemistry Approaches to the Prediction of the Energetic Properties of Chemical Hydrogen Storage Systems David A. Dixon Chemistry, University of Alabama, Tuscaloosa, AL Cast: Myrna Hernandez-Matus, Daniel Grant, Jackson Switzer, Jacob Batson, Ronita Folkes, Minh Nguyen Anthony J. Arduengo & co-workers Maciej Gutowski (PNNL) Robert Ramsay Chair Fund Shelby Hall Funding provided in part by the Department of Energy, Office of Energy Efficiency and Renewable Energy under the

  14. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling D. Steward National Renewable Energy Laboratory J. Zuboy Contractor Technical Report NREL/TP-6A20-62781 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  15. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million

  16. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOE Patents [OSTI]

    Elliot, Douglas C. (Richland, WA); Werpy, Todd A. (West Richland, WA); Wang, Yong (Richland, WA); Frye, Jr., John G. (Richland, WA)

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  17. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect (OSTI)

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  18. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can improve profitability. The fact of the matter, though, is that the focused commercialization of hydrogen from biological processes awaits some necessary scientific breakthroughs and much higher conventional energy prices.

  19. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    SciTech Connect (OSTI)

    Khalil, Y. F

    2015-01-05

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogen storage safety to provide a larger, highly coordinated effort.

  20. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect (OSTI)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-08-24

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

  1. Webinar January 21: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, January 21, from 12 to 1 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  2. Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST. This webinar will present the results of an analysis conducted by Sandia National Laboratories that explored potential synergies that may be realized by integrating solar hydrogen production and concentrating solar power (CSP) technologies.

  3. Transition pathways in a many-body system: Application to hydrogen-bond breaking in water

    SciTech Connect (OSTI)

    Csajka, F.S.; Chandler, D.

    1998-07-01

    We apply a stochastic method introduced by Dellago {ital et al.} [J. Chem. Phys. {bold 108}, 1964 (1998)] to sample transition paths in high-dimensional systems. The method connects two endpoint regions (for example a reactant and a product region) by a set of space-time paths. This approach is an importance sampling for rare events that does not require prior knowledge of the location of dynamical bottlenecks. Transition paths are generated with a weight corresponding to a chain of Metropolis Monte Carlo steps. We derive Monte Carlo algorithms and apply the technique to the dynamics of hydrogen-bond breaking in liquid water. We obtain averages in a transition path ensemble for the structure and energy along the trajectory. While characterized by a rate constant, hydrogen-bond breaking in water occurs frequently enough to be studied by standard methods. The process therefore provides a useful test of path sampling methods. The comparison between path sampling and standard Monte Carlo demonstrate the feasibility of transition path sampling for a many-body system with a rough potential energy surface. {copyright} {ital 1998 American Institute of Physics.}

  4. Hydrogen Safety Sensors Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards Issues related to Hydrogen Gas Detection Systems, NFPA 52 Hydrogen Sensor Placement Requirements, and the Committee Draft of the ISO TC197 WG13 on Hydrogen Detectors. ...

  5. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  6. Influence of dense quantum plasmas on fine-structure splitting of Lyman doublets of hydrogenic systems

    SciTech Connect (OSTI)

    De, Madhab Ray, Debasis

    2015-05-15

    Relativistic calculations are performed to study the effects of oscillatory quantum plasma screening on the fine-structure splitting between the components of Lyman-? and ? line doublets of atomic hydrogen and hydrgen-like argon ion within dense quantum plasmas, where the effective two-body (electronnucleus) interaction is modeled by the ShuklaEliasson oscillatory exponential cosine screened-Coulomb potential. The numerical solutions of the radial Dirac equation for the quantum plasma-embedded atomic systems reveal that the oscillatory quantum screening effect suppresses the doublet (energy) splitting substantially and the suppression becomes more prominent at large quantum wave number k{sub q}. In the absence of the oscillatory cosine screening term, much larger amount of suppression is noticed at larger values of k{sub q}, and the corresponding results represent the screening effect of an exponential screened-Coulomb two-body interaction. The Z{sup 4} scaling of the Lyman doublet splitting in low-Z hydrogen isoelectronic series of ions in free space is violated in dense quantum plasma environments. The relativistic data for the doublet splitting in the zero screening (k{sub q}?=?0) case are in very good agreement with the NIST reference data, with slight discrepancies (?0.2%) arising from the neglect of the quantum electrodynamic effects.

  7. Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof

    DOE Patents [OSTI]

    Snyder, Seth W.; Lin, Yupo J.; Hestekin' Jamie A.; Henry, Michael P.; Pujado, Peter; Oroskar, Anil; Kulprathipanja, Santi; Randhava, Sarabjit

    2010-09-21

    The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

  8. Characteristics of Hydrogen Negative Ion Source with FET based RF System

    SciTech Connect (OSTI)

    Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N.; Tsumori, K.; Takeiri, Y.

    2011-09-26

    Characteristics of radio frequency (RF) plasma production were investigated using a FET inverter power supply as a RF generator. High density hydrogen plasma was obtained using an external coil wound a cylindrical ceramic tube (driver region) with RF frequency of lower than 0.5 MHz. When an axial magnetic field around 10 mT was applied to the driver region, an electron density increased drastically and attained to over 10{sup 19} m{sup -3} in the driver region. Effect of the axial magnetic field in driver and expansion region was examined. Lower gas pressure operation below 0.5 Pa was possible with higher RF frequency. H{sup -} density in the expansion region was measured by using laser photo-detachment system. It decreased as the axial magnetic field applied, which was caused by the increase of energetic electron from the driver.

  9. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  10. Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

    SciTech Connect (OSTI)

    Ortiz, T.M.

    1998-05-01

    The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.

  11. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    SciTech Connect (OSTI)

    Kalay, Berfin; Demiralp, Metin

    2014-10-06

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin.

  12. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, Ganapati Rao (Yorktown, VA)

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  13. Sensitive hydrogen leak detector

    DOE Patents [OSTI]

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  14. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Broader source: Energy.gov [DOE]

    Presentation by C.E. (Sandy) Thomas at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  15. High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation on the High Level Computational Chemistry given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  16. R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems

    Broader source: Energy.gov [DOE]

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  17. Integrated System Dramatically Improves Hydrogen Molar Yield from Biomass via Fermentation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fermentative and electrohydrogenic production of hydrogen from corn stover. Work was performed by NREL's Biosciences Center and Pennsylvania State University.

  18. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Program’s Multiyear Research, Development and Demonstration Plan.

  19. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage ...

  20. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  1. Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001

    SciTech Connect (OSTI)

    Jin, H.G.; Sun, S.; Han, W.; Gao, L.

    2009-09-15

    This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

  2. Storing Hydrogen

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. POSTPONED: Webinar November 19: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis

    Broader source: Energy.gov [DOE]

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis" on Thursday, November 19, from 1:00 to 2:00 p.m. EST.

  4. Hydrogen cooling options for MgB{sub 2}-based superconducting systems

    SciTech Connect (OSTI)

    Stautner, W.; Xu, M.; Mine, S.; Amm, K.

    2014-01-29

    With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  5. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect (OSTI)

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  6. Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

  7. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  8. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    SciTech Connect (OSTI)

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to ?-Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  9. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  10. Hydrogen separation process

    DOE Patents [OSTI]

    Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  11. Oakland County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Global Wind Systems Inc Guardian Industries Guardian Industries Corp Integrated Concepts and Research Corporation ICRC...

  12. Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration

    SciTech Connect (OSTI)

    Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

    2014-05-01

    At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

  13. Hydrogen Industrial Trucks

    Office of Energy Efficiency and Renewable Energy (EERE)

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  14. Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"

    SciTech Connect (OSTI)

    Slade, A; Turner, J; Stone, K; McConnell, R

    2008-09-02

    The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

  15. Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion

    SciTech Connect (OSTI)

    Erlendur Steinthorsson; Brian Hollon; Adel Mansour

    2010-06-30

    The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was demonstrated for the hydrogen-natural gas fuel. The micro-mixing fuel injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions, supporting the Department of Energy goals related to increased energy diversity while reducing greenhouse gases.

  16. 'Grand Challenge' for Basic and Applied Research in Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the following areas: New materials or technologies for hydrogen storage; Compressed and liquid hydrogen tank technologies; and Off-board hydrogen storage systems. Category 2 is...

  17. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  18. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    SciTech Connect (OSTI)

    Grieb, Thomas M.; Mills, W. B.; Jacobson, Mark Z.; Summers, Karen V.; Crossan, A. Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world’s FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to evaluate a wider range of conditions and address some of the uncertainties that exist in the evaluation of hydrogen emissions. A simplified global hydrogen cycle model that simulates hydrogen dynamics in the troposphere and stratosphere was developed. A Monte Carlo framework was developed to address hydrogen uptake variability for different types of ecosystems. Findings 1.Converting vehicles worldwide in 2050 to SHFCVs at 90% penetration in developed countries and 45% penetration in other countries is expected to reduce NOx, CO, CO2, CH4, some other organic gases, ozone, PAN, black carbon, and other particle components in the troposphere, but may increase some other organic gases, depending on emissions. Conversion to SHFCVs is also expected to cool the troposphere and warm the stratosphere, but to a lesser extent than WHFCVs. Finally, SHFCVs are expected to increase UTLS ozone while decreasing upper stratospheric ozone, but to a lesser extent than WHFCVs. 2.The predicted criteria pollutant concentrations from the GATOR-GCMOM simulations indicated that near-surface annual mean concentrations in the US are likely to increase from the 2000 base case to the 2050 A1B base case for CO2 and ozone due to the increased economic activity, but to decrease for CO, NO2, SO2, and PM10 due to improved pollution control equipment and energy efficiencies. The shift to SHFCVs in 2050 was predicted to result in decreased concentrations for all the criteria pollutants, except for SO2 and PM10. The higher predicted concentrations for SO2 and PM10 were attributed to increased emissions using the steam-reforming method to generate H2. If renewable methods such as wind-based electrolysis were used to generate H2, the emissions of SO2 and PM10 would be lower. 3.The effects on air quality, human health, ecosystem, and building structures were quantified by comparing the GATOR-GCMOM model output and accepted health and ecosystem effects levels and ambient air quality criteria. Shifting to HFCVs is expected to result in improved air quality and benefits to human health. Shifting to HFCVs is unlikely to result in damage to buildings. 4.Results are thought to be robust for larger leakage rates of H2 and for greater penetrations of HFCVs, since the controlling factor for stratospheric ozone impacts is the reduction in fossil-fuel greenhouse gases and the resulting surface cooling, which reduces water vapor emissions and stratospheric warming, which increases tropopause stability reducing water vapor transport to the stratosphere. 5.The supplemental modeling results were generally supportive of the results from the GATOR-GCMOM simulations, and recommendations for additional analyses were made. Extending the duration of the simulation to coincide with the time required for hydrogen mixing ratios to attain a steady state condition was recommended. Further evaluation of algorithms to describe hydrogen uptake in the model was also recommended.

  19. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  20. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect (OSTI)

    Professor Richard Eisenberg

    2012-07-18

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

  1. Compact Detection System for High Sensitivity Hydrogen Profiling of Materials by Nuclear Reaction Analysis

    SciTech Connect (OSTI)

    Marble, Daniel Keith; Urban, Ben; Pacheco, Jose

    2009-03-10

    Hydrogen is a ubiquitous contaminant that is known to have dramatic effects on the electrical, chemical, and mechanical properties of many types of materials in even minute quantities. Thus, the detection of hydrogen in materials is of major importance. Nuclear Reaction Analysis (NRA) is a powerful technique for nondestructive profiling hydrogen in materials. However, NRA has found only limited use in many applications because of poor sensitivity due to cosmic ray background (CSRB). Most attempts to eliminate CSRB to achieve ppm detection levels using higher energy nuclear reactions or tons of passive shielding are not compatible with commercial ion beam analysis space and equipment requirements Zimmerman, et al. have previously reported upon a coincidence detector that meets IBA space requirements and reduces the cosmic ray background, but the detector suffers from lower detection efficiency and small sample size. We have replaced the BGO well detector in the Zimmerman coincidence detection scheme with a larger Nal well detector and used faster timing electronics to produce a detector that can handle larger samples with higher detection efficiency, and still eliminate cosmic ray background.

  2. MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS

    SciTech Connect (OSTI)

    James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

    2009-04-01

    It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.

  3. Potential Strategies for Integrating Solar Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar Potential Strategies for Integrating Solar Hydrogen Production and ...

  4. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    is a promising renewable energy technology for generation of hydrogen for use in the future hydrogen economy. PEC systems use solar photons to generate a voltage in an...

  5. Hawaii Renewable Hydrogen Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Hydrogen Program State & Regional Initiatives Webinar 14 October 2009 Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute Chenoa Farnsworth Partner Kolohala Holdings, LLP Overview * Hawaii's Energy Situation * Mitch Ewan * Hawaii Power Park Project * Mitch Ewan * The Renewables-to-Hydrogen Fund * Chenoa Farnsworth Hawaii - Most Petroleum Dependent State Petroleum dependence for electricity - top six states Highest Electricity Prices in U.S. Hawaii and US

  6. HST/COS detection of deuterated molecular hydrogen in a damped Ly? system at z = 0.18

    SciTech Connect (OSTI)

    Oliveira, Cristina M.; Sembach, Kenneth R.; Tumlinson, Jason; Thom, Christopher [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O'Meara, John, E-mail: oliveira@stsci.edu [Saint Michael's College, Colchester, VT 05439 (United States)

    2014-03-01

    We report on the detection of deuterated molecular hydrogen, HD, at z = 0.18. HD and H{sub 2} are detected in HST/COS data of a low-metallicity (Z ? 0.07 Z {sub ?}) damped Ly? (DLA) system at z = 0.18562 toward QSO B012028, with log N(H I) = 20.50 0.10. Four absorption components are clearly resolved in H{sub 2}, while two components are resolved in HD; the bulk of the molecular hydrogen is associated with the components traced by HD. We find total column densities log N(HD) = 14.82 0.15 and log N(H{sub 2}) = 20.00 0.10. This system has a high molecular fraction, f(H{sub 2}) = 0.39 0.10, and a low HD-to-H{sub 2} ratio, log (HD/2H{sub 2}) = 5.5 0.2 dex. The excitation temperature, T {sub 01} = 65 2 K, in the component containing the bulk of the molecular gas is lower than in other DLAs. These properties are unlike those in other higher redshift DLA systems known to contain HD, but are consistent with what is observed in dense clouds in the Milky Way.

  7. Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation

    SciTech Connect (OSTI)

    Shabani, Bahman; Andrews, John; Watkins, Simon

    2010-01-15

    A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

  8. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  9. First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

    SciTech Connect (OSTI)

    J. Karl Johnson

    2011-05-20

    The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

  10. Hydrogen Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program. PDF icon 6_h2a_mann.pdf More Documents & Publications H2A Delivery Models and Results H2A Delivery Components Model and Analysis Hydrogen Delivery Analysis Plus Meeting: DTT, STT, HPTT, Other Analysts, Invited Guests

  11. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

  12. Hydrogen Safety

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

  13. Hydrogen Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

  14. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen- containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (preferentially with carbon capture, utilization, and storage); biomass grown from renewable, non-food crops; or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and

  15. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  16. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    SciTech Connect (OSTI)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

  17. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    SciTech Connect (OSTI)

    Tang, Xia; Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH4)2 and Mg(BH4)2 in nano-frameworks did not improve their H2 absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

  18. Electrolytic Hydrogen Production: Potential Impacts to Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytic Hydrogen Production Potential Impacts to Utilities Electrolytic Hydrogen Production Workshop February 28, 2014 Frank Novachek Director, Corporate Planning 2 Electrolytic Hydrogen Production Potential Impacts - Electric System * Reliability * Capacity * Regulation * Generation Resources * On/Off Peak * Dispatchability Renewables Integration System Operations Electric Load Hydrogen Production * Ramp Control * Reserves * Plant Cycling 3 Unique Opportunities - Electric  Increased

  19. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis of Photoelectrochemical (PEC) Hydrogen Production Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems. PDF icon Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production More Documents & Publications Technoeconomic Boundary Analysis of Biological

  20. Hydrogenation apparatus

    DOE Patents [OSTI]

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  1. Conceptual design of the HTTR-IS hydrogen production system - dynamic simulation code development for advanced process heat exchanger in the HTTR-IS system

    SciTech Connect (OSTI)

    Sato, Hiroyuki; Kubo, Shinji; Sakaba, Nariaki; Ohashi, Hirofumi; Sano, Naoki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-07-01

    The objective of this study is to confirm the availability of proposed mitigation methodology against thermal load increase events initiated by the thermochemical water splitting IS process hydrogen production system (IS process) coupling with the High temperature Engineering Test Reactor (HTTR). Japan Atomic Energy Agency (JAEA) has been performing the development of dynamic simulation code which can evaluate complex phenomena in the HTTR-IS system all at one once to achieve the requirement. The notable feature of the developed code is the Advanced Process Heat Exchanger (APHX) module which enables to estimate the IS process thermal load variation considering phase change and chemical reaction behavior assumed in the APHX. In this paper, two cases of dynamic calculation for the thermal load increase events were performed using the newly developed APHX module. The results of the analytical studies clearly show the availability of the developed model for dynamic simulation of the HTTR-IS system and the thermal load increase mitigation methodology. (authors)

  2. Design, fabrication, and testing of a getter-based atmosphere purification and waste treatment system for a nitrogen-hydrogen-helium glovebox

    SciTech Connect (OSTI)

    Bibeault, M. L.; Paglieri, S. N.; Tuggle, D. G.; Wermer, J. R.; Nobile Jr, A.

    2008-07-15

    A system containing a combination of getters (Zr-Mn-Fe, SAES St909; and Zr{sub 2}Fe, SAES St198) was used to process the nitrogen-hydrogen-helium atmosphere in a glovebox used for handling metal tritide samples. During routine operations, the glovebox atmosphere is recirculated and hydrogenous impurities (i.e. CQ{sub 4}, Q{sub 2}O, and NQ{sub 3}, where Q =H, D, T) are decomposed (cracked) and removed by Zr-Mn-Fe without absorbing elemental hydrogen isotopes. If the tritium content of the glovebox atmosphere becomes unacceptably high, the getter system can rapidly strip the glovebox atmosphere of all hydrogen isotopes by absorption on the Zr{sub 2}Fe, thus lessening the burden on the facility waste gas treatment system. The getter system was designed for high flowrate ( > 100 1/min), which is achieved by using a honeycomb support for the getter pellets and 1.27-cm diameter tubing throughout the system for reduced pressure drop. The novel getter bed design also includes an integral preheater and copper liner to accommodate swelling of the getter pellets, which occurs during loading with oxygen and carbon impurities. Non-tritium functional tests were conducted to determine the gettering efficiencies at different getter bed temperatures and flowrates by recirculating gas through the system from, a 6-m{sup 3} glovebox containing known concentrations of impurities. (authors)

  3. Status & Direction for Onboard Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Direction for Onboard Hydrogen Storage Status & Direction for Onboard Hydrogen Storage Presentation prepared by Andy Abele for the DOE Hydrogen Manufacturing R&D Workshop. PDF icon mfg_wkshp_abele.pdf More Documents & Publications High Pressure Hydrogen Tank Manufacturing Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications HYDROGEN TO THE HIGHWAYS

  4. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation...

  5. Technical Assessment of Organic Liquid Carrier Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive...

  6. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications...

  7. Research and Development Strategies for Compressed & Cryo-Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop ...

  8. Dense, layered membranes for hydrogen separation

    DOE Patents [OSTI]

    Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.

    2006-02-21

    This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.

  9. Hydrogen Scenarios

    Broader source: Energy.gov [DOE]

    Presentation by Frances Wood of OnLocation Inc. at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007

  10. Hydrogen Liquefaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internationally 4-7 European Installations 4-6 Japanese Installations India Program ESA French Guiana (South America) 4 Satisfies ASME J-2719 (hydrogen ...

  11. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  12. Cryo-Hydrogen Storage Workshop Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Workshop Welcome Cryo-Hydrogen Storage Workshop Welcome Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_6_stetson.pdf More Documents & Publications Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report Cryogenic Hydrogen Storage Systems Workshop Agenda Cryo-Compressed Hydrogen

  13. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search TODO: Add description Related Links List of Companies in Hydrogen Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from...

  14. Chemical Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for these irreversible hydrogen storage systems. Significant technical issues remain...

  15. Hydrogen fracture toughness tester completion

    SciTech Connect (OSTI)

    Morgan, Michael J.

    2015-09-30

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  16. DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems - Projected Performance and Cost Parameters | Department of Energy Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage

  17. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect (OSTI)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  18. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect (OSTI)

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  19. Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

    2010-12-01

    It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

  20. Effects of Ti-Based Additives on the Hydrogen Storage Properties of a L i B H 4 / C a H 2 Destabilized System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Hongwei; Ibikunle, Adeola; Goudy, Andrew J.

    2010-01-01

    Tmore » he hydrogen storage properties of a destabilized LiBH 4 / CaH 2 system ball-milled with TiCl 3 , TiF 3 , and TiO 2 additives have been investigated. It is found that the system with TiCl 3 additive has a lower dehydrogenation temperature than the ones with other additives. Further study shows that a higher amount of TiCl 3 is more effective in reducing the desorption temperature of the LiBH 4 / CaH 2 system, since it leads to a lower activation energy of dehydrogenation. The activations energies for mixtures containing 4, 10, and 25 mol% of TiCl 3 are 141, 126, and 110 kJ/mol, respectively. However, the benefits of higher amounts of TiCl 3 are offset by a larger reduction in hydrogen capacity of the mixtures.« less

  1. Effects of Ti-Based Additives on the Hydrogen Storage Properties of aLiBH4/CaH2Destabilized System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Hongwei; Ibikunle, Adeola; Goudy, Andrew J.

    2010-01-01

    The hydrogen storage properties of a destabilizedLiBH4/CaH2system ball-milled withTiCl3,TiF3, andTiO2additives have been investigated. It is found that the system withTiCl3additive has a lower dehydrogenation temperature than the ones with other additives. Further study shows that a higher amount ofTiCl3is more effective in reducing the desorption temperature of theLiBH4/CaH2system, since it leads to a lower activation energy of dehydrogenation. The activations energies for mixtures containing 4, 10, and 25?mol% ofTiCl3are 141, 126, and 110?kJ/mol, respectively. However, the benefits of higher amounts ofTiCl3are offset by a larger reduction in hydrogen capacity of the mixtures.

  2. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect (OSTI)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  3. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  4. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  5. Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same

    DOE Patents [OSTI]

    Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

    2012-04-03

    As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

  6. DOE Hydrogen Storage Technical Performance Targets for Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Vehicles DOE Hydrogen Storage Technical Performance Targets for Light-Duty Vehicles This table summarizes technical performance targets for hydrogen storage systems ...

  7. Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryo-Compressed Hydrogen Storage: Performance and Cost Review Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications High-Pressure Tube ...

  8. Hydrogen Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable

  9. Composition and method for storing and releasing hydrogen

    DOE Patents [OSTI]

    Thorn, David L.; Tumas, William; Ott, Kevin C.; Burrell, Anthony K.

    2010-06-15

    A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.

  10. Florida Hydrogen Initiative

    SciTech Connect (OSTI)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.

  11. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  12. DOE Technical Targets for Photobiological Hydrogen Production

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for photobiological hydrogen production. The tables are organized into separate sections for photolytic biological and photosynthetic bacterial hydrogen production systems.

  13. Hydrogen Storage Research and Development Activities

    Broader source: Energy.gov [DOE]

    DOE's hydrogen storage research and development (R&D) activities are aimed at increasing the gravimetric and volumetric energy density and reducing the cost of hydrogen storage systems for...

  14. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  15. Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production

    SciTech Connect (OSTI)

    James, Brian D.; Baum, George N.; Perez, Julie; Baum, Kevin N.

    2009-12-01

    This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

  16. Compressed Hydrogen Storage Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressed Hydrogen Storage Workshop Agenda Compressed Hydrogen Storage Workshop Agenda Agenda for the first day of the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_day1_agenda.pdf More Documents & Publications Cryogenic Hydrogen Storage Systems Workshop Agenda Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary

  17. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of person at work in laboratory setting. NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research projects support the development and adoption of cost-effective, high-performance fuel cell systems and sustainable hydrogen technologies for transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery

  18. Hydrogen program overview

    SciTech Connect (OSTI)

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  19. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  20. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials...

  1. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  2. Hydrogen isotope separation

    DOE Patents [OSTI]

    Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  3. Proceedings of the 1992 DOE/NREL hydrogen program review

    SciTech Connect (OSTI)

    Rocheleau, R.E.; Gao, Q.H.; Miller, E.

    1992-07-01

    These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

  4. Hydrogen Production: Photobiological

    Broader source: Energy.gov [DOE]

    The photobiological hydrogen production process uses microorganisms and sunlight to turn water, and sometimes organic matter, into hydrogen.

  5. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  6. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  7. Support of a pathway to a hydrogen future

    SciTech Connect (OSTI)

    Hoffman, A.R.

    1997-12-31

    This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

  8. Development of a Renewable Hydrogen Energy Station | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Renewable Hydrogen Energy Station Development of a Renewable Hydrogen Energy Station Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_heydorn.pdf More Documents & Publications Validation of an Integrated Hydrogen Energy Station Fuel Cell Power Plants Renewable and Waste Fuels Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011

  9. NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Technology Analysis NREL's hydrogen systems analysis activities provide direction, insight, and support for the development, demonstration, and deployment of a broad range of hydrogen technologies. Analysis focuses on hydrogen production, storage, and delivery systems for fuel cell electric vehicles (FCEVs) as well as stationary fuel cells and emerging-market applications such as material handling and backup power. NREL's hydrogen systems analysts evaluate R&D goals

  10. Status of Hydrogen Storage Technologies

    Broader source: Energy.gov [DOE]

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  11. Hydrogen scavengers

    DOE Patents [OSTI]

    Carroll, David W. (Los Alamos, NM); Salazar, Kenneth V. (Espanola, NM); Trkula, Mitchell (Los Alamos, NM); Sandoval, Cynthia W. (Los Alamos, NM)

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  12. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen- Fueled Transportation System M. Melendez, K. Theis, and C. Johnson Technical Report NREL/TP-560-40753 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency

  13. Resistive hydrogen sensing element

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN)

    2000-01-01

    Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

  14. Hydrogen Sensor Testing, Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    Factsheet describing the hydrogen sensor testing laboratory at the National Renewable Energy Laboratory.

  15. Sandia Energy - Key Hydrogen Report Now Available on OpenEnergyInfo...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Hydrogen Report Now Available on OpenEnergyInfo Wiki Site Home Energy CRF Facilities News Energy Efficiency News & Events Systems Analysis Systems Engineering Key Hydrogen...

  16. Detroit Commuter Hydrogen Project

    SciTech Connect (OSTI)

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with luggage. By collecting fuel use data for the two H2ICE buses, with both written driver logs and onboard telemetry devices, and for two conventional propane-gasoline powered buses in the same service, comparisons of operating efficiency and maintenance requirements were completed. Public opinion about the concept of hydrogen fuel was sampled with a rider survey throughout the demonstration. The demonstration was very effective in adding to the understanding of the application of hydrogen as a transportation fuel. The two 9 passenger H2ICE buses accumulated nearly 50,000 miles and carried 14,285 passengers. Data indicated the H2ICE bus fuel economy to be 9.4 miles/ gallon of gasoline equivalent (m/GGE) compared to the 10 passenger propane-gasoline bus average of 9.8 m/GGE over 32,400 miles. The 23- passenger bus averaged 7.4 m/GGE over 40,700 miles. Rider feedback from 1050 on-board survey cards was overwhelmingly positive with 99.6% indicating they would ride again on a hydrogen powered vehicle. Minimal maintenance was required for theses buses during the demonstration project, but a longer duration demonstration would be required to more adequately assess this aspect of the concept.

  17. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  18. Hydrogen detector

    DOE Patents [OSTI]

    Kanegae, Naomichi (Mito, JP); Ikemoto, Ichiro (Mito, JP)

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  19. CSA International Certification Discussion Hydrogen Technology Workshop

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  20. Summary of Electrolytic Hydrogen Production: Milestone Completion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of ...

  1. Hydrogen Risk Assessment Model (HyRAM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... unignited releases from a user-defined hydrogen installation Questions Addressed Given a ... Will this enhance system safety? (If used with an economic model: is the increase in ...

  2. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway ...

  3. Hydrogen Innovations LLC | Open Energy Information

    Open Energy Info (EERE)

    Innovations LLC Jump to: navigation, search Name: Hydrogen Innovations LLC Place: Blackfoot, Idaho Zip: 83221 Product: Manufacturer of alternative fuel delivery system that cleans...

  4. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers Lean Gasoline System Development for Fuel Efficient Small Car HYDROGEN TO THE HIGHWAYS...

  5. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Randy Petri, Versa Power Systems PDF icon Renewables and Grid Integration, Kevin Harrison, NREL PDF icon Electrolytic Hydrogen Production: Potential Impacts to Utilities, ...

  6. Economic Assessment of Hydrogen Technologies Participating in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This paper quantifies the value for hydrogen energy storage and demand response systems to participate in select California wholesale electricity markets using 2012 data. For ...

  7. Hydrogen Safety R&D Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Activities » Hydrogen Safety R&D Projects Hydrogen Safety R&D Projects DOE's safety R&D activities are focused on developing hydrogen sensors for detecting hydrogen leaks, which pose a safety concern for hydrogen and fuel cell systems. The leak sensor must be sensitive enough to provide a safe and reliable alarm system that is rugged, easily manufactured, and priced reasonably. Automotive applications, which employ fuel cells in an enclosed environment, are especially critical

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  9. Potential Carriers and Approaches for Hydrogen Delivery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Carriers and Approaches for Hydrogen Delivery Potential Carriers and Approaches for Hydrogen Delivery Presentation by Matthew Hooks of TIAX at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_hooks_carriers.pdf More Documents & Publications Summary of On-Board Storage Models and Analyses Analyses of Hydrogen Storage Materials and On-Board Systems Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006

  10. NREL Wind to Hydrogen Project: Renewable Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & ...

  11. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen ...

  12. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen ...

  13. Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Hydrogen Vehicles and Fuels in China Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Presentation given by Jinyang Zheng of ...

  14. CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior CNG, Hydrogen, CNG-Hydrogen Blends - Critical Fuel Properties and Behavior Presentation given by Jay ...

  15. Composites Technology for Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Technology for Hydrogen Pipelines Composites Technology for Hydrogen Pipelines Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution PDF icon pipeline_group_smith_ms.pdf More Documents & Publications Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Integrating Environmental, Safety, and Quality Management System Audits New Materials for Hydrogen Pipelines

  16. DOE Hydrogen Pipeline Working Group Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline Working Group Workshop DOE Hydrogen Pipeline Working Group Workshop Only those systems that are regulated by DOT in the US, DOT delegated state agency, or other federal regulatory authority PDF icon hpwgw_airprod_remp.pdf More Documents & Publications Hydrogen Piping Experience in Chevron Refining Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines EIS-0511: Final Environmental Impact Statement

  17. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  18. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Tcnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  19. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a “real-world” retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation’s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products’ Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user’s fueling experience.

  20. CTP Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    CTP Hydrogen Jump to: navigation, search Name: CTP Hydrogen Place: Westborough, Massachusetts Zip: 1581 Sector: Hydro, Hydrogen Product: CTP Hydrogen is an early stage company...

  1. NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind-to-Hydrogen Project Photo of person in hard hat working on equipment in a laboratory setting. NREL engineer inspects hydrogen-producing electrolyzer system at the National Wind Technology Center. Photo by Greg Martin, NREL Formed in partnership with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated electricity through water to split it into hydrogen and oxygen. The resulting

  2. Hydrogen-storing hydride complexes

    DOE Patents [OSTI]

    Srinivasan, Sesha S.; Niemann, Michael U.; Goswami, D. Yogi; Stefanakos, Elias K.

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  3. Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry

    SciTech Connect (OSTI)

    Felten, A.; Nittler, L.; Pireaux, J.-J.; McManus, D.; Rice, C.; Casiraghi, C.

    2014-11-03

    Plasma hydrogenation of graphene has been proposed as a tool to modify the properties of graphene. However, hydrogen plasma is a complex system and controlled hydrogenation of graphene suffers from a lack of understanding of the plasma chemistry. Here, we correlate the modifications induced on monolayer graphene studied by Raman spectroscopy with the hydrogen ions energy distributions obtained by mass spectrometry. We measure the energy distribution of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions for different plasma conditions showing that their energy strongly depends on the sample position, pressure, and plasma power and can reach values as high as 45?eV. Based on these measurements, we speculate that under specific plasma parameters, protons should possess enough energy to penetrate the graphene sheet. Therefore, a graphene membrane could become, under certain conditions, transparent to both protons and electrons.

  4. Thermochemical production of hydrogen

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-07-13

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal and Z represents a metalloid selected from the arsenic-antimony-bismuth and selenium-tellurium subgroups of the periodic system: 2MO + Z + SO.sub.2 .fwdarw. MZ + MSO.sub.4 (1) mz + h.sub.2 so.sub.4 .fwdarw. mso.sub.4 + h.sub.2 z (2) 2mso.sub.4 .fwdarw. 2mo + so.sub.2 + so.sub.3 + 1/20.sub.2 (3) h.sub.2 z .fwdarw. z + h.sub.2 (4) h.sub.2 o + so.sub.3 .fwdarw. h.sub.2 so.sub.4 (5) the net reaction is the decomposition of water into hydrogen and oxygen.

  5. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  6. Hydrogen Sensor Workshop

    Broader source: Energy.gov [DOE]

    On June 8, 2011, the Department of Energy's National Renewable Energy Laboratory hosted a hydrogen sensors workshop to survey emerging fuel cell and hydrogen infrastructure applications that...

  7. Hydrogen Threshold Cost Calculation

    Broader source: Energy.gov [DOE]

    DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and assumptions used to calculate that threshold cost.

  8. Hydrogen Storage Challenges

    Broader source: Energy.gov [DOE]

    For transportation, the overarching technical challenge for hydrogen storage is how to store the amount of hydrogen required for a conventional driving range (>300 miles) within the vehicular...

  9. Hydrogen | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Jump to: navigation, search Hydrogen Companies Loading map... "format":"googlemaps3","type":"SATELLITE","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":1000,"o...

  10. Hydrogen Delivery Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pathway," International Journal of Hydrogen Energy, 34 ... Chemical Economics Handbook. July 2010, http:chemical.ihs.comCEHPublicReports743.5000. 25 Hydrogen ...

  11. Hydrogen Safety Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information. Project ID: scs07weiner PNNL-SA-65397 2 IEA HIA Task 19 Working Group Hydrogen Safety Training Props Hydrogen Safety Panel Incident...

  12. Solar hydrogen for urban trucks

    SciTech Connect (OSTI)

    Provenzano, J.: Scott, P.B.; Zweig, R.

    1997-12-31

    The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

  13. Hydrogen-donor coal liquefaction process

    DOE Patents [OSTI]

    Wilson, Jr., Edward L. (Baytown, TX); Mitchell, Willard N. (Baytown, TX)

    1980-01-01

    Improved liquid yields are obtained during the hydrogen-donor solvent liquefaction of coal and similar carbonaceous solids by maintaining a higher concentration of material having hydrogenation catalytic activity in the downstream section of the liquefaction reactor system than in the upstream section of the system.

  14. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Fuel Cell Engines and Related Technologies Course Hydrogen Fuel Cell Engines and Related Technologies Course Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and

  15. Proceedings of the Hydrogen Vision Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vision Meeting Proceedings of the Hydrogen Vision Meeting The proceedings of the Hydrogen Vision Meeting held in Washington, D.C., November 15-16, 2001 are summarized in this document. PDF icon Proceedings of the Hydrogen Vision Meeting More Documents & Publications Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Proceedings of the Technology Roadmap Workshop on Communication and Control Systems for Distributed Energy Implementation and

  16. Hydrogen (H2) Production by Oxygenic Phototrophs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygenic Phototrophs Hydrogen (H2) Production by Oxygenic Phototrophs Presentation by Eric Hegg, Michigan State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_hegg.pdf More Documents & Publications Renewable Hydrogen Production from Biological Systems Autofermentative Biological Hydrogen Production by Cyanobacteria 2013 Biological Hydrogen Production Workshop

  17. NREL: Hydrogen and Fuel Cells Research - Safety Sensor Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sensor Testing Laboratory The Safety Sensor Testing Laboratory at NREL's Energy Systems Integration Facility aims to ensure that hydrogen sensor technology is available to meet end-user needs and to foster the proper use of sensors. Hydrogen sensors are an important enabling technology for the safe implementation of the emerging hydrogen infrastructure. Codes require hydrogen detectors (e.g., NFPA 2-Hydrogen Technologies Code), but currently provide little guidance on deployment. In

  18. The U.S. National Hydrogen Storage Project Overview (presentation) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The U.S. National Hydrogen Storage Project Overview (presentation) The U.S. National Hydrogen Storage Project Overview (presentation) Status of Hydrogen Storage Materials R&D presented at the U.S. Department of Energy's Hydrogen Storage Meeting held June 26, 2007 in Bethesda, Maryland. PDF icon doe_overview_satyapal.pdf More Documents & Publications A Brief Overview of Hydrogen Storage Issues and Needs On-Board Storage Systems Analysis Target Explanation

  19. Stationary High-Pressure Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Pressure Hydrogen Storage Stationary High-Pressure Hydrogen Storage This presentation by Zhili Feng of Oak Ridge National Laboratory was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. PDF icon csd_workshop_7_feng.pdf More Documents & Publications 2013 Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Final Report Materials for High Pressure Fuel Injection Systems R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels

  20. Dispensing Hydrogen Fuel to Vehicles | Department of Energy

    Office of Environmental Management (EM)

    Hydrogen Delivery » Dispensing Hydrogen Fuel to Vehicles Dispensing Hydrogen Fuel to Vehicles Photo of a person dispensing hydrogen into a vehicle fuel tank The technology used for storing hydrogen onboard vehicles directly affects the design and selection of the delivery system and infrastructure. In the near term, 700 bar gaseous onboard storage has been chosen by the original equipment manufacturers for the first vehicles to be released commercially, and 350 bar is the chosen pressure for

  1. Solar Hydrogen Production

    SciTech Connect (OSTI)

    Koval, C.; Sutin, N.; Turner, J.

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  2. US DRIVE Hydrogen Storage Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technical Team Roadmap US DRIVE Hydrogen Storage Technical Team Roadmap The scope of the Hydrogen Storage Tech Team is to review and evaluate the potential, and limitations, of novel approaches, materials, and systems for hydrogen storage onboard light-duty fuel cell vehicles and provide feedback to the U.S. Department of Energy (DOE) and Partnership stakeholders. Generate system goals and performance targets, and establish test methods for hydrogen storage systems onboard vehicles.

  3. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect (OSTI)

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  4. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  5. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  6. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  7. Test Protocol for Hydrogen Storage Systems in SAE J2579 and GTR Requirements for Cycling Testing and Its Effects on Type 3 and 4 Containers

    Office of Energy Efficiency and Renewable Energy (EERE)

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 – 29, 2010, in Beijing, China.

  8. Proceedings of the 2001 U.S. DOE Hydrogen Program Review | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Renewable Hydrogen Production from Biological Systems Proceedings of the 1998 U.S. DOE Hydrogen...

  9. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Wicks, George G. (Aiken, SC); Enz, Glenn L. (N. Augusta, SC)

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  10. Composition for absorbing hydrogen

    DOE Patents [OSTI]

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Hydrogen Vehicle and Infrastructure Demonstration and Validation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_05_sell.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Accelerating Alternatives for Minnesota Drivers HYDROGEN TO THE HIGHWAYS Lean Gasoline System Development

  12. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  13. Development of Advanced Small Hydrogen Engines

    SciTech Connect (OSTI)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  14. A Brief Overview of Hydrogen Storage Issues and Needs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A Brief Overview of Hydrogen Storage Issues and Needs A Brief Overview of Hydrogen Storage Issues and Needs Presentation by George Thomas at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_thomas.pdf More Documents & Publications On-Board Storage Systems Analysis The U.S. National Hydrogen Storage Project Overview (presentation) DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected

  15. Panel 3, Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Necessary Conditions for Hydrogen Energy Storage Projects to Succeed in North America Rob Harvey Director, Energy Storage Hydrogen Energy Storage for Grid and Transportation Services DOE and Industry Canada, Sacramento, May 14-15, 2014 Hydrogenics is a world leader in water electrolysis products and hydrogen fuel cell power systems 2 Onsite Generation Electrolyzers Industrial Hydrogen Hydrogen Fueling Power Systems Fuel Cell Modules Stand-by Power Mobility Power Energy Storage Power-to-Gas 

  16. Hydrogen Power Inc formerly Hydrogen Power International and...

    Open Energy Info (EERE)

    Power Inc formerly Hydrogen Power International and Equitex Inc Jump to: navigation, search Name: Hydrogen Power, Inc. (formerly Hydrogen Power International and Equitex Inc.)...

  17. Hydrogen permeability and Integrity of hydrogen transfer pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and ... Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held ...

  18. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE...

  19. THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.

    SciTech Connect (OSTI)

    RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

    2007-06-25

    A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

  20. Hydrogen & Our Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery

  1. Hydrogen Pipelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaseous Hydrogen » Hydrogen Pipelines Hydrogen Pipelines Photo of a hydrogen pipeline. Gaseous hydrogen can be transported through pipelines much the way natural gas is today. Approximately 1,500 miles of hydrogen pipelines are currently operating in the United States. Owned by merchant hydrogen producers, these pipelines are located where large hydrogen users, such as petroleum refineries and chemical plants, are concentrated such as the Gulf Coast region. Transporting gaseous hydrogen via

  2. Advanced Hydrogen Turbine Development

    SciTech Connect (OSTI)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

  3. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    SciTech Connect (OSTI)

    Lewis, Amanda; Zhao, Hongbin; Hopkins, Scott

    2014-09-30

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  4. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  5. Hydrogen Storage- Basics

    Broader source: Energy.gov [DOE]

    Storing enough hydrogen on-board a vehicle to achieve a driving range of greater than 300 miles is a significant challenge. On a weight basis, hydrogen has nearly three times the energy content of...

  6. Hydrogen Program Overview

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to the DOE Hydrogen Program. It describes the program mission and answers the question: “Why Hydrogen?”

  7. Hydrogen Safety Knowledge Tools

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Partners Best Practices - LANL, SNL, NREL, NASA, Hydrogen Safety Panel, and IEA HIA Tasks 19 and 22 Incident Reporting - NASA and Hydrogen Safety Panel 3 Objectives H2...

  8. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  9. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This roadmap provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development.

  10. Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Hydrogen December 22, 2015 The three reports released by the Energy Department highlight continued strength, progress and innovation in the U.S. fuel cell hydrogen technologies market. Energy Department Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy innovation and

  11. MODEL OF DIFFUSERS / PERMEATORS FOR HYDROGEN PROCESSING

    SciTech Connect (OSTI)

    Hang, T; William Jacobs, W

    2007-08-27

    Palladium-silver (Pd-Ag) diffusers are mainstays of hydrogen processing. Diffusers separate hydrogen from inert species such as nitrogen, argon or helium. The tubing becomes permeable to hydrogen when heated to more than 250 C and a differential pressure is created across the membrane. The hydrogen diffuses better at higher temperatures. Experimental or experiential results have been the basis for determining or predicting a diffuser's performance. However, the process can be mathematically modeled, and comparison to experimental or other operating data can be utilized to improve the fit of the model. A reliable model-based diffuser system design is the goal which will have impacts on tritium and hydrogen processing. A computer model has been developed to solve the differential equations for diffusion given the operating boundary conditions. The model was compared to operating data for a low pressure diffuser system. The modeling approach and the results are presented in this paper.

  12. Redirection of metabolism for hydrogen production

    SciTech Connect (OSTI)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and to hydrogen. Also R. palustris cells remain viable in a non-growing state for long periods of time.

  13. 2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.

  14. 2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    Satyapal, Sunita

    2011-11-01

    The 2011 Annual Progress Report summarizes fiscal year 2011 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; education; market transformation; and systems analysis.

  15. 2013 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2013-12-01

    The 2013 Annual Progress Report summarizes fiscal year 2013 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  16. 2014 Annual Progress Report: DOE Hydrogen and Fuel Cells Program

    SciTech Connect (OSTI)

    none,

    2014-11-01

    The 2014 Annual Progress Report summarizes fiscal year 2014 activities and accomplishments by projects funded by the DOE Hydrogen Program. It covers the program areas of hydrogen production and delivery; hydrogen storage; fuel cells; manufacturing; technology validation; safety, codes and standards; market transformation; and systems analysis.

  17. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced ...

  18. Alternative Fuels Data Center: Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Hydrogen on Google Bookmark Alternative Fuels Data Center: Hydrogen on Delicious Rank Alternative Fuels Data Center: Hydrogen on Digg Find More places to share Alternative Fuels Data Center: Hydrogen on

  19. IEA Agreement on the production and utilization of hydrogen: 1996 annual report

    SciTech Connect (OSTI)

    Elam, Carolyn C. )

    1997-01-31

    The annual report includes an overview of the IEA Hydrogen Agreement, including a brief summary of hydrogen in general. The Chairman's report provides highlights for the year. Sections are included on hydrogen energy activities in the IEA Hydrogen Agreement member countries, including Canada, European Commission, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, and the US. Lastly, Annex reports are given for the following tasks: Task 10, Photoproduction of Hydrogen, Task 11, Integrated Systems, and Task 12, Metal Hydrides and Carbon for Hydrogen Storage.

  20. Renewable Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Renewable Hydrogen Welcoming presentations at the Delivering Renewable Hydrogen Workshop: A Focus on Near-Term Applications, Nov. 16, 2009, Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_remick.pdf More Documents & Publications National Hydrogen Learning Demonstration Status CoolCab Truck Thermal Load Reduction Hydrogen Transmission and Distribution Workshop

  1. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Codes, and Standards Photo of person working with scientific equipment in a laboratory setting. NREL researcher works on sensor testing apparatus in the Safety Sensor Testing Laboratory. Photo by Dennis Schroeder, NREL NREL's hydrogen safety, codes, and standards projects focus on ensuring safe operation, handling, and use of hydrogen and hydrogen systems through safety sensors and codes and standards for buildings and equipment. Safety Sensors To facilitate hydrogen safety, NREL is

  2. Hydrogen Fuel Cell Engines and Related Technologies Course Manual |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engines and Related Technologies Course Manual Hydrogen Fuel Cell Engines and Related Technologies Course Manual This course manual features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and maintenance. It also presents the different types of fuel cells and hybrid electric vehicles. PDF icon Introduction: Hydrogen Fuel Cell Engines

  3. Agent-Based Modeling and Simulation for Hydrogen Transition Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory is managed by The University of Chicago for the U.S. Department of Energy Agent Agent - - Based Modeling Based Modeling and Simulation (ABMS) and Simulation (ABMS) for Hydrogen Transition for Hydrogen Transition Analysis Analysis Marianne Mintz Hydrogen Transition Analysis Workshop US Department of Energy January 26, 2006 Objectives and Scope for Phase 1 2 Analyze the hydrogen infrastructure development as a complex adaptive system using an agent-based modeling and simulation (ABMS)

  4. Natural Gas Utilities Options Analysis for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Objectives: Identify business opportunities and valuation of strategic options for the natural gas industry as hydrogen energy systems evolve. PDF icon hpwgw_natgas_ultanalysis_richards.pdf More Documents & Publications Natural Gas Utilities Options Analysis for the Hydrogen Economy Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo

  5. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Maps Below are some examples of how geographic information system (GIS) modeling is used in hydrogen infrastructure, demand, market and resource analyses. The JPG images are samples of the maps available in the following PDFs. Refer to the report for further information. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Map of U.S. Hydrogen Infrastructure Demand - Consumer Strategy U.S. Hydrogen Infrastructure Demand - Consumer Strategy (JPG 129

  6. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM | Department of Energy DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION PROGRAM DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION PROGRAM 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ed_07_mann.pdf More Documents & Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen

  7. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation. PDF icon Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production More Documents & Publications Techno-Economic Boundary Analysis

  8. Summary of Electrolytic Hydrogen Production: Milestone Completion Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electrolytic Hydrogen Production: Milestone Completion Report Summary of Electrolytic Hydrogen Production: Milestone Completion Report This report provides an overview of the current state of electrolytic hydrogen production techonologies and an economic analysis of the processes and systems available as of December 2003. PDF icon 36734.pdf More Documents & Publications Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis

  9. Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

  10. Hydrogen permeability and Integrity of hydrogen transfer pipelines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline R&D Project Review Meeting held January 5th and 6th, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee. PDF icon 03_babu_transfer.pdf More Documents & Publications Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Proceedings of the 2005 Hydrogen Pipeline

  11. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  12. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  13. Assessing Steel Pipeline and Weld Susceptibility to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hydrogen permeability and Integrity of hydrogen transfer pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen...

  14. Materials-Based Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Storage Materials-Based Hydrogen Storage The Fuel Cell Technologies Office's (FCTO's) applied materials-based hydrogen storage technology research, development, and demonstration (RD&D) activities focus on developing materials and systems that have the potential to meet U.S. Department of Energy (DOE) 2020 light-duty vehicle system targets with an overarching goal of meeting ultimate full-fleet, light-duty vehicle system targets. Materials-based research is currently being pursued

  15. Webinar: Potential Strategies for Integrating Solar Hydrogen Production and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: A Systems Analysis | Department of Energy Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis Webinar: Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar Power: A Systems Analysis January 21, 2016 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Potential Strategies for Integrating Solar Hydrogen Production and Concentrating Solar

  16. Analysis of hydrogen isotope mixtures

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (Aiken, SC)

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  17. Dispersion of Hydrogen Clouds

    SciTech Connect (OSTI)

    Michael R. Swain; Eric S. Grilliot; Matthew N. Swain

    2000-06-30

    The following is the presentation of a simplification of the Hydrogen Risk Assessment Method previously developed at the University of Miami. It has been found that for simple enclosures, hydrogen leaks can be simulated with helium leaks to predict the concentrations of hydrogen gas produced. The highest concentrations of hydrogen occur near the ceiling after the initial transients disappear. For the geometries tested, hydrogen concentrations equal helium concentrations for the conditions of greatest concern (near the ceiling after transients disappear). The data supporting this conclusion is presented along with a comparison of hydrogen, LPG, and gasoline leakage from a vehicle parked in a single car garage. A short video was made from the vehicle fuel leakage data.

  18. Hydrogenation of carbonaceous materials

    DOE Patents [OSTI]

    Friedman, Joseph (Encino, CA); Oberg, Carl L. (Canoga Park, CA); Russell, Larry H. (Agoura, CA)

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  19. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle (FCH2V) GATE Center of Excellence Hydrogen Education Curriculum Path at Michigan Technological University GATE Center for Automotive Fuel Cell Systems at Virginia Tech

  20. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan ...

  1. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect (OSTI)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  2. Sandia Energy - Linde, Sandia Partnership Looks to Expand Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network Home Energy Transportation Energy Facilities Partnership News News & Events Systems Analysis Energy Storage...

  3. Sandia Energy - Energy Department Awards $7M to Advance Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Awards 7M to Advance Hydrogen Storage Systems Home Infrastructure Security Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities...

  4. Energy Department Announces up to $4 Million to Advance Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials, components, and systems needed to establish the technical and cost feasibility for renewable and low carbon hydrogen delivery. The long-term goal of production...

  5. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  6. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  7. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  8. Hydrogen Contamination Detector Workshop

    Broader source: Energy.gov [DOE]

    Workshop report, agenda, and presentations from the Hydrogen Contamination Detector Workshop hosted by SAE International on June 12, 2014, in Troy, Michigan. Sponsored by the U.S. Department of Energy (DOE) Fuel Cell Technologies Office, the workshop was held to gather individual input from key stakeholders about suitable technologies and research and development (R&D) gaps and needs for hydrogen contamination detectors at hydrogen refueling stations.

  9. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. Hydrogen can be made directly from fossil fuels or biomass, or it can be produced by passing electricity through water, breaking

  10. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  11. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  12. Hydrogen Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    The fuel cell — an energy conversion device that can efficiently capture and use the power of hydrogen — is the key to making it happen.

  13. Hydrogen ion microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO); Deb, Satyen K. (Boulder, CO)

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  14. HYDROGEN TO THE HIGHWAYS

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  15. Hydrogen Generator Appliance

    Broader source: Energy.gov [DOE]

    Presentation by Gus Block, Nuvera Fuel Cells, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  16. Hydrogen Delivery and Fueling

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of how hydrogen is delivered from the point of production to where it is used.

  17. Hydrogen Safety Knowledge Tools

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  18. Renewable Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Remick, R. J.

    2009-11-16

    Presentation about the United State's dependence on oil, how energy solutions are challenging, and why hydrogen should be considered as a long-term alternative for transportation fuel.

  19. President's Hydrogen Fuel Initiative

    Broader source: Energy.gov [DOE]

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  20. Hydrogen permeation resistant barrier

    DOE Patents [OSTI]

    McGuire, J.C.; Brehm, W.F.

    1980-02-08

    A hydrogen permeation resistant barrier is formed by diffusing aluminum into an iron or nickel alloy and forming an intermetallic aluminide layer.

  1. California Hydrogen Infrastructure Project

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect (OSTI)

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not directly address any hydrogen storage technical barriers or targets in terms of numbers. Specifically, hydrogen sorption and desorption tests or kinetics measurements were not part of the project scope. However, the insights gained from these studies could help to answer fundamental questions necessary for considering glass-based materials as hydrogen storage media and could be applied indirectly towards the DOE hydrogen storage technical targets such as system weight and volume, system cost and energy density. Such questions are: Can specific macro-crystals, proven to attract hydrogen when in a macroscopic form (bulk), be nucleated in glass matrices as nanocrystals to create two-phased materials? What are suitable compositions that enable to synthetize glass-based, two-phase materials with nanocrystals that can attract hydrogen via surface or bulk interactions? What are the limits of controlling the microstructure of these materials, especially limits for nanocrystals density and size? Finally, from a technological point of view, the fabrication of glass-derived nanocomposites that we explore is a very simple, fast and inexpensive process that does not require costly or specialized equipment which is an important factor for practical applications.

  3. Final Report: Metal Perhydrides for Hydrogen Storage

    SciTech Connect (OSTI)

    Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D.; Hu, Y.

    2011-07-26

    Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the metal ions. One LiH molecule contains one hydrogen atom because the valence of a Li ion is +1. One MgH2 molecule contains two hydrogen atoms because the valence of a Mg ion is +2. In metal perhydrides, a molecule could contain more hydrogen atoms than expected based on the metal valance, i.e. LiH1+n and MgH2+n (n is equal to or greater than 1). When n is sufficiently high, there will be plenty of hydrogen storage capacity to meet future requirements. The existence of hydrogen clusters, Hn+ (n = 5, 7, 9, 11, 13, 15) and transition metal ion-hydrogen clusters, M+(H2)n (n = 1-6), such as Sc(H2)n+, Co(H2)n+, etc., have assisted the development of this concept. Clusters are not stable species. However, their existence stimulates our approach on using electric charges to enhance the hydrogen adsorption in a hydrogen storage system in this study. The experimental and modeling work to verify it are reported here. Experimental work included the generation of cold hydrogen plasma through a microwave approach, synthesis of sorbent materials, design and construction of lab devices, and the determination of hydrogen adsorption capacities on various sorbent materials under various electric field potentials and various temperatures. The results consistently show that electric potential enhances the adsorption of hydrogen on sorbents. NiO, MgO, activated carbon, MOF, and MOF and platinum coated activated carbon are some of the materials studied. Enhancements up to a few hundred percents have been found. In general, the enhancement increases with the electrical potential, the pressure applied, and the temperature lowered. Theoretical modeling of the hydrogen adsorption on the sorbents under the electric potential has been investigated with the density functional theory (DFT) approach. It was found that the interaction energy between hydrogen and sorbent is increased remarkably when an electric field is applied. This increase of binding energy offers a potential solution for DOE when looking for a compromise between chemisorption and physisorption for hydrogen storage. Bonding of chemisorption is too

  4. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S. (Pleasanton, CA)

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  5. California Hydrogen Infrastructure Project | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Infrastructure Project Jump to: navigation, search Name: California Hydrogen Infrastructure Project Place: California Sector: Hydro, Hydrogen Product: String...

  6. Massachusetts Hydrogen Coalition | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name: Massachusetts Hydrogen Coalition Address: 100 Cummings Center Place: Beverly,...

  7. Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

    SciTech Connect (OSTI)

    Tushar K Ghosh

    2008-10-13

    The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

  8. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect (OSTI)

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  9. Kinetic effect of Pd additions on the hydrogen uptake of chemically activated, ultramicroporous carbon

    SciTech Connect (OSTI)

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2010-01-01

    The effect of mixing chemically-activated ultramicroporous carbon (UMC) with Pd nanopowder is investigated. Results show that Pd addition doubles the rate of hydrogen uptake, but does not enhance the hydrogen capacity or improve desorption kinetics. The effect of Pd on the rate of hydrogen adsorption supports the occurrence of the hydrogen spillover mechanism in the Pd - UMC system.

  10. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  11. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, Larry A. (Albuquerque, NM); Mead, Keith E. (Peralta, NM); Smith, Henry M. (Overland Park, KS)

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  12. Combination moisture and hydrogen getter

    DOE Patents [OSTI]

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  13. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  14. Enhancing hydrogen spillover and storage

    DOE Patents [OSTI]

    Yang, Ralph T. (Ann Arbor, MI); Li, Yingwel (Ann Arbor, MI); Lachawiec, Jr., Anthony J. (Ann Arbor, MI)

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  15. Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines

    Broader source: Energy.gov [DOE]

    Project Objectives: To gain basic understanding of hydrogen permeation behavior and its impact on hydrogen embrittlement of pipeline steels under high gaseous pressures relevant to hydrogen gas transmission pipeline

  16. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  17. Green Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen Company Jump to: navigation, search Logo: Green Hydrogen Company Name: Green Hydrogen Company Abbreviation: GH2 Address: Green Hydrogen Company, Head Office, 9...

  18. Safe Hydrogen LLC | Open Energy Information

    Open Energy Info (EERE)

    Hydrogen LLC Jump to: navigation, search Name: Safe Hydrogen LLC Place: Lexington, Massachusetts Sector: Hydro, Hydrogen Product: Focused on hydrogen storage, through a 'slurry' of...

  19. Hydrogen Car Co | Open Energy Information

    Open Energy Info (EERE)

    Car Co Jump to: navigation, search Name: Hydrogen Car Co Place: Los Angeles, California Zip: 90036 Sector: Hydro, Hydrogen Product: The Hydrogen Car Company produces hydrogen...

  20. The Hydrogen Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: The Hydrogen Company Abbreviation: HydroGen Address: The Hydrogen Company, HydroGen Engineering and Consulting, Head Office, 9...

  1. Sandia Energy - Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Home Transportation Energy Hydrogen Market Transformation Maritime Hydrogen & SF-BREEZE Maritime Hydrogen Fuel Cell Project Maritime Hydrogen Fuel Cell...

  2. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Mobility Sustainable Mobility This is the January 2016 issue of the Transportation and Hydrogen Newsletter. January 26, 2016 Photo of a red electric vehicle in front of ESIF A recent mobility workshop showcased an array of plug-in electric, hybrid electric, and hydrogen fuel cell vehicles. Image by Ellen Jaskol/NREL 35097 Summit Explores the Future of Dynamic Mobility Systems NREL brought together local and national thought leaders to discuss the convergence of connectivity,

  3. 2014 Electrolytic Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Cover (Photos from top to bottom) A vehicle refueling at an electrolysis-based fueling station. Photo courtesy of Proton OnSite. A vehicle refuels at an ITM Power mobile refueler. Photo courtesy of ITM Power. Dr. Kevin Harrison inspects a hydrogen-producing electrolyzer system. Photographer: Greg Martin. Photo courtesy of NREL. (NREL 23852-C) Shell's Santa Monica Blvd. hydrogen fueling station in west Los Angeles. Photographer: Keith Wipke. Photo courtesy of NREL. (NREL 17321) Vehicles

  4. Safe Use of Hydrogen | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Basics » Safe Use of Hydrogen Safe Use of Hydrogen By their nature, all fuels have some degree of danger associated with them. The safe use of any fuel focuses on preventing situations where the three combustion factors-ignition source (spark or heat), oxidant (air), and fuel-are present. With a thorough understanding of fuel properties, we can design fuel systems with appropriate engineering controls and establish guidelines to ensure the safe handling and use

  5. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Annual Merit Review and Peer Evaluation Meeting May 9, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan May 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon

  6. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transportation | Department of Energy Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_ramsden.pdf More Documents & Publications Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis

  7. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOE Patents [OSTI]

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  8. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  9. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  10. Hydrogen Fuel Quality

    SciTech Connect (OSTI)

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  11. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis. January 22, 2002-July 22, 2002 A report showing a comparative scooping economic analysis of 19 pathways for ...

  12. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines

    Broader source: Energy.gov [DOE]

    Code for Hydrogen Piping and Pipelines. B31 Hydrogen Section Committee to develop a new code for H2 piping and pipelines.

  13. Why Hydrogen? Hydrogen from Diverse Domestic Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of FreedomCAR & Fuels PartnershipDOE Delivery Program President's Hydrogen Fuel Initiative Hydrogen Posture Plan: An Integrated Research, Development and...

  14. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  15. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    SciTech Connect (OSTI)

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  16. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  17. Renewable Resources for Hydrogen (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2010-05-03

    This presentation provides an overview of renewable resources for hydrogen. It was presented at the National Hydrogen Association Hydrogen Conference & Expo in Long Beach, CA, May 3-6, 2010.

  18. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  19. The Hydriding Kinetics of Organic Hydrogen Getters

    SciTech Connect (OSTI)

    Powell, G. L.

    2002-02-11

    The aging of hermetically sealed systems is often accompanied by the gradual production of hydrogen gas that is a result of the decay of environmental gases and the degradation of organic materials. In particular, the oxygen, water, hydrogen ''equilibrium'' is affected by the removal of oxygen due the oxidation of metals and organic materials. This shift of the above ''equilibrium'' towards the formation of hydrogen gas, particularly in crevices, may eventually reach an explosive level of hydrogen gas or degrade metals by hydriding them. The latter process is generally delayed until the oxidizing species are significantly reduced. Organic hydrogen getters introduced by Allied Signal Aerospace Company, Kansas City Division have proven to be a very effective means of preventing hydrogen gas accumulation in sealed containers. These getters are relatively unaffected by air and environmental gases. They can be packaged in a variety of ways to fit particular needs such as porous pellets, fine or coarse [gravel] powder, or loaded into silicone rubber. The hydrogen gettering reactions are extremely irreversible since the hydrogen gas is converted into an organic hydrocarbon. These getters are based on the palladium-catalyzed hydrogenation of triple bonds to double and then single bonds in aromatic aryl compounds. DEB (1,4 bis (phenyl ethynyl) benzene) typically mixed with 25% by weight carbon with palladium (1% by weight of carbon) is one of the newest and best of these organic hydrogen getters. The reaction mechanisms are complex involving solid state reaction with a heterogeneous catalyst leading to the many intermediates, including mixed alkyl and aryl hydrocarbons with the possibilities of many isomers. The reaction kinetics mechanisms are also strongly influenced by the form in which they are packaged. For example, the hydriding rates for pellets and gravel have a strong dependence on reaction extent (i.e., DEB reduction) and a kinetic order in pressure of 0.76. Silicone rubber based DEB getters hydride at a much lower rate, have little dependence on reaction extent, have a higher kinetic order in pressure (0.87), and have a lower activation energy. The kinetics of the reaction as a function of hydrogen pressure, stoichiometry, and temperature for hydrogen and deuterium near ambient temperature (0 to 75 C) for pressures near or below 100 Pa over a wide range (in some cases, the complete) hydrogenation range are presented along with multi-dimensional rate models.

  20. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  1. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  2. Hydrogen Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Hydrogen Energy Place: Surrey, England, United Kingdom Zip: KT13 0NY Sector: Carbon, Hydro, Hydrogen Product: Surrey-based BP subsidiary...

  3. Hydrogen Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Hydrogen Ventures Name: Hydrogen Ventures Address: 1219 N. Studabaker Road Place: Long Beach, California Zip: 90811 Region: Southern CA...

  4. Hydrogen Production Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... hydrogen control to assure public safety and address ... pathway," International Journal of Hydrogen Energy 34 ... Texas: Center for Energy Economics, 2004), http:...

  5. Hydrogen gettering packing material, and process for making same

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA); Thompson, Lisa M. (Knoxville, TN); Smith, Henry Michael (Overland Park, KS); Schicker, James R. (Lee's Summit, MO)

    2001-01-01

    A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

  6. Extremely weak hydrogen flames

    SciTech Connect (OSTI)

    Lecoustre, V.R.; Sunderland, P.B. [Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742 (United States); Chao, B.H. [Department of Mechanical Engineering, University of Hawaii, Honolulu, HI 96822 (United States); Axelbaum, R.L. [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  7. Chromatographic hydrogen isotope separation

    DOE Patents [OSTI]

    Aldridge, Frederick T. (Livermore, CA)

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  8. The Hydrogen Program at NREL: A Brief Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Hydrogen Program at NREL: A Brief Overview The Hydrogen Program at NREL: A Brief Overview Presentation by Keith Wipke and Richard Greene, National Renewable Energy Laboratory, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_wipke_greene.pdf More Documents & Publications Renewable Hydrogen Production from Biological Systems Hydrogen, Fuel Cells and Infrastructure

  9. Winners of Hydrogen Student Design Contest Turn Urban Waste into Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Winners of Hydrogen Student Design Contest Turn Urban Waste into Energy Winners of Hydrogen Student Design Contest Turn Urban Waste into Energy September 20, 2012 - 1:10pm Addthis The University of Maryland team accepted the award for the best combined heat, hydrogen, and power system design at the World Hydrogen Energy Conference (WHEC) in Toronto. | Photo courtesy of Jennie Moton. The University of Maryland team accepted the award for the best combined heat, hydrogen,

  10. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, Bruce R.; Prather, William S.

    1992-01-01

    An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

  11. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  12. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1992-10-06

    An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

  13. Thermochemical method for producing hydrogen from hydrogen sulfide

    SciTech Connect (OSTI)

    Herrington, D.R.

    1984-02-21

    Hydrogen is produced from hydrogen sulfide by a 3-step, thermochemical process comprising: (a) contacting hydrogen sulfide with carbon dioxide to form carbonyl sulfide and water, (b) contacting the carbonyl sulfide produced in (a) with oxygen to form carbon monoxide and sulfur dioxide, and (c) contacting the carbon monoxide produced in (b) with water to form carbon dioxide and hydrogen.

  14. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  15. Advancing the Hydrogen Safety Knowledge Base

    SciTech Connect (OSTI)

    Weiner, Steven C.

    2014-12-01

    A White Paper of the International Energy Agency Hydrogen Implementing Agreement Task 31 - Hydrogen Safety

  16. The Hydrogen Connection

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-05-01

    As the world seeks to identify alternative energy sources, hydrogen and fuel cell technologies will offer a broad range of benefits for the environment, the economy and energy security.

  17. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  18. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  19. National Hydrogen Energy Roadmap

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy developme

  20. Hydrogen storage compositions

    DOE Patents [OSTI]

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.