Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

2

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

3

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

4

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen Hydrogen Delivery...

5

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

6

Hydrogen storage and generation system  

DOE Patents [OSTI]

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

7

Hydrogen storage and distribution systems  

Science Journals Connector (OSTI)

Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in pipelines or ... or airplanes. All batch transportation requires a storage system but al...

Andreas Zttel

2007-03-01T23:59:59.000Z

8

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

9

Hydrogen Delivery Technologies and Systems - Pipeline Transmission...  

Broader source: Energy.gov (indexed) [DOE]

Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy Hydrogen, Fuel Cells,...

10

Hydrogen Energy System and Hydrogen Production Methods  

Science Journals Connector (OSTI)

Hydrogen is being considered as a synthetic fuel ... . This paper contains an overview of the hydrogen production methods, those being commercially available today as well...

F. Barbir; T. N. Veziro?lu

1992-01-01T23:59:59.000Z

11

Electrochemical hydrogen Storage Systems  

SciTech Connect (OSTI)

As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

Dr. Digby Macdonald

2010-08-09T23:59:59.000Z

12

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

13

Standard-C hydrogen monitoring system, system design description  

SciTech Connect (OSTI)

Standard-C cabinet arrangement system design description for the Standard Hydrogen Monitoring System.

Schneider, T.C., Westinghouse Hanford

1996-08-29T23:59:59.000Z

14

Fuel cell using a hydrogen generation system  

DOE Patents [OSTI]

A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-10-19T23:59:59.000Z

15

CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA  

SciTech Connect (OSTI)

Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

Krishna Sapru

2005-11-15T23:59:59.000Z

16

Integrated Hydrogen Storage System Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WSRC-TR-2007-00440, REVISION 0 WSRC-TR-2007-00440, REVISION 0 Keywords: Hydrogen Kinetics, Hydrogen Storage Vessel Metal Hydride Retention: Permanent Integrated Hydrogen Storage System Model Bruce J. Hardy November 16, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96-SR18500 DISCLAIMER This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or usefulness, of any information,

17

Cost Analysis of Hydrogen Storage Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cost Analysis of Hydrogen Storage Systems Cost Analysis of Hydrogen Storage Systems Presentation by Stephen Lasher on cost analysis of hydrogen storage systems....

18

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Cost Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Cost Analysis Hydrogen Storage Systems Cost Analysis Project Summary Full Title: Cost Analysis of Hydrogen Storage Systems Project ID: 207 Principal Investigator: Stephen Lasher Keywords: Hydrogen storage; costs Purpose The purpose of this analysis is to help guide researchers and developers toward promising R&D and commercialization pathways by evaluating the various on-board hydrogen storage technologies on a consistent basis. Performer Principal Investigator: Stephen Lasher Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140 Telephone: 617-498-6108 Email: lasher.stephen@tiaxllc.com Additional Performers: Matt Hooks, TIAX, LLC; Mark Marion, TIAX, LLC; Kurtis McKenney, TIAX, LLC; Bob Rancatore, TIAX, LLC; Yong Yang, TIAX, LLC Sponsor(s) Name: Sunita Satyapal

19

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

20

Thin Film Hydrogen Storage System  

Science Journals Connector (OSTI)

In the last one decade the use of hydrogen as an energy carrier has attracted world ... on the technology involved for the production, storage and use of hydrogen. In this paper we discuss storage aspect of hydrogen

I. P. Jain; Y. K. Vijay

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Hydrogen Analysis Repository: Hydrogen Systems Analysis, Education, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis, Education, and Outreach Systems Analysis, Education, and Outreach Project Summary Full Title: Hydrogen Systems Analysis, Education, and Outreach Project ID: 89 Principal Investigator: Faith Klareich Brief Description: Sentech undertook systems analysis and technical/economic assessments to allow DOE to define the strategic goals of the hydrogen R&D program. Keywords: Technoeconomic analysis; education Purpose Provide data that allow DOE to define the strategic goals of the hydrogen R&D program. Performer Principal Investigator: Faith Klareich Organization: Sentech, Inc. Address: 7475 Wisconsin Avenue, Suite 900 Bethesda , MD 20814 Telephone: 240-223-5500 Period of Performance Start: August 1996 End: September 1997 Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

22

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

23

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

24

Method and System for Hydrogen Evolution and Storage  

DOE Patents [OSTI]

A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

Thorn, David L. (Los Alamos, NM); Tumas, William (Los Alamos, NM); Hay, P. Jeffrey (Los Alamos, NM); Schwarz, Daniel E. (Los Alamos, NM); Cameron, Thomas M. (Los Alamos, NM)

2008-10-21T23:59:59.000Z

25

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Systems Analysis Storage Systems Analysis Project Summary Full Title: System Level Analysis of Hydrogen Storage Options Project ID: 202 Principal Investigator: Rajesh K. Ahluwalia Keywords: Hydrogen storage; compressed hydrogen tanks Purpose ANL is developing models to understand the characteristics of storage systems based on approaches with unique characteristics (thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved) and to evaluate their potential to meet DOE targets for on-board applications. Performer Principal Investigator: Rajesh K. Ahluwalia Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5979 Email: walia@anl.gov Additional Performers: T.Q. Hua, Argonne National Laboratory; Romesh Kumar, Argonne National Laboratory; J-C Peng, Argonne National Laboratory

26

Polymer system for gettering hydrogen  

DOE Patents [OSTI]

A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

Shepodd, Timothy Jon (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Whinnery, LeRoy L. (4929 Julie St., Livermore, Alameda County, CA 94550)

2000-01-01T23:59:59.000Z

27

Designing Microporus Carbons for Hydrogen Storage Systems  

SciTech Connect (OSTI)

An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

Alan C. Cooper

2012-05-02T23:59:59.000Z

28

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect (OSTI)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

29

Standard hydrogen monitoring system equipment installation instructions  

SciTech Connect (OSTI)

This document provides the technical specifications for the equipment fabrication, installation, and sitework construction for the Standard Hydrogen Monitoring System. The Standard Hydrogen Monitoring System is designed to remove gases from waste tank vapor space and exhaust headers for continual monitoring and remote sample analysis.

Schneider, T.C.

1996-09-27T23:59:59.000Z

30

Hydrogen energy systems studies. Final technical report  

SciTech Connect (OSTI)

The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

1996-08-13T23:59:59.000Z

31

Chapter 4 - Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, hydrogen and fuel cell systems are introduced. Hydrogen is closely related to fuel cells because fuel cells are very efficient devices for power generation which when supplied with hydrogen generate non-polluting effluents, mainly water or steam. A hydrogen economy is necessary in the context of continuous growth of population and per-capita energy consumption. In this context, renewable energy solutionsespecially solarbecome more important and their harvesting requires hydrogen as energy carrier. Therefore the role of hydrogen and fuel cell systems in power generation becomes very important. As detailed in the chapter, these systems are useful for converting the fluctuating and intermittent energy of renewable sources and providing power on demand. Hydrogen and fuel cell systems can work either as grid-connected or as independent power generators. Connection to the grid allows for better load leveling and major savings as well as for reduction of pollution associated with power generation. Hydrogen can also be used to power residences and to cogenerate heat or other commodities. In addition, hydrogen and fuel cell technologies are much required for the transportation sector, where they can contribute to pollution and cost reduction and increased efficiency. Hydrogen production methods are reviewed in this chapter with a focus on electrolysis and thermochemical cycles. These systems appear to be leading technologies for the future. Other revised hydrogen production methods are gasification and reforming, which are very relevant for biomass conversion into hydrogen. Photochemical and photo-biochemical hydrogen production methods are also discussed. All types of fuel cells are introduced; these include alkaline, proton-exchange-membrane, phosphoric acid, molten carbonate, solid oxide, direct methanol, and direct ammonia fuel cells. Construction and specific application for power generation are presented for each type. The modeling and optimization aspects of fuel cells and their systems are explained. Several power generation systems with fuel cells are discussed, in which each type of fuel cells has specific system requirements. The overall system must include various types of separators, pumps, and compressors depending on the case. In aqueous systems water must be recycled, e.g., in the case of proton-exchange membrane fuel cells water must be actually fed in excess so that the membrane is wetted. Also for a direct methanol fuel cell water must be recovered and recycled. In molten carbonate fuel cell systems carbon dioxide must be recovered and recycled. In solid oxide fuel cell systems, the fuel must be supplied in excess and is not completely consumed; therefore it is important to couple these systems with gas turbines.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

32

Solar-hydrogen energy system for Pakistan  

SciTech Connect (OSTI)

A solar-hydrogen energy system has been proposed for Pakistan as the best replacement for the present fossil fuel based energy system. It has been suggested to produce hydrogen via photovoltaic-electrolysis, utilizing the available non-agricultural sunny terrain in Baluchistan region. There will be a desalination plant for sea water desalination. The area under the photovoltaic panels with the availability of water would provide suitable environment for growing some cash crops. This would change the cast useless desert land into green productive farms. In order to show the quantitative benefits of the proposed system, future trends of important energy and economical parameters have been studied with and without hydrogen introduction. The following parameters have been included: population, energy demand (fossil + hydrogen), energy production (fossil + hydrogen), gross national product, fossil energy imports, world energy prices, air pollution, quality of life, environmental savings due to hydrogen introduction, savings due to the higher utilization efficiency of hydrogen, by-product credit, agricultural income, income from hydrogen sale, photovoltaic cell area, total land area, water desalination plant capacity, capital investment, operating and maintenance cost, and total income from the system. The results indicate that adopting the solar-hydrogen energy system would eliminate the import dependency of fossil fuels, increase gross product per capita, reduce pollution, improve quality of life and establish a permanent and clean energy system. The total annual expenditure on the proposed system is less than the total income from the proposed system. The availability of water, the cash crop production, electricity and hydrogen would result in rapid development of Baluchistan, the largest province of Pakistan.

Lutfi, N.

1990-01-01T23:59:59.000Z

33

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

34

Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

The hydrogen economy emerged as a potential response to two major problems that mankind faces today, namely, its dependence on fossil fuels and the high level of pollution associated with the fossil fuel combusti...

?brahim Diner; Calin Zamfirescu

2012-01-01T23:59:59.000Z

35

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

36

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

37

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive...

38

Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's...

39

Research on hydrogen environment fatigue test system and correlative fatigue test of hydrogen storage vessel  

Science Journals Connector (OSTI)

A 70MPa hydrogen environment fatigue test system has been designed and applied in the manufacture of a hydrogen storage vessel. Key equipment is the 80MPa flat steel ribbon wound high pressure hydrogen storage ve...

Rong Li ? ?; Chuan-xiang Zheng ???

2014-02-01T23:59:59.000Z

40

Hydrogen Systems Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal » Coal to Liquids » Hydrogen Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of Systems, Analyses, and Planning, supports systems, techno-economic, and benefits analysis activities to provide guidance and input for its research and development program portfolio, assess the progress made by Program-funded research, and measure the energy security, economic and

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Small Fuel Cell Systems with Hydrogen Storage | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Small Fuel Cell Systems with Hydrogen Storage Small Fuel Cell Systems with Hydrogen Storage Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington,...

42

Air Products Hydrogen Energy Systems  

Broader source: Energy.gov (indexed) [DOE]

Kiczek,Edward F. [KICZEKEF@airproducts.com] Kiczek,Edward F. [KICZEKEF@airproducts.com] Sent: Monday, April 18, 2011 7:40 PM To: Gopstein, Avi (S4) Subject: Hydrogen Infrastructure Latest Advancements Attachments: Air Products Written Comments to 2011 2012 AB118 Investment Plan.pdf Follow Up Flag: Follow up Flag Status: Flagged Categories: QTR Transparency Avi, You may recall we met in DC when the McKinsey team from Germany came to discuss the EU study on hydrogen infrastructure. At that time I mention a significant advance in infrastructure that would be announced soon. Attached is our testimony to the California Energy Commission on deploying that technology. We were awarded the project to build 9 stations in southern California with the backing of

43

Hydrogen storage systems from waste Mg alloys  

Science Journals Connector (OSTI)

Abstract The production cost of materials for hydrogen storage is one of the major issues to be addressed in order to consider them suitable for large scale applications. In the last decades several authors reported on the hydrogen sorption properties of Mg and Mg-based systems. In this work magnesium industrial wastes of AZ91 alloy and Mg-10wt.% Gd alloy are used for the production of hydrogen storage materials. The hydrogen sorption properties of the alloys were investigated by means of volumetric technique, in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and calorimetric methods. The measured reversible hydrogen storage capacity for the alloys AZ91 and Mg-10wt.% Gd are 4.2 and 5.8wt.%, respectively. For the Mg-10wt.% Gd alloy, the hydrogenated product was also successfully used as starting reactant for the synthesis of Mg(NH2)2 and as MgH2 substitute in the Reactive Hydride Composite (RHC) 2LiBH4+MgH2. The results of this work demonstrate the concrete possibility to use Mg alloy wastes for hydrogen storage purposes.

C. Pistidda; N. Bergemann; J. Wurr; A. Rzeszutek; K.T. Mller; B.R.S. Hansen; S. Garroni; C. Horstmann; C. Milanese; A. Girella; O. Metz; K. Taube; T.R. Jensen; D. Thomas; H.P. Liermann; T. Klassen; M. Dornheim

2014-01-01T23:59:59.000Z

44

System for thermochemical hydrogen production  

DOE Patents [OSTI]

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

45

Chapter 6 - The fusion - hydrogen energy system  

Science Journals Connector (OSTI)

Publisher Summary This chapter shows that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. It addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. The nations that implement the FusionHydrogen energy system will experience a powerful surge of growth as companies, new and old, compete to product the supporting equipment. The Fusionhydrogen energy system will provide the means for dramatically reducing all forms of soil, water, and air pollution resulting from the extraction and use of fossil fuels. Hydrogen fuel use will stop the addition of carbon dioxide to the atmosphere and the attendant warming of the earth. It will stop atmospheric pollution by materials responsible for acid rain. It will also provide a reliable energy source with an inconsequential potential for generation of new types of pollution. The hydrogen energy carrier can be easily transported throughout the world without damage to the environment. It provides a safe and highly reliable energy distribution system for use by all the sectors of the economy.

Laurence O. Williams

2002-01-01T23:59:59.000Z

46

The development of large technical systems: implications for hydrogen  

E-Print Network [OSTI]

to imagine a new hydrogen energy economy1 in which hydrogen is generated, transported, stored and made for hydrogen and its desirability2 , this hydrogen energy economy is not inevitable. The gap between where weThe development of large technical systems: implications for hydrogen Jim Watson March 2002 Tyndall

Watson, Andrew

47

Novel, Ceramic Membrane System For Hydrogen Separation  

SciTech Connect (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

48

Tuning the plasmon energy of Palladium-Hydrogen systems by varying the Hydrogen concentration  

E-Print Network [OSTI]

to their importance in many applications such as hydrogen storage [16, 17, 18, 19, 20, 21]. The novel scheme [8Tuning the plasmon energy of Palladium-Hydrogen systems by varying the Hydrogen concentration V M of bulk PdHx. Hydrogen concentrations between x = 0 and x = 1 are considered. The calculated spectra

Muiño, Ricardo Díez

49

Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage of hydrogen storage materials and processes for information exchange and to update the researchers on related

50

Hydrogen Fueling Systems and Infrastructure  

E-Print Network [OSTI]

Infrastructure Development TIAX Sunline LAX, Praxair · Fuels Choice · Renewable Energy Transportation System

51

Cryogenic Hydrogen Storage Systems Workshop Agenda  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Purpose: Identify R&D needs and technical pathways associated with the continued development and validation of cryo-compressed and cryo-sorption hydrogen storage technologies, highlighting those aspects common to both technologies as well as identifying their unique requirements and issues that should be addressed. 8:30 Welcome/Introductions/Workshop objectives/Recap of previous day Ned Stetson, DOE 9:00 OEM Perspective on Cryogenic H 2 Storage (20 min presentation/20 min discussion) Tobias Brunner, BMW 9:40 Performance Comparison and Cost Review (20 min presentation/20 min discussion) Rajesh Ahluwalia, ANL 10:20 Break (10 minutes) 10:30 Expert Panel Discussion (Members will each have 15 minutes for presentations)

52

Biological Systems for Hydrogen Photoproduction (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

Ghirardi, M. L.

2012-05-01T23:59:59.000Z

53

The solar system mimics a hydrogen atom  

E-Print Network [OSTI]

The solar system and the hydrogen atom are two well known systems on different scales and look unrelated: The former is a classical system on the scale of about billions of kilometers and the latter a quantum system of about tens of picometers. Here we show a connection between them. Specifically, we find that the orbital radii of the planets mimic the mean radii of the energy levels of a quantum system under the Coulomb-like potential. This connection might be explained by very light dark matter which manifests quantum behavior in the solar system, thereby hinting at a dark matter mass around $8 \\times 10^{-14}$ electron-volts.

Je-An Gu

2014-03-28T23:59:59.000Z

54

Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005  

Broader source: Energy.gov [DOE]

This report highlights DOEs systems analysis work related to hydrogen storage materials and process development, with a focus on models of on-board and off-board hydrogen storage systems.

55

Analyses of Hydrogen Storage Materials and On-Board Systems ...  

Broader source: Energy.gov (indexed) [DOE]

Analyses of Hydrogen Storage Materials and On-Board Systems Analyses of Hydrogen Storage Materials and On-Board Systems Presentation by Stephen Lasher of TIAX for Joint Meeting on...

56

Integrated Ceramic Membrane System for Hydrogen Production  

SciTech Connect (OSTI)

Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900C, and 2) Sequential OTM and HTM reactors in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to increase CO conversion and produce more hydrogen than a standard water gas shift reactor would. Substantial improvements in substrate and membrane performance were achieved in another DOE project (DE-FC26-07NT43054). These improved membranes were used for testing in a water gas shift environment in this program. The amount of net H2 generated (defined as the difference of hydrogen produced and fed) was greater than would be produced at equilibrium using conventional water gas shift reactors up to 75 psig because of the shift in equilibrium caused by continuous hydrogen removal. However, methanation happened at higher pressures, 100 and 125 psig, and resulted in less net H2 generated than would be expected by equilibrium conversion alone. An effort to avoid methanation by testing in more oxidizing conditions (by increasing CO2/CO ratio in a feed gas) was successful and net H2 generated was higher (40-60%) than a conventional reactor at equilibrium at all pressures tested (up to 125 psig). A model was developed to predict reactor performance in both cases with and without methanation. The required membrane area depends on conditions, but the required membrane area is about 10 ft2 to produce about 2000 scfh of hydrogen. The maximum amount of hydrogen that can be produced in a membrane reactor decreased significantly due to methanation from about 2600 scfh to about 2400 scfh. Therefore, it is critical to eliminate methanation to fully benefit from the use of a membrane in the reaction. Other modeling work showed that operating a membrane reactor at higher temperature provides an opportunity to make the reactor smaller and potentially provides a significant capital cost savings compared to a shift reactor/PSA combination.

Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

2010-08-05T23:59:59.000Z

57

Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza and Kristin Deason Sentech, Inc. January 16, 2008 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems

58

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network [OSTI]

compressors Reliable & cost effective hydrogen fueling system #12;9 Accomplishments > Comprehensive subsystem> Development of a Natural Gas-to- Hydrogen Fueling System DOE Hydrogen & Fuel Cell Merit Review integrator, fuel processing subsystem ­ FuelMaker Corporation > Maker of high-quality high

59

Ionic (Proton) Transport Hydrogen Separation Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

60

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

operating conditions. Direct Hydrogen Fuel Cell System Modelconditions for a direct hydrogen fuel cell system Table 1simulation tool for hydrogen fuel cell vehicles, Journal of

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version)  

Broader source: Energy.gov [DOE]

Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an...

62

Microchannel Reactor System for Catalytic Hydrogenation  

SciTech Connect (OSTI)

We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

2010-12-22T23:59:59.000Z

63

Autothermal hydrogen storage and delivery systems  

DOE Patents [OSTI]

Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

2011-08-23T23:59:59.000Z

64

Systems and methods for generation of hydrogen peroxide vapor  

DOE Patents [OSTI]

A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.

Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G

2014-12-02T23:59:59.000Z

65

Instrumentation & control architecture applied for a hydrogen isotopes storage system  

Science Journals Connector (OSTI)

The properties of hydrogen storage used materials refers to their ability to high "connect" hydrogen, to have a large storage capacity, to be easily achievable and, if necessary, to allow its easy recovery. The metals and intermetallic compounds are ... Keywords: architecture, control system, hydrogen, isotopes, storage

Eusebiu Ilarian Ionete; Bogdan Monea

2011-09-01T23:59:59.000Z

66

Borazine-boron nitride hybrid hydrogen storage system  

DOE Patents [OSTI]

A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

Narula, Chaitanya K. (Knoxville, TN) [Knoxville, TN; Simonson, J. Michael (Knoxville, TN) [Knoxville, TN; Maya, Leon (Knoxville, TN) [Knoxville, TN; Paine, Robert T. (Albuquerque, NM) [Albuquerque, NM

2008-04-22T23:59:59.000Z

67

Standard-D hydrogen monitoring system, system design description  

SciTech Connect (OSTI)

During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

Schneider, T.C.

1996-09-26T23:59:59.000Z

68

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

Broader source: Energy.gov [DOE]

The objective of these biannual Working Group meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes.

69

Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006  

Broader source: Energy.gov [DOE]

This document provides a summary of the Hydrogen Storage Systems Anlaysis Working Group meeting in December 2006 in Washington, D.C.

70

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network [OSTI]

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

71

Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

72

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network [OSTI]

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

73

Control system for the prototype of hydrogen powered car  

Science Journals Connector (OSTI)

The contribution describes design and construction of hydrogen powered car based on fuel cell technology and electrical DC-drive. The main focus is given to control system and human machine interface of the car. The practical solution of control system ... Keywords: control system design, fuel cells, human machine interface, hydrogen, programmable controllers

Jiri Koziorek; Zdenek Slanina

2005-11-01T23:59:59.000Z

74

System for the co-production of electricity and hydrogen  

DOE Patents [OSTI]

Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

2007-10-02T23:59:59.000Z

75

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Held in Conjunction with the DOE Hydrogen Program Annual Merit Review Crystal Gateway Marriott, Arlington, VA June 11, 2008 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Elvin Yzugullu Sentech, Inc. July 18, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott, Arlington, VA Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related

76

Cost Analysis of Hydrogen Storage Systems  

Broader source: Energy.gov (indexed) [DOE]

In 2004, DOE has selected TIAX to evaluate the lifecycle cost and WTW energy use and GHG emissions of various hydrogen storage options. Water Electrolyzer Water Electrolyzer...

77

Safe Detector System for Hydrogen Leaks  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

78

Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review  

SciTech Connect (OSTI)

Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)

Not Available

1980-02-01T23:59:59.000Z

79

Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Analysis Meeting Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC 20024-2168 March 29, 2005 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory June 20, 2005 SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC 20024-2168 Meeting Objectives The objective of this meeting was to familiarize the DOE research community involved in hydrogen storage materials and process development with the systems analysis work being carried out within the DOE program. In particular, Argonne National Laboratory (ANL) has been tasked to develop models of on-board and off-board hydrogen storage systems based on the various materials and technologies being developed at the DOE Centers of Excellence and

80

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Analysis Working Group Meeting Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Kristin Deason Sentech, Inc. January 16, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related developments within the DOE program. A major thrust of these meetings is to leverage

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

SciTech Connect (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

82

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect (OSTI)

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

83

Energy Department Awards $7 Million to Advance Hydrogen Storage Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles.

84

Analyses of Hydrogen Storage Materials and On-Board Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Analyses of Hydrogen Hydrogen Analyses of Hydrogen Storage Materials and On Storage Materials and On - - Board Systems Board Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8, 2007 Stephen Lasher Kurtis McKenney Yong Yang Bob Rancatore Stefan Unnasch Matt Hooks This presentation does not contain any proprietary or confidential information Overview 1 SL/042007/D0268 ST32_Lasher_H2 Storage_v1.ppt Start date: June 2004 End date: Sept 2009 41% Complete Timeline Barriers addressed B. Cost C. Efficiency K. System Life Cycle Assessments Barriers Total project funding DOE share = $1.5M No cost share FY06 = $275k FY07 = $300k (plan) Budget Argonne and other National

85

PRESSURE DROP EVALUATION OF THE HYDROGEN CIRCULATION SYSTEM FOR JSNS  

SciTech Connect (OSTI)

In J-PARC, an intense spallation neutron source (JSNS) driven by a proton beam of 1 MW has selected supercritical hydrogen with a temperature of around 20 K and the pressure of 1.5 MPa as a moderator material. A hydrogen-circulation system, which consists of two pumps, an ortho-para hydrogen converter, a heater, an accumulator and a helium-hydrogen heat exchanger, has been designed to provide supercritical hydrogen to the moderators and remove the nuclear heating there. A hydrogen-circulation system is cooled through the heat exchanger by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K. It is important for the cooling design of the hydrogen-circulation system to understand the pressure drops through the equipments. In this work, the pressure drop through each component was analyzed by using a CFD code, STAR-CD. The correlation of the pressure drops through the components that can describe the analytical results within 14% differences has been derived. It is confirmed that the pressure drop in the hydrogen circulation system would be estimated to be 37 kPa for the circulation flow rate of 160 g/s by using the correlations derived here, and is sufficiently lower than the allowable pump head of 100 kPa.

Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2010-04-09T23:59:59.000Z

86

CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE  

E-Print Network [OSTI]

1 CRYOGENIC SYSTEM FOR CONTINUOUS ULTRAHIGH HYDROGEN PURIFICATION IN CIRCULATION MODE A. Vasilyev1, the total level of all contaminants (water, nitrogen, oxygen etc.) has to be lower than 0.01 ppm. Hydrogen preparation by commercial purification units, such as palladium filters, could give a good initial level

Kammel, Peter

87

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents [OSTI]

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

88

A manual of recommended practices for hydrogen energy systems  

SciTech Connect (OSTI)

Technologies for the production, distribution, and use of hydrogen are rapidly maturing and the number and size of demonstration programs designed to showcase emerging hydrogen energy systems is expanding. The success of these programs is key to hydrogen commercialization. Currently there is no comprehensive set of widely-accepted codes or standards covering the installation and operation of hydrogen energy systems. This lack of codes or standards is a major obstacle to future hydrogen demonstrations in obtaining the requisite licenses, permits, insurance, and public acceptance. In a project begun in late 1996 to address this problem, W. Hoagland and Associates has been developing a Manual of Recommended Practices for Hydrogen Systems intended to serve as an interim document for the design and operation of hydrogen demonstration projects. It will also serve as a starting point for some of the needed standard-setting processes. The Manual will include design guidelines for hydrogen procedures, case studies of experience at existing hydrogen demonstration projects, a bibliography of information sources, and a compilation of suppliers of hydrogen equipment and hardware. Following extensive professional review, final publication will occur later in 1997. The primary goal is to develop a draft document in the shortest possible time frame. To accomplish this, the input and guidance of technology developers, industrial organizations, government R and D and regulatory organizations and others will be sought to define the organization and content of the draft Manual, gather and evaluate available information, develop a draft document, coordinate reviews and revisions, and develop recommendations for publication, distribution, and update of the final document. The workshop, Development of a Manual of Recommended Practices for Hydrogen Energy Systems, conducted on March 11, 1997 in Alexandria, Virginia, was a first step.

Hoagland, W.; Leach, S. [W. Hoagland and Associates, Boulder, CO (United States)

1997-12-31T23:59:59.000Z

89

Renewable Hydrogen Production from Biological Systems  

Broader source: Energy.gov [DOE]

Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

90

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network [OSTI]

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramrez Muoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

91

Sandia National Laboratories: hydrogen fuel systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have been a major water- and air-pollution source in the U.S.-but remained ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

92

Hydrogen recovery by novel solvent systems  

SciTech Connect (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

93

DOE Hydrogen and Fuel Cells Program: Systems Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Independent Reviews Independent Reviews Macro-System Model U.S. Department of Energy Search help Home > Systems Integration Printable Version Systems Integration The technological advancements and lessons learned through research, development, and demonstration of hydrogen and fuel cell technologies must be integrated to work as a fully functional system. This is the focus of systems integration-understanding the complex interactions between components, systems costs, environmental impacts, societal impacts, and system trade-offs. Identifying and analyzing these interactions will enable evaluation of alternative concepts and pathways, and result in well-integrated and optimized hydrogen and fuel cell systems. Led by the Office of Energy Efficiency and Renewable Energy, this activity

94

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

SciTech Connect (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

95

A Cassette Based System for Hydrogen Storage and Delivery  

SciTech Connect (OSTI)

A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

Britton Wayne E.

2006-11-29T23:59:59.000Z

96

Hydrogen solubility in heavy oil systems: Experiments and modeling  

Science Journals Connector (OSTI)

Abstract Hydrogen solubility measurements in heavy oils are required in order to develop accurate process models. Nevertheless, these solubility measurements are challenging at elevated temperatures and pressures and the amount of data points is scarce in the literature. This paper presents measured hydrogen solubilities in heavy oil systems at a temperature range from 498 to 598K and a pressure range from 2 to 11MPa. The experiments were conducted with a continuous flow apparatus. One of the well-characterized heavy oil systems was a hydrocracked vacuum gas oil and the second system consisted of a modified vacuum residue from Urals crude and toluene. The modified vacuum residue and toluene mixtures were prepared gravimetrically (mass fractions of vacuum residue: 0.25, 0.34 and 0.50). The experiments demonstrated that increasing the partial pressure of hydrogen and temperature increased the hydrogen solubility. Another finding was that the amount of toluene in the system had great impact to the hydrogen solubility. Four modeling approaches were compared based on their predictions on the hydrogen solubility in heavy oil systems measured in this work and four heavy oils found from the literature. The chosen models were PC-SAFT, PengRobinson, a simple correlation based on the corresponding theory and a method based on the ScatchardHildebrand theory. PC-SAFT with applied a heavy oil characterization method and the correlation based on the corresponding theory were found to predict the hydrogen solubility equally well and accurately. The benefit of using PC-SAFT instead of the simple correlation is that with PC-SAFT, phase behavior of multicomponent systems can be predicted and other properties, such as densities, can be obtained simultaneously. PengRobinson with a single carbon number characterization method overestimated the hydrogen solubility in the studied heavy oils and the method based on the ScatchardHildebrand theory could model the hydrogen solubility well after parameter regression.

Meri Saajanlehto; Petri Uusi-Kyyny; Ville Alopaeus

2014-01-01T23:59:59.000Z

97

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems Projected Performance and Cost Parameters  

Broader source: Energy.gov [DOE]

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

98

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events  

Broader source: Energy.gov (indexed) [DOE]

Webinars on Energy Systems Advances, Hydrogen Safety Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars September 10: Live Webinar on the Hydrogen Safety Events Database Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webcast titled "What We Can Learn

99

Hydrogen  

Science Journals Connector (OSTI)

Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Todays energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solut...

2009-01-01T23:59:59.000Z

100

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Broader source: Energy.gov [DOE]

Report on technical assessment of cyro-compressed hydrogen storage tank systems for automotive applications.

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen-Fueled Vehicle Safety Systems Animation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of hydrogen. View text version of animation. Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation...

102

The benchmark of gutzwiller density functional theory in hydrogen systems  

SciTech Connect (OSTI)

We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.

Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming

2012-02-23T23:59:59.000Z

103

Safety of Hydrogen Systems Installed in Outdoor Enclosures  

SciTech Connect (OSTI)

The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energys (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panels initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panels recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panels work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called cabinets, but for simplicity, they are all referred to as enclosures in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical basis be developed to enable code bodies to write requirements for the range of enclosures from the smallest to the largest.

Barilo, Nick F.

2013-11-06T23:59:59.000Z

104

"System and Power Market Consequences of Implementing Hydrogen as Energy Carrier in the Nordic Energy System"  

E-Print Network [OSTI]

debated and research in many areas related to hydrogen production and storage, fuel cells for vehicles1 "System and Power Market Consequences of Implementing Hydrogen as Energy Carrier in the Nordic National Laboratory, Frederiksborgvej 399, P.O. 49, 4000 Roskilde, Denmark Abstract By including hydrogen

105

Analyses of Compressed Hydrogen On-Board Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Compressed Hydrogen On-Board Storage Systems © 2010 TIAX LLC Compressed and Cryo-Compressed Hydrogen Storage Workshop February 14, 2011 Jeff Rosenfeld Karen Law Jayanti Sinha TIAX LLC 35 Hartwell Ave Lexington, MA 02421-3102 Tel. 781-879-1708 Fax 781-879-1201 www.TIAXLLC.com Reference: D0268 Overview Project Objectives Project Objectives Description Overall Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis On-Board Storage System Assessment Evaluate or develop system-level designs for the on-board storage system to project bottom-up factory costs Off-Board Fuel Cycle Assessment Evaluate or develop designs and cost inputs for the fuel cycle to

106

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the DOE Hydrogen REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring

107

DOE awards $7m to push vehicle hydrogen storage systems  

Science Journals Connector (OSTI)

The US Department of Energy's Office of Energy Efficiency & Renewable Energy (EERE) has announced $7 million for six projects to develop lightweight, compact, and inexpensive advanced hydrogen storage systems that will enable longer driving ranges and help make fuel cell systems competitive for different platforms and sizes of vehicles.

2014-01-01T23:59:59.000Z

108

Standard-E hydrogen monitoring system shop acceptance test procedure  

SciTech Connect (OSTI)

The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

Schneider, T.C.

1997-10-02T23:59:59.000Z

109

First-Principles Study of the Li-Na-Ca-N-H System: Compound Structures and Hydrogen-Storage Properties  

E-Print Network [OSTI]

system for reversible hydrogen storage, J. Alloys Comp, volCompound structures and hydrogen-storage properties, J.compounds: Application to hydrogen storage materials, Phys.

Teeratchanan, Pattanasak

2012-01-01T23:59:59.000Z

110

APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report  

SciTech Connect (OSTI)

The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the plant capacity factor has been increasing, with a recent one-month high of 49%. If a plant capacity factor of 70% can be achieved with the present equipment, the cost of electricity would drop to $2.39 per kg of hydrogen. In this report, the power conversion (76.7%), cell stack (53.1%), and reverse osmosis system (7.14%) efficiencies are also calculated, as is the water cost per kg of hydrogen produced ($0.10 per kg). The monitoring system has identified several areas having the potential to lower costs, including using an reverse osmosis system with a higher efficiency, improving the electrolysis power conversion efficiency, and using air cooling to replace some or all chiller cooling. These activities are managed by the Idaho National Laboratory for the AVTA, which is part of DOEs FreedomCAR and Vehicle Technologies Program.

James Francfort; Dimitri Hochard

2005-07-01T23:59:59.000Z

111

APS ALternative Fuel (Hydrogen) Pilot Plant Monitoring System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

502 502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard James Francfort July 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard a James Francfort b July 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

112

Direct coupling of a solar-hydrogen system in Mexico  

Science Journals Connector (OSTI)

The scope of this article is to show the initial results obtained in the interconnection of a 2.7kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used. The solar-hydrogen (S-H) system proposed consists of a commercial electrolyzer stack by Proton Energy Systems and a photovoltaic (PV) solar system of 36 panels (75W each) of monocrystalline silicon (Siemens) interconnected in a configuration for 2.7kW power at 48 V DC . The complete electrolyzer (stack plus auxiliaries) has a maximum capacity of 1000 lN / h of hydrogen with a power energy consumption of 8kVA ( 220 V AC , 32A) and uses a stack of 25 cells of SPE with an energy consumption of 5.6kW. We present voltage, current and energy consumption of the electrolyzer as a whole system and of the stack alone, as well as hydrogen quantification for the Hogen 40 operating in laboratory. These results allowed us to estimate the possibilities of coupling the electrolyzer stack alone, i.e. no auxiliaries nor power conditioning, with the solar PV system. Results such as I E curves of the solar PV system obtained at different irradiances and temperatures, as well as I E curve of SPE electrolyzer stack, gave direction for confirming that PV system configuration was sufficiently good to have the electrolyzer stack working near the maximum power point at a good range of irradiances ( ? 600 800 W / m 2 ).

L.G. Arriaga; W. Martnez; U. Cano; H. Blud

2007-01-01T23:59:59.000Z

113

Low-Cost Hydrogen Distributed Production System Development  

SciTech Connect (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

114

Hydrogen storage systems for automotive applications: project StorHy  

Science Journals Connector (OSTI)

Around two thirds of world's oil usage is associated with transportation with road vehicles consuming around 40%. Also, transportation accounts for around 25% of greenhouse emissions worldwide, with around 90% coming from road vehicles. This situation is further complicated by the fact that oil reserves are running out. For this reason, the automotive industry supported by relevant governing bodies is rapidly exploring alternative propulsion solutions (such as hybrid, electric and hydrogen powered vehicle technologies). This paper presents the main objectives and progressive findings of an EU funded research project titled 'StorHy ?? Hydrogen Storage Systems for Automotive Applications'. This research project was conducted in partnership between a number of participating organisations under the auspice of the EU Thematic Priority 6 program titled 'Sustainable development, global change and ecosystems'. The integrated project, StorHy, aims to develop robust, safe and efficient on-board vehicle hydrogen storage systems suitable for use in hydrogen-fuelled fuel cell or internal combustion engine vehicles. Research work covering the whole spectrum of hydrogen storage technologies (compressed gas, cryogenic liquid and solid materials) is carried out with a focus on automotive applications. The aim is to develop economically and environmentally attractive solutions for all three storage technologies.

Joerg Wellnitz

2008-01-01T23:59:59.000Z

115

Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Development and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems Workshop Summary Report Prepared by: Fuel Cell Technologies Program Compressed & Cryo-Hydrogen Storage Systems Workshops February 14-15, 2011 Crystal City, Virginia Compressed and Cryo-Hydrogen Storage Systems Workshop Summary Report 2 Research and Development Strategies for Compressed & Cryo- Hydrogen Storage Systems Summary: On February 14-15, 2011, the Systems Integration group of the National Renewable Energy Laboratory, in conjunction with the Hydrogen Storage team of the EERE Fuel Cell Technologies Program, hosted two days of workshops on compressed and cryo- hydrogen storage systems in Crystal City, VA. The overarching objective was to

116

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

impact of improved hydrogen storage may be through makingand M. Gardiner, Hydrogen Storage Options: Technologies andscience related to hydrogen storage could change how a

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

117

Investigation of hydrogen transfer in coprocessing using model systems  

SciTech Connect (OSTI)

The objective of this research was to evaluate the role of the resid in the coprocessing of coal and petroleum resid. The question being asked was whether the resid is an active solvent in coprocessing reactions and whether resid donates any hydrogen to coal during coprocessing. An effective means of determining whether resid participates in the reactions at coprocessing conditions is to use model systems and trace their reaction pathways. The research performed in this study evaluated the hydrogen donability of a naphthenic compound perhydropyrene, a compound type prevalent in resids that are hydrogen-rich. Model species were also used as acceptors that represented the aromatic aspect of coal. The model acceptors that were used were anthracene and phenanthrene.

Shen, Jing; Curtis, C.W. [Auburn Univ., AL (United States)

1995-12-31T23:59:59.000Z

118

Investigation of hydrogen transfer in coprocessing using model systems  

SciTech Connect (OSTI)

Coprocessing of coal with petroleum resid involves the reaction of two very different materials: coal is aromatic and resid is naphthenic. Hydrogen transfer is an important mechanism in most coal liquefaction systems. When coal is reacted with a coal-derived solvent, a high hydroaromatic content capable of transferring hydrogen in the solvent is desirable for achieving the desired coal conversions. But, resids tend to be naphthenic rather than hydroaromatic in character. The current study evaluated the reactivity of naphthenic compounds as models for resids in the presence of aromatic acceptors that are representative of the coal structure. The model donor used was perhydropyrene and the model acceptors were phenanthrene and anthracene. Thermal and catalytic reactions were performed at 400 and 440{degrees}C for 30 min in a H{sub 2} or N{sub 2} atmosphere with 1:1 and 5:1 ratios of model donor to model acceptor and with slurry phase catalysts, Mo naphthenate and Ni octoate. In reactions containing anthracene, the presence of perhydropyrene had increased the total amount of hydrogen being accepted by anthracene, while excess perhydropyrene was required to increase the hydrogen accepted by the model phenanthrene. Catalysis by Mo naphthenate promoted hydrogen transfer from perhydropyrene to anthracene, but catalysis by Ni octoate did not.

Shen, J.; Curtis, C.W. [Auburn Univ., AL (United States)

1995-12-31T23:59:59.000Z

119

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents [OSTI]

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

120

Electric utility applications of hydrogen energy storage systems  

SciTech Connect (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

122

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Energy Innovation Portal (Marketing Summaries) [EERE]

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects. Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

123

Spatial development of hydrogen economy in a low-carbon UK energy system  

Science Journals Connector (OSTI)

Hydrogen technologies and infrastructures might play a significant role in meeting ambitious climate and energy policy goals of the UK Government. Nonetheless, studies on hydrogen are either limited in scope in that they do not take into account the relationships with the wider energy system drivers and constraints or do not consider how a hydrogen network might develop geographically. This paper presents a framework where a spatially explicit hydrogen module is embedded in the UK MARKAL Energy System model to explore energy system trade-offs for the production, delivery and use of hydrogen at the sub-national level. A set of illustrative scenarios highlight the competitiveness of hydrogen related infrastructures and technologies as well as imported liquid hydrogen against a stringent emissions reduction target; the effect of emissions reduction trajectory on the development of hydrogen network; the intense resource competition between low carbon hydrogen production and electricity generation, and the importance of economies of scale in hydrogen supply and distribution.

Nazmiye Balta-Ozkan; Elizabeth Baldwin

2013-01-01T23:59:59.000Z

124

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This document describes the basis for the...

125

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty...  

Broader source: Energy.gov (indexed) [DOE]

Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles This table lists the technical targets...

126

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by...

127

DOE Hydrogen Program Record 10004, Fuel Cell System Cost - 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record Program Record Record #: 10004 Date: September 16, 2010 Title: Fuel Cell System Cost - 2010 Update to: Record 9012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: December 16, 2010 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2010 technology and operating on direct hydrogen is projected to be $51/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2010, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2009 cost analyses of 80-kW net direct hydrogen PEM automotive fuel cell systems based on 2010 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. Both cost estimates are based on performance at beginning of life.

128

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices 955 REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza research community involved in systems analysis of hydrogen storage materials and processes for information

129

Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory DC Offices 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC December 12, 2006 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Laura Verduzco Sentech, Inc. February 28, 2007 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza, North, SW, Suite 6000, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of this Working Group. The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related developments within the DOE program. A major thrust of

130

Lithium jet neutralizer to improve negative hydrogen neutral beam systems  

SciTech Connect (OSTI)

Hydrogen isotope neutral beam systems for heating and current drive in magnetic fusion energy devices have always used gas cells of the beam isotope to convert a portion of the energetic ions into neutral atoms. In the design of negative-ion based neutral beams for the ITER tokamak [R. Aymar V. A. Chuyanov, M. Huguet et al., Nuclear Fusion 41, 1301 (2001)], or for future fusion reactors, the large gas load from a traditional neutralizer cell causes many problems, including increased heat loads on the accelerator and ion source, reduced beam efficiency due to premature neutralization in the accelerator and reionization after the neutralizer, and the need to stop the beam for regeneration of the cryopanels, reducing the attractiveness of beams for reactors. We explore several approaches to decrease the neutralizer gas throughput, and conclude that a supersonic lithium vapor jet neutralizer is the most appropriate, and also affords a higher neutralization efficiency than does a hydrogen isotope gas cell.

Grisham, L. R. [Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

2007-10-15T23:59:59.000Z

131

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000  

E-Print Network [OSTI]

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC, 2005 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza was to familiarize the DOE research community involved in hydrogen storage materials and process development

132

A HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

hydrogen production for proton exchange membrane (PEM) fuel cells for various mobile and stationaryA HYBRID ADSORBENT-MEMBRANE REACTOR (HAMR) SYSTEM FOR HYDROGEN PRODUCTION A. Harale, H. Hwang, P recently our focus has been on new HAMR systems for hydrogen production, of potential interest to pure

Southern California, University of

133

SURVEY OF THE LITERATURE ON THE CARBON-HYDROGEN SYSTEM  

E-Print Network [OSTI]

of Carbon and Hydrogen," AERE-C/M-248 (1955). C.W. Zielke,Hydrogen and Graphite," AERE-C/R- R. Lowrie, "Research on

Krakowski, R.A.

2010-01-01T23:59:59.000Z

134

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Re

135

The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools  

Science Journals Connector (OSTI)

An autonomous wind/hydrogen energy demonstration system located at the island of Utsira in Norway was officially launched by Norsk Hydro (now StatoilHydro) and Enercon in July 2004. The main components in the system installed are a wind turbine (600kW), water electrolyzer (10Nm3/h), hydrogen gas storage (2400Nm3, 200bar), hydrogen engine (55kW), and a PEM fuel cell (10kW). The system gives 23 days of full energy autonomy for 10 households on the island, and is the first of its kind in the world. A significant amount of operational experience and data has been collected over the past 4 years. The main objective with this study was to evaluate the operation of the Utsira plant using a set of updated hydrogen energy system modeling tools (HYDROGEMS). Operational data (10-min data) was used to calibrate the model parameters and fine-tune the set-up of a system simulation. The hourly operation of the plant was simulated for a representative month (March 2007), using only measured wind speed (m/s) and average power demand (kW) as the input variables, and the results compared well to measured data. The operation for a specific year (2005) was also simulated, and the performance of several alternative system designs was evaluated. A thorough discussion on issues related to the design and operation of wind/hydrogen energy systems is also provided, including specific recommendations for improvements to the Utsira plant. This paper shows how important it is to improve the hydrogen system efficiency in order to achieve a fully (100%) autonomous wind/hydrogen power system.

ystein Ulleberg; Torgeir Nakken; Arnaud Et

2010-01-01T23:59:59.000Z

136

DOE Hydrogen Analysis Repository: Macro-System Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Macro-System Model Macro-System Model Project Summary Full Title: Macro-System Model (MSM) Project ID: 66 Principal Investigator: Mark Ruth Brief Description: Federated object model framework is used to link other models to perform rapid cross-cutting analysis. Keywords: Transition; well-to-wheels (WTW); renewable; hydrogen production; emissions; cost Purpose Perform rapid cross-cutting analysis by utilizing and linking other models. This work will also improve consistency between models. Analyses that require the MSM will be used to support decisions regarding programmatic investments and focus of funding and to estimate program outputs and outcomes. Performer Principal Investigator: Mark Ruth Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

137

Hydrogen Macro System Model User Guide, Version 1.2.1  

SciTech Connect (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

2009-07-01T23:59:59.000Z

138

Influence of dimensionality on deep tunneling rates: A study based on the hydrogen-nickel system  

E-Print Network [OSTI]

, such as hydrogen embrittlement, catalysis, and fuel storage.1 Moreover, tunneling draws fundamental interest sinceInfluence of dimensionality on deep tunneling rates: A study based on the hydrogen-nickel system hydrogen into a surface site of a nickel crystal is used to investigate deep tunneling phenomena. A method

Zeiri, Yehuda

139

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System  

E-Print Network [OSTI]

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability of the author. #12;ii Supervisory Committee Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel

Victoria, University of

140

A combined graph theory and analytic hierarchy process approach for multicriteria evaluation of hydrogen energy systems  

Science Journals Connector (OSTI)

Hydrogen is a renewable energy source and has the potential to mitigate the green house gas effect and to meet the increasing global electricity demand. In the present study, a multicriteria methodology is developed by combining graph theory and analytic hierarchy process methods for the evaluation and selection of hydrogen energy systems. The hydrogen energy system alternatives are assessed with respect to economic, environmental, performance and social criteria by computing the hydrogen energy system preference index. A detailed procedure for determination of hydrogen energy system preference index is suggested. Two examples relating to hydrogen production processes and hydrogen energy technologies are cited in order to demonstrate and validate the effectiveness and flexibility of the proposed methodology. In each example, a list of all possible choices from the best to the worst alternatives is obtained taking into account different evaluation criteria.

Pramod B. Lanjewar; R.V. Rao; A.V. Kale

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen atom as a quantum-classical hybrid system  

E-Print Network [OSTI]

Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

Fei Zhan; Biao Wu

2013-02-15T23:59:59.000Z

142

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis Printable Version 2010 Annual Progress Report VII. Systems Analysis This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Systems Analysis Sub-Program Overview, Fred Joseck, DOE Scenario Evaluation, Regionalization and Analysis (SERA) Model, Brian Bush, National Renewable Energy Laboratory Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure, David Reichmuth, Sandia National Laboratories Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power, Matthew Mahalik, Argonne National

143

Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling  

SciTech Connect (OSTI)

Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

Steward, D.; Zuboy, J.

2014-10-01T23:59:59.000Z

144

Conceptual design of nuclear systems for hydrogen production  

E-Print Network [OSTI]

Demand for hydrogen in the transportation energy sector is expected to keep growing in the coming decades; in the short term for refining heavy oils and in the long term for powering fuel cells. However, hydrogen cannot ...

Hohnholt, Katherine J

2006-01-01T23:59:59.000Z

145

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network [OSTI]

on renewable hydrogen production methods such as biomasshydrogen production through dispensing to a vehicle. Base case assumptions Two methods

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

146

Design progress of cryogenic hydrogen system for China Spallation Neutron Source  

SciTech Connect (OSTI)

China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

2014-01-29T23:59:59.000Z

147

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: Energy.gov [DOE]

This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

148

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Broader source: Energy.gov [DOE]

This report examines performance and cost of compressed hydrogen storage tank systems compared to the US Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications.

149

U.S. Department of Energy Hydrogen Component and System Qualification Workshop- Presentations  

Broader source: Energy.gov [DOE]

These presentations were given at the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

150

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Broader source: Energy.gov [DOE]

Technical report describing the US Department of Energy's (DOE) assessment of the performance and cost of organic liquid based hydrogen storage systems for automotive applications.

151

Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria  

Science Journals Connector (OSTI)

Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In this paper, an assessment of the technical potential for producing hydrogen from the PV/proton exchange membrane (PEM) electrolyser system is investigated. The present study estimates the amount of hydrogen produced by this system in six locations using hourly global solar irradiations on horizontal plane and ambient temperature. The system studied in this work is composed of 60W PV module connected with a commercial 50W PEM electrolyser via DC/DC converter equipped with a maximum power point tracking. The primary objective is to develop a mathematical model of hydrogen production system, including PV module and PEM electrolyser to analyze the system performance. The secondary aim is to compare the system performance in terms of hydrogen production at seven locations situated in different regions of Algeria. The amount of hydrogen produced is estimated at seven locations situated in different regions. In terms of hydrogen production, the results show that the southern region of Algeria (Adrar, Ghardaia, Bechar and Tamanrasset) is found to have the relatively highest hydrogen production. The total annual production of hydrogen is estimated to be around 2029m3 at these sites. The hydrogen production at various sites has been found to vary according to the solar radiation.

Djamila Ghribi; Abdellah Khelifa; Said Diaf; Maouf Belhamel

2013-01-01T23:59:59.000Z

152

Low Temperature Milling of the LiNH2 + LiH Hydrogen Storage System...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Milling of the LiNH2 + LiH Hydrogen Storage System. Low Temperature Milling of the LiNH2 + LiH Hydrogen Storage System. Abstract: Ball milling of the LiNH2 + LiH storage system was...

153

ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS  

SciTech Connect (OSTI)

The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

2011-07-18T23:59:59.000Z

154

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

155

Hydrogen by Wire - Home Fueling System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Luke T. Dalton Proton Energy Systems 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2128 Email: ldalton@protonenergy.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001149 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Develop enabling technologies for 350-bar hydrogen * home fueling Design key electrolysis cell stack and system components * Fabricate, inspect and assemble prototype components * Demonstrate prototype 350-bar hydrogen generation * Demonstrate prototype 350-bar home fueling technologies * Technical Barriers This project addresses the following technical barriers

156

Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

90246.00 90246.00 Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals Presentation for DOE Workshop on Hydrogen Storage August 14-15, 2002 1/16 WPT MR 90246.00 In the development of attractive hydrogen storage options, fundamental materials properties and their impact on system design are both critical. * Compact, light, and efficient hydrogen storage technology is a key enabling technology for fuel cell vehicles and the use of renewable energy in vehicles * Due to system-level limitations current hydrogen storage systems meet some of the requirements but none meet all of the requirements - Current storage materials do not offer clear advantages over compressed or liquid hydrogen storage - Improving storage capacity will require improvement in material performance such

157

DEVELOPMENT OF A SIMULATION CODE FOR A COOL-DOWN PROCESS OF THE CRYOGENIC HYDROGEN SYSTEM  

SciTech Connect (OSTI)

Supercritical hydrogen with a pressure of 1.5 MPa and a temperature of 20 K has been selected as a moderator material in an intense spallation neutron source (JSNS), which is one of main experimental facilities in J-PARC. The cryogenic hydrogen system, in which a hydrogen circulation system is cooled by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K, has been designed to provide the supercritical hydrogen to the moderator and to remove the nuclear heating generated there. In this study, we have developed a simulation code that predicts temperature behaviors in the hydrogen circulation system during its cool-down process. Cool-down process analyses have been performed, and an operational method for the cool-down process has been studied. The analytical results indicate that the hydrogen circulation system would be able to be cooled down to 18 K within 19 hours.

Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2010-04-09T23:59:59.000Z

158

Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.  

SciTech Connect (OSTI)

This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

2013-10-01T23:59:59.000Z

159

DEVELOPMENT OF THE CRYOGENIC HYDROGEN SYSTEM FOR A SPALLATION NEUTRTON SOURCE IN J-PARC  

SciTech Connect (OSTI)

An intense spallation neutron source (JSNS) driven by a proton beam of 1-MW has been constructed as one of the main experimental facilities in J-PARC. Supercritical hydrogen at around 20 K and 1.5 MPa was selected as a moderator material in JSNS. Three kinds of hydrogen moderators (coupled, decoupled, and poisoned) were installed to provide pulsed neutron beam of higher neutronic performance. The total nuclear heating in the moderators was estimated to be 3.75 kW for a proton beam power of 1 MW. The cryogenic hydrogen system, where the hydrogen circulation system is cooled by a helium refrigerator system with the refrigerator capacity of 6.45 kW at 15.6 K, provides the supercritical hydrogen for the moderators and absorbs nuclear heating in the moderators. The off-beam commissioning has confirmed that the cryogenic hydrogen system can be cooled down to 18 K within 19 hours. The supercritical hydrogen with a mass flow rate of 190 g/s can be circulated in the rated condition. It was verified that the cryogenic hydrogen system satisfied the performance requirements. The first cold neutron beam cooled by the cryogenic hydrogen system was successfully generated in May 2008.

Tatsumoto, H.; Aso, T.; Ohtsu, K.; Uehara, T.; Sakurayama, H.; Kawakami, Y.; Kato, T.; Futakawa, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2010-04-09T23:59:59.000Z

160

NREL: Hydrogen and Fuel Cells Research - Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel, Donna Heimiller, and Jenny Melius. (2014) Renewable Hydrogen Potential from Biogas in the United States. Genevieve Saur and Anelia Milbrandt. (2014) Overcoming the Range...

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Broader source: Energy.gov (indexed) [DOE]

information. Project Objective Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs...

162

Hydrogen storage and supply system - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

163

Analyses of Compressed Hydrogen On-Board Storage Systems  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

164

Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems  

Science Journals Connector (OSTI)

A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxy...

A. Nakajima; Y. Ueda

2007-05-01T23:59:59.000Z

165

A Photovoltaic-Hydrogen-Fuel Cell Energy System: Preliminary Operational Results  

Science Journals Connector (OSTI)

We report preliminary operational results for a photovoltaic (PV) energy system which uses hydrogen as the storage medium and a fuel cell as the regeneration technology. The system installed at the Humboldt St...

P. A. Lehman; C. E. Chamberlin

1991-01-01T23:59:59.000Z

166

Effective hydrogen generation and resource circulation based on sulfur cycle system  

SciTech Connect (OSTI)

For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, system integration to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this system integration, the sulfur cycle system for the new energy generation can be constructed.

Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki [Graduate School of Environmental Studies, Tohoku University 6-6-20, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan)

2013-12-10T23:59:59.000Z

167

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

168

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

169

The Irreversible Formation of Methane in the System Ethane-Ethylene-Hydrogen  

Science Journals Connector (OSTI)

...System Ethane-Ethylene-Hydrogen C. J. Danby B. C. Spall...mass-spectrometric analysis and by kinetic methods. The methane is formed directly...concluded that the major mode of production of methane from ethane is...circumstances. From the ethylene-hydrogen side the methane arises by...

1953-01-01T23:59:59.000Z

170

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

171

Membrane-based systems for carbon capture and hydrogen purification  

SciTech Connect (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

172

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis Printable Version 2009 Annual Progress Report VII. Systems Analysis This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Systems Analysis Program Element Introduction, Fred Joseck, U.S. Department of Energy (PDF 411 KB) HyDRA: Hydrogen Demand and Resource Analysis Tool (PDF 243 KB), Johanna Levene, National Renewable Energy Laboratory Water Needs and Constraints for Hydrogen Pathways (PDF 99 KB), A.J. Simon, Lawrence Livermore National Laboratory Cost Implications of Hydrogen Quality Requirements (PDF 817 KB), Shabbir Ahmed, Argonne National Laboratory Macro-System Model (PDF 384 KB), Mark Ruth, National Renewable

173

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

174

Hydrogen recovery by novel solvent systems. Final report  

SciTech Connect (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

175

Hydrogen from Water in a Novel Recombinant Cyanobacterial System  

SciTech Connect (OSTI)

Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not established. In the course of this work, we identified a new hydrogenase from environmental DNA sequence and successfully expressed it in a variety of hosts including cyanobacteria. This was one of the first examples of these complicated enzymes being moved across vastly different bacterial species and is the first example of a hydrogenase being brought to life from no other information than a DNA sequence from metagenomic data. The hydrogenase we identified had the molecular signature of other O2-tolerant hydrogenases, and we discovered that the resulting enzyme had exceptionally high oxygen- and thermo-tolerance. The new enzyme retained 80% of its activity after incubation at 80 C for 2 hours and retained 20% activity in 1% O2. We performed detailed analysis on the maturation genes required for construction of a functional enzyme of this class of hydrogenase, and found that seven additional maturation genes were required for minimal activity and a total of nine genes besides the hydrogenase were required for optimal maturation efficiency. Furthermore, we demonstrated that the maturation genes are functional on closely-related hydrogenase enzymes such as those from Alteromonas macleodii and Thiocapsa roseopersicina. Finally, we have extensively modified the hydrogenase to engineer new traits including higher H2 production and better interaction with electron donors. For example, combining two strategies increased hydrogenase activity in cyanobacteria by at least 20-fold over our initial expression level. The activity of this combined strain is almost twice that of the native hydrogenase activity in S. elongatus. This work validates the idea that these enzymes are broadly tolerant to modifications that may help integrate them into a successful photobiological H2 production system. While we did not achieve our ultimate goal of integrating the functional hydrogenase with the cyanobacterial photosynthetic apparatus, the work on this project has led to significant advances in the understanding of these complicated enzymes. This work will greatly benefit future

Weyman, Philip D [J. Craig Venter Institute; Smith, Hamillton O.

2014-12-03T23:59:59.000Z

176

Biological Systems for Hydrogen Photoproduction - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Maria L. Ghirardi (Primary Contact), Paul W. King, Kathleen Ratcliff and David Mulder National Renewable Energy Laboratory (NREL) 1617 Cole Blvd. Golden, CO 80401 Phone: (303) 384-6312 Email: maria.ghirardi@nrel.gov DOE Manager Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractors: * Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia * Dr. Eric Johnson, Johns Hopkins University, Baltimore, MD Project Start Date: October 1, 2000 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Primary Objectives

177

Michigan's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Michigan. Registered Networking Organizations in Michigan's 9th congressional district Clean Technology & Sustainable Industries Organization Registered Energy Companies in Michigan's 9th congressional district Clean Technology Sustainable Industries Organization Compact Power Inc CPI Energy Conversion Devices Energy Conversion Devices Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Guardian Industries Guardian Industries Corp Luma Resources LLC Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Pulte Uni-Solar United Solar Systems

178

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

179

Effect of catechins and tannins on hydroxyl radical formation in depleted uranium-hydrogen peroxide systems  

Science Journals Connector (OSTI)

The effects of catechins and tannins on the uranyl ion (UO2 2+)-hydrogen peroxide (H2O2) system were examined using the spin-trapping method. Epigallocatechin (EGC), having low OH-scavenging abil...

Akira Nakajima; Emiko Matsuda

2010-01-01T23:59:59.000Z

180

Review of Existing Hydrogen-based Autonomous Power Systems Current Situation  

Science Journals Connector (OSTI)

There are but a few stand-alone power systems utilising hydrogen energy technologies that have been operated around the globe, mostly in the context of research or demonstration projects. In the 1980s and 1990...

N. Lymberopoulos

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

182

Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems- Workshop Summary Report  

Broader source: Energy.gov [DOE]

Summary report from the Compressed and Cryo-Hydrogen Storage Systems Workshops held February 14-15, 2011, in Crystal City, Virginia. Report summarizes the discussions that took place in the breakout sessions and describes major findings of the workshops.

183

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The re

184

Journal of Power Sources 135 (2004) 184191 A solid oxide fuel cell system fed with hydrogen sulfide  

E-Print Network [OSTI]

Journal of Power Sources 135 (2004) 184­191 A solid oxide fuel cell system fed with hydrogen for a solid oxide fuel cell (SOFC). This paper presents an examination of a simple hydrogen sulfide and natural gas-fed solid oxide fuel cell system. The possibility of utilization of hydrogen sulfide

185

Formation of ordered gas-solid structures via solidification in metal-hydrogen systems  

SciTech Connect (OSTI)

This work contains theoretical discussions concerning the large amount of previously published experimental data related to gas eutectic transformations in metal-hydrogen systems. Theories of pore nucleation and growth in these gas-solid materials will be presented and related to observed morphologies and structures. This work is intended to be helpful to theorists that work with metal-hydrogen systems, and experimentalists engaged in manufacturing technology development of these ordered gas-solid structures.

Shapovalov, V.I. [State Metallurgical Academy of Ukraine (Ukraine); [Sandia National Labs., Albuquerque, NM (United States)

1998-12-31T23:59:59.000Z

186

Ultra Efficient Combined Heat, Hydrogen, and Power System- Fact Sheet, 2015  

Broader source: Energy.gov [DOE]

FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be utilized in a low-temperature, bottoming cycle fuel cell incorporated into the CHHP system to increase overall efficiency.

187

Experimental wind-to-hydrogen system at NREL  

Science Journals Connector (OSTI)

The Department of Energy's National Renewable Energy Laboratory and the utility company Xcel Energy have unveiled a unique facility in Colorado that uses electricity from wind turbines to produce and store pure hydrogen. The joint venture is located at NREL's National Wind Technology Center between Golden and Boulder, and offers what may become an important new template for future energy production.

2007-01-01T23:59:59.000Z

188

System for exchange of hydrogen between liquid and solid phases  

DOE Patents [OSTI]

The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

1985-02-22T23:59:59.000Z

189

Engineering a Synthetic Dual-Organism System for Hydrogen Production  

Science Journals Connector (OSTI)

...promising renewable energy source as pressure...but they are also energy intensive and therefore...due to its use of renewable biomass or sunlight as its primary energy source. Hydrogen...due to the current cost of its chemical synthesis...

Zeev Waks; Pamela A. Silver

2009-02-06T23:59:59.000Z

190

System for exchange of hydrogen between liquid and solid phases  

DOE Patents [OSTI]

The reversible reaction M+x/2 H.sub.2 .rarw..fwdarw.MH.sub.x, wherein M is a reversible metal hydride former that forms a hydride MH.sub.x in the presence of H.sub.2, generally used to store and recall H.sub.2, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H.sub.2, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H.sub.2 through the liquid is dependent upon the H.sub.2 pressure in the gas phase at a given temperature. When the actual H.sub.2 pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particles. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, James J. (Bellport, NY); Grohse, Edward W. (Port Jefferson Station, NY); Johnson, John R. (Calverton, NY); Winsche, deceased, Warren E. (late of Bellport, NY)

1988-01-01T23:59:59.000Z

191

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

192

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect (OSTI)

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

193

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkolnikov; S. N. Klyamkin; M. S. Vlaskin

2010-12-01T23:59:59.000Z

194

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and

195

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

196

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

197

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

198

Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,  

E-Print Network [OSTI]

the hydrogen from the storage tanks to the hydrogen vehicle. Praxair will develop the PSA unit, the hydrogen

199

Hydrogen Energy Technology Geoff Dutton  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) Pyrolysis Water electrolysis Reversible fuel cell Hydrogen Hydrogen-fuelled internal combustion engines Hydrogen-fuelled turbines Fuel cells Hydrogen systems Overall expensive. Intermediate paths, employing hydrogen derived from fossil fuel sources, are already used

Watson, Andrew

200

Electrolysis: Technology and Infrastructure Options Today, electrolysis systems supply 4% of the world's hydrogen. Although electrolysis can be  

E-Print Network [OSTI]

economics, but electrolysis will only be cost-competitive with gasoline or other hydrogen production methods-cost, production methods, namely large centralized steam methane reformers. However, electrolysis is gaining ground produce hydrogen at a cost of $4-$6. Reducing system capital cost will help to improve hydrogen production

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

SciTech Connect (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

202

Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source  

SciTech Connect (OSTI)

The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2014-01-29T23:59:59.000Z

203

High Density Hydrogen Storage Systems Demonstration Using NaAIH4  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Density Hydrogen Storage Density Hydrogen Storage System Demonstration Using NaAlH 4 Complex Compound Hydrides D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello United Technologies Research Center East Hartford, Connecticut Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610 December 19, 2006 * * Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team This presentation does not contain proprietary or confidential information 2 Overview Objective: Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which differ from conventional metal hydride systems, to meet DOE system targets. Approach: Design, fabricate and test a sequence of subscale and full scale

204

Assessment of a new integrated solar energy system for hydrogen production  

Science Journals Connector (OSTI)

Abstract In this paper, a novel integrated system that combines photocatalysis, photovoltaics, thermal engine and chemical energy storage for better solar energy harvesting is assessed using energy and exergy methods. The system generates hydrogen and sulfur from sulfurous waters specific to chemical and petrochemical industries. The solar light is split into three spectra using optical surfaces covered with selected dielectric coatings: (i) the high energy spectrum, consisting of photons with wavelengths shorter than ?500nm, is used to generate hydrogen from water photolysis, (ii) the middle spectrum with wavelengths between ?500nm and ?800nm is used to generate electricity with photovoltaic (PV) arrays and (iii) the long wave spectrum of low energy photons with wavelengths longer than ?800nm is used to generate electricity with a thermally driven Rankine engine (RE). The electricity generated by PV and RE is employed to generate additional hydrogen by electrolysis and to drive auxiliary devices within the system. A model is developed based on conservation equations and transport equations applied for each essential component of the system. The model allows for assessment of system performance and the comparison with other solar hydrogen production systems. A case study for an oil sands exploitation area where sulfurous aqueous wastes and hydrogen demand exist Calgary (Alberta) is presented. A solar tower configuration is selected as the best choice for a large scale system with 500MW light harvesting heliostat field. Hourly predictions of system output are obtained. The devised system requires 5526acres of land for the solar field and produces 41.4t hydrogen per day. If a conventional solar tower would be used instead which generates power and is coupled to a water electrolysis system the hydrogen production is lower, namely 28.7t/day. An economic scenario is considered by assuming that the co-produced sulfur and hydrogen are both valorized on the market for 25years with a levelized price of 1.65$/kg out of which 10% represents operation and maintenance costs. It is shown that the system is feasible provided that the required equity investment of capital is inferior to M$ 500.

C. Zamfirescu; I. Dincer

2014-01-01T23:59:59.000Z

205

May, 2010DC/DC CONVERTER FOR A SMALL SCALE WIND HYDROGEN SYSTEM  

E-Print Network [OSTI]

An electronic converter is designed for an isolated renewable energy system. In this system, energy produced by a small wind turbine is used to extract hydrogen from water. Unique aspects of this application that affect the performance of the converter will be defined. Design considerations of the individual components will be discussed. Calculations on performance and validation of those calculations are also presented.

Joel M. Jacobs; Joel M. Jacobs; Joel Michael Jacobs; Adviser Jerry; L. Hudgins

206

Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells.

207

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

208

Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

Not Available

1980-05-01T23:59:59.000Z

209

Element One Reduces Cost of Hydrogen Leak Detection Systems ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Begins for "America's Next Top Energy Innovator" SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. Startup Success: Energy Department...

210

Effect of Al(OH)3 on the hydrogen generation of aluminumewater system Hsin-Te Teng a  

E-Print Network [OSTI]

Effect of Al(OH)3 on the hydrogen generation of aluminumewater system Hsin-Te Teng a , To-Ying Lee effect of Al(OH)3 powders on Al/H2O system for hydrogen generation was demonstrated. crystalline Al(OH)3 powder acts an effective additive to the Al/H2O system.

Cao, Guozhong

211

Novel hydrogen separation device development for coal gasification system applications. Final report  

SciTech Connect (OSTI)

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

212

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

SciTech Connect (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

213

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

214

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

215

Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository  

E-Print Network [OSTI]

Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry's law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.

Caro, Florian; Saad, Mazen

2012-01-01T23:59:59.000Z

216

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

217

Assessment of Hydrogen Production Systems based on Natural Gas Conversion with Carbon Capture and Storage  

Science Journals Connector (OSTI)

Abstract Introduction of hydrogen in the energy system, as a new energy carrier complementary to electricity, is exciting much interest not only for heat and power generation applications, but also for transport and petro-chemical sectors. In transition to a low carbon economy, Carbon Capture and Storage (CCS) technologies represent another way to reduce CO2 emissions. Hydrogen can be produced from various feedstocks, the most important being based on fossil fuels (natural gas and coal). This paper investigates the techno-economic and environmental aspects of hydrogen production based on natural gas reforming conversion with and without carbon capture. As CO2 capture options, gas - liquid absorption and chemical looping were evaluated. The evaluated plant concepts generate 300MWth hydrogen (based on hydrogen LHV) with purity higher than 99.95 % (vol.), suitable to be used both in petro-chemical applications as well as for Proton Exchange Membrane (PEM) fuel cells for mobile applications. For the designs with CCS, the carbon capture rate is about 70 % for absorption-based scheme while for chemical looping-based system is >99 %. Special emphasis is put in the paper on the assessment of various plant configurations and process integration issues using CAPE techniques. The mass and energy balances have been used furthermore for techno-economic and environmental impact assessments.

Calin-Cristian Cormos; Letitia Petrescu; Ana-Maria Cormos

2014-01-01T23:59:59.000Z

218

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

219

DOE Hydrogen Analysis Repository: Policy Office Electricity Modeling System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Office Electricity Modeling System (POEMS) Policy Office Electricity Modeling System (POEMS) Project Summary Full Title: Policy Office Electricity Modeling System (POEMS) Project ID: 93 Principal Investigator: Lessly Goudarzi Purpose Designed and built by OnLocation specifically to address electricity industry restructuring issues Performer Principal Investigator: Lessly Goudarzi Organization: OnLocation, Inc. Address: Suite 300, 501 Church Street Vienna, VA 22180 Telephone: 703-938-5151 Email: goudarzi@onlocationinc.com Project Description Type of Project: Model Category: Energy Infrastructure Products/Deliverables Description: National Transmission Grid Study - Appendix A Publication Title: Policy Office Electricty Modeling System (POEMS) and Documentation for Transmission Analysis (PDF 461 KB) Download Adobe Reader.

220

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

metrics include the off-board Well-to-Tank (WTT) energy efficiency and greenhouse gas (GHG) emissions. Cost metrics include the refueling costs and combined fuel system...

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system  

E-Print Network [OSTI]

Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system Susan Q-hosted hydrothermal activity is exemplified by the Lost City Hydrothermal Field (30°N, Mid-Atlantic Ridge) where fluid demonstrate that in active carbonate chimneys where microbial sulfate reduction is important, up to 50

Gilli, Adrian

222

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

223

Hydrogen and fuel taxation.  

E-Print Network [OSTI]

??The competitiveness of hydrogen depends on how it is integrated in the energy tax system in Europe. This paper addresses the competitiveness of hydrogen and (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

224

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

225

Hydrogen Storage Systems Analysis Working Group Meeting: Summary...  

Broader source: Energy.gov (indexed) [DOE]

developers need a spreadsheet-type model that includes system-level components, such as tanks and heat exchangers, so that the developers can gauge the impact of such...

226

High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Level Computational Chemistry Approaches Level Computational Chemistry Approaches to the Prediction of the Energetic Properties of Chemical Hydrogen Storage Systems David A. Dixon Chemistry, University of Alabama, Tuscaloosa, AL Cast: Myrna Hernandez-Matus, Daniel Grant, Jackson Switzer, Jacob Batson, Ronita Folkes, Minh Nguyen Anthony J. Arduengo & co-workers Maciej Gutowski (PNNL) Robert Ramsay Chair Fund Shelby Hall Funding provided in part by the Department of Energy, Office of Energy Efficiency and Renewable Energy under the Hydrogen Storage Grand Challenge, Solicitation No. DE-PS36- 03GO93013 Chemical H 2 Storage Center of Excellence The Promise of Chemical Hydrogen Storage * Chemical reaction releases H 2 at suitable pressures and temperatures - Reaction thermodynamics dictate max. H 2 pressure as function of T -

227

Geometry, Heat Removal and Kinetics Scoping Models for Hydrogen Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WSRC-TR-2007-00439, REVISION 0 WSRC-TR-2007-00439, REVISION 0 Keywords: Hydrogen Kinetics, Hydrogen Storage Vessel Metal Hydride Retention: Permanent Geometry, Heat Removal and Kinetics Scoping Models for Hydrogen Storage Systems Bruce J. Hardy November 16, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96-SR18500 DISCLAIMER This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or

228

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network [OSTI]

Hydrogen/ITS Evaluation Negotiations with automakers and fuel cell manufacturers to ensure that hydrogen-powered cars,Hydrogen/ITS Evaluation Negotiations with automakers and fuel cell manufacturers to ensure that hydrogen-powered cars,

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

229

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

230

Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices  

SciTech Connect (OSTI)

An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

2014-11-18T23:59:59.000Z

231

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

232

Density Functional Theory Analysis of Metal/Graphene Systems As a Filter Membrane to Prevent CO Poisoning in Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Density Functional Theory Analysis of Metal/Graphene Systems As a Filter Membrane to Prevent CO Poisoning in Hydrogen Fuel Cells ... Fuel cells: principles, types, fuels, and applications ... Components for PEM fuel cell systems using hydrogen and CO containing fuels ...

Deborah J. D. Durbin; Cecile Malardier-Jugroot

2010-12-21T23:59:59.000Z

233

DOE Hydrogen and Fuel Cells Program Record 9012: Fuel Cell System Cost - 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Date: October 7, 2009 2 Date: October 7, 2009 Title: Fuel Cell System Cost - 2009 Update to: Record 8019 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 7, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $61/kW for 2009 technology in 2009 dollars ($51/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2009, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2008 cost analyses of 80-kW direct hydrogen PEM automotive fuel cell systems based on 2009 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. DTI and TIAX use Design for Manufacturing and Assembly

234

DOE Hydrogen and Fuel Cells Program Record 11012: Fuel Cell System Cost - 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Date: August 17, 2011 2 Date: August 17, 2011 Title: Fuel Cell System Cost - 2011 Update to: Record 10004 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 7, 2011 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2011 technology 1 and operating on direct hydrogen is projected to be $49/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2011, Strategic Analysis, Inc. (SA) 2 updated the 2010 Directed Technologies, Inc. (DTI) cost analysis of 80-kW net direct hydrogen PEM automotive fuel cell systems, based on 2011 technology and projected to a manufacturing volume of 500,000 units per year [1]. Results from the analysis were communicated to the DOE

235

DOE Hydrogen and Fuel Cells Program Record 8002: Fuel Cell System Cost - 2007  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

02 Date: October 31, 2008 02 Date: October 31, 2008 Title: Fuel Cell System Cost - 2007 Update to: Record 5005 Originator: Nancy Garland and Jason Marcinkoski Approved by: Sunita Satyapal Date: April 3, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $94/kW for 2007 technology in 2007 dollars ($82/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2007, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2006 cost analyses of direct hydrogen, 80-kW, PEM automotive fuel cell systems based on 2007 technology and projected to manufacturing volumes of 500,000 units per year [1,2].

236

To build a photoelectrochemical (PEC) system that produces hydrogen fuel directly from water using sunlight as the energy source.  

E-Print Network [OSTI]

1 SS H2 O2 metaloxide GoalGoal To build a photoelectrochemical (PEC) system that produces hydrogen fuel directly from water using sunlight as the energy source. Approach: development of a multi provides voltage assist using lower-energy photons catalyst surface optimized for hydrogen evolution UH

237

Ogden, Williams and Larson, Toward a Hydrogen-Based Transportation System, final draft, 8 May 2001 Toward a Hydrogen-Based Transportation System  

E-Print Network [OSTI]

................................................................................................................11 A Strategy for Pursuing Hydrogen Fuel Cell Vehicles as a Long-Term Option .........................................................................................................13 Methanol as an Initial Fuel for Fuel Cell Cars...............................................................................................................14 Hydrogen as an Initial Fuel for Fuel Cell Vehicles

238

Photo-driven autonomous hydrogen generation system based on hierarchically shelled ZnO nanostructures  

SciTech Connect (OSTI)

A quantum dot semiconductor sensitized hierarchically shelled one-dimensional ZnO nanostructure has been applied as a quasi-artificial leaf for hydrogen generation. The optimized ZnO nanostructure consists of one dimensional nanowire as a core and two-dimensional nanosheet on the nanowire surface. Furthermore, the quantum dot semiconductors deposited on the ZnO nanostructures provide visible light harvesting properties. To realize the artificial leaf, we applied the ZnO based nanostructure as a photoelectrode with non-wired Z-scheme system. The demonstrated un-assisted photoelectrochemical system showed the hydrogen generation properties under 1 sun condition irradiation. In addition, the quantum dot modified photoelectrode showed 2 mA/cm{sup 2} current density at the un-assisted condition.

Kim, Heejin; Yong, Kijung [Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)] [Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

2013-11-25T23:59:59.000Z

239

Scenarios for the role of hydrogen in a future energy system based on renewable energy  

Science Journals Connector (OSTI)

An all-renewable energy system for a group of North European countries is investigated by temporal simulation of the demand-supply matching for various system configurations. The role of hydrogen technologies for energy storage and fuel cell applications is studied and applied to both stationary and transportation sectors. It is shown that there is scope for considerable amounts of energy trade between the countries, owing to the different endowment of different countries with particular renewable energy sources, and to the particular benefit that intermittent energy sources such as wind and solar can derive from the exchange of power. A smooth energy supply is demonstrated by use of the seasonal reservoir-based hydro components in the northern parts of the region. Comments are also made on the competition between biofuels and hydrogen in the transportation sector.

Bent Sorensen

2008-01-01T23:59:59.000Z

240

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

09-33 09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons  

DOE Patents [OSTI]

A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

Reilly, Peter T. A. (Knoxville, TN)

2010-03-23T23:59:59.000Z

242

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

243

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

244

The setup of an extraction system coupled to a hydrogen isotopes distillation column  

SciTech Connect (OSTI)

Among the most difficult problems of cryogenic distillation one stands apart: the extraction of the heavy fraction. By an optimal design of the cycle scheme, this problem could be avoided. A 'worst case scenario' is usually occurring when the extracted fraction consists of one prevalent isotope such as hydrogen and small amounts of the other two hydrogen isotopes (deuterium and/or tritium). This situation is further complicated by two parameters of the distillation column: the extraction flow rate and the hold-up. The present work proposes the conceptual design of an extraction system associated to the cryogenic distillation column used in hydrogen separation processes. During this process, the heavy fraction (DT, T{sub 2}) is separated, its concentration being the highest at the bottom of the distillation column. From this place the extraction of the gaseous phase can now begin. Being filled with adsorbent, the extraction system is used to temporarily store the heavy fraction. Also the extraction system provides samples for the gas Chromatograph. The research work is focused on the existent pilot plant for tritium and deuterium separation from our institute to validate the experiments carried out until now. (authors)

Zamfirache, M.; Bornea, A.; Stefanescu, I.; Bidica, N.; Balteanu, O.; Bucur, C. [INC-DTCI, ICSIRm. Valcea, Uzinei Street 4, Rm. Valcea (Romania)

2008-07-15T23:59:59.000Z

245

A revised structure and hydrogen bonding system in cellulose II from a neutron fiber diffraction analysis  

SciTech Connect (OSTI)

The crystal and molecular structure and hydrogen bonding system in cellulose II have been revised using new neutron diffraction data extending to 1.2 {angstrom} resolution collected from two highly crystalline fiber samples of mercerized flax. Mercerization was achieved in NaOH/H{sub 2}O for one sample and in NaOD/D{sub 2}O for the other, corresponding to the labile hydroxymethyl moieties being hydrogenated and deuterated, respectively. Fourier difference maps were calculated in which neutron difference amplitudes were combined with phases calculated from two revised X-ray models of cellulose II. The revised phasing models were determined by refinement against the X-ray data set of Kolpak and Blackwell, using the LALS methodology. Both models have two antiparallel chains organized in a P2{sub 1} space group and unit cell parameters: a = 8.01 {angstrom}, b = 9.04 {angstrom}, c = 10.36 {angstrom}, and {gamma} = 117.1{degree}. One has equivalent backbone conformations for both chains but different conformations for the hydroxymethyl moieties: gt for the origin chain and tg for the center chain. The second model based on the recent crystal structures of cellotetraose, has different conformations for the two chains but nearly equivalent conformations for the hydroxymethyl moieties. On the basis of the X-ray data alone, the models could not be differentiated. From the neutron Fourier difference maps, possible labile hydrogen atom positions were identified for each model and refined using LALS. The second model is significantly different from previous proposals based on the crystal structures of cellotetraose, MD simulations of cellulose II, and any potential hydrogen-bonding network in the structure of cellulose II determined in earlier X-ray fiber diffraction studies. The exact localization of the labile hydrogen atoms involved in this bonding, together with their donor and acceptor characteristics, is presented and discussed. This study provides, for the first time, the coordinates of all of the atoms in cellulose II.

Langan, P.; Nishiyama, Y.; Chanzy, H.

1999-11-03T23:59:59.000Z

246

Hydrogen Pipeline Discussion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

247

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

248

DOE Hydrogen and Fuel Cells Program Record 5005: Fuel Cell System Cost - 2002 versus 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Date: March 20, 2005 5 Date: March 20, 2005 Title: Fuel Cell System Cost - 2002 vs 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Date: May 22, 2006 Item: "Reduced the high-volume cost of automotive fuel cells from $275/kW (50kW system) in 2002 to $110/kW (80kW system) in 2005." Supporting Information: In 2002, TIAX reported a cost of $324/kW for a 50-kW automotive PEM fuel cell system operating on gasoline reformate, based on their modeling of projected cost for 500,000 units per year. See Eric Carlson et al., "Cost Analyses of Fuel Cell Stack/System." U.S. DOE Hydrogen Program Annual Progress Report. (2002) at http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/33098_sec4-1.pdf. Also see "Cost Modeling of PEM Fuel Cell Systems for Automobiles," Eric Carlson et al., SAE

249

Crystal Structure and Hydrogen-Bonding System in Cellulose I? from Synchrotron X-ray and Neutron Fiber Diffraction  

Science Journals Connector (OSTI)

The crystal and molecular structure together with the hydrogen-bonding system in cellulose I? has been determined using synchrotron and neutron diffraction data recorded from oriented fibrous samples prepared by aligning cellulose microcrystals from ...?

Yoshiharu Nishiyama; Paul Langan; Henri Chanzy

2002-07-10T23:59:59.000Z

250

Webinar: 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems, originally presented on September 4, 2012.

251

Phase studies of the Zr-H system at high hydrogen concentrations  

Science Journals Connector (OSTI)

The phase boundaries of the Zr-H system have been defined at high hydrogen concentrations, on the basis of studies performed on zirconium hydrides containing 4 at % uranium. The methods used include hightemperature X-ray diffraction, electrical resistance, dilatometry, and, to a limited extent, hot stage microscopy. The (?+?) two-phase region was found to exist between ZrH1.64 and ZrHi1.74 at 24 C. This region diminishes in width with increasing temperature and closes at 455 C and ZrH1.70. From this point, a single boundary, sloping toward higher hydrogen concentrations, separates the ? and ? single-phase regions. Precise lattice parameter measurements indicate that first-order transitions occur at the boundaries of the two-phase region. Theoretical considerations suggest that the ? ? ? transition is second order.

K.E. Moore; W.A. Young

1968-01-01T23:59:59.000Z

252

Dynamical safety assessment of hydrogen production nuclear power plants using system dynamics method  

Science Journals Connector (OSTI)

Nuclear power plants for hydrogen production are investigated in the aspect of nuclear safety. The non-linear dynamical safety assessment is introduced for the analysis of the high temperature gas cooled reactor (HTGR) which is used for hydrogen production as well as electricity generation. The dynamical algorithm is adjusted for the safety assessment with an easier and reliable output. A feedback of power increase affects to the temperature decrease. The top event of the event is power and temperature stable. It is affected by the human factor, poison, and some other physical variables. There are several factors including the economic and safety factors which are considered for the reliability of the modelling simulations. Using the system dynamics (SD) method, the event quantification is performed for the event flows, stocks, and feedback by the single and double arrow lines.

Taeho Woo; Soonho Lee

2013-01-01T23:59:59.000Z

253

System design and performance of a spiral groove gas seal for hydrogen service  

SciTech Connect (OSTI)

In the past, typical seal designs for low molecular weight gases, such as hydrogen, incorporated high pressure oil seal systems. Technology of the seventies and eighties produced a new concept - the spiral groove gas seal. This paper discusses the problems related to oil seal systems, as well as the design, application and performance of a dry gas seal. It also discusses the limitations encountered with the start-up and operation of a dry gas seal in a high pressure, oil-soluble mixture of light hydrocarbons. Results show how the spiral groove gas seal can handle adverse demands without seal failure.

Pecht, G.G.; Carter, D. (John Crane, Inc., Morton Grove, IL (USA) Marathon Petroleum Co., Robinson, IL (USA))

1990-09-01T23:59:59.000Z

254

Proton-irradiation-induced anomaly in the electrical conductivity of a hydrogen-bonded ferroelastic system  

SciTech Connect (OSTI)

An anomalous abrupt drop in the electrical conductivity has been observed at the ferroelastic phase transition of a proton-irradiated system of hydrogen-bonded TlH{sub 2}PO{sub 4}. As a result of the high-resolution {sup 31}P NMR chemical-shift measurements, distinct changes in the atomic displacements due to the irradiation were identified in the ferroelastic and paraelastic phases. Besides, {sup 1}H NMR spin-spin relaxation measurements revealed a change due to the irradiation in the proton dynamics at the ferroelastic phase transition, apparently accounting for the much-reduced electrical conductivity in the paraelastic phase of the irradiated system.

Kim, Se-Hun [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Faculty of Science Education, Jeju National University, Jeju 690-756 (Korea, Republic of); Lee, Kyu Won; Lee, Cheol Eui [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lee, Kwang-Sei [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Gyeongnam (Korea, Republic of)

2009-11-01T23:59:59.000Z

255

Modeling of an Integrated Renewable Energy System (Ires) with Hydrogen Storage.  

E-Print Network [OSTI]

??The purpose of the study was to consider the integration of hydrogen storage technology as means of energy storage with renewable sources of energy. Hydrogen (more)

Shenoy, Navin Kodange

2010-01-01T23:59:59.000Z

256

FCT Hydrogen Production: Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

257

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Systems - Projected Performance and Cost Parameters DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

258

FCT Hydrogen Production: Hydrogen Production R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

259

Technical and Economic Assessment of Regional Hydrogen Transition Strategies  

E-Print Network [OSTI]

system spatial layouts for hydrogen production and deliveryWe estimate costs for hydrogen production, delivery anda hydrogen depot (i.e. hydrogen production facility or city-

Ogden, Joan; Yang, Christopher; Nicholas, Michael

2007-01-01T23:59:59.000Z

260

Study of hydrogen mixing within the combustion engineering system 80+ containment  

SciTech Connect (OSTI)

A scoping study is performed to determine how hydrogen distributes throughout an evolutionary, advanced pressurized water reactor (PWR) spherical containment given a variety of hydrogen inflows and delivery locations. The study uses MAAP and a preliminary containment design for the Combustion Engineering (C-E) System 80+{trademark} standard design as the bases for the detailed thermal-hydraulic analyses. Results are compared to applicable design criteria from the Advanced Light Water Reactor (ALWR) Requirements Document. The C-E System 80+ containment design is based on the Cherokee-Perkins System 80{sup R} spherical containment design, revised to accommodate ALWR Requirements Document design criteria. A feature of this design is the 500,000-gal in-containment refueling water storage tank (IRWST) located in the lower region of the containment building. This tank is the source for the safety injection and containment spray pumps, and the discharge location for the primary system safety and bleed valves. The containment design directs water accumulation on lower floors to the IRWST to preclude its depletion.

Hawley, J.T.; Hammersley, R.J.; Plys, M.G. (Fauske Associates, Inc., Burr Ridge, IL (USA))

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Strategic Directions for Hydrogen Delivery Workshop Proceedings  

Broader source: Energy.gov (indexed) [DOE]

including water or oil pipelines for hydrogen transport Assess viability of natural gas safety systems when hydrogen is introduced Conduct field demonstra- tion of hydrogen...

262

Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

SciTech Connect (OSTI)

Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

Ermi, A.M.

1997-05-01T23:59:59.000Z

263

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

264

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

265

Can anything better come along? Reflections on the deep future of hydrogen-electricity systems  

SciTech Connect (OSTI)

Sometimes, for some things, we can project the deep future better than tomorrow. This is particularly relevant to our energy system where, if we focus on energy currencies, looking further out allows us to leap the tangles of today's conventional wisdom, vested mantras and ill-found hopes. We will first recall the rationale that sets out why - by the time the 22. century rolls around - hydrogen and electricity will have become civilizations staple energy currencies. Building on this dual-currency inevitability we'll then evoke the wisdom that, while we never know everything about the future we always know something. For future energy systems that 'something' is the role and nature of the energy currencies. From this understanding, our appreciation of the deep future can take shape - at least for infrastructures, energy sources and some imbedded technologies - but not service-delivery widgets. The long view provides more than mere entertainment. It should form the basis of strategies for today that, in turn, will avoid setbacks and blind alleys on our journey to tomorrow. Some people accept that hydrogen and electricity will be our future, but only 'until something better comes along.' The talk will conclude with logic that explains the response: 'No{exclamation_point} Nothing better will ever come along.'. (authors)

Scott, D. S. [International Association for Hydrogen Energy (United States); Inst. for Integrated Energy Systems, U. of Victoria (Canada); Environmentalists for Nuclear Energy (Canada)

2006-07-01T23:59:59.000Z

266

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network [OSTI]

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

267

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

268

Comparative Study of Hybrid Energy Systems of Hydrogen and Electric Power  

Science Journals Connector (OSTI)

A parametric study of energy costs, which is based on the present state of energy technologies, favors electric power transmission even in the age of hydrogen economy. Present inefficiencies in hydrogen productio...

S. Ihara; S. Wakamatsu

1975-01-01T23:59:59.000Z

269

Membrane contactor assisted water extraction system for separating hydrogen peroxide from a working solution, and method thereof  

DOE Patents [OSTI]

The present invention relates to a membrane contactor assisted extraction system and method for extracting a single phase species from multi-phase working solutions. More specifically one preferred embodiment of the invention relates to a method and system for membrane contactor assisted water (MCAWE) extraction of hydrogen peroxide (H.sub.2O.sub.2) from a working solution.

Snyder, Seth W. (Lincolnwood, IL); Lin, Yupo J. (Naperville, IL); Hestekin' Jamie A. (Fayetteville, AR); Henry, Michael P. (Batavia, IL); Pujado, Peter (Kildeer, IL); Oroskar, Anil (Oak Brook, IL); Kulprathipanja, Santi (Inverness, IL); Randhava, Sarabjit (Evanston, IL)

2010-09-21T23:59:59.000Z

270

ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS  

E-Print Network [OSTI]

occurred since the Three Mile Island nuclear accident in 1979 through experimental programs1 ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS, igniters and spray systems have been designed and installed in modern nuclear power plants. Mitigation

Boyer, Edmond

271

http://digitalcommons.unl.edu/elecengtheses/6 DC/DC Converter for a Small Scale Wind Hydrogen System By  

E-Print Network [OSTI]

An electronic converter is designed for an isolated renewable energy system. In this system, energy produced by a small wind turbine is used to extract hydrogen from water. Unique aspects of this application that affect the performance of the converter will be defined. Design considerations of the individual components will be discussed. Calculations on performance and validation of those calculations are also presented.

Joel M. Jacobs; Joel M. Jacobs; Joel Michael Jacobs; Adviser Jerry; L. Hudgins

272

French Project PLUSPAC: Development of a hydrogen storage unit for an optimisation of stationary FC systems  

E-Print Network [OSTI]

1/11 French Project PLUSPAC: Development of a hydrogen storage unit for an optimisation of the objectives of the French project PLUSPAC (Local Production and hydrogen Storage Unit for an optimisation is to evaluate the performances of hydrogen storage in metal hydrides for the energetic optimisation

Paris-Sud XI, Université de

273

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

274

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect (OSTI)

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

275

SYSTEMS MODELING OF AMMONIA BORANE BEAD REACTOR FOR OFF-BOARD REGENERABLE HYDROGEN STORAGE IN PEM FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

Out of the materials available for chemical hydrogen storage in PEM fuel cell applications, ammonia borane (AB, NH3BH3) has a high hydrogen storage capacity (upto 19.6% by weight for the release of three hydrogen molecules). Therefore, AB was chosen in our chemical hydride simulation studies. A model for the AB bead reactor system was developed to study the system performance and determine the energy, mass and volume requirements for off-board regenerable hydrogen storage. The system includes hot and cold augers, ballast tank and reactor, product tank, H2 burner and a radiator. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure in the reactor system. Control signals to various components are governed by a control system which is modeled as an independent subsystem. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate accurate trends in the reactor system dynamics.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; King, Dale A.; Herling, Darrell R.

2010-06-01T23:59:59.000Z

276

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

277

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL-10/24 ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

278

Characteristics of Hydrogen Negative Ion Source with FET based RF System  

SciTech Connect (OSTI)

Characteristics of radio frequency (RF) plasma production were investigated using a FET inverter power supply as a RF generator. High density hydrogen plasma was obtained using an external coil wound a cylindrical ceramic tube (driver region) with RF frequency of lower than 0.5 MHz. When an axial magnetic field around 10 mT was applied to the driver region, an electron density increased drastically and attained to over 10{sup 19} m{sup -3} in the driver region. Effect of the axial magnetic field in driver and expansion region was examined. Lower gas pressure operation below 0.5 Pa was possible with higher RF frequency. H{sup -} density in the expansion region was measured by using laser photo-detachment system. It decreased as the axial magnetic field applied, which was caused by the increase of energetic electron from the driver.

Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N. [Graduate School of Engineering, Tohoku University, Aoba-yama, Sendai, 980-8579 (Japan); Tsumori, K.; Takeiri, Y. [National Institute for Fusion Science, Oroshi-cho, Toki, 509-5292 (Japan)

2011-09-26T23:59:59.000Z

279

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

280

Compact lightweight power PEMFC operating from a unique hydrogen generating system. Final report, September 1993-March 1995  

SciTech Connect (OSTI)

The goal of this program was to investigate the feasibility, for the military, of a 120-watt, 20,000- watt-power source weighing near ten pounds. An air breathing proton exchange membrane fuel cell (PEMFC) utilizing hydrogen from Lithium Borohydride (LiBH4) could theoretically meet this specification. Giner, Inc. has established that a hydrogen generator, utilizing LiBH4, provides a hydrogen current flux of 150 Amps/sq ft with about 60% long-term utilization. Additionally, Giner, Inc. demonstrated a 120-watt fuel cell system, which operated at approximately 12 volts at 100 Amps/sq ft (10 amps through a 0.1 -sq ft active area). Integrating the two systems will require further effort and development work.

Theriault, R.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FCT Hydrogen Production: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

282

Final Report for the DOE Chemical Hydrogen Storage Center of...  

Energy Savers [EERE]

of interest for further development into viable storage systems. High pressure hydrogen tanks, systems that store hydrogen in a cryocompressed state, or liquid hydrogen storage...

283

System Design and Analysis of a Direct Hydrogen from Coal System with CO2 Capture  

Science Journals Connector (OSTI)

The system is mainly composed of two paralleled fluidized bed reactors, namely a gasifier and regenerator. ... Calciner Fluidizing Medium. ...

Xiang Xu; Yunhan Xiao; Chunzhen Qiao

2007-03-17T23:59:59.000Z

284

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

285

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect (OSTI)

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

286

Hydrogen Highways  

E-Print Network [OSTI]

adequate on-board hydrogen storage is essential, and remainsjustify their costs. Hydrogen storage remains an importantto 10,000 psi, liquid hydrogen storage, and other solid and

Lipman, Timothy

2005-01-01T23:59:59.000Z

287

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiencythe economic benefit derived from energy systems capital investment at a societal levelstrongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

288

Energy Department Launches H2 Refuel H-Prize Competition for Small-Scale Hydrogen Refueling Systems  

Broader source: Energy.gov [DOE]

The Energy Department today announced the launch of the $1 million H2 Refuel H-Prize, a two-year competition that challenges America's engineers and entrepreneurs to develop affordable systems for small-scale, non-commercial hydrogen fueling.

289

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

Broader source: Energy.gov [DOE]

Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

290

R&D Needs for Global Technical Regulations for Hydrogen Vehicle Systems  

Broader source: Energy.gov [DOE]

These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 29, 2010, in Beijing, China.

291

Ultra Efficient Combined Heat, Hydrogen, and Power System- Fact Sheet, 2011  

Broader source: Energy.gov [DOE]

Fact sheet overviewing project that will utilize reducing gas from a high-temperature fuel cell to directly replace hydrogen and nitrogen used in a metal treating process

292

Study of the thin-film palladium/hydrogen system by an optical transmittance method  

E-Print Network [OSTI]

into the test cell. High purity hydrogen 99.999% and zero grade nitrogen 99.9975% from Matheson Gas Products

Mandelis, Andreas

293

DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

This table lists the technical targets for onboard hydrogen storage for light-duty vehicles in the FCT Programs Multiyear Research, Development and Demonstration Plan.

294

High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems  

Broader source: Energy.gov [DOE]

Presentation on the High Level Computational Chemistry given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

295

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

296

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

297

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

298

Hydrogen separation process  

DOE Patents [OSTI]

A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

Mundschau, Michael (Longmont, CO); Xie, Xiaobing (Foster City, CA); Evenson, IV, Carl (Lafayette, CO); Grimmer, Paul (Longmont, CO); Wright, Harold (Longmont, CO)

2011-05-24T23:59:59.000Z

299

Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at the Energy Systems Integration Facility (ESIF), NREL  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [Edited from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

300

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS  

SciTech Connect (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

302

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

battery Type Capacity (kWh) Saft Li- Ion Valence LiIon LiIonOvonic NiMH A-hr, 336V) Saft Li-Ion Valence LiIon EEEI

Williams, Brett D

2007-01-01T23:59:59.000Z

303

Hydrogen cooling options for MgB{sub 2}-based superconducting systems  

SciTech Connect (OSTI)

With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

Stautner, W.; Xu, M.; Mine, S.; Amm, K. [Electromagnetics and Superconductivity Lab, GE Global Research, Niskayuna, NY 12309 (United States)

2014-01-29T23:59:59.000Z

304

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network [OSTI]

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission

305

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

306

Hydrogen Delivery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

307

Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of hydrogen compression, storage, and dispensing (CSD) for pipeline delivery of hydrogen and forecourt hydrogen production. The panel was asked to address the (1) cost calculation methodology, (2) current cost/technical status, (3) feasibility of achieving the FCTO's 2020 CSD levelized cost targets, and to (4) suggest research areas that will help the FCTO reach its targets. As the panel neared the completion of these tasks, it was also asked to evaluate CSD costs for the delivery of hydrogen by high-pressure tube trailer. This report details these findings.

Parks, G.; Boyd, R.; Cornish, J.; Remick, R.

2014-05-01T23:59:59.000Z

308

US DRIVE Hydrogen Storage Technical Team Roadmap | Department...  

Energy Savers [EERE]

& Publications A Brief Overview of Hydrogen Storage Issues and Needs DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

309

Fossil-Based Hydrogen Production  

E-Print Network [OSTI]

) Fossil-Based Hydrogen Production Praxair Praxair SNL TIAX · Integrated Ceramic Membrane System for H2

310

Hydrogens Potential  

Science Journals Connector (OSTI)

Estimates of future demand for non-fossil produced hydrogen and of its potential are oriented toward ... to the environment as the present fossil energy economy [10.4, 10.9].

J. Nitsch; C. Voigt

1988-01-01T23:59:59.000Z

311

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

Production 2. Hydrogen Storage 3. Hydrogen Compression vi 4.Table 2-13: Liquid Hydrogen Storage System Costs fromTable 2-1 4: Gaseou s Hydrogen Storage System Costs from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

312

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

Production 2. Hydrogen Storage 3. Hydrogen Compression vi 4.Table 2-13: Liquid Hydrogen Storage System Costs fromTable 2-1 4: Gaseou s Hydrogen Storage System Costs from

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

313

Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report  

SciTech Connect (OSTI)

Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

Luczak, F.

1998-03-01T23:59:59.000Z

314

Use of Federated Object Modeling to Develop a Macro-System Model for the U.S. Department of Energy's Hydrogen Program; Preprint  

SciTech Connect (OSTI)

DOE is working on changing transportation fuel to hydrogen. To assist in that effort, we are developing a macro-system model that will link existing or developmental component models together.

Ruth, M. F.; Vanderveen, K. B.; Sa, T. J.

2006-07-01T23:59:59.000Z

315

Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant  

SciTech Connect (OSTI)

Tritium movement and accumulation in a Next Generation Nuclear Plant with a hydrogen plant using a high temperature electrolysis process and a thermochemical water splitting sulfur iodine process are estimated by the numerical code THYTAN as a function of design, operational, and material parameters. Estimated tritium concentrations in the hydrogen product and in process chemicals in the hydrogen plant of the Next Generation Nuclear Plant using the high temperature electrolysis process are slightly higher than the drinking water limit defined by the U.S. Environmental Protection Agency and the limit in the effluent at the boundary of an unrestricted area of a nuclear plant as defined by the U.S. Nuclear Regulatory Commission. However, these concentrations can be reduced to within the limits through use of some designs and modified operations. Tritium concentrations in the Next Generation Nuclear Plant using the Sulfur-Iodine Process are significantly higher as calculated and are affected by parameters with large uncertainties (i.e., tritium permeability of the process heat exchanger, the hydrogen concentration in the heat transfer and process fluids, the equilibrium constant of the isotope exchange reaction between HT and H2SO4). These parameters, including tritium generation and the release rate in the reactor core, should be more accurately estimated in the near future to improve the calculations for the NGNP using the Sulfur-Iodine Process. Decreasing the tritium permeation through the heat exchanger between the primary and secondary circuits may be an an effective measure for decreasing tritium concentrations in the hydrogen product, the hydrogen plant, and the tertiary coolant.

Hirofumi Ohashi; Steven R. Sherman

2007-06-01T23:59:59.000Z

316

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

317

Indirect measurements of hydrogen: The deficit method for a many-component system  

SciTech Connect (OSTI)

We have developed a simple technique for determining hydrogen atomic fraction from the ion backscattering spectrometry (IBS) signals of the remaining species. This technique uses the surface heights of various IBS signals in the form of a linear matrix equation. We apply this technique to in situ analysis of ion-beam-induced densification of sol-gel zirconia thin films, where hydrogen is the most volatile species during irradiation. Attendant errors are discussed with an emphasis on stopping powers and Bragg`s rule.

Levine, T.E. [Cornell Univ., Ithaca, NY (United States). Dept. of Materials Science and Engineering; Yu, Ning; Kodali, P.; Walter, K.C.; Nastasi, M.; Tesmer, J.R.; Maggiore, C.J. [Los Alamos National Lab., NM (United States); Mayer, J.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemical, Bio and Materials Engineering

1995-05-01T23:59:59.000Z

318

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

319

Nuclear Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Error Error Nuclear Hydrogen - RCC cannot be displayed due to a timeout error. We recommend: * Refresh Nuclear Hydrogen - RCC * Increasing your portlet timeout setting. *...

320

Hydrogen Safety, Codes and Standards Challenges  

Broader source: Energy.gov [DOE]

From a safety, codes and standards perspective, the fundamental challenges to the commercialization of hydrogen technologies are the lack of safety information on hydrogen components and systems...

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration  

Science Journals Connector (OSTI)

In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a dc plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12?MW, 32?kg?h?1 and 900?kg?h?1, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

Longwei Chen; Yuedong Meng; Jie Shen; Xingsheng Shu; Shidong Fang; Xinyang Xiong

2009-01-01T23:59:59.000Z

322

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network [OSTI]

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

323

Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen  

SciTech Connect (OSTI)

The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay-ups are needed to relieve the high stress in regions of high stress concentrations between intersecting tanks/ tank sections. Filament winding process is the most suitable way for producing both cylindrical and spherical hydrogen storage tanks with high industrial quality. However, due to the unavailability of such equipment at West Virginia University and limited funding, the composite structures within this work were produced by hand layup and bag molding techniques. More advanced manufacturing processes can significantly increase the structural strength of the tank and enhances its performance and also further increase weight saving capabilities. The concept of using a carbon composite liner seems to be promising in overcoming the low strength of the aluminum liner at internal high pressures. This could be further enhanced by using MetPreg filament winding to produce such a liner. Innovative designs for the polar boss of the storage tanks and the valve connections are still needed to reduce the high stress formed in these zones to allow for the tank to accommodate higher internal pressures. The Continuum Damage Mechanics (CDM) approach was applied for fault-tolerant design and efficient maintenance of lightweight automotive structures made of composite materials. Potential effects of damage initiation and accumulation are formulated for various design configurations, with emphasis on lightweight fiber-reinforced composites. The CDM model considers damage associated with plasticity and fatigue.

Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

2008-12-31T23:59:59.000Z

324

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect (OSTI)

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

325

Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3NH System by the Addition of Nitrogen  

Science Journals Connector (OSTI)

Mitigation of Hydrogen Capacity Losses during Pressure Cycling of the Li3NH System by the Addition of Nitrogen ... We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (?Go = ?98.7 kJ/mol) is more negative than that of LiH (?Go = ?50.3 ... This triggered intensive research on hydrogen as a renewable fuel because the exhaust gases in hydrogen-powered vehicles mainly contain water vapor. ...

Joshua Lamb; Dhanesh Chandra; Wen-Ming Chien; Delphine Phanon; Nicolas Penin; Radovan C?erny?; Klaus Yvon

2011-06-13T23:59:59.000Z

326

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

327

Hydrogen Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

328

Renewable Electrolysis Integrated Systems Development and Testing - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin Harrison National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-7091 Email: Kevin.Harrison@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contributors: Chris Ainscough and Michael Peters Subcontractor: Marc Mann, Spectrum Automation Controls, Arvada, CO Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Validate stack and system efficiency and contributing * sub-system performance of DOE-awarded advanced electrolysis systems Collaborate with industry to optimize and demonstrate *

329

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

330

FCT Hydrogen Delivery: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

331

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

SciTech Connect (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

332

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

333

Argonne leads hydrogen storage project  

Science Journals Connector (OSTI)

A new $1.88m research project on on-board hydrogen storage at the US Department of Energy's Argonne National Laboratory in Illinois aims to develop a hydrogen storage system that can hold enough hydrogen for a driving range of 300 miles (480 km).

2007-01-01T23:59:59.000Z

334

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

335

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

336

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory Presentation at thePresentation at the Hydrogen Storage Grand ChallengeHydrogen Storage expertise to hydrogen storage, fuel cells, and system integration issues ­Novel membranes and other

337

Accelerating Acceptance of Fuel Cell Backup Power Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1799 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Subcontractor: IdaTech LLC, Bend, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the performance of 20 low-temperature fuel * cell systems at two locations Optimize the maintenance of the systems and data * collection practices The project is intended to increase distributed power * generation, improve reliability and efficiency of

338

Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential  

E-Print Network [OSTI]

The problem of proton-antiproton motion in the ${\\rm H}$--${\\rm \\bar{H}}$ system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system.

Henrik Stegeby; Konrad Piszczatowski; Hans O Karlsson; Roland Lindh; Piotr Froelich

2012-03-29T23:59:59.000Z

339

Hydrogen Cryomagnetics  

E-Print Network [OSTI]

% cryogenics (inc. MRI) 29% pressurisation and purging 11%controlled atmospheres (inc. breathing) 6% 4 Figure 5. Simplified price-cost, supply-demand relationship that is central to the helium market model developed during the Helium Resources... of hydrogen large amounts of hydrogen must be available for liquefaction. This poses problems for the production of liquid hydrogen via intermittent wind energy and via microwave plasma reactors that are not scalable as a result of low hydrogen production...

Glowacki, B. A.; Hanely, E.; Nuttall, W. J.

2014-01-01T23:59:59.000Z

340

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials  

SciTech Connect (OSTI)

This is the final report of our program on hydrogen storage in thin film and nanoparticle metal hydrides.

Bruce M. Clemens

2010-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sustainable Hydrogen Production  

Science Journals Connector (OSTI)

...Today, hydrogen is mainly produced from natural gas via steam methane reforming, and although this process can sustain an initial...operating, or maintenance costs are included in the calculation. HHV, higher heating value. System efficiencies of commercial electrolyzers...

John A. Turner

2004-08-13T23:59:59.000Z

342

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

and Control for PEM Fuel Cell Stack System, Proceedings ofmodel for an automotive PEM fuel cell system with imbedded 1Friedman and R.M. Moore, PEM Fuel Cell System Optimization,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

343

Technical Assessment of Organic Liquid Carrier Hydrogen Storage...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for...

344

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for...

345

NREL: Hydrogen and Fuel Cells Research - Energy Analysis and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and others interested in the viability, analysis, and development of hydrogen and fuel cell technologies and systems. Learn about NREL's hydrogen and fuel cell system...

346

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.030.53MJeq/MJ emitting 0.727.3g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

347

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems  

SciTech Connect (OSTI)

Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 release properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.

Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.; Ronnebro, Ewa

2012-04-19T23:59:59.000Z

348

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

349

Hydrogenation apparatus  

DOE Patents [OSTI]

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C. L.; Russell, L. H.

1981-06-23T23:59:59.000Z

350

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

351

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

352

Florida Hydrogen Initiative  

SciTech Connect (OSTI)

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

353

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

Andris R.Abele. Quantum Hydrogen Storage Systems, PresentedTIAX LLC, Analyses of Hydrogen Storage Materials and On-plant (BOP), but not the hydrogen storage system. This study

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

354

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

355

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

356

High pressure/high temperature vapor liquid equilibrium study of light gases in hydrogen-coal liquid model compound systems using perturbation chromatography  

SciTech Connect (OSTI)

Perturbation chromatography or gas-liquid partition chromatography (GLPC) provides a powerful tool for making physicochemical measurements. In this investigation GLPC was applied to study the vapor-liquid equilibrium behavior of light gases in nonvolatile coal liquid model compound solvents at high temperatures and high pressures. Improvements made in existing GLPC techniques include: the use of a high pressure tandem proportioning pump to give precise control of the carrier gas flow rate and low pressure drops; a high pressure ionization chamber to detect the injection of very dilute radioactive sample gases; and the use of a microcomputer to provide instantaneous integration and very precise retention times of the chromatographic peaks. Infinite dilution K-values for methane, ethane, propane, n-butane, carbon dioxide, and hydrogen sulfide in hydrogen-dibenzofuran systems were obtained at 100 and 125 C and up to 800 psia. Infinite dilution K-values for the same light gases in hydrogen-9-methylanthracene systems were obtained at 100, 125, 150, 175, and 200 C and up to 3000 psia. Henry's constants were determined for the light gases in 9-methylanthracene. Second cross virial coefficients and vapor phase infinite dilution fugacity coefficients were calculated for methane, ethane, propane, and n-butane in hydrogen. These results were combined with the experimental K-value measurements to obtain Henry's constants in hydrogen-9-methylanthracene mixtures of fixed liquid compositions. Infinite dilution heats of solution of the solute gases in the mixtures were calculated.

Kragas, T.K.

1983-01-01T23:59:59.000Z

357

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

34 34 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jamie D. Holladay (Primary Contact), Kriston P. Brooks, Ewa C.E. Rönnebro, Kevin L. Simmons and Mark R. Weimar. Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 371-6692 Email: Jamie.Holladay@pnnl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-AC05-76RL01830

358

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network [OSTI]

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

359

Proceedings of the 2001 U.S. DOE Hydrogen Program Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

of hydrogen-related research. 30535.pdf More Documents & Publications Renewable Hydrogen Production from Biological Systems Hydrogen, Fuel Cells and Infrastructure Technologies...

360

Modeling of Plasma-Assisted Conversion of Liquid Ethanol into Hydrogen Enriched Syngas in the Nonequilibrium Electric Discharge Plasma-Liquid System  

E-Print Network [OSTI]

In this work we report recent results of our experimental and theoretical studies related to plasma conversion of liquid ethanol into hydrogen-enriched syngas in the plasma-liquid system with the electric discharge in a gas channel with liquid wall using available diagnostics and numerical modeling.

Levko, Dmitry; Naumov, Vadim; Chernyak, Valery; Yukhymenko, Vitaly; Prysiazhnevych, Irina; Olszewski, Sergey

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update  

Broader source: Energy.gov [DOE]

This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

362

Novel methods of hydrogen production: aluminum-gallium-indium-tin systems and copper boron oxide as photocatalysts.  

E-Print Network [OSTI]

??In recent years, hydrogen production and storage has attracted a lot of attention in both academia and industry due to its variety of applications in (more)

Lang, Yizhao

2011-01-01T23:59:59.000Z

363

First-Principles Study of the Li-Na-Ca-N-H System: Compound Structures and Hydrogen-Storage Properties.  

E-Print Network [OSTI]

??With the goal of finding new materials as a resource for alternative energy, various classes of hydrogen storage materials have been developed. One of the (more)

Teeratchanan, Pattanasak

2012-01-01T23:59:59.000Z

364

Fuel Cell Technologies Office: Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

365

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

366

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Fuel Cell System Water Management Motor Cooling HumidifierComp. Motor Power SM Outlet Mass Flow -C- Desired RH WaterP motor , 0 k comp = P comp P comp , 0 Thermal and water

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

367

Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Philip D. Weyman (Primary Contact), Isaac T. Yonemoto, Hamilton O. Smith J. Craig Venter Institute 10355 Science Center Dr. San Diego, CA 92121 Phone: (858) 200-1815 Email: pweyman@jcvi.org DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15027 National Laboratory Collaborators: * Karen Wawrousek, Scott Noble, Jianping Yu, and Pin-Ching Maness * National Renewable Energy Laboratory (NREL), Golden, CO Project Start Date: May 1, 2005 Project End Date: January 30, 2014

368

CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system  

Science Journals Connector (OSTI)

Abstract This study investigates the temporal development of bubble hydrodynamics in the fuel reactor of a hydrogen-fueled chemical looping combustion (CLC) system by using a computational model. The model also investigates the molar fraction of products in gas and solid phases. The study assists in developing a better understanding of the CLC process, which has many advantages such as being a potentially promising candidate for an efficient carbon dioxide capture technology. The study employs the kinetic theory of granular flow. The reactive fluid dynamic system of the fuel reactor is customized by incorporating the kinetics of an oxygen carrier reduction into a commercial computational fluid dynamics (CFD) code. An Eulerian multiphase treatment is used to describe the continuum two-fluid model for both gas and solid phases. CaSO4 and H2 are used as an oxygen carrier and a fuel, respectively. The computational results are validated with the experimental and numerical results available in the open literature. The CFD simulations are found to capture the features of the bubble formation, rise and burst in unsteady and quasi-steady states very well. The results show a significant increase in the conversion rate with higher dense bed height, lower bed width, higher free board height and smaller oxygen carrier particles which upsurge an overall performance of the CLC plant.

Atal Bihari Harichandan; Tariq Shamim

2014-01-01T23:59:59.000Z

369

Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1). Revision 1  

SciTech Connect (OSTI)

This document provides descriptions of components and tasks that are involved in the computer system for the data acquisition and control of the mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los alamos National Laboratory and supplied to Westinghouse Hanford Company. The computers (both personal computers and specialized data-taking computers) and the software programs of the system will hereafter collectively be referred to as the DACS (Data Acquisition and Control System).

Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-24T23:59:59.000Z

370

Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Kenny Sprint Nextel 12000 Sunrise Valley Drive MS: VARESQ0401-E4064 Reston, VA 20191 Phone: (703) 592-8272 Email: kevin.p.kenny@sprint.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: James Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: EE-0000486 Project Partners: * Air Products & Chemicals, Inc., Allentown, PA (Fuel Project Partner) * Altergy Systems, Folsum, CA (PEM Fuel Cell Project Partner) * Black & Veatch Corporation, Overland Park, KS (A&E

371

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

372

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Maps Below are some examples of how geographic information system (GIS) modeling is used in hydrogen infrastructure, demand, market and resource analyses. The JPG images...

373

Soft-linking energy systems and GIS models to investigate spatial hydrogen infrastructure development in a low-carbon UK energy system  

Science Journals Connector (OSTI)

This paper describes an innovative modelling approach focusing on linking spatial (GIS) modelling of hydrogen (H2) supply, demands and infrastructures, anchored within a economy-wide energy systems model (MARKAL). The UK government is legislating a groundbreaking climate change mitigation target for a 60% CO2 reduction by 2050, and has identified H2 infrastructures and technologies as potentially playing a major role, notably in the transport sector. An exploratory set of linked GISMARKAL model scenarios generate a range of nuanced insights including spatial matching of supply and demand for optimal zero-carbon H2 deployment, a crucial finding on successive clustering of demand centres to enable economies of scale in H2 supply and distribution, the competitiveness of imported liquid H2 and of liquid H2 distribution, and sectoral competition for coal with carbon sequestration between electricity and H2 production under economy-wide CO2 constraints.

Neil Strachan; Nazmiye Balta-Ozkan; David Joffe; Kate McGeevor; Nick Hughes

2009-01-01T23:59:59.000Z

374

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects by Principal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Principal Investigator Principal Investigator Below are hydrogen analyses and analytical models grouped by principal investigator. | A | B | C | D | E | F | G | H | J | K | L | M | N | O | P | R | S | T | U | V | W A Portfolio of Power-Trains for Europe Review of FreedomCAR and Fuel Partnership Ahluwalia, Rajesh Fuel Cell Systems Analysis GCtool-ENG Ahluwalia, Rajesh K. Hydrogen Storage Systems Analysis Ahmed, Shabbir Cost Implications of Hydrogen Quality Requirements Fuel Quality Effects on Stationary Fuel Cell Systems Fuel Quality in Fuel Cell Systems Quick Starting Fuel Processors - A Feasibility Study Amos, Wade Biological Water-Gas Shift Costs of Storing and Transporting Hydrogen Photobiological Hydrogen Production from Green Algae Cost Analysis Arif, Muhammad Fuel Cell Water Transport Mechanism

375

Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions; Preprint  

SciTech Connect (OSTI)

It is commonly accepted that the introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of infrastructure elements, such as production, delivery, and consumption, all associated with certain emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The macro-system model is being developed as a cross-cutting analysis tool that combines a set of hydrogen technology analysis models. Within the MSM, a federated simulation framework is used for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of 'over-the-net' computation.

Ruth, M.; Diakov, V.; Goldsby, M. E.; Sa, T. J.

2010-12-01T23:59:59.000Z

376

Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas  

SciTech Connect (OSTI)

In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

2014-01-29T23:59:59.000Z

377

Chemical Hydrogen Storage R & D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for...

378

2011 NREL/DOE HYDROGEN AND FUEL CELL  

E-Print Network [OSTI]

1 2011 NREL/DOE HYDROGEN AND FUEL CELL MANUFACTURING R................................................................................................................... 3 2.1.1 Hydrogen and Fuel Cell Technologies Overview; Sunita Satyapal..........................................................................23 3.5 Manufacturing Barriers and Needs for Small Fuel Cell Systems with Hydrogen Storage

379

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

and diesel. Hydrogen and fuel cells are widely touted as anapplication for hydrogen and fuel cells is to power LDVs,system (batteries or hydrogen and fuel cells) will achieve

Yang, Christopher

2008-01-01T23:59:59.000Z

380

Hydrogen Storage Based on Physisorption  

Science Journals Connector (OSTI)

Thermochemistry analysis was conducted at the same temperatures and pressures as those used experimentally to determine the wt % of hydrogen stored based on the physisorption process. ... A clear difference obsd. in gas evolution from SWNTs and peapods shows that the storage site for the hydrogen mol. is an inter-tube space and that 'sub-nanometer' sized spaces are indispensable for storing hydrogen mols. in this system. ...

L. G. Scanlon; W. A. Feld; P. B. Balbuena; G. Sandi; X. Duan; K. A. Underwood; N. Hunter; J. Mack; M. A. Rottmayer; M. Tsao

2009-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen fuel closer to reality because of storage advances  

E-Print Network [OSTI]

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

382

Hydrogen Liquefaction  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Liquid Hydrogen is 0.2% Ortho, 99.8% Para 3 Liquid Supply North America 250+ TPD Capacity Diverse Feedstocks Chlor-Alkali SMR Petro-chem Market...

383

Hydrogen Storage  

Science Journals Connector (OSTI)

Hydrogen is an important energy carrier, and when used as a fuel, can be considered as an alternate to the major fossil fuels, coal, crude oil, and natural gas, and their derivatives. It has the potential to b...

Prof. Dr. Robert A. Huggins

2010-01-01T23:59:59.000Z

384

Hydrogen energy  

Science Journals Connector (OSTI)

...use of hydrogen as an energy carrier will depend significantly...its utilization and conversion to electricity/heat...becomes an alternative energy carrier. However, various...effectively with conventional energy conversion technologies. The...

2007-01-01T23:59:59.000Z

385

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

386

Hydrogen storage in a combined M.sub.xAlH.sub.6/M'.sub.y(NH.sub.2).sub.z system and methods of making and using the same  

DOE Patents [OSTI]

As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.

Lu, Jun (Salt Lake City, UT); Fang, Zhigang Zak (Salt Lake City, UT); Sohn, Hong Yong (Salt Lake City, UT)

2012-04-03T23:59:59.000Z

387

Hydrogen Storage R&D Activities  

Broader source: Energy.gov [DOE]

DOE's hydrogen storage R&D activities are aimed at increasing the gravimetric and volumetric energy density and reducing the cost of hydrogen storage systems for transportation andsmall...

388

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network [OSTI]

to hydrogen storage vessels and compressors. Feedstock CostHydrogen Production Equipment Purifier Storage System Compressor Dispenser Additional Equipment Installation Costshydrogen equipment costs. Meyers [2] provides an in depth analyses of reformer, compressor, and storage equipment costs.

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

389

Experimental Study of a New PVC Foam Insulation System for Liquid-Hydrogen-Liquid-Oxygen Space Vehicles  

Science Journals Connector (OSTI)

This paper discusses the development of a rigid external foam insulation for liquid-hydrogen-liquid-oxygen space vehicles...1...], dealing with the use of Klegecell G 300,* a PVC closed-cell foam. This foam does ...

F. J. Muller

1971-01-01T23:59:59.000Z

390

First-Principles Study of the Li-Na-Ca-N-H System: Compound Structures and Hydrogen-Storage Properties  

E-Print Network [OSTI]

Membrane PEM (PEM) fuel cell1 3.1exchange membrane (PEM) fuel cell. As shown schematically inside. Figure 1.1: PEM fuel cell [1] Solid-state hydrogen

Teeratchanan, Pattanasak

2012-01-01T23:59:59.000Z

391

DOE Hydrogen Analysis Repository: Life Cycle Assessment of Hydrogen Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project Summary Full Title: Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles Project ID: 143 Principal Investigator: Ibrahim Dincer Brief Description: Examines the social, environmental and economic impacts of hydrogen fuel cell and gasoline vehicles. Purpose This project aims to investigate fuel cell vehicles through environmental impact, life cycle assessment, sustainability, and thermodynamic analyses. The project will assist in the development of highly qualified personnel in such areas as system analysis, modeling, methodology development, and applications. Performer Principal Investigator: Ibrahim Dincer Organization: University of Ontario Institute of Technology

392

Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the engineering and cost characteristics of four PEC hydrogen production systems selected by DOE to represent canonical embodiments of future systems.

393

DOE Hydrogen Analysis Repository: Economic Analysis of Hydrogen Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Analysis of Hydrogen Energy Station Concepts Economic Analysis of Hydrogen Energy Station Concepts Project Summary Full Title: Economic Analysis of Hydrogen Energy Station Concepts: Are 'H2E-Stations' a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure? Project ID: 244 Principal Investigator: Timothy Lipman Brief Description: This project expands on a previously conducted, preliminary H2E-Station analysis in a number of important directions. Purpose This analysis, based on an integrated Excel/MATLAB/Simulink fuel cell system cost and performance model called CETEEM, includes the following: several energy station designs based on different sizes of fuel cell systems and hydrogen storage and delivery systems for service station and office building settings; characterization of a typical year of operation

394

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

395

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen  

E-Print Network [OSTI]

Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi EppingKathi Epping #12;Objectives & Barriers Distributed Energy OBJECTIVES · Develop a distributed generation PEM fuel cell system

396

Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production  

Science Journals Connector (OSTI)

Abstract A W-typed dye-sensitized serial solar module (W-typed DSSM) was designed for hydrogen production from water electrolysis. The optimal thickness and width of the TiO2 electrode film were 12?m and 5mm, and the optimal thickness of Pt counter electrode film was 4nm, respectively. The photocurrent density, open circuit voltage, and fill factor were 2.13mAcm?2, 3.51V, and 0.61, respectively, for a serial module assembled from five unit cells, which resulted in an overall conversion efficiency of 4.56%. The obtained voltage increased with increasing number of unit cells connected, and was 3.51V in the five column fabricated W-typed DSSM. 2.1mLh?1 of hydrogen gas was emitted when a W-typed DSSM assembled from five columns was connected to carbon electrodes in a water electrolysis system. The rate of hydrogen evolution in the five columned W-typed DSSM was 0.00213Lh?1. Therefore, the actual light-hydrogen conversion was calculated to be 2.02%.

Byeong Sub Kwak; Jinho Chae; Misook Kang

2014-01-01T23:59:59.000Z

397

High-pressure/high-temperature gas-solubility study in hydrogen-phenanthrene and methane-phenanthrene systems using static and chromatographic techniques  

SciTech Connect (OSTI)

The design and discovery of sources for alternative energy such as coal liquefaction has become of major importance over the past two decades. One of the major problems in such design in the lack of available data, particularly, for gas solubility in polycyclic aromatics at high temperature and pressure. Static and gas-liquid partition chromatographic methods were used for the study of hydrogen-phenanthrene and methane-phenanthrene systems. The static data for these two binaries were taken along 398.2, 423.2, 448.2, and 473.2 K isotherms up to 25.23 MPa. Gas-liquid partition chromatography was used to study the infinite dilution behavior of methane, ethane, propane, n-butane, and carbon dioxide in the hydrogen-phenanthrene system as well as hydrogen, ethane, n-butane, and carbon dioxide in the methane-phenanthrene binary. The principle objective was to examine the role of the elution gas. Temperatures were along the same isotherms as the static data and up to 20.77 MPa. With the exception of carbon dioxide, Henry's constants were calculated for all systems. Expressions for the heat of solution as a function of pressure were derived for both binary and chromatographic data. Estimates of delta H/sub i/sup sol/ at high pressure were presented.

Malone, P.V.

1987-01-01T23:59:59.000Z

398

System Analyses of High and Low-Temperature Interface Designs for a Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The lowtemperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MWt Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm2, and a current density of 0.25 amps/cm2). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MWt from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MWe of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heatpump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat.

E. A. Harvego; J. E. O'Brien

2009-07-01T23:59:59.000Z

399

Appendix G: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix G: Radiation #12;#12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

400

Appendix A: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix A: Radiation #12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen production costs -- A survey  

SciTech Connect (OSTI)

Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

Basye, L.; Swaminathan, S.

1997-12-04T23:59:59.000Z

402

Hydrogen program overview  

SciTech Connect (OSTI)

This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

403

Active Hydrogen  

Science Journals Connector (OSTI)

Dry hydrogen can be activated in an electric discharge if the pressure and voltage are carefully regulated. Active hydrogen reduces metallic sulphides whose heat of formation is 22 000 cal. or less. The active gas is decomposed by 3 cm of well packed glass wool. A quantitative method is given for the determination of active hydrogen. Less of the active gas is formed in a tube coated with stearic acid or phosphoric acid than when no coating is employed. The decay reaction was found to follow the expression for a unimolecular reaction. The rate of decay appears to be independent of the wall surface. The period of half?life at room temperature and 40 mm pressure is 0.2 sec. approximately. The energy of formation of active hydrogen is approximately 18 000 cal. The energy of activation for the decay of the active constituent is approximately 17 800 cal. The properties of active hydrogen are considered in relation to the properties predicted for H3.

A. C. Grubb; A. B. Van Cleave

1935-01-01T23:59:59.000Z

404

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

Sector List of Hydrogen Incentives Hydrogen Energy Data Book Retrieved from "http:en.openei.orgwindex.php?titleHydrogen&oldid271963...

405

The Hype About Hydrogen  

E-Print Network [OSTI]

economy based on the hydrogen fuel cell, but this cannot beus to look toward hydrogen. Fuel cell basics, simplifiedthe path to fuel cell commercialization. Hydrogen production

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

406

Hydrogen isotope separation  

DOE Patents [OSTI]

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

407

Is Hydrogen Storage Possible in Metal-Doped Graphite 2D Systems in Conditions Found on Earth?  

Science Journals Connector (OSTI)

Density functional theory (DFT) calculations are performed for the adsorption energy of hydrogen and oxygen on graphene decorated with a wide set of metals (Li, Na, K, Al, Ti, V, Ni, Cu, Pd, Pt). It is found that oxygen interferes with hydrogen adsorption by either blocking the adsorption site or by the irreversible oxidation of the metal decoration. The most promising decorations are Ni, Pd, and Pt due to a reasonable relationship of adsorption energies which minimize the oxygen interference. The DFT results are used to parametrize a statistical mechanical model which allows evaluation of the effect of partial pressures in the gas phase during storage. According to this model, even in the most promising case, it is necessary to reduce the oxygen partial pressure close to ultrahigh vacuum conditions to allow hydrogen storage.

A. Sigal; M. I. Rojas; E. P. M. Leiva

2011-10-06T23:59:59.000Z

408

Proceedings of the 1992 DOE/NREL hydrogen program review  

SciTech Connect (OSTI)

These proceedings contain 18 papers presented at the meeting. While the majority of the papers (11) had to do with specific hydrogen production methods, other papers were related to hydrogen storage systems, evaluations of and systems analysis for a hydrogen economy, and environmental transport of hydrogen from a pipeline leak.

Rocheleau, R.E.; Gao, Q.H.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1992-07-01T23:59:59.000Z

409

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Lessons Learned from the Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen- Fueled Transportation System M. Melendez, K. Theis, and C. Johnson Technical Report NREL/TP-560-40753 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-560-40753 August 2007 Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-

410

COMBINATORIAL DISCOVERY OF PHOTOCATALYSTS FOR HYDROGEN PRODUCTION  

E-Print Network [OSTI]

the development of economical and environmentally benign hydrogen production methods and reliable storage systemsCOMBINATORIAL DISCOVERY OF PHOTOCATALYSTS FOR HYDROGEN PRODUCTION Theodore Mill, Albert Hirschon materials rapidly with appropriate band- gaps and screen them for efficient hydrogen production. The goal

411

The Reaction of Hydrogen Atoms with Ethylene  

Science Journals Connector (OSTI)

...research-article The Reaction of Hydrogen Atoms with Ethylene M. P. Halstead D. A. Leathard R...the reaction between hydrogen atoms and ethylene in a discharge-flow system at 290 3...argon were used and the hydrogen atom and ethylene flow rates were in the ranges 5 to 10...

1970-01-01T23:59:59.000Z

412

Hydrogen and Hydrogen-Storage Materials  

Science Journals Connector (OSTI)

Currently, neutron applications in the field of hydrogen and hydrogen-storage materials represent a large and promising research ... relevant topics from this subject area, including hydrogen bulk properties (con...

Milva Celli; Daniele Colognesi; Marco Zoppi

2009-01-01T23:59:59.000Z

413

Support of a pathway to a hydrogen future  

SciTech Connect (OSTI)

This paper consists of viewgraphs which outline the content of the presentation. Subjects addressed include: hydrogen research program vision; electricity industry restructuring -- opportunities and challenges for hydrogen; transportation sector -- opportunities for hydrogen; near-term and mid-term opportunities for hydrogen; and hydrogen production technologies from water. It is concluded that the global climate change challenge is the potential driver for the development of hydrogen systems.

Hoffman, A.R. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

1997-12-31T23:59:59.000Z

414

Sensors and Actuators B 105 (2005) 329333 Remote sensing system for hydrogen using GaN Schottky diodes  

E-Print Network [OSTI]

including detection of combustion gases, for fuel leak detection in spacecraft, automobiles and aircraft satellites require thermal radiators to dissipate heat generated by the spacecraft elec- tronics hydrogen and hydrocarbons [1,7,24,25]. Gas sensors based on GaN could be integrated with high

Florida, University of

415

A CO-Tolerant Hydrogen Fuel Cell System Designed by Combining with an Extremely Active Pt/CNT Catalyst  

Science Journals Connector (OSTI)

Complete oxidation of 2,000ppm CO in H2 is attained over 10wt.% Pt/CNT (carbon nano-tube) catalyst (0.019g) at room temperature by adding 2,000ppm O2 to hydrogen flowing at 100mL/min. By insetting 5wt.% Pt/...

Ken-ichi Tanaka; Masashi Shou; Hong He; Changbin Zhang; Daling Lu

2009-01-01T23:59:59.000Z

416

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2007 Annual Progress Report II. Hydrogen Production This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Mark Paster, Roxanne Garland, Arlene Anderson, U.S. Department of Energy (PDF 242 KB) A. Distributed Production from Natural Gas Low Cost Hydrogen Production Platform, Tim Aaron, Praxair, Inc. (PDF 399 KB) Low-Cost Hydrogen Distributed Production System Development, Franklin D. Lomax, H2Gen Innovations, Inc. (PDF 309 KB) Integrated Hydrogen Production, Purification and Compression System, Satish Tamhankar, The BOC Group, Inc. (PDF 123 KB)

417

Hydrogen Production from Thermocatalytic Hydrogen Sulfide Decomposition  

Science Journals Connector (OSTI)

Experimental data on hydrogen production from hydrogen sulfide decomposition over various solid catalysts at ... The possibilities given by surface modification by vacuum methods (electron beam evaporation and ma...

O. K. Alexeeva

2002-01-01T23:59:59.000Z

418

Why Hydrogen? Hydrogen from Diverse Domestic Resources  

Broader source: Energy.gov [DOE]

Overview of the U.S. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program, including technical targets and research and development needs for hydrogen storage and delivery.

419

FCEVs and Hydrogen in California  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Board South Coast AQMD US EPA US DOE US DOT TECHNOLOGY AFCC AC Transit Air Liquide Air Products Ballard Power Systems CDFA CEERT EIN Hydrogenics ITS - UC Davis Linde NFCRC -...

420

The Hype About Hydrogen  

E-Print Network [OSTI]

another promising solution for hydrogen storage. However,storage and delivery, and there are safety issues as well with hydrogen

Mirza, Umar Karim

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Technology Validation  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

422

Resistive hydrogen sensing element  

DOE Patents [OSTI]

Systems and methods are described for providing a hydrogen sensing element with a more robust exposed metallization by application of a discontinuous or porous overlay to hold the metallization firmly on the substrate. An apparatus includes: a substantially inert, electrically-insulating substrate; a first Pd containing metallization deposited upon the substrate and completely covered by a substantially hydrogen-impermeable layer so as to form a reference resistor on the substrate; a second Pd containing metallization deposited upon the substrate and at least a partially accessible to a gas to be tested, so as to form a hydrogen-sensing resistor; a protective structure disposed upon at least a portion of the second Pd containing metallization and at least a portion of the substrate to improve the attachment of the second Pd containing metallization to the substrate while allowing the gas to contact said the second Pd containing metallization; and a resistance bridge circuit coupled to both the first and second Pd containing metallizations. The circuit determines the difference in electrical resistance between the first and second Pd containing metallizations. The hydrogen concentration in the gas may be determined. The systems and methods provide advantages because adhesion is improved without adversely effecting measurement speed or sensitivity.

Lauf, Robert J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

423

PHYSICAL REVIEW B 84, 064303 (2011) Hydrogen transport in superionic system Rb3H(SeO4)2: A revised cooperative migration mechanism  

E-Print Network [OSTI]

conductors. This can be explained by great technological advances in the use of hydrogen conducting materials for applications in solid-state hydrogen fuel cells, hydrogen storage, and electrochemical devices.1­4 A central problem in fuel-cell and hydrogen batteries technology is the development of cheap and efficient materials

424

Complex Hydrides for Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

425

Analysis of Ontario's hydrogen economy demands from hydrogen fuel cell vehicles  

Science Journals Connector (OSTI)

The Hydrogen Economy is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen \\{FCVs\\} in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen \\{FCVs\\} market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.

Hui Liu; Ali Almansoori; Michael Fowler; Ali Elkamel

2012-01-01T23:59:59.000Z

426

Chemical Hydride Rate Modeling, Validation, and System Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Troy A. Semelsberger (Primary Contact), Biswajit Paik, Tessui Nakagawa, Ben Davis, and Jose I. Tafoya Los Alamos National Laboratory MS J579, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-4766 Email: troy@lanl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Project Start Date: February 2009 Project End Date: February 2014 Fiscal Year (FY) 2012 Objectives Investigate reaction characteristics of various fluid-phase * ammonia-borane (AB)-ionic liquid (IL) compositions Identify and quantify hydrogen impurities and develop *

427

Nuclear Hydrogen Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

428

CSA International Certification Discussion Hydrogen Technology Workshop  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

429

Hydrogen for Energy Storage Analysis Overview (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

430

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

431

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2007 Annual Progress Report IV. Hydrogen Storage This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, U.S. Department of Energy (PDF 729 KB) A. Metal Hydrides-Independent Projects Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Daniel A. Mosher, United Technologies Research Center (PDF 475 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David A. Lesch, UOP LLC (PDF 529 KB) High Density Hydrogen Storage System Demonstration Using NaAlH4 Complex Compound Hydrides, Daniel A. Mosher, United Technologies Research

432

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2009 Annual Progress Report II. Hydrogen Production This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 76 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development (PDF 246 KB), Frank Lomax, H2Gen Innovations, Inc. Distributed Hydrogen Production from Biomass Reforming (PDF 485 KB), Yong Wang, Pacific Northwest National Laboratory Hydrogen Generation from Biomass-Derived Carbohydrates via the Aqueous-Phase Reforming (APR) Process (PDF 234 KB), Greg Keenan, Virent

433

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

434

Natural Gas Utilities Options Analysis for the Hydrogen  

E-Print Network [OSTI]

> Natural Gas Utilities Options Analysis for the Hydrogen Economy Hydrogen Pipeline R&D Project of strategic options for the natural gas industry as hydrogen energy systems evolve ­ Vehicle to encourage of tradeoffs ­ NY state qualifies natural gas-run fuel cells, CA only renewable hydrogen (potential for partial

435

DOE Hydrogen and Fuel Cells Program: Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Responder Training First Responder Training Bibliographic Database Newsletter Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Safety Printable Version Safety Safe practices in the production, storage, distribution, and use of hydrogen are an integral part of future plans. Like most fuels, hydrogen can be handled and used safely with appropriate sensing, handling, and engineering measures. The aim of this program activity is to verify the physical and chemical properties of hydrogen, outline the factors that must be considered to minimize the safety hazards related to the use of hydrogen as a fuel, and provide a comprehensive database on hydrogen and hydrogen safety. Photo of hydrogen fueling pump in Las Vegas, Nevada

436

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31...

437

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery...  

Broader source: Energy.gov (indexed) [DOE]

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

438

Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonded Arrays: The Power of Multiple Hydrogen Bonds. Hydrogen Bonded Arrays: The Power of Multiple Hydrogen Bonds. Abstract: Hydrogen bond interactions in small covalent model...

439

Green methods for hydrogen production  

Science Journals Connector (OSTI)

This paper discusses environmentally benign and sustainable, as green, methods for hydrogen production and categorizes them based on the driving sources and applications. Some potential sources are electrical, thermal, biochemical, photonic, electro-thermal, photo-thermal, photo-electric, photo-biochemical, and thermal-biochemical. Such forms of energy can be derived from renewable sources, nuclear energy and from energy recovery processes for hydrogen production purposes. These processes are analyzed and assessed for comparison purposes. Various case studies are presented to highlight the importance of green hydrogen production methods and systems for practical applications.

Ibrahim Dincer

2012-01-01T23:59:59.000Z

440

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2008 Annual Progress Report II. Hydrogen Production This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 319 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development, Frank Lomax, H2Gen Innovations, Inc. (PDF 298 KB) Distributed Hydrogen Production from Biomass Reforming, David King, Pacific Northwest National Laboratory (PDF 372 KB) Analysis of Ethanol Reforming System Configurations, Brian James, Directed Technologies, Inc. (PDF 515 KB)

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, andor CaH2) Composite Systems. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal...

442

Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies  

Science Journals Connector (OSTI)

Hydrogen systems can provide viable, sustainable options for meeting the world's energy requirements. Hydrogen is relevant to all of the energy sectorstransportation, buildings, utilities and industry. It can provide storage options for baseload (geothermal), seasonal (hydroelectric) and intermittent (PV and wind) renewable resources, and when combined with emerging decarbonization technologies, can reduce the climate impacts of continued fossil fuel utilization. However, hydrogen energy systems still face a number of technical and economical barriers that must first be overcome for hydrogen to become a competitive energy carrier. Advances must be made in hydrogen production, storage, transport and utilization technologies and in the integration of these components into complete energy systems. To expedite the advancement of hydrogen technologies and realize a hydrogen future, nations have come together under the auspices of the International Energy Agency's (IEA) Hydrogen Program to collaborate and address the important barriers that impede hydrogen's worldwide acceptance. Through well-structured, collaborative projects, experts from around the world address many of the technical challenges and long-term research needs that face the hydrogen community. These collaborations have already led to significant advances in renewable hydrogen production and solid storage materials and to the development of tools to evaluate and optimize integrated hydrogen energy systems.

Carolyn C. Elam; Catherine E.Gregoire Padr; Gary Sandrock; Andreas Luzzi; Peter Lindblad; Elisabet Fjermestad Hagen

2003-01-01T23:59:59.000Z

443

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

444

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

445

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &  

E-Print Network [OSTI]

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure)DescriptionMilestone #12;Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

446

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

447

HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM  

E-Print Network [OSTI]

to serve as "go-to" organization to catalyze PA Hydrogen and Fuel Cell Economy development #12;FundingHYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA Melissa Klingenberg, PhDMelissa Klingenberg, PhD #12;Hydrogen ProgramHydrogen Program Air Products

448

Hydrogen Selective Exfoliated Zeolite Membranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Selective Exfoliated Zeolite Hydrogen Selective Exfoliated Zeolite Membranes Background An important component of the Department of Energy (DOE) Carbon Sequestration Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic

449

Cost, Energy Use, and Emissions of Tri-Generation Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Michael E. Goldsby † , Timothy J. Sa † , Victor Diakov* *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov † Sandia National Laboratories DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: December 1, 2010 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models - Incorporate tri-generation systems into the MSM and * develop a methodology for MSM users to analyze

450

Mass-Production Cost Estimation for Automotive Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Kevin Baum, Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski, Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0005236 Project Start Date: September 30, 2011 Project End Date: September 30, 2016 Fiscal Year (FY) 2012 Objectives Update 2011 automotive fuel cell cost model to include * latest performance data and system design information. Examine costs of fuel cell systems (FCSs) for light-duty * vehicle and bus applications.

451

Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Macro-System Model: A Macro-System Model: A Federated Object Model for Cross-Cutting Analysis of Hydrogen Production, Delivery, Consumption and Associated Emissions Preprint M. Ruth and V. Diakov National Renewable Energy Laboratory M.E. Goldsby and T.J. Sa Sandia National Laboratories Presented at 4 th Transatlantic Infraday Conference Washington, D.C. November 5, 2010 Conference Paper NREL/CP-6A10-49544 December 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

452

Genetic Diversity of Hydrogen-Producing Bacteria in an Acidophilic Ethanol-H2-Coproducing System, Analyzed Using the [Fe]-Hydrogenase Gene  

Science Journals Connector (OSTI)

...Hydrogen Energy 32: 172-184...Hussy. 2002. Sustainable fermentative...production: challenges for process...Hydrogen Energy 27: 1339-1347...Handelsman. 2004. Integration of microbial...biomass can be a sustainable energy source. The...

Defeng Xing; Nanqi Ren; Bruce E. Rittmann

2007-12-21T23:59:59.000Z

453

Hydrogen-storing hydride complexes  

DOE Patents [OSTI]

A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

Srinivasan, Sesha S. (Tampa, FL); Niemann, Michael U. (Venice, FL); Goswami, D. Yogi (Tampa, FL); Stefanakos, Elias K. (Tampa, FL)

2012-04-10T23:59:59.000Z

454

Hydrogen Isotope Fractionation in the System Brucite-Water at 3 GPa Dept of Geological Science,University of Michigan; * now at Dept of Geology & Geophysics,University of Minnesota.Email:anthony.c.withers-1@umn.edu  

E-Print Network [OSTI]

Hydrogen Isotope Fractionation in the System Brucite-Water at 3 GPa Dept of Geological Science apparatus, we have made measurements in the chemically simple brucite-water system, which has beenCl pressure medium Experiments quenched at >200 °C/s Starting material:fine grained brucite (D = -100

Chikamoto, Megumi

455

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Printable Version 2004 Annual Progress Report II. Hydrogen Production and Delivery Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Production and Delivery Sub-Program Review, Pete Devlin, DOE (PDF 220 KB) A. Distributed Production Technologies Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas), Christopher Chen, Air Products (PDF 316 KB) Integrated Ceramic Membrane System for Hydrogen Production, Joseph Schwartz, Praxair (PDF 421 KB) Low Cost Hydrogen Production Platform, Tim Aaron, Praxair (PDF 500 KB) Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Energy (PDF 511 KB)

456

The Transition to Hydrogen  

E-Print Network [OSTI]

above, not all hydrogen production methods are equal inrealize hydrogens bene- ?ts fully, production methods thathydrogen vary depending on which primary source produces it and which production method

Ogden, Joan M

2005-01-01T23:59:59.000Z

457

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

458

Hydrogen storage methods  

Science Journals Connector (OSTI)

Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of todays ...

Andreas Zttel

2004-04-01T23:59:59.000Z

459

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

460

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

for the hydrogen refueling station. Compressor cost: inputcost) Compressor power requirement: input data 288.80 Initial temperature of hydrogen (Compressor cost per unit of output ($/hp/million standard ft [SCF] of hydrogen/

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Basic Research for the Hydrogen Fuel Initiative  

Broader source: Energy.gov (indexed) [DOE]

Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Institution Project Title Category A: Novel Hydrogen Storage Materials Massachusetts Institute of Technology Theory and Modeling of Materials for Hydrogen Storage Washington University In Situ NMR Studies of Hydrogen Storage Systems University of Pennsylvania Chemical Hydrogen Storage in Ionic Liquid Media Colorado School of Mines Molecular Hydrogen Storage in Novel Binary Clathrate Hydrates at Near-Ambient Temperatures and Pressures Georgia Institute of Technology First-Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides Louisiana Tech University Understanding the Local Atomic-Level Effect of Dopants In Complex Metal Hydrides Using Synchrotron X-ray Absorption

462

Towards a hydrogen economy in Portugal  

Science Journals Connector (OSTI)

The dramatic societal, infrastructural and institutional changes associated with the transition to a hydrogen economy and the actions that must be taken to capitalize on the transition have been analyzed by a number of studies in many countries ranging from rhetorical visions to full technology roadmaps. As yet no such study has been undertaken in Portugal. This paper ascertains that Portugal needs to fully understand the potential that it has to develop a hydrogen economy, and to take steps for this technology transition. An analysis is made of the current Portuguese energy system and policies in the light of the key technology transition challenges towards a hydrogen economy. The current status of hydrogen technology development is compared with that of other countries, and potential production to end-use hydrogen chains are examined. Key areas of promise for hydrogen technologies in Portugal are identified. The paper concludes with recommendations for actions to begin the process of transition towards a hydrogen economy.

M. Luke Murray; E. Hugo Seymour; Rui Pimenta

2007-01-01T23:59:59.000Z

463

Analysis of Hydrogen Production from Renewable Electricity Sources: Preprint  

SciTech Connect (OSTI)

To determine the potential for hydrogen production via renewable electricity sources, three aspects of the system are analyzed: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices.

Levene, J. I.; Mann, M. K.; Margolis, R.; Milbrandt, A.

2005-09-01T23:59:59.000Z

464

The OLYMPUS Internal Hydrogen Target  

E-Print Network [OSTI]

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.

Bernauer, J C; Ciullo, G; Henderson, B S; Ihloff, E; Kelsey, J; Lenisa, P; Milner, R; Schmidt, A; Statera, M

2014-01-01T23:59:59.000Z

465

The OLYMPUS Internal Hydrogen Target  

E-Print Network [OSTI]

An internal hydrogen target system was developed for the OLYMPUS experiment at DESY, in Hamburg, Germany. The target consisted of a long, thin-walled, tubular cell within an aluminum scattering chamber. Hydrogen entered at the center of the cell and exited through the ends, where it was removed from the beamline by a multistage pumping system. A cryogenic coldhead cooled the target cell to counteract heating from the beam and increase the density of hydrogen in the target. A fixed collimator protected the cell from synchrotron radiation and the beam halo. A series of wakefield suppressors reduced heating from beam wakefields. The target system was installed within the DORIS storage ring and was successfully operated during the course of the OLYMPUS experiment in 2012. Information on the design, fabrication, and performance of the target system is reported.

J. C. Bernauer; V. Carassiti; G. Ciullo; B. S. Henderson; E. Ihloff; J. Kelsey; P. Lenisa; R. Milner; A. Schmidt; M. Statera

2014-04-02T23:59:59.000Z

466

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

NONE

1995-09-01T23:59:59.000Z

467

Stationary Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Bryan Pivovar Phone: (303) 275-3809 Email: bryan.pivovar@nrel.gov Sub-Contract Number No: AGB-0-40628-01 under Prime Contract No. DE-AC36-08G028308 Project Start Date: July 8, 2010 Project End Date: September 7, 2012 Fiscal Year (FY) 2012 Objectives Perform Design for Manufacturing and Assembly * (DFMA ® ) cost analysis for low-temperature (LT)

468

Steady-state nonequilibrium temperature gradients in hydrogen gasmetal systems: challenging the second law of thermodynamics  

Science Journals Connector (OSTI)

Differences in gas reaction rates between disparate surfaces have been proposed as a means to achieve steady-state pressure and temperature gradients within a single blackbody cavity, thereby challenging the second law of thermodynamics (Sheehan 1998 Phys. Rev. E 57 6660; Sheehan 2001 Phys. Lett. A 280 185; Capek and Sheehan 2005 Challenges to the Second Law of Thermodynamics (Theory and Experiment) (Fundamental Theories of Physics Series vol 146) (Dordrecht: Springer)). This paper reports on laboratory tests of this hypothesis; specifically, molecular hydrogen is found to dissociate preferentially on rhenium surfaces versus tungsten at identical elevated temperatures and reduced pressures (T?2100K; ). Steady-state nonequilibrium H/H2 ratios over the surfaces suggest that temperature gradients could be maintained under blackbody cavity conditions. Preliminary results from bimetallic blackbody cavity experiments are discussed.

D P Sheehan; J T Garamella; D J Mallin; W F Sheehan

2012-01-01T23:59:59.000Z

469

Solar hydrogen for urban trucks  

SciTech Connect (OSTI)

The Clean Air Now (CAN) Solar Hydrogen Project, located at Xerox Corp., El Segundo, California, includes solar photovoltaic powered hydrogen generation, compression, storage and end use. Three modified Ford Ranger trucks use the hydrogen fuel. The stand-alone electrolyzer and hydrogen dispensing system are solely powered by a photovoltaic array. A variable frequency DC-AC converter steps up the voltage to drive the 15 horsepower compressor motor. On site storage is available for up to 14,000 standard cubic feet (SCF) of solar hydrogen, and up to 80,000 SCF of commercial hydrogen. The project is 3 miles from Los Angeles International airport. The engine conversions are bored to 2.9 liter displacement and are supercharged. Performance is similar to that of the Ranger gasoline powered truck. Fuel is stored in carbon composite tanks (just behind the driver`s cab) at pressures up to 3600 psi. Truck range is 144 miles, given 3600 psi of hydrogen. The engine operates in lean burn mode, with nil CO and HC emissions. NO{sub x} emissions vary with load and rpm in the range from 10 to 100 ppm, yielding total emissions at a small fraction of the ULEV standard. Two trucks have been converted for the Xerox fleet, and one for the City of West Hollywood. A public outreach program, done in conjunction with the local public schools and the Department of Energy, introduces the local public to the advantages of hydrogen fuel technologies. The Clean Air Now program demonstrates that hydrogen powered fleet development is an appropriate, safe, and effective strategy for improvement of urban air quality, energy security and avoidance of global warming impact. Continued technology development and cost reduction promises to make such implementation market competitive.

Provenzano, J.: Scott, P.B.; Zweig, R. [Clean Air Now, Northridge, CA (United States)

1997-12-31T23:59:59.000Z

470

Hydrogen Permeation Barrier Coatings  

SciTech Connect (OSTI)

Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

Henager, Charles H.

2008-01-01T23:59:59.000Z

471

Technology: Hydrogen and hydrates  

Science Journals Connector (OSTI)

... . 22492258 (2004). US Department of Energy Hydrogen Posture Plan http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/hydrogen_posture_plan.pdf Kuhs, W. F. , Genov, ...

Ferdi Schth

2005-04-06T23:59:59.000Z

472

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

473

Hydrogen Turbines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines Hydrogen Turbines The Turbines of Tomorrow Combustion (gas) turbines are key components of advanced systems designed for new electric power plants in the United States. With gas turbines, power plants will supply clean, increasingly fuel-efficient, and relatively low-cost energy. Typically, a natural gas-fired combustion turbine-generator operating in a "simple cycle" converts between 25 and 35 percent of the natural gas heating value to useable electricity. Today, most new smaller power plants also install a recuperator to capture waste heat from the turbine's exhaust to preheat combustion air and boost efficiencies. In most of the new larger plants, a "heat recovery steam generator" is installed to recover waste

474

CAN HYDROGEN WIN?: EXPLORING SCENARIOS FOR HYDROGEN  

E-Print Network [OSTI]

such as biofuel plug-in hybrids, but did well when biofuels were removed or priced excessively. Hydrogen fuel cells failed unless costs were assumed to descend independent of demand. However, hydrogen vehicles were; Hydrogen as fuel -- Economic aspects; Technological innovations -- Environmental aspects; Climatic changes

475

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I-1  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-9 3. Integrated Ceramic Membrane System for Hydrogen Production, Praxair, Inc. . . . . . . . . . . . II-14 4. Low Cost Hydrogen Production Platform, Praxair Inc

476

Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

to fuel in order for chemical hydrogen storage systems to be acceptable hydrogen storage media. Currently, ammonia borane is (or is contained within) the most promising chemical...

477

Hydrogen | Open Energy Information  

Open Energy Info (EERE)

<-- Back to Hydrogen Gateway <-- Back to Hydrogen Gateway Technical Reference for Hydrogen Compatibility of Materials KIA FCEV SUNRISE MG 7955 6 7.jpg Guidance on materials selection for hydrogen service is needed to support the deployment of hydrogen as a fuel as well as the development of codes and standards for stationary hydrogen use, hydrogen vehicles, refueling stations, and hydrogen transportation. Materials property measurement is needed on deformation, fracture and fatigue of metals in environments relevant to this hydrogen economy infrastructure. The identification of hydrogen-affected material properties such as strength, fracture resistance and fatigue resistance are high priorities to ensure the safe design of load-bearing structures. To support the needs of the hydrogen community, Sandia National

478

METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW  

SciTech Connect (OSTI)

Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

Bowman Jr, Robert C [ORNL] [ORNL; Yartys, Dr. Volodymyr A. [Institute for Energy Technology (IFE)] [Institute for Energy Technology (IFE); Lototskyy, Dr. Michael V [University of the Western Cape, South Africa] [University of the Western Cape, South Africa; Pollet, Dr. B.G. [University of the Western Cape, South Africa

2014-01-01T23:59:59.000Z

479

Improving Reliability and Durability of Efficient and Clean Energy Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 10 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Prabhakar Singh Center for Clean Energy Engineering University of Connecticut (UConn) 44 Weaver Road, Unit 5233 Storrs, CT 06268-5233 Phone: (860) 486-8379 Email: singh@engr.uconn.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (720) 356-1805 Email: benjamin@anl.gov Contract Number: DE-EE00003226 Project Start Date: August 1, 2010 Project End Date: July 31, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Develop an understanding of the degradation processes * in advanced electrochemical energy conversion systems.

480

Progress on first-principles-based materials design for hydrogen storage  

Science Journals Connector (OSTI)

...reversible condensation of hydrogen into a limited volume...development of a stored hydrogen carrier that can power vehicles through fuel cells (or, perhaps...competitive vehicle, hydrogen storage systems need...of zero-emission cars, larger-scale...

Noejung Park; Keunsu Choi; Jeongwoon Hwang; Dong Wook Kim; Dong Ok Kim; Jisoon Ihm

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.