Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

2

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Ovonic Battery Company Inc Jump to: navigation, search Name Ovonic Battery Company Inc Place...

3

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

B. , and Ovshinsky, S.R. , A Hydrogen ICE Vehicle Powered byM. , and Stetson, N. , Solid Hydrogen Storage Systems forpaper from Texaco Ovonic Hydrogen Systems, Rochester Hills,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

4

Progress in the development of Ovonic nickel-metal hydride batteries  

SciTech Connect

Proprietary, multicomponent hydrogen storage alloys using the principles of atomic engineering form the heart of Ovonic Nickel-Metal Hydride (Ni/MH) battery technology. This battery system, in development for 10 years, has been licensed to several manufacturers both for consumer cells and electric vehicle batteries. These cells have achieved a specific energy of over 80 Wh/kg, a peak power in excess of 200 W/kg, and over 1000 cycles at 100% depth of discharge. They also have an intrinsic ability to withstand overcharge and overdischarge abuse. Ovonic Ni/MH batteries are environmentally friendly and can be recycled. Performance data will be presented showing the successful scale-up of this technology for electric vehicle applications.

Venkatesan, S.; Corrigan, D.A.; Gifford, P.R.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R. (Ovonic Battery Co., Troy, MI (United States))

1993-05-01T23:59:59.000Z

5

Pages that link to "Ovonic Battery Company Inc" | Open Energy...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Pages that link to "Ovonic Battery Company Inc" Ovonic Battery Company Inc Jump to: navigation, search What links...

6

Changes related to "Ovonic Battery Company Inc" | Open Energy...  

Open Energy Info (EERE)

page Share this page on Facebook icon Twitter icon Changes related to "Ovonic Battery Company Inc" Ovonic Battery Company Inc Jump to: navigation, search This is a...

7

Energy Conversion Devices Inc aka ECD Ovonics | Open Energy Information  

Open Energy Info (EERE)

Conversion Devices Inc aka ECD Ovonics Conversion Devices Inc aka ECD Ovonics Jump to: navigation, search Name Energy Conversion Devices Inc (aka ECD Ovonics) Place Rochester Hills, Michigan Zip 48309 Sector Solar Product Michigan-based materials developer and holding company for thin-film silicon PV manufacturer United Solar Ovonics. References Energy Conversion Devices Inc (aka ECD Ovonics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy Conversion Devices Inc (aka ECD Ovonics) is a company located in Rochester Hills, Michigan . References ↑ "Energy Conversion Devices Inc (aka ECD Ovonics)" Retrieved from "http://en.openei.org/w/index.php?title=Energy_Conversion_Devices_Inc_aka_ECD_Ovonics&oldid=34484

8

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

in a hydrogen-fueled Prius by Texaco Ovonic (References 10-rates permitting the Prius to be tested on the Federal Urbanof the hydrogen-fueled Prius was about 150 miles. Higher

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

9

Purdue Hydrogen Systems Laboratory  

DOE Green Energy (OSTI)

The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

2011-12-28T23:59:59.000Z

10

Hydrogen Fueling Systems and Infrastructure  

E-Print Network (OSTI)

Hydrogen Fueling Systems and Infrastructure Storage & Delivery Production Conversion & Application emissions: renewable based feedstock · Flexibility #12;Targets and Status Hydrogen Delivery 858280%Energyk1.2M1.4M$/mileTrunk lines Hydrogen Gas Pipelines 877065%Energy efficiency 0.531.011.11$/kg H2Cost

11

Air Products Hydrogen Energy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Products Hydrogen Energy Systems Air Products Hydrogen Energy Systems Hydrogen Infrastructure Air Products Hydrogen Energy Systems More Documents & Publications Quadrennial...

12

DOE Hydrogen Analysis Repository: Hydrogen Deployment System...  

NLE Websites -- All DOE Office Websites (Extended Search)

routine to determine the layout of a least-cost infrastructure. Keywords: Hydrogen production; electrolysis; costs; fuel cells Purpose Initially, electrolytic H2 production...

13

DOE Hydrogen Analysis Repository: Distributed Hydrogen Fueling Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Hydrogen Fueling Systems Analysis Distributed Hydrogen Fueling Systems Analysis Project Summary Full Title: H2 Production Infrastructure Analysis - Task 1: Distributed Hydrogen Fueling Systems Analysis Project ID: 78 Principal Investigator: Brian James Keywords: Hydrogen infrastructure; costs; methanol; hydrogen fueling Purpose As the DOE considers both direct hydrogen and reformer-based fuel cell vehicles, it is vital to have a clear perspective of the relative infrastructure costs to supply each prospective fuel (gasoline, methanol, or hydrogen). Consequently, this analysis compares these infrastructure costs as well as the cost to remove sulfur from gasoline (as will most likely be required for use in fuel cell systems) and the cost implications for several hydrogen tank filling options. This analysis supports Analysis

14

DOE Hydrogen Analysis Repository: PV-Hydrogen System Simulator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach: The photovoltaic hydrogen system has a photovoltaic array with an optional maximum power point tracker that supplies electrical energy to the system. This electrical...

15

Biological Systems for Hydrogen Photoproduction (Presentation)  

DOE Green Energy (OSTI)

Presentation on Biological Systems for Hydrogen Photoproduction for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia, May 23-26, 2005.

Ghirardi, M. L.; Kim, K.; King, P.; Maness, P. C.; Seibert, M.

2005-05-01T23:59:59.000Z

16

CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA  

DOE Green Energy (OSTI)

Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia Development Bank, members of USAID, USDOE and many other individuals, all of whom have had praise for the vehicle and the technology. The progress made through this phase I work and the importance of hydrogen three-wheelers has also resulted in extensive press coverage by the news media around the world.

Krishna Sapru

2005-11-15T23:59:59.000Z

17

Standard-C hydrogen monitoring system, system design description  

DOE Green Energy (OSTI)

Standard-C cabinet arrangement system design description for the Standard Hydrogen Monitoring System.

Schneider, T.C., Westinghouse Hanford

1996-08-29T23:59:59.000Z

18

Integrated Hydrogen Storage System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

WSRC-TR-2007-00440, REVISION 0 WSRC-TR-2007-00440, REVISION 0 Keywords: Hydrogen Kinetics, Hydrogen Storage Vessel Metal Hydride Retention: Permanent Integrated Hydrogen Storage System Model Bruce J. Hardy November 16, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96-SR18500 DISCLAIMER This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or usefulness, of any information,

19

Cost Analysis of Hydrogen Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Cost Analysis of Hydrogen Storage Systems Storage Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-5000 Fax 617-498-7200 www.TIAXLLC.com Reference:...

20

Integrated Renewable Hydrogen Utility System  

DOE Green Energy (OSTI)

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Renewable Hydrogen Utility System  

SciTech Connect

Products based on Proton Exchange Membrane (PEM) technology offer a unique solution to today's energy conversion storage needs. PEM products have undergone continual development since the late 1950's for many diverse applications. Rooted in rigorous aerospace applications, this technology is now ''breaking away'' to provide commercial solutions to common power, energy, and industrial gas feedstock problems. Important developments in PEM electrolyzers and various energy conversion devices (e.g. engines and fuel cells) can now be combined to form the basis for a revolutionary energy storage system that provides a much needed link to renewable resources, and offers a credible alternative for off-grid power applications. This technology operates by converting electrical energy into chemical energy in the form of hydrogen as part of a water electrolysis process when excess power is available. When the primary source of power is unavailable, chemical energy is converted into electrical energy through an external combustion heat engine or other energy conversion device. The Phase II portion of this program began in May of 2000. The goal of Phase II of the project was to cost reduce the hydrogen generator as a critical link to having a fully sustainable hydrogen energy system. The overall goal is to enable the link to sustainability by converting excess renewable power into hydrogen and having that hydrogen available for conversion back to power, on demand. Furthermore, the cost of the capability must be less the $1,000 per kW (electrical power into the generator) and allow for a variety of renewable technology inputs. This cost target is based on a production volume of 10,000 units per year. To that end, Proton undertook an aggressive approach to cost reduction activities surrounding the 6kW, 40 standard cubic foot per hour (scfh) HOGEN hydrogen generator. The electrical side of the system targeted a number of areas that included approaches to reduce the cost of the power supply and associated electronics as well as improving efficiency, implementing a circuit board to replace the discreet electrical components in the unit, and evaluating the system issues when operating the unit with a variety of renewable inputs. On the mechanical side of the system the targets involved creative use of manifolds to reduce components and plumbing, overall fitting reduction through layout simplification and welded tube assemblies, and the development of an inexpensive gas drying methodology to remove moisture and improve gas purity. Lastly, activities surrounding the electrolysis cell stack focused on lower cost stack compression approaches and cost reduction of critical components. The last year of this project focused on validating the cost reductions mentioned above and advancing these cost reductions forward into a larger hydrogen generator. This larger hydrogen generator is a 60kW, 380 scfh, HOGEN hydrogen generator. Most of these efforts were in the control board and manifold development areas. The results achieved over the life of this program are in line with the goals of the Department of Energy. Proton projects that the current design of the 40 scfh generator projected to a volume of 10,000 units per year would be in the range of $1,500 per kilowatt. Furthermore, continuing efforts on materials substitution and design enhancements over the next few years should bring the cost of the system to the $1,000 per kilowatt goal for a system of this size. This report provides the technical details behind the cost reduction efforts undertaken during the Phase II portion of the program.

Proton Energy Systems

2003-04-01T23:59:59.000Z

22

Molecular Transport/Microporous Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Microporous Hydrogen Separation Systems Participants Acquaviva, Jim: Armstrong, Tim: Asaro, Marianne: Berchtold, Kathryn: Bischoff, Brian: Cornelius, Chris: Huang,...

23

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

DOE Green Energy (OSTI)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16T23:59:59.000Z

24

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Cost Analysis Hydrogen Storage Systems Cost Analysis Project Summary Full Title: Cost Analysis of Hydrogen Storage Systems Project ID: 207 Principal Investigator: Stephen Lasher Keywords: Hydrogen storage; costs Purpose The purpose of this analysis is to help guide researchers and developers toward promising R&D and commercialization pathways by evaluating the various on-board hydrogen storage technologies on a consistent basis. Performer Principal Investigator: Stephen Lasher Organization: TIAX, LLC Address: 15 Acorn Park Cambridge, MA 02140 Telephone: 617-498-6108 Email: lasher.stephen@tiaxllc.com Additional Performers: Matt Hooks, TIAX, LLC; Mark Marion, TIAX, LLC; Kurtis McKenney, TIAX, LLC; Bob Rancatore, TIAX, LLC; Yong Yang, TIAX, LLC Sponsor(s) Name: Sunita Satyapal

25

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives for Hydrogen Delivery Workshop May 7- 8, 2003 U.S. Department of Energy ■ Hydrogen, Fuel Cells, and Infrastructure Technologies Program Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H 2 Pipeline Standard (in development) Pipeline Transmission of Hydrogen --- 3 Copyright: Future H 2 Infrastructure Wind Powered Electrolytic Separation Local Reformers Users Stationary Power Sources Vehicle Fueling Stations Distance from Source to User (Miles) <500 0-5 <2,000 <50 Off-peak Hydroelectric Powered Electrolytic Separation Large Reformers (scale economies) Pipeline Transmission of Hydrogen

26

DOE Hydrogen Analysis Repository: Hydrogen Systems Analysis, Education, and  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis, Education, and Outreach Systems Analysis, Education, and Outreach Project Summary Full Title: Hydrogen Systems Analysis, Education, and Outreach Project ID: 89 Principal Investigator: Faith Klareich Brief Description: Sentech undertook systems analysis and technical/economic assessments to allow DOE to define the strategic goals of the hydrogen R&D program. Keywords: Technoeconomic analysis; education Purpose Provide data that allow DOE to define the strategic goals of the hydrogen R&D program. Performer Principal Investigator: Faith Klareich Organization: Sentech, Inc. Address: 7475 Wisconsin Avenue, Suite 900 Bethesda , MD 20814 Telephone: 240-223-5500 Period of Performance Start: August 1996 End: September 1997 Project Description Type of Project: Analysis Category: Hydrogen Fuel Pathways

27

Development and Testing of Hydrogen Storage System(s)  

E-Print Network (OSTI)

Development and Testing of Hydrogen Storage System(s) for Capturing Intermittent Renewable Energy ­ Analysis of Test Results for Hydrogen Storage Systems By Hawaii Natural Energy Institute School of Ocean of Kahua Ranch Hydrogen Storage System 3 3.1 Kahua Ranch Power System 3 3.2 Electrolyzer Experimental

28

Method and System for Hydrogen Evolution and Storage  

DOE Patents (OSTI)

A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

Thorn, David L. (Los Alamos, NM); Tumas, William (Los Alamos, NM); Hay, P. Jeffrey (Los Alamos, NM); Schwarz, Daniel E. (Los Alamos, NM); Cameron, Thomas M. (Los Alamos, NM)

2008-10-21T23:59:59.000Z

29

Method and system for hydrogen evolution and storage  

DOE Patents (OSTI)

A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.

Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.

2012-12-11T23:59:59.000Z

30

DOE Hydrogen Analysis Repository: Hydrogen Storage Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Storage Systems Analysis Project Summary Full Title: System Level Analysis of Hydrogen Storage Options Project ID: 202 Principal Investigator: Rajesh K. Ahluwalia Keywords: Hydrogen storage; compressed hydrogen tanks Purpose ANL is developing models to understand the characteristics of storage systems based on approaches with unique characteristics (thermal energy and temperature of charge and discharge, kinetics of the physical and chemical process steps involved) and to evaluate their potential to meet DOE targets for on-board applications. Performer Principal Investigator: Rajesh K. Ahluwalia Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5979 Email: walia@anl.gov Additional Performers: T.Q. Hua, Argonne National Laboratory; Romesh Kumar, Argonne National Laboratory; J-C Peng, Argonne National Laboratory

31

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

challenge. Hydrogen energy storage density has been steadilya Hydrogen Energy Infrastructure: Storage Options and Systema Hydrogen Energy Infrastructure: Storage Options and System

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

32

Method and system for hydrogen evolution and storage - Energy ...  

A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to ...

33

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

as a key challenge. Hydrogen energy storage density has beena Hydrogen Energy Infrastructure: Storage Options and Systema Hydrogen Energy Infrastructure: Storage Options and System

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

34

Analysis of Hybrid Hydrogen Systems: Final Report  

DOE Green Energy (OSTI)

Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

2010-01-01T23:59:59.000Z

35

Designing Microporus Carbons for Hydrogen Storage Systems  

DOE Green Energy (OSTI)

An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

Alan C. Cooper

2012-05-02T23:59:59.000Z

36

Strong Analytic Controllability for Hydrogen Control Systems  

E-Print Network (OSTI)

The realization and representation of so(4,2) associated with the hydrogen atom Hamiltonian are derived. By choosing operators from the realization of so(4,2) as interacting Hamiltonians, a hydrogen atom control system is constructed, and it is proved that this control system is strongly analytically controllable based on a time-dependent strong analytic controllability theorem.

Chunhua Lan; Tzyh-Jong Tarn; Quo-Shin Chi; John W. Clark

2004-09-22T23:59:59.000Z

37

Hydrogen energy systems studies. Final technical report  

SciTech Connect

The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

1996-08-13T23:59:59.000Z

38

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

39

Modeling leaks from liquid hydrogen storage systems.  

DOE Green Energy (OSTI)

This report documents a series of models for describing intended and unintended discharges from liquid hydrogen storage systems. Typically these systems store hydrogen in the saturated state at approximately five to ten atmospheres. Some of models discussed here are equilibrium-based models that make use of the NIST thermodynamic models to specify the states of multiphase hydrogen and air-hydrogen mixtures. Two types of discharges are considered: slow leaks where hydrogen enters the ambient at atmospheric pressure and fast leaks where the hydrogen flow is usually choked and expands into the ambient through an underexpanded jet. In order to avoid the complexities of supersonic flow, a single Mach disk model is proposed for fast leaks that are choked. The velocity and state of hydrogen downstream of the Mach disk leads to a more tractable subsonic boundary condition. However, the hydrogen temperature exiting all leaks (fast or slow, from saturated liquid or saturated vapor) is approximately 20.4 K. At these temperatures, any entrained air would likely condense or even freeze leading to an air-hydrogen mixture that cannot be characterized by the REFPROP subroutines. For this reason a plug flow entrainment model is proposed to treat a short zone of initial entrainment and heating. The model predicts the quantity of entrained air required to bring the air-hydrogen mixture to a temperature of approximately 65 K at one atmosphere. At this temperature the mixture can be treated as a mixture of ideal gases and is much more amenable to modeling with Gaussian entrainment models and CFD codes. A Gaussian entrainment model is formulated to predict the trajectory and properties of a cold hydrogen jet leaking into ambient air. The model shows that similarity between two jets depends on the densimetric Froude number, density ratio and initial hydrogen concentration.

Winters, William Stanley, Jr.

2009-01-01T23:59:59.000Z

40

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013...

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Small Fuel Cell Systems with Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov H 2 and FC Technologies Manufacturing R&D Workshop Renaissance Hotel, Washington, DC August 11-12, 2011 Small Fuel Cell Systems with Hydrogen Storage Ned T....

42

Hydrogen Systems Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal » Coal to Liquids » Hydrogen Clean Coal » Coal to Liquids » Hydrogen Systems Analysis Hydrogen Systems Analysis Energy analyses provide valuable information, input, and guidance into the decision-making process on important issues such as national energy security and environmental policies, research and development programs and plans, technology options, and potential technical, economic, market, and social barriers to technology deployment. The Hydrogen and Clean Coal Fuels Program, working with the NETL Office of Systems, Analyses, and Planning, supports systems, techno-economic, and benefits analysis activities to provide guidance and input for its research and development program portfolio, assess the progress made by Program-funded research, and measure the energy security, economic and

43

Air Products Hydrogen Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kiczek,Edward F. [KICZEKEF@airproducts.com] Kiczek,Edward F. [KICZEKEF@airproducts.com] Sent: Monday, April 18, 2011 7:40 PM To: Gopstein, Avi (S4) Subject: Hydrogen Infrastructure Latest Advancements Attachments: Air Products Written Comments to 2011 2012 AB118 Investment Plan.pdf Follow Up Flag: Follow up Flag Status: Flagged Categories: QTR Transparency Avi, You may recall we met in DC when the McKinsey team from Germany came to discuss the EU study on hydrogen infrastructure. At that time I mention a significant advance in infrastructure that would be announced soon. Attached is our testimony to the California Energy Commission on deploying that technology. We were awarded the project to build 9 stations in southern California with the backing of

44

Systems and methods for facilitating hydrogen storage using ...  

Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies United States Patent

45

System for thermochemical hydrogen production  

DOE Patents (OSTI)

Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

1981-05-22T23:59:59.000Z

46

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

Gas Based Hydrogen Infrastructure Optimizing Transitionseconomies and lower infrastructure costs. REFERENCES 1. NRC,a Hydrogen Energy Infrastructure: Storage Options and System

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

47

Wind-hydrogen energy systems for remote area power supply.  

E-Print Network (OSTI)

??Wind-hydrogen systems for remote area power supply are an early niche application of sustainable hydrogen energy. Optimal direct coupling between a wind turbine and an (more)

Janon, A

2009-01-01T23:59:59.000Z

48

SURVEY OF THE LITERATURE ON THE CARBON-HYDROGEN SYSTEM  

E-Print Network (OSTI)

in the System Graphite- Hydrogen at High Temperatures onReact.ion of Filaments with Hydrogen above 2000 0 K," J".The Adsorption . of Hydrogen on Graphite," J. Chern. Phys.

Krakowski, R.A.

2010-01-01T23:59:59.000Z

49

Hydrogen/halogen energy storage system  

DOE Green Energy (OSTI)

The hydrogen/chlorine energy storage system has been considered at BNL for large scale energy storage. In FY1978 work included an assessment of system safety and cost, investigations of cell performance under conditions elevated pressure and temperature, determination of the transport properties of Nafion membranes and electrochemical engineering studies. Results are summarized.

Spaziante, P M; Sioli, G C; Trotta, R; Perego, A; McBreen, J

1978-01-01T23:59:59.000Z

50

Novel, Ceramic Membrane System For Hydrogen Separation  

Science Conference Proceedings (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

51

Integrated Hydrogen Production, Purification and Compression System  

DOE Green Energy (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

52

The Ammonia?Hydrogen System under Pressure  

Science Conference Proceedings (OSTI)

Binary mixtures of hydrogen and ammonia were compressed in diamond anvil cells to 15 GPa at room temperature over a range of compositions. The phase behavior was characterized using optical microscopy, Raman spectroscopy, and synchrotron X-ray diffraction. Below 1.2 GPa we observed two-phase coexistence between liquid ammonia and fluid hydrogen phases with limited solubility of hydrogen within the ammonia-rich phase. Complete immiscibility was observed subsequent to the freezing of ammonia phase III at 1.2 GPa, although hydrogen may become metastably trapped within the disordered face-centered-cubic lattice upon rapid solidification. For all compositions studied, the phase III to phase IV transition of ammonia occurred at {approx}3.8 GPa and hydrogen solidified at {approx}5.5 GPa, transition pressures equivalent to those observed for the pure components. A P-x phase diagram for the NH{sub 3}-H{sub 2} system is proposed on the basis of these observations with implications for planetary ices, molecular compound formation, and possible hydrogen storage materials.

Chidester, Bethany A.; Strobel, Timothy A. (CIW)

2012-01-20T23:59:59.000Z

53

Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review  

E-Print Network (OSTI)

they have initiated on solid state hydride tanks for hydrogen storage and other energy conversionHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

54

Cryogenic Hydrogen Storage Systems Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Tuesday, February 15, 2011 - Cryogenic Hydrogen Storage Systems Purpose: Identify R&D needs and technical pathways associated with the continued development and validation of cryo-compressed and cryo-sorption hydrogen storage technologies, highlighting those aspects common to both technologies as well as identifying their unique requirements and issues that should be addressed. 8:30 Welcome/Introductions/Workshop objectives/Recap of previous day Ned Stetson, DOE 9:00 OEM Perspective on Cryogenic H 2 Storage (20 min presentation/20 min discussion) Tobias Brunner, BMW 9:40 Performance Comparison and Cost Review (20 min presentation/20 min discussion) Rajesh Ahluwalia, ANL 10:20 Break (10 minutes) 10:30 Expert Panel Discussion (Members will each have 15 minutes for presentations)

55

Biological Systems for Hydrogen Photoproduction (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL biological systems for hydrogen photoproduction work for the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting, May 14-18, 2012. General goal is develop photobiological systems for large-scale, low cost and efficient H{sub 2} production from water (barriers AH, AI and AJ). Specific tasks are: (1) Address the O{sub 2} sensitivity of hydrogenases that prevent continuity of H{sub 2} photoproduction under aerobic, high solar-to-hydrogen (STH) light conversion efficiency conditions; and (2) Utilize a limited STH H{sub 2}-producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H{sub 2} photoproduction, including low rates due to biochemical and engineering mechanisms.

Ghirardi, M. L.

2012-05-01T23:59:59.000Z

56

Hydrogen storage of energy for small power supply systems  

E-Print Network (OSTI)

Power supply systems for cell phone base stations using hydrogen energy storage, fuel cells or hydrogen-burning generators, and a backup generator could offer an improvement over current power supply systems. Two categories ...

Monaghan, Rory F. D. (Rory Francis Desmond)

2005-01-01T23:59:59.000Z

57

Ionic (Proton) Transport Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

58

Compressed Hydrogen and PEM Fuel Cell System  

DOE Green Energy (OSTI)

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

59

Fuzzy Expert System to Estimate Ignition Timing for Hydrogen Car  

Science Conference Proceedings (OSTI)

This paper presents the application of fuzzy expert system technique as a basis to estimate ignition timing for subsequent tuning of a Toyota Corolla 4 cylinder, 1.8l hydrogen powered car. Ignition timing prediction is a typical problem to which decision ... Keywords: Fuzzy expert system, Hydrogen engine tuning, Hydrogen powered car, Ignition advance, Ignition timing

Tien Ho; Vishy Karri

2008-09-01T23:59:59.000Z

60

FCT Systems Analysis: 2010-2025 Scenario Analysis for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure to someone by E-mail Share FCT Systems Analysis: 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Standard-C hydrogen monitoring system. Acceptance test report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on Flammable Gas Watch List waste tank 104-AN. This document is the acceptance test report for the acceptance testing of the SHMS.

Lott, D.T.

1995-05-17T23:59:59.000Z

62

DOE Hydrogen and Fuel Cells Program: Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems...

63

Microchannel Reactor System for Catalytic Hydrogenation  

Science Conference Proceedings (OSTI)

We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

2010-12-22T23:59:59.000Z

64

Autothermal hydrogen storage and delivery systems  

DOE Patents (OSTI)

Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.

Pez, Guido Peter (Allentown, PA); Cooper, Alan Charles (Macungie, PA); Scott, Aaron Raymond (Allentown, PA)

2011-08-23T23:59:59.000Z

65

Hydrogen mitigation Gas Characterization System: System design description  

DOE Green Energy (OSTI)

The Gas Characterization System (GCS) design is described for flammable gas monitoring. Tank 241-SY-101 (SY-101) is known to experience periodic tank level increases and decreases during which hydrogen gas is released. It is believed that the generated gases accumulate in the solids-containing layer near the bottom of the tank. Solids and gases are also present in the crust and may be present in the interstitial liquid layer. The accumulation of gases creates a buoyancy that eventually overcomes the density and bonding strength of the bottom layer. When this happens, the gas from the bottom layer is released upward through the liquid layer to the vapor space above the tank crust. Previous monitoring of the vapor space gases during such an event indicates hydrogen release concentrations greater than the lower flammability limit (LFL) of hydrogen in a partial nitrous oxide atmosphere. Tanks 241-AN-105, 241-AW-101, and 241-SY-103 have been identified as having the potential to behave similar to SY-101. These waste tanks have been placed on the flammable gas watch list (FGWL). All waste tanks on the FGWL will have a standard hydrogen monitoring system (SHMS) installed to measure hydrogen. In the event that hydrogen levels exceed 0.75% by volume, additional characterization will be required. The purpose of this additional vapor space characterization is to determine the actual lower flammability limit of these tanks, accurately measure low baseline gas release concentrations, and to determine potential hazards associated with larger Gas Release Events (GREs). The instruments to be installed in the GCS for vapor monitoring will allow accurate analysis of samples from the tank vapor space. It will be possible to detect a wide range of hydrogen from parts per million to percent by volume, as well as other gas species suspected to be generated in waste tanks.

Schneider, T.C.

1998-07-17T23:59:59.000Z

66

Standard-D hydrogen monitoring system, system design description  

DOE Green Energy (OSTI)

During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

Schneider, T.C.

1996-09-26T23:59:59.000Z

67

Instrumentation & control architecture applied for a hydrogen isotopes storage system  

Science Conference Proceedings (OSTI)

The properties of hydrogen storage used materials refers to their ability to high "connect" hydrogen, to have a large storage capacity, to be easily achievable and, if necessary, to allow its easy recovery. The metals and intermetallic compounds are ... Keywords: architecture, control system, hydrogen, isotopes, storage

Eusebiu Ilarian Ionete; Bogdan Monea

2011-09-01T23:59:59.000Z

68

Borazine-boron nitride hybrid hydrogen storage system  

DOE Patents (OSTI)

A hybrid hydrogen storage composition includes a first phase and a second phase adsorbed on the first phase, the first phase including BN for storing hydrogen by physisorption and the second phase including a borazane-borazine system for storing hydrogen in combined form as a hydride.

Narula, Chaitanya K. (Knoxville, TN); Simonson, J. Michael (Knoxville, TN); Maya, Leon (Knoxville, TN); Paine, Robert T. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

69

Configuration and technology implications of potential nuclear hydrogen system applications.  

DOE Green Energy (OSTI)

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

70

Configuration and technology implications of potential nuclear hydrogen system applications.  

SciTech Connect

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

71

Hydrogen, CNG, and HHCNG Dispenser System - Prototye Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity Hydrogen, CNG, and HCNG Dispenser System - Prototype Report TECHNICAL REPORT Don Karner Scott...

72

NREL: Hydrogen and Fuel Cells Research - Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis modeling activities. To learn more about hydrogen systems analysis, visit Energy Analysis and Tools. Publications The following technical papers, journal articles,...

73

Solar-hydrogen systems for remote area power supply.  

E-Print Network (OSTI)

??Remote area power supply (RAPS) is a potential early market for solar-hydrogen systems because of the comparatively high cost of conventional energy sources such as (more)

Ali, S

2007-01-01T23:59:59.000Z

74

System for the co-production of electricity and hydrogen  

DOE Patents (OSTI)

Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

2007-10-02T23:59:59.000Z

75

Design and evaluation of seasonal storage hydrogen peak electricity supply system  

E-Print Network (OSTI)

The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

Oloyede, Isaiah Olanrewaju

2011-01-01T23:59:59.000Z

76

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Held in Conjunction with the DOE Hydrogen Program Annual Merit Review Crystal Gateway Marriott, Arlington, VA June 11, 2008 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Elvin Yzugullu Sentech, Inc. July 18, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott, Arlington, VA Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related

77

Hydrogen Removal System in VVER-91/99 Project  

SciTech Connect

The hydrogen removal system has been designed to ensure hydrogen safety during DBA and BDBA. The maximal hydrogen concentrations occur in the containment during severe accidents. The system includes a set of passive autocatalytic recombiners (PAR) located in different areas of the containment. The location and capacity of recombiners have been chosen on the basis of calculation analysis. The calculations have been fulfilled with use of Russian computer best-estimated codes. (authors)

Bezlepkin, V.V.; Ivkov, I.M.; Semashko, S.E.; Svetlov, S.V.; Vardanidze, T.G. [Sankt-Petersburg Institute 'Atomenergoproekt' (SPAEP), Suvorovsky 2a, St-Petersburg, 191036 (Russian Federation); Losch, N. [Framatome ANP, Offenbach am Main (Germany)

2004-07-01T23:59:59.000Z

78

NETL: Gasification Systems - Advanced Hydrogen Transport Membranes...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hydrogen Transport Membranes for Coal Gasification Project No.: DE-FE0004908 Membranes shown (from top to bottom): ceramic support, activated and coated with palladium...

79

Biological Systems for Hydrogen Photoproduction (Poster)  

DOE Green Energy (OSTI)

Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

Ghirardi, M.; King, P.; Maness, P. C.; Seibert, M.

2006-05-01T23:59:59.000Z

80

Safety Aspects of the E158 Liquid Hydrogen Target System  

DOE Green Energy (OSTI)

The E158 experiment, currently underway at the Stanford Linear Accelerator Center (SLAC) scatters a high power 45 GeV polarized electron beam off a large liquid hydrogen target. The total volume of liquid hydrogen in the target is 55 liters, which, if detonated, could produce an explosive yield corresponding to more than 10 kg of TNT. This paper describes the requirements, design and performance of the E158 hydrogen target safety system. The methodology of the design and the safety review process is also described. The experience with the E158 target may be valuable for other sizable liquid hydrogen target systems.

Weisend, John G.

2002-07-18T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydrogen Storage Systems Analysis Meeting: Summary Report, March 29, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Analysis Meeting Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC 20024-2168 March 29, 2005 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory June 20, 2005 SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC 20024-2168 Meeting Objectives The objective of this meeting was to familiarize the DOE research community involved in hydrogen storage materials and process development with the systems analysis work being carried out within the DOE program. In particular, Argonne National Laboratory (ANL) has been tasked to develop models of on-board and off-board hydrogen storage systems based on the various materials and technologies being developed at the DOE Centers of Excellence and

82

Hydrogen Storage Systems Analysis Working Group Meeting: Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Analysis Working Group Meeting Hydrogen Storage Systems Analysis Working Group Meeting Argonne DC Offices L'Enfant Plaza, Washington, DC December 4, 2007 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Kristin Deason Sentech, Inc. January 16, 2008 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 4, 2007 Argonne DC Offices, L'Enfant Plaza, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related developments within the DOE program. A major thrust of these meetings is to leverage

83

HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS  

DOE Green Energy (OSTI)

Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

Leishear, R

2010-05-02T23:59:59.000Z

84

Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System  

SciTech Connect

The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

Thompson, J. R.; McConnell, R. D.; Mosleh, M.

2005-08-01T23:59:59.000Z

85

Partitioning of hydrogen in the vanadium-lithium-hydrogen system at elevated temperatures  

DOE Green Energy (OSTI)

Equilibrium concentrations of hydrogen in vanadium-base alloys exposed to flowing lithium at temperatures from 350 to 550/degree/C in a forced-circulation loop were measured by residual gas analysis and the vacuum fusion method. Residual gas analysis and removal of material from the surface allowed a determination of the spatial hydrogen distribution in the alloys. These experimental results were compared with calculated thermodynamic distribution coefficients for hydrogen in the vanadium/lithium system. Small amounts of other solutes in the molten lithium and in the alloys affected the solubility, diffusivity, and resultant distribution of hydrogen. Thermodynamic calculations demonstrated the importance of major alloying elements to the partitioning of hydrogen. 12 refs., 5 figs., 2 tabs.

Hull, A.B.; Chopra, O.K.; Loomis, B.A.; Smith, D.L.

1988-09-01T23:59:59.000Z

86

Standard-B Hydrogen Monitoring System, system design description  

DOE Green Energy (OSTI)

During most of the year, it is assumed that the vapor in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gases to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gases from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. This document describes the design of the Standard-B Hydrogen Monitoring System, (SHMS) and its components as it differs from the original SHMS. The differences are derived from changes made to improve the system performance but not implemented in all the installed enclosures.

Schneider, T.C.

1995-01-16T23:59:59.000Z

87

Dynamic simulation of nuclear hydrogen production systems  

E-Print Network (OSTI)

Nuclear hydrogen production processes have been proposed as a solution to rising CO 2 emissions and low fuel yields in the production of liquid transportation fuels. In these processes, the heat of a nuclear reactor is ...

Ramrez Muoz, Patricio D. (Patricio Dario)

2011-01-01T23:59:59.000Z

88

Hydrogen recovery by novel solvent systems  

DOE Green Energy (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

89

Analyses of Hydrogen Storage Materials and On-Board Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Analyses of Hydrogen Hydrogen Analyses of Hydrogen Storage Materials and On Storage Materials and On - - Board Systems Board Systems TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 Tel. 617- 498-6108 Fax 617-498-7054 www.TIAXLLC.com Reference: D0268 © 2007 TIAX LLC Hydrogen Delivery Analysis Meeting May 8, 2007 Stephen Lasher Kurtis McKenney Yong Yang Bob Rancatore Stefan Unnasch Matt Hooks This presentation does not contain any proprietary or confidential information Overview 1 SL/042007/D0268 ST32_Lasher_H2 Storage_v1.ppt Start date: June 2004 End date: Sept 2009 41% Complete Timeline Barriers addressed B. Cost C. Efficiency K. System Life Cycle Assessments Barriers Total project funding DOE share = $1.5M No cost share FY06 = $275k FY07 = $300k (plan) Budget Argonne and other National

90

Solar hydrogen energy system. Annual report, 1995--1996  

DOE Green Energy (OSTI)

The paper reports progress on three tasks. Task A, System comparison of hydrogen with other alternative fuels in terms of EPACT requirements, investigates the feasibility of several alternative fuels, namely, natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000. The analysis was divided into two parts: analysis of vehicle technologies and analysis of fuel production, storage and distribution. Task B, Photovoltaic hydrogen production, involves this fuel production method for the future. The process uses hybrid solar collectors to generate dc electricity, as well as high temperature steam for input to the electrolyzer. During the first year, solar to hydrogen conversion efficiencies have been considered. The third task, Hydrogen safety studies, covers two topics: a review of codes, standards, regulations, recommendations, certifications, and pamphlets which address safety of gaseous fuels; and an experimental investigation of hydrogen flame impingement.

Veziroglu, T.N.

1996-12-31T23:59:59.000Z

91

Methods and systems for the production of hydrogen  

DOE Patents (OSTI)

Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

Oh, Chang H. (Idaho Falls, ID); Kim, Eung S. (Ammon, ID); Sherman, Steven R. (Augusta, GA)

2012-03-13T23:59:59.000Z

92

PRESSURE DROP EVALUATION OF THE HYDROGEN CIRCULATION SYSTEM FOR JSNS  

SciTech Connect

In J-PARC, an intense spallation neutron source (JSNS) driven by a proton beam of 1 MW has selected supercritical hydrogen with a temperature of around 20 K and the pressure of 1.5 MPa as a moderator material. A hydrogen-circulation system, which consists of two pumps, an ortho-para hydrogen converter, a heater, an accumulator and a helium-hydrogen heat exchanger, has been designed to provide supercritical hydrogen to the moderators and remove the nuclear heating there. A hydrogen-circulation system is cooled through the heat exchanger by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K. It is important for the cooling design of the hydrogen-circulation system to understand the pressure drops through the equipments. In this work, the pressure drop through each component was analyzed by using a CFD code, STAR-CD. The correlation of the pressure drops through the components that can describe the analytical results within 14% differences has been derived. It is confirmed that the pressure drop in the hydrogen circulation system would be estimated to be 37 kPa for the circulation flow rate of 160 g/s by using the correlations derived here, and is sufficiently lower than the allowable pump head of 100 kPa.

Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 (Japan)

2010-04-09T23:59:59.000Z

93

On-Board Hydrogen Gas Production System For Stirling Engines  

DOE Patents (OSTI)

A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

Johansson, Lennart N. (Ann Arbor, MI)

2004-06-29T23:59:59.000Z

94

Standard-D hydrogen monitoring system acceptance test  

DOE Green Energy (OSTI)

This document details the results of the field Acceptance Testing of the Standard-D Hydrogen Monitoring System on the waste tank exhaust stacks in 241-AW and 241-AN tank farm. The monitors will be used to measure hydrogen and ammonia from the exhaust stacks.

Lott, D.T., Westinghouse Hanford

1996-05-24T23:59:59.000Z

95

DOE Hydrogen and Fuel Cells Program: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Reviews Independent Reviews Macro-System Model U.S. Department of Energy Search help Home > Systems Integration Printable Version Systems Integration The technological advancements and lessons learned through research, development, and demonstration of hydrogen and fuel cell technologies must be integrated to work as a fully functional system. This is the focus of systems integration-understanding the complex interactions between components, systems costs, environmental impacts, societal impacts, and system trade-offs. Identifying and analyzing these interactions will enable evaluation of alternative concepts and pathways, and result in well-integrated and optimized hydrogen and fuel cell systems. Led by the Office of Energy Efficiency and Renewable Energy, this activity

96

Integrated Renewable Hydrogen Utility System (IRHUS) business plan  

DOE Green Energy (OSTI)

This business plan is for a proposed legal entity named IRHUS, Inc. which is to be formed as a subsidiary of Energy Partners, L.C. (EP) of West Palm Beach, Florida. EP is a research and development company specializing in hydrogen proton exchange membrane (PEM) fuel cells and systems. A fuel cell is an engine with no moving parts that takes in hydrogen and produces electricity. The purpose of IRHUS, Inc. is to develop and manufacture a self-sufficient energy system based on the fuel cell and other new technology that produces hydrogen and electricity. The product is called the Integrated renewable Hydrogen utility System (IRHUS). IRHUS, Inc. plans to start limited production of the IRHUS in 2002. The IRHUS is a unique product with an innovative concept in that it provides continuous electrical power in places with no electrical infrastructure, i.e., in remote and island locations. The IRHUS is a zero emissions, self-sufficient, hydrogen fuel generation system that produces electricity on a continuous basis by combining any renewable power source with hydrogen technology. Current plans are to produce a 10 kilowatt IRHUS MP (medium power). Future plans are to design and manufacture IRHUS models to provide power for a variety of power ranges for identified attractive market segments. The technological components of the IRHUS include an electrolyzer, hydrogen and oxygen storage subsystems, fuel cell system, and power control system. The IRHUS product is to be integrated with a variety of renewable energy technologies. 5 figs., 10 tabs.

NONE

1999-03-01T23:59:59.000Z

97

A Cassette Based System for Hydrogen Storage and Delivery  

DOE Green Energy (OSTI)

A hydrogen storage system is described and evaluated. This is based upon a cassette, that is a container for managing hydrogen storage materials. The container is designed to be safe, modular, adaptable to different chemistries, inexpensive, and transportable. A second module receives the cassette and provides the necessary infrastructure to deliver hydrogen from the cassette according to enduser requirements. The modular concept has a number of advantages over approaches that are all in one stand alone systems. The advantages of a cassette based system are discussed, along with results from model and laboratory testing.

Britton Wayne E.

2006-11-29T23:59:59.000Z

98

EVermont Renewable Hydrogen Production and Transportation Fueling System  

DOE Green Energy (OSTI)

A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

Garabedian, Harold T.

2008-03-30T23:59:59.000Z

99

Management of Leaks in Hydrogen Production, Delivery, and Storage Systems  

DOE Green Energy (OSTI)

A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

Rawls, G

2006-04-27T23:59:59.000Z

100

Systems Integration and the Department of Energy's Hydrogen Program: Preprint  

DOE Green Energy (OSTI)

This paper discusses how the Systems Integration Office assists the Department of Energy's Hydrogen Program by using an integrated baseline approach to identify, define, and analyze requirements and tasks to achieve program goals.

Duffy, M. A.

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Composite systems in magnetic field: from hadrons to hydrogen atom  

E-Print Network (OSTI)

We briefly review the recent studies of the behavior of composite systems in magnetic field. The hydrogen atom is chosen to demonstrate the new results which may be experimentally tested. Possible applications to physics of antihydrogen are mentioned.

B. O. Kerbikov

2013-12-11T23:59:59.000Z

102

On-board hydrogen storage system using metal hydride  

DOE Green Energy (OSTI)

A hydrogen powered hybrid electric bus has been developed for demonstration in normal city bus service in the City of Augusta, Georgia, USA. The development team, called H2Fuel Bus Team, consists of representatives from government, industry and research institutions. The bus uses hydrogen to fuel an internal combustion engine which drives an electric generator. The generator charges a set of batteries which runs the electric bus. The hydrogen fuel and the hybrid concept combine to achieve the goal of near-zero emission and high fuel efficiency. The hydrogen fuel is stored in a solid form using an on-board metal hydride storage system. The system was designed for a hydrogen capacity of 25 kg. It uses the engine coolant for heat to generate a discharge pressure higher than 6 atm. The operation conditions are temperature from ambient to 70 degrees C, hydrogen discharge rate to 6 kg/hr, and refueling time 1.5 hours. Preliminary tests showed that the performance of the on-board storage system exceeded the design requirements. Long term tests have been planned to begin in 2 months. This paper discusses the design and performance of the on-board hydrogen storage system.

Heung, L.K.

1997-07-01T23:59:59.000Z

103

Hydrogen Isotope Separation System for the Tokamak Experimental Power Reactor  

SciTech Connect

An isotopic separation system for processing the fuel in the Tokamak Experimental Power Reactor is described. Two cryogenic distillation columns are used in sequence to recover 80% of the hydrogen from a fuel mixture originally containing equal parts of deuterium and tritium with a 1% hydrogen impurity. The hydrogen thus removed contains less than 1/2% tritium, which may be recovered in a separate system designed for that purpose. It is assumed that separation of the deuterium and the tritium is not required. A total tritium inventory of approximately 38,000 Ci (3.8 g) is projected.

Wilkes, W. R.

1976-03-01T23:59:59.000Z

104

Cold weather hydrogen generation system and method of operation  

DOE Patents (OSTI)

A system for providing hydrogen gas is provided. The system includes a hydrogen generator that produces gas from water. One or more heat generation devices are arranged to provide heating of the enclosure during different modes of operation to prevent freezing of components. A plurality of temperature sensors are arranged and coupled to a controller to selectively activate a heat source if the temperature of the component is less than a predetermined temperature.

Dreier, Ken Wayne (Madison, CT); Kowalski, Michael Thomas (Seymour, CT); Porter, Stephen Charles (Burlington, CT); Chow, Oscar Ken (Simsbury, CT); Borland, Nicholas Paul (Montpelier, VT); Goyette, Stephen Arthur (New Hartford, CT)

2010-12-14T23:59:59.000Z

105

New Phases of Hydrogen-Bonded Systems at Extreme Conditions  

DOE Green Energy (OSTI)

We study the behavior of hydrogen-bonded systems under high-pressure and temperature. First principle calculations of formic acid under isotropic pressure up to 70 GPa reveal the existence of a polymerization phase at around 20 GPa, in support of recent IR, Raman, and XRD experiments. In this phase, covalent bonding develops between molecules of the same chain through symmetrization of hydrogen bonds. We also performed molecular dynamics simulations of water at pressures up to 115 GPa and 2000 K. Along this isotherm, we are able to define three different phases. We observe a molecular fluid phase with superionic diffusion of the hydrogens for pressure 34 GPa to 58 GPa. We report a transformation to a phase dominated by transient networks of symmetric O-H hydrogen bonds at 95-115 GPa. As in formic acid, the network can be attributed to the symmetrization of the hydrogen bond, similar to the ice VII to ice X transition.

Manaa, M R; Goldman, N; Fried, L E

2006-10-23T23:59:59.000Z

106

DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webinars on Energy Systems Advances, Hydrogen Safety Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More DOE Announces Webinars on Energy Systems Advances, Hydrogen Safety Events Databases, and More September 9, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars September 10: Live Webinar on the Hydrogen Safety Events Database Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webcast titled "What We Can Learn

107

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

SciTech Connect

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

108

CATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE  

DOE Green Energy (OSTI)

Previous U.S. DOE sponsored research at the University of Hawaii resulted in the development of methods of doping of sodium aluminum hydride, NaAlH4 with titanium, zirconium and other catalysts such that: dehydriding occurs at temperatures as low as 100C; rehydriding requires less than 1 h; and >4 weight percent hydrogen can be repeatedly cycled through dehydriding/rehydriding. These materials appeared to be on the threshold of practical viability as hydrogen carriers for onboard fuel cells. However, it was apparent that further kinetic enhancement was required to achieve commercial viability. Thus, one of the primary goals of this project was to develop the requisite improved catalysts. Over the course of this project, a variety of titanium and zirconium dopant precursors were investigated. Moreover, the approach was to conduct guided search for improved catalysts by obtaining a fundamental understanding of the chemical nature of the titanium dopants and their mechanism of action. Therefore, the projected also aimed to determined the chemical nature of the titanium species that are formed upon mechanical milling of NaAlH4 with the dopant precursors through synchrotron X-ray and neutron diffraction as well as transmission electron microscopy, scanning electron microscopy, and electron paramagnetic resonance (EPR) spectroscopy. In addition to kinetic studies, insight into the mechanism of action of the dopants was gained through studies of the destabilization of hydrogen in NaAlH4 by the dopants through infrared, NMR, and anelastic spectroscopy.

Craig M. Jensen

2007-04-23T23:59:59.000Z

109

Ventilation rates calculated from hydrogen release data in tanks equipped with standard hydrogen monitoring systems (SHMS)  

DOE Green Energy (OSTI)

This report describes a method for estimating the ventilation rates of the high-level radioactive waste tank headspaces at the Hanford Site in Southeastern Washington state. The method, using hydrogen concentration data, is applied to all passively ventilated and selected mechanically ventilated tanks equipped with Standard Hydrogen Monitoring Systems (SHMS) and covers the time period from when the SHMS were installed through July 12, 1998. Results of the analyses are tabulated and compared with results from tracer gas studies and similar analyses of SHMS data. The method relies on instances of above-normal hydrogen releases and assumes the rate at which hydrogen is released by the waste is otherwise approximately constant. It also assumes that hydrogen is uniformly distributed in the tank headspace, so that at any given time the concentration of hydrogen in the effluent is approximately equal to the average headspace concentration and that measured by the SHMS. In general, the greatest single source of error in the method is the determination of the baseline hydrogen concentration, which in this study has been estimated by visual inspection of plotted data. Uncertainties in the calculated ventilation rates due to inaccurate baseline measurements are examined by performing a sensitivity analysis with upper and lower bounding values for the baseline concentration (in addition to the best estimate). A table lists the tanks considered in this report and the range of estimated ventilation rates obtained for each tank. When multiple events of above-normal hydrogen releases were observed, the range of estimated ventilation rates is given. Resulting values and their variability are consistent with those determined using tracer gases.

Sklarew, D.S.; Huckaby, J.L.

1998-09-01T23:59:59.000Z

110

DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM  

DOE Green Energy (OSTI)

Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

2008-11-25T23:59:59.000Z

111

The benchmark of gutzwiller density functional theory in hydrogen systems  

SciTech Connect

We propose an approximate form of the exchange-correlation energy functional for the Gutzwiller density functional theory. It satisfies certain physical constraints in both weak and strong electron correlation limits. We benchmark the Gutzwiller density functional approximation in the hydrogen systems, where the static correlation error is shown to be negligible. The good transferability is demonstrated by applications to the hydrogen molecule and some crystal structures.

Yao, Y.; Wang, Cai-Zhuang; Ho, Kai-Ming

2012-02-23T23:59:59.000Z

112

Hydrogen  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Hydrogen production ...

113

Hydrogen Deployment System Modeling Environment (HyDS ME) Documentation: Milestone Report FY 2006  

DOE Green Energy (OSTI)

This report introduces the Hydrogen Deployment System Modeling Environment model, assumptions, and basic operations.

Parks. K.

2006-11-01T23:59:59.000Z

114

Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint  

DOE Green Energy (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

2012-06-01T23:59:59.000Z

115

Transition to a nuclear/hydrogen energy system.  

DOE Green Energy (OSTI)

The paper explores the motivation for the transition to a nuclear/hydrogen system. For such a transition to be successful the technologies employed must be able to generate enough hydrogen to displace a significant fraction of the petroleum fuels used in the transportation and process heat sectors. This hydrogen must be generated in a manner that is compatible with the environment and independent of foreign fuels. Nuclear energy, along with contributions from wind, solar, and geothermal resources meet the criteria of environmental compatibility and resource independence. However, nuclear energy is the only one of these sources that has a high enough energy density to generate copious quantities of hydrogen. The status of the relevant nuclear and hydrogen technologies are discussed and how they are coupled to bring about a transition to a nuclear/hydrogen system. Should the world adopt such a system then the growth rate of nuclear energy would greatly accelerate. With an accelerated growth for nuclear energy the uranium resources would be depleted in a few decades with the once through fuel cycle currently in use. It is pointed out that deployment of fast breeder reactors would become important in the nearer term.

Walters, L.; Wade, D.; Lewis, D.

2002-08-13T23:59:59.000Z

116

Solar/hydrogen systems for the 1985 to 2000 time frame. Volume I. Solar/hydrogen systems assessment. Final report  

DOE Green Energy (OSTI)

The findings of a study of opportunities for commercialization of systems capable of producing hydrogen from solar energy are presented in two volumes. A compendium of monographs by specialists in the fields of solar energy conversion technologies, hydrogen production technologies and related technology descriptions from the general literature comprise Volume II. This data base was used to support an evaluation and selection process that identified four candidate solar/hydrogen systems best suited to commercialization within the next two decades. Volume I first reviews the background of the work and the methods used. Then an evaluation of the hydrogen product costs that might be achieved by the four selected candidate systems (photovoltaic/water electrolysis, thermal-heat engine/water electrolysis, wind energy/water electrolysis, small hydrogen/water electrolysis) is compared with the pricing structure and practices of the commodity gas market. Subsequently, product cost and market price match is noted to exist in the small user sector of the hydrogen marketplace. Barriers to and historical time lags in, commercialization of new technologies are then reviewed. Finally, recommendations for development and demonstration programs designed to accelerate the commercialization of the candidate systems are presented.

Foster, R. W.; Tison, R. R.; Escher, W. J.D.; Hanson, J. A.

1980-06-01T23:59:59.000Z

117

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...  

NLE Websites -- All DOE Office Websites (Extended Search)

diesel via hydrogenation Coalbiomass co-feeding for FT diesel production Various corn ethanol plant types with different process fuels * Hydrogen-powered FC systems (not...

118

Analyses of Compressed Hydrogen On-Board Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Compressed Hydrogen On-Board Storage Systems © 2010 TIAX LLC Compressed and Cryo-Compressed Hydrogen Storage Workshop February 14, 2011 Jeff Rosenfeld Karen Law Jayanti Sinha TIAX LLC 35 Hartwell Ave Lexington, MA 02421-3102 Tel. 781-879-1708 Fax 781-879-1201 www.TIAXLLC.com Reference: D0268 Overview Project Objectives Project Objectives Description Overall Help guide DOE and developers toward promising R&D and commercialization pathways by evaluating the status of the various on-board hydrogen storage technologies on a consistent basis On-Board Storage System Assessment Evaluate or develop system-level designs for the on-board storage system to project bottom-up factory costs Off-Board Fuel Cycle Assessment Evaluate or develop designs and cost inputs for the fuel cycle to

119

Hydrogen storage-bed design for tritium systems test assembly  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory has completed the design of a hydrogen storage bed for the Tritium Systems Test Assembly (TSTA). Our objective is to store hydrogen isotopes as uranium hydrides and recover them by dehydriding. The specific use of the storage bed is to store DT gas as U(D,T)/sub 3/ when it is required for the TSTA. The hydrogen storage bed consists of a primary container in which uranium powder is stored and a secondary container for a second level of safety in gas confinement. The primary container, inlet and outlet gas lines, cartridge heaters, and instrumentation are assembled in the secondary container. The design of the hydrogen storage bed is presented, along with the modeling and analysis of the bed behavior during hydriding-dehydriding cycles.

Cullingford, H.S.; Wheeler, M.G.; McMullen, J.W.

1981-01-01T23:59:59.000Z

120

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling  

E-Print Network (OSTI)

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling Xuping Li and Joan: Xuping Li (Xupli@ucdavis.edu), Joan Ogden (jmogden@ucdavis.edu) INTRODUCTION TRI-GENERATION SYSTEM AND NEIGHBORHOOD REFUELING DESCRIPTION METHODS AND DATA CONCLUSIONS An engineering/economic model for H2 tri-generation

California at Davis, University of

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Standard-E hydrogen monitoring system shop acceptance test procedure  

DOE Green Energy (OSTI)

The purpose of this report is to document that the Standard-E Hydrogen Monitoring Systems (SHMS-E), fabricated by Mid-Columbia Engineering (MCE) for installation on the Waste Tank Farms in the Hanford 200 Areas, are constructed as intended by the design. The ATP performance will verify proper system fabrication.

Schneider, T.C.

1997-10-02T23:59:59.000Z

122

Nuclear-Renewables Energy System for Hydrogen and Electricity Production  

Science Conference Proceedings (OSTI)

Technical Paper / Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Nuclear Hydrogen Production

Geoffrey Haratyk; Charles W. Forsberg

123

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Working Group Meeting Held in Conjunction with the DOE Hydrogen REPORT Hydrogen Storage Systems Analysis Working Group Meeting June 11, 2008 Crystal Gateway Marriott of the Hydrogen Storage Systems Analysis Working Group (SSAWG). The objective of these meetings is to bring

124

Standard-C hydrogen monitoring system acceptance test procedure  

DOE Green Energy (OSTI)

The primary function of the standard-C hydrogen monitoring system (SHMS) is to monitor specifically for hydrogen in the waste tank atmosphere which may also contain (but not be limited to) unknown quantities of air, nitrous oxide, ammonia, water vapor, carbon dioxide, carbon monoxide, and other gaseous constituents. The SHMS will consist of hydrogen specific monitors, a grab sampler to collect samples for laboratory analysis, a gas chromatograph, and the gas sample collection system necessary to support the operation of the instrumentation. This system will be located in a cabinet placed at the tank of interest. The purpose of this document is to demonstrate that the SHMS is constructed as intended by design.

Schneider, T.C.

1994-09-02T23:59:59.000Z

125

APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report  

DOE Green Energy (OSTI)

The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the plant capacity factor has been increasing, with a recent one-month high of 49%. If a plant capacity factor of 70% can be achieved with the present equipment, the cost of electricity would drop to $2.39 per kg of hydrogen. In this report, the power conversion (76.7%), cell stack (53.1%), and reverse osmosis system (7.14%) efficiencies are also calculated, as is the water cost per kg of hydrogen produced ($0.10 per kg). The monitoring system has identified several areas having the potential to lower costs, including using an reverse osmosis system with a higher efficiency, improving the electrolysis power conversion efficiency, and using air cooling to replace some or all chiller cooling. These activities are managed by the Idaho National Laboratory for the AVTA, which is part of DOEs FreedomCAR and Vehicle Technologies Program.

James Francfort; Dimitri Hochard

2005-07-01T23:59:59.000Z

126

APS ALternative Fuel (Hydrogen) Pilot Plant Monitoring System  

NLE Websites -- All DOE Office Websites (Extended Search)

502 502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard James Francfort July 2005 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-05-00502 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity APS Alternative Fuel (Hydrogen) Pilot Plant Monitoring System Dimitri Hochard a James Francfort b July 2005 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Assistant Secretary for Energy Efficiency and Renewable Energy Under DOE Idaho Operations Office

127

Standard hydrogen monitoring system-B operation and maintenance manual  

DOE Green Energy (OSTI)

The purpose of this document is to provide information for the operation and maintenance of the Standards Hydrogen Monitoring System-B (SHMS-B) used in the 200E and 200W area tank farms on the Hanford site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. The primary function of the SHMS-B is to monitor specifically for hydrogen in the waste tank vapor space which may also contain unknown quantities of other gaseous constituents.

Bender, R.M.

1995-01-25T23:59:59.000Z

128

Transportation and Climate Change: The Potential for Hydrogen Systems  

DOE Green Energy (OSTI)

New technologies are being developed to serve the growing energy needs of the transportation sector without the environmental impacts observed with conventional technologies. In a world where emissions of carbon are severely constrained, hydrogen-powered vehicles (using fuel cells, internal combustion engines, or other) may be the best alternative for meeting societal needs. Programs to develop these technologies have emerged as high priorities for the automotive and energy industries, as well as governments worldwide. There are a number of challenges that must be faced, however, before we can effectively transition the current fossil fuel based system to a future hydrogen (H2) based system for the mobility industry. Full conversion of the existing transportation system will require concurrent availability of appropriate fuel sources and related infrastructure at acceptable costs and with a clear understanding of their environmental implications. This paper provides a framework for evaluating the challenges and potential pathways for the transition from our current petroleum-based energy sources for transportation systems to a future hydrogen-based system. A preliminary evaluation of the implications of moving to a hydrogen-based transportation system was conducted using the Pacific Northwest National Laboratorys (PNNL) integrated assessment model that evaluates the economic and environmental implications of various technology options. Future research activities will focus on alternative development pathways that consider infrastructure requirements and impacts as well as sequential, complementary and competitive technology development interactions.

Geffen, Charlette A.; Edmonds, James A.; Kim, Son H.

2004-03-31T23:59:59.000Z

129

Durability study of a vehicle-scale hydrogen storage system.  

DOE Green Energy (OSTI)

Sandia National Laboratories has developed a vehicle-scale demonstration hydrogen storage system as part of a Work for Others project funded by General Motors. This Demonstration System was developed based on the properties and characteristics of sodium alanates which are complex metal hydrides. The technology resulting from this program was developed to enable heat and mass management during refueling and hydrogen delivery to an automotive system. During this program the Demonstration System was subjected to repeated hydriding and dehydriding cycles to enable comparison of the vehicle-scale system performance to small-scale sample data. This paper describes the experimental results of life-cycle studies of the Demonstration System. Two of the four hydrogen storage modules of the Demonstration System were used for this study. A well-controlled and repeatable sorption cycle was defined for the repeated cycling, which began after the system had already been cycled forty-one times. After the first nine repeated cycles, a significant hydrogen storage capacity loss was observed. It was suspected that the sodium alanates had been affected either morphologically or by contamination. The mechanisms leading to this initial degradation were investigated and results indicated that water and/or air contamination of the hydrogen supply may have lead to oxidation of the hydride and possibly kinetic deactivation. Subsequent cycles showed continued capacity loss indicating that the mechanism of degradation was gradual and transport or kinetically limited. A materials analysis was then conducted using established methods including treatment with carbon dioxide to react with sodium oxides that may have formed. The module tubes were sectioned to examine chemical composition and morphology as a function of axial position. The results will be discussed.

Johnson, Terry Alan; Dedrick, Daniel E.; Behrens, Richard, Jr.

2010-11-01T23:59:59.000Z

130

Low-Cost Hydrogen Distributed Production System Development  

DOE Green Energy (OSTI)

H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

2011-03-10T23:59:59.000Z

131

Integrated System Dramatically Improves Hydrogen Molar Yield...  

NLE Websites -- All DOE Office Websites (Extended Search)

(first reported in February 2009). The system uses dark fermentation of lignocellulosic corn stover followed by a microbial electrolysis cell (MEC) reaction. NREL's fermentation...

132

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

Natural Gas Based Hydrogen Infrastructure Optimizingof the 2005 National Hydrogen Association Meeting,the lowest-cost Hydrogen delivery mode , Manuscript

Ogden, Joan M; Yang, Christopher

2005-01-01T23:59:59.000Z

133

Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)  

E-Print Network (OSTI)

of a Fossil Fuel-Based Hydrogen Infrastructure with Carbonfor the Environment Hydrogen Pathways Program University ofPresented at the National Hydrogen Association (NHA) Annual

Ni, Jason; Johnson, Nils; Ogden, Joan M; Yang, Christopher; Johnson, Joshua

2005-01-01T23:59:59.000Z

134

Research and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems - Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development and Development Strategies for Compressed & Cryo-Hydrogen Storage Systems Workshop Summary Report Prepared by: Fuel Cell Technologies Program Compressed & Cryo-Hydrogen Storage Systems Workshops February 14-15, 2011 Crystal City, Virginia Compressed and Cryo-Hydrogen Storage Systems Workshop Summary Report 2 Research and Development Strategies for Compressed & Cryo- Hydrogen Storage Systems Summary: On February 14-15, 2011, the Systems Integration group of the National Renewable Energy Laboratory, in conjunction with the Hydrogen Storage team of the EERE Fuel Cell Technologies Program, hosted two days of workshops on compressed and cryo- hydrogen storage systems in Crystal City, VA. The overarching objective was to

135

Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems  

DOE Green Energy (OSTI)

This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

2009-07-31T23:59:59.000Z

136

Thin-film fiber optic hydrogen and temperature sensor system  

DOE Patents (OSTI)

The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

Nave, S.E.

1998-07-21T23:59:59.000Z

137

Electric utility applications of hydrogen energy storage systems  

DOE Green Energy (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

138

Standard-B hydrogen monitoring system acceptance test report  

DOE Green Energy (OSTI)

Test Engineering was supported by Tank Waste Remediation System Safety Programs Engineering Support in the performance of an Acceptance Test Procedure (ATP) to qualify the Standard Hydrogen Monitoring System (SHMS) cabinet installed on waste tank 241-SY-103. The June 7, 1994 ATP performance was controlled by West Waste Tank Farms work package 2W-94-322. The ATP was conducted following the final installation of a second Whittaker electro-chemical hydrogen monitoring cell. The cabinet had been sited on the waste tank two years earlier, but never connected to the exhaust vent header to monitor Tank 241-SY-103 vent header exhaust gases. The cabinet was then modified, to remove two undesirable solid state hydrogen monitors and install a second Whittaker electro-chemical hydrogen monitoring sensor and signal conditioning. The ATP was used to assure that the cabinet wiring and components were properly installed and labeled and that the two years without operation had not seriously damaged the installed equipment. Electrical and pneumatic tests were performed to assure system integrity.

Tran, T.T.

1994-09-08T23:59:59.000Z

139

Standard Hydrogen Monitoring System-C operation and maintenance manual  

DOE Green Energy (OSTI)

The primary function of the SHMS-C is to monitor specifically for hydrogen in the waste tank vapor space which may also contain (but not be limited to) unknown quantities of air, nitrous oxide (N{sub 2}O), ammonia (NH{sub 3}), water vapor, carbon dioxide (CO{sub 2}), carbon monoxide (CO) and other gaseous constituents. An electronically controlled grab sampler has replaced the manually operated sample system that was used in the original SHMS enclosure. Samples can now be operator or automatically initiated. Automatic initiation occurs based on the high hydrogen alarm level. Once a sample is obtained it is removed from the sampler and transported to a laboratory for analysis. This system is used to identify other gaseous constituents which are not measured by the hydrogen monitor. The design does not include any remote data acquisition or remote data logging equipment but provides a 4--20 mA dc process signals, and discrete alarm contacts, that can be utilized for remote data logging and alarming when desired. The SHMS-C arrangement consists of design modifications (piping, valves, filters, supports) to the SHMS-B arrangement necessary for the installation of a dual column gas chromatograph and associated sample and calibration gas lines. The gas chromatograph will provide real time, analytical quality, specific hydrogen measurements in low and medium range concentrations. The system is designed to sample process gases that are classified by NEC code as Class 1, Division 1, Group B.

Schneider, T.C.

1997-05-01T23:59:59.000Z

140

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Engineering Task Plan for Standard Hydrogen Monitoring System Operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B&K). The GC and B&K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, helium, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples may be obtained from the SHMS as well and analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases. This document describes the requirements for the operation, maintenance, calibration, and data collection for the Standard Hydrogen Monitoring System. Additionally, this document defines who is responsible for the various tasks.

MCCAIN, D.J.

1999-11-11T23:59:59.000Z

142

DOE Hydrogen Program Record 10004, Fuel Cell System Cost - 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record Program Record Record #: 10004 Date: September 16, 2010 Title: Fuel Cell System Cost - 2010 Update to: Record 9012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: December 16, 2010 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2010 technology and operating on direct hydrogen is projected to be $51/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2010, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2009 cost analyses of 80-kW net direct hydrogen PEM automotive fuel cell systems based on 2010 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. Both cost estimates are based on performance at beginning of life.

143

Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen  

SciTech Connect

An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MW gas turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MW of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.

Burns, R.K.; Staiger, P.J.; Donovan, R.M.

1982-07-01T23:59:59.000Z

144

Hydrogen Storage Systems Anlaysis Working Group Meeting, December 12, 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory DC Offices 955 L'Enfant Plaza, North, SW, Suite 6000 Washington, DC December 12, 2006 SUMMARY REPORT Compiled by Romesh Kumar Argonne National Laboratory and Laura Verduzco Sentech, Inc. February 28, 2007 SUMMARY REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza, North, SW, Suite 6000, Washington, DC Meeting Objectives This meeting was one of a continuing series of biannual meetings of this Working Group. The objective of these meetings is to bring together the DOE research community involved in systems analysis of hydrogen storage materials and processes for information exchange and to update the researchers on related developments within the DOE program. A major thrust of

145

Mathematical Modelling of a Metal Hydride Hydrogen Storage System Brendan David MacDonald  

E-Print Network (OSTI)

Member Abstract In order for metal hydride hydrogen storage systems to compete with existing energyMathematical Modelling of a Metal Hydride Hydrogen Storage System by Brendan David MacDonald B Hydrogen Storage System by Brendan David MacDonald B.A.Sc., University of Waterloo, 2004 Supervisory

Victoria, University of

146

Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles  

E-Print Network (OSTI)

is to be determined. e Onboard efficiency is the energy efficiency for delivering hydrogen from the storage systemTechnical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles a Storage to the powerplant divided by the total mass/volume of the complete storage system, including all stored hydrogen

147

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Working Group Meeting Argonne National Laboratory DC Offices 955 REPORT Hydrogen Storage Systems Analysis Working Group Meeting December 12, 2006 955 L'Enfant Plaza research community involved in systems analysis of hydrogen storage materials and processes for information

148

Hydrogen peroxide-based propulsion and power systems.  

DOE Green Energy (OSTI)

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

2004-04-01T23:59:59.000Z

149

Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)  

DOE Green Energy (OSTI)

Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

Mitlitsky, F; Myers, B; Weisberg, A H

1999-06-01T23:59:59.000Z

150

Hybrid vehicle system studies and optimized hydrogen engine design  

DOE Green Energy (OSTI)

We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

Smith, J.R.; Aceves, S.

1995-04-26T23:59:59.000Z

151

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000  

E-Print Network (OSTI)

Hydrogen Storage Systems Analysis Meeting 955 L'Enfant Plaza North, SW, Suite 6000 Washington, DC, 2005 #12;SUMMARY REPORT Hydrogen Storage Systems Analysis Meeting March 29, 2005 955 L'Enfant Plaza was to familiarize the DOE research community involved in hydrogen storage materials and process development

152

Hydrogen Refueling System Based on Autothermal Cyclic Reforming Ravi V. Kumar, George N. Kastanas, Shawn Barge,  

E-Print Network (OSTI)

for the production of hydrogen or syngas from many fuels, including natural gas, diesel fuel, coal, and renewable hydrogen generating and dispensing system is shown in Figure 2. The hydrogen-rich syngas generated the water. The syngas is purified in a Pressure Swing Adsorption (PSA) system. The PSA delivers high purity

153

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Re

154

Engineering task plan for standard hydrogen monitoring system operation  

DOE Green Energy (OSTI)

Tanks that are known or suspected to retain and occasionally release flammable gases are equipped with Standard Hydrogen Monitoring System (SHMS) cabinets. These cabinets contain Whittaker{trademark} electrochemical cells and may also have a gas chromatograph (GC) and/or a Bruel and Kjaer infrared photo-acoustic multi-gas monitor (B and K). The GC and B and K will be referred to collectively as ''analytical instruments'' in this document. Using these instruments, a tank can be monitored for hydrogen, ammonia, methane, and nitrous oxide. Air from the tank vent header (for actively ventilated tanks) or dome space (for passively ventilated tanks) is drawn continuously through the monitoring instruments via a sample pump. This monitoring is performed to track the gas release behavior of selected waste storage tanks and to help identify any potentially serious gas release behavior. Vapor grab samples are obtained from the SHMS as well and are analyzed with a mass spectrometer to obtain concentration data about hydrogen and other gases.

MCCAIN, D.J.

1999-06-02T23:59:59.000Z

155

Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design  

E-Print Network (OSTI)

hydrogen as for a future transportation fuel. Several recentattention as a future transportation fuel. Fuel cell

Ogden, J; Yang, Christopher

2005-01-01T23:59:59.000Z

156

Standard Hydrogen Monitoring System-D operation and maintenance manual  

DOE Green Energy (OSTI)

The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System-D (SHMS-D) used in the 200E and 200W area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course No. 351405, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted.

Schneider, T.C.

1997-05-01T23:59:59.000Z

157

Standard hydrogen monitoring system - E operation and maintenance manual  

DOE Green Energy (OSTI)

The purpose of this document is to provide information for the operation and maintenance of the Standard Hydrogen Monitoring System- E (SHMS-E) used in the 200E and 20OW area tank farms on the Hanford Site. This provides information specific to the mechanical operation of the system and is not intended to take the place of a Plant Operating Procedure. However, it does provide more information on the system than a Plant Operating Procedure. The intent here is that the system is started up by a technician or engineer who has completed tank farms training course for SHMS, and then the only actions performed by Operations will be routine log taking. If any problems not addressed by the operating procedure are encountered with the unit, engineering should be contacted.

Schneider, T.C.

1997-06-01T23:59:59.000Z

158

Case Studies of integrated hydrogen systems. International Energy Agency Hydrogen Implementing Agreement, Final report for Subtask A of task 11 - Integrated Systems  

DOE Green Energy (OSTI)

Within the framework of the International Energy Agency Hydrogen Implementing Agreement, Task 11 was undertaken to develop tools to assist in the design and evaluation of existing and potential hydrogen demonstration projects. Emphasis was placed on integrated systems, from input energy to hydrogen end use. Included in the PDF document are the Executive Summary of the final report and the various case studies. The activities of task 11 were focused on near- and mid-term applications, with consideration for the transition from fossil-based systems to sustainable hydrogen energy systems. The participating countries were Canada, Italy, Japan, the Netherlands, Spain, Switzerland and the United States. In order for hydrogen to become a competitive energy carrier, experience and operating data need to be generated and collected through demonstration projects. A framework of scientific principles, technical expertise, and analytical evaluation and assessment needed to be developed to aid in the design and optimization of hydrogen demonstration projects to promote implementation. The task participants undertook research within the framework of three highly coordinated subtasks that focused on the collection and critical evaluation of data from existing demonstration projects around the world, the development and testing of computer models of hydrogen components and integrated systems, and the evaluation and comparison of hydrogen systems. While the Executive Summary reflects work on all three subtasks, this collection of chapters refers only to the work performed under Subtask A. Ten projects were analyzed and evaluated in detail as part of Subtask A, Case Studies. The projects and the project partners were: Solar Hydrogen Demonstration Project, Solar-Wasserstoff-Bayern, Bayernwerk, BMW, Linde, Siemens (Germany); Solar Hydrogen Plant on Residential House, M. Friedli (Switzerland); A.T. Stuart Renewable Energy Test Site; Stuart Energy Systems (Canada); PHOEBUS Juelich Demonstration Plant Research Centre, Juelich (FZJ) (Germany); Schatz Solar Hydrogen Project, Schatz Energy Research Centre, Humboldt State University (USA); INTA Solar Hydrogen Facility, INTA (Spain); Solar Hydrogen Fueled Trucks, Clean Air Now, Xerox (USA), Electrolyser (Canada); SAPHYS: Stand-Alone Small Size Photovoltaic Hydrogen Energy System, ENEA (Italy), IET (Norway), FZJ (Germany); Hydrogen Generation from Stand-Alone Wind-Powered Electrolysis Systems, RAL (United Kingdom), ENEA (Italy), DLR (Germany); Palm Desert Renewable Hydrogen Transportation Project; Schatz Energy Research Centre, City of Palm Desert (USA). Other demonstration projects are summarized in chapter 11.

Schucan, T. [Paul Scherrer Inst., Villigen PSI (Switzerland)

1999-12-31T23:59:59.000Z

159

DOE Hydrogen Analysis Repository: Macro-System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Macro-System Model Macro-System Model Project Summary Full Title: Macro-System Model (MSM) Project ID: 66 Principal Investigator: Mark Ruth Brief Description: Federated object model framework is used to link other models to perform rapid cross-cutting analysis. Keywords: Transition; well-to-wheels (WTW); renewable; hydrogen production; emissions; cost Purpose Perform rapid cross-cutting analysis by utilizing and linking other models. This work will also improve consistency between models. Analyses that require the MSM will be used to support decisions regarding programmatic investments and focus of funding and to estimate program outputs and outcomes. Performer Principal Investigator: Mark Ruth Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

160

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles ?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.  

DOE Green Energy (OSTI)

The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

Ahluwalia, R.; Doss, E.D.; Kumar, R.

1998-10-19T23:59:59.000Z

162

Assessment of environmental and safety problems in hydrogen energy systems  

DOE Green Energy (OSTI)

Numerous suggestions have been made for the use of hydrogen as a portable or transportable fuel. To effect safely an expanded use of hydrogen requires fundamental knowledge of the appropriate safety problems as well as mechanisms to ensure the proper design of equipment and techniques used in its storage, shipment, and use. Most likely methods of shipment consist of an extension of existing technology; namely, gas transmission by pipeline and bulk transportation of hydrogen as a cryogenic liquid. While these are well developed, safety and technological problems still exist and include such issues as dispersion of hydrogen releases, behavior of hydrogen on combustion, and hydrogen embrittlement. Safe transportation and handling of hydrogen can be enhanced by uniformity of codes and regulations. Hydrogen use as a fuel is not totally benign from an environmental standpoint; however, the combination of production and end use is generally more acceptable for hydrogen than for alternative fuels.

Edeskuty, F.J.; Bartlit, J.R.; Carlson, R.V.

1979-01-01T23:59:59.000Z

163

Hydrogen Macro System Model User Guide, Version 1.2.1  

DOE Green Energy (OSTI)

The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

Ruth, M.; Diakov, V.; Sa, T.; Goldsby, M.; Genung, K.; Hoseley, R.; Smith, A.; Yuzugullu, E.

2009-07-01T23:59:59.000Z

164

Hydrogen atom as a quantum-classical hybrid system  

E-Print Network (OSTI)

Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

Fei Zhan; Biao Wu

2013-02-07T23:59:59.000Z

165

Research and development of hydrogen direct-injection internal combustion engine system  

Science Conference Proceedings (OSTI)

The research and development of hydrogen-internal combustion engine (ICE) system for heavy-duty trucks, with the goal of allowing carbon dioxide (CO2)-free operation in transportation department, has been carried out. The high-pressure hydrogen ... Keywords: NOx emission reduction, NOx storage reduction catalyst, carbon dioxide-free, direct injection, heavy-duty truck, high-pressure hydrogen injector, hydrogen, internal combustion engine

Yoshio Sato; Atsuhiro Kawamura; Tadanori Yanai; Kaname Naganuma; Kimitaka Yamane; Yasuo Takagi

2009-02-01T23:59:59.000Z

166

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Printable Version 2010 Annual Progress Report VII. Systems Analysis This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Systems Analysis Sub-Program Overview, Fred Joseck, DOE Scenario Evaluation, Regionalization and Analysis (SERA) Model, Brian Bush, National Renewable Energy Laboratory Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure, David Reichmuth, Sandia National Laboratories Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power, Matthew Mahalik, Argonne National

167

Conceptual design of nuclear systems for hydrogen production  

E-Print Network (OSTI)

Demand for hydrogen in the transportation energy sector is expected to keep growing in the coming decades; in the short term for refining heavy oils and in the long term for powering fuel cells. However, hydrogen cannot ...

Hohnholt, Katherine J

2006-01-01T23:59:59.000Z

168

Materials in Clean Power Systems VI: Clean Coal-, Hydrogen Based ...  

Science Conference Proceedings (OSTI)

clean coal technologies, carbon sequestration, membrane-based gas separations, biofuel production, hydrogen production from various sources, etc. With an...

169

TransForum v5n1 - New Hydrogen Supply System  

NLE Websites -- All DOE Office Websites (Extended Search)

United States and the world will now have access to an advanced hydrogen delivery and metering system recently installed at the Advanced Powertrain Research Facility (APRF) located...

170

ACCEPTABILITY ENVELOPE FOR METAL HYDRIDE-BASED HYDROGEN STORAGE SYSTEMS  

DOE Green Energy (OSTI)

The design and evaluation of media based hydrogen storage systems requires the use of detailed numerical models and experimental studies, with significant amount of time and monetary investment. Thus a scoping tool, referred to as the Acceptability Envelope, was developed to screen preliminary candidate media and storage vessel designs, identifying the range of chemical, physical and geometrical parameters for the coupled media and storage vessel system that allow it to meet performance targets. The model which underpins the analysis allows simplifying the storage system, thus resulting in one input-one output scheme, by grouping of selected quantities. Two cases have been analyzed and results are presented here. In the first application the DOE technical targets (Year 2010, Year 2015 and Ultimate) are used to determine the range of parameters required for the metal hydride media and storage vessel. In the second case the most promising metal hydrides available are compared, highlighting the potential of storage systems, utilizing them, to achieve 40% of the 2010 DOE technical target. Results show that systems based on Li-Mg media have the best potential to attain these performance targets.

Hardy, B.; Corgnale, C.; Tamburello, D.; Garrison, S.; Anton, D.

2011-07-18T23:59:59.000Z

171

Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

Mahadevan, Kathyayani

2011-10-04T23:59:59.000Z

172

TWRS hydrogen mitigation portable standard hydrogen monitoring system platform design and fabrication engineering task plan  

DOE Green Energy (OSTI)

The primary function of portable gas monitoring is to quickly determine tank vapor space gas composition and gas release rate, and to detect gas release events. Characterization of the gas composition is needed for safety analysis. The lower flammability limit, as well as the peak burn temperature and pressure, are dependent upon the gas composition. If there is little or no knowledge about the gas composition, safety analysis utilize compositions that yield the worst case in a deflagration or detonation. This conservative approach to unknowns necessitates a significant increase in administrative and engineering costs. Knowledge of the true composition could lead to reductions in the assumptions and therefore contribute to a reduction in controls and work restrictions. Also, knowledge of the actual composition will be required information for the analysis that is needed to remove tanks from the Watch List. Similarly, the rate of generation and release of gases is required information for performing safety analysis, developing controls, designing equipment, and closing safety issues. To determine release rate, both the gas concentrations and the dome space ventilation rates (exhauster flow rate or passive dome/atmosphere exchange rate) are needed. Therefore, to quickly verify waste tank categorization or to provide additional characterization for tanks with installed gas monitoring, a temporary, portable standard hydrogen monitoring system is needed that can be used to measure gas compositions at both high and low sensitivities.

Philipp, B.L.

1997-03-01T23:59:59.000Z

173

HYDRIDES AND METAL-HYDROGEN SYSTEMS. Final Report  

DOE Green Energy (OSTI)

The work reported deals with the preparation and physical properties, especially thermal dissociation pressures, and densities of hydrides, hydrogen- metal systems, and mixtures of hydrides with other substances. Possible applicatlons as moderators, high-temperature neutron shields, and low-temperature shields are cited and design problems discussed. Most of the data on dissociation pressures cover ranges and compounds not hltherto explored because of experimental difficulties and the basic knowledge of the thermal behavior of hydrides was substantially increased. New hydrldes were prepared and several reported in the literature were shown not to exist. The following compounds, mixtures, and systems were studled: Tl-H, U-H, Ll-H, Na-H, Ca-H, Ba-H, Th-H, Sr- H; NaH-NaF, NaH-NaOH, NaH-CaH/, LlH-LiF, CaH/sub 2/-CaF/sub 2/, CaH/sub 2/-CaC/ sub 2/,CaH/sub 2/-Ca/sub 3/N/sub 2/; FeH/sub 3/ (alleged), NiH/sub 2/ (alleged), Ti(BH/sub 4/)/sub 3/, Th(BH/sub 4/)/sub 4/, WH/sub 4/ (attempted), W(BH/sub 4/)/ sub 4/ (attempted), /sub 4/NBH/sub 4/, (CH , and ydrides are ing an N/sub H/ comparable to water yet stable at red heat, compounds giving a neutron shield weight less than half that of water, and compounds suitable for use as hightemperature moderators containing large amounts of hydrogen. (auth)

Gibb, T.R.P. Jr.

1951-04-30T23:59:59.000Z

174

Hydrogen by Wire - Home Fueling System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Luke T. Dalton Proton Energy Systems 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2128 Email: ldalton@protonenergy.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001149 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Develop enabling technologies for 350-bar hydrogen * home fueling Design key electrolysis cell stack and system components * Fabricate, inspect and assemble prototype components * Demonstrate prototype 350-bar hydrogen generation * Demonstrate prototype 350-bar home fueling technologies * Technical Barriers This project addresses the following technical barriers

175

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

176

Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals  

NLE Websites -- All DOE Office Websites (Extended Search)

90246.00 90246.00 Advanced Hydrogen Storage: A System's Perspective and Some Thoughts on Fundamentals Presentation for DOE Workshop on Hydrogen Storage August 14-15, 2002 1/16 WPT MR 90246.00 In the development of attractive hydrogen storage options, fundamental materials properties and their impact on system design are both critical. * Compact, light, and efficient hydrogen storage technology is a key enabling technology for fuel cell vehicles and the use of renewable energy in vehicles * Due to system-level limitations current hydrogen storage systems meet some of the requirements but none meet all of the requirements - Current storage materials do not offer clear advantages over compressed or liquid hydrogen storage - Improving storage capacity will require improvement in material performance such

177

Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.  

SciTech Connect

This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA] [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

2013-10-01T23:59:59.000Z

178

Electrolysis-based hydrogen storage systems. Annual report, January 1, 1978-December 31, 1978  

DOE Green Energy (OSTI)

Contract management, technical monitoring and in-house research conducted by Brookhaven National Laboratory for the US Department of Energy, Division of Energy Storage as described. The status of each project within four major areas of investigation is summarize. Activities deal with: (1) Electrolytic Production of Hydrogen; (2) Hydrogen Storage Systems; (3) Hydrogen Storage Materials; and (4) Systems Studies/End-Use Applications. The BNL programmatic responsibilities encompass the direction of 17 contractors and a $3,200,000 budget.

Not Available

1979-04-01T23:59:59.000Z

179

Hydrogen, CNG, and HCNG Dispenser System Prototype Report  

DOE Green Energy (OSTI)

The U.S. Department of Energys Advanced Vehicle Testing Activity is currently testing a prototype gaseous fuel dispenser developed by the Electric Transportation Engineering Corporation (ETEC). The dispenser (Figure 1) delivers three types of fuels: 100% hydrogen, 100% compressed natural gas (CNG), and blends of hydrogen and CNG (HCNG) using two independent single nozzles (Figure 2). The nozzle for the 100% hydrogen dispensing is rated at 5,000 psig and used solely for 100% hydrogen fuel. The second nozzle is rated at 3,600 psig and is used for both CNG and HCNG fuels. This nozzle connects to both a CNG supply line and a hydrogen supply line and blends the hydrogen and CNG to supply HCNG levels of 15, 20, 30, and 50% (by volume).

James Francfort

2005-02-01T23:59:59.000Z

180

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

DOE Green Energy (OSTI)

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

SciTech Connect

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

182

Methods and Systems for the Production of Hydrogen - Energy ...  

INL has developed a novel process for producing hydrogen using a reduced outlet temperature of Very High Temperature Gas Cooled Reactor. This process uses a ...

183

NETL: Gasification Systems - Scale-Up of Hydrogen Transport Membranesn  

NLE Websites -- All DOE Office Websites (Extended Search)

(Oct 2011) Doug Jack, Eltron Research and Development, Inc. presented at the Gasification Technologies Conference, San Francisco, CA Oct 9-12, 2011. CO2 Capture and Hydrogen...

184

A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS  

SciTech Connect

Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

Leishear, R.

2013-03-28T23:59:59.000Z

185

Production of hydrogen in non oxygen-evolving systems: co-produced hydrogen as a bonus in the photodegradation of organic pollutants and hydrogen sulfide  

DOE Green Energy (OSTI)

This report was prepared as part of the documentation of Annex 10 (Photoproduction of Hydrogen) of the IEA Hydrogen Agreement. Subtask A of this Annex concerned photo-electrochemical hydrogen production, with an emphasis on direct water splitting. However, studies of non oxygen-evolving systems were also included in view of their interesting potential for combined hydrogen production and waste degradation. Annex 10 was operative from 1 March 1995 until 1 October 1998. One of the collaborative projects involved scientists from the Universities of Geneva and Bern, and the Federal Institute of Technology in Laussane, Switzerland. A device consisting of a photoelectrochemical cell (PEC) with a WO{sub 3} photoanode connected in series with a so-called Grazel cell (a dye sensitized liquid junction photovoltaic cell) was developed and studied in this project. Part of these studies concerned the combination of hydrogen production with degradation of organic pollutants, as described in Chapter 3 of this report. For completeness, a review of the state of the art of organic waste treatment is included in Chapter 2. Most of the work at the University of Geneva, under the supervision of Prof. J. Augustynski, was focused on the development and testing of efficient WO{sub 3} photoanodes for the photoelectrochemical degradation of organic waste solutions. Two types of WO{sub 3} anodes were developed: non transparent bulk photoanodes and non-particle-based transparent film photoanodes. Both types were tested for degradation and proved to be very efficient in dilute solutions. For instance, a solar-to-chemical energy conversion efficiency of 9% was obtained by operating the device in a 0.01M solution of methanol (as compared to about 4% obtained for direct water splitting with the same device). These organic compounds are oxidized to CO{sub 2} by the photocurrent produced by the photoanode. The advantages of this procedure over conventional electrolytic degradation are that much (an order of magnitude) less energy is required and that sunlight can be used directly. In the case of photoproduction of hydrogen, as compared to water splitting, feeding the anodic compartment of the PEC with an organic pollutant, instead of the usual supporting electrolyte, will bring about a substantial increase of the photocurrent at a given illumination. Thus, the replacement of the photo-oxidation of water by the photodegradation of organic waste will be accompanied by a gain in solar-to-chemical conversion efficiency and hence by a decrease in the cost of the photoproduced hydrogen. Taking into account the benefits and possible revenues obtainable by the waste degradation, this would seem to be a promising approach to the photoproduction of hydrogen. Hydrogen sulfide (H{sub 2}S) is another waste effluent requiring extensive treatment, especially in petroleum refineries. The so-called Claus process is normally used to convert the H{sub 2}S to elemental sulfur. A sulfur recovery process developed at the Florida Solar Energy Center is described briefly in Chapter 4 by Dr. C. Linkous as a typical example of the photoproduction of hydrogen in a non oxygen-evolving system. The encouraging results obtained in these investigations of photoelectrochemical hydrogen production combined with organic waste degradation, have prompted a decision to continue the work under the new IEA Hydrogen Agreement Annex 14, Photoelectrolytic Hydrogen Production.

Sartoretti, C. Jorand; Ulmann, M.; Augustynski, J. (Electrochemistry Laboratory, Department of Chemistry, University of Geneva (CH)); Linkous, C.A. (Florida Solar Energy Center, University of Central Florida (US))

2000-01-01T23:59:59.000Z

186

Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies  

SciTech Connect

Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

Fliermans; , Carl B. (Augusta, GA)

2012-08-07T23:59:59.000Z

187

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System  

E-Print Network (OSTI)

Integration and Dynamics of a Renewable Regenerative Hydrogen Fuel Cell System by Alvin Peter Cell System by Alvin Peter Bergen B.A.Sc., University of Victoria, 1994 M.Sc., University of University, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability

Victoria, University of

188

HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS PART II: DETAILED MODELS  

DOE Green Energy (OSTI)

There is significant interest in hydrogen storage systems that employ a media which either adsorbs, absorbs or reacts with hydrogen in a nearly reversible manner. In any media based storage system the rate of hydrogen uptake and the system capacity is governed by a number of complex, coupled physical processes. To design and evaluate such storage systems, a comprehensive methodology was developed, consisting of a hierarchical sequence of models that range from scoping calculations to numerical models that couple reaction kinetics with heat and mass transfer for both the hydrogen charging and discharging phases. The scoping models were presented in Part I [1] of this two part series of papers. This paper describes a detailed numerical model that integrates the phenomena occurring when hydrogen is charged and discharged. A specific application of the methodology is made to a system using NaAlH{sub 4} as the storage media.

Hardy, B; Donald L. Anton, D

2008-12-22T23:59:59.000Z

189

Michigan's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

9th congressional district: Energy Resources 9th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Michigan. Registered Networking Organizations in Michigan's 9th congressional district Clean Technology & Sustainable Industries Organization Registered Energy Companies in Michigan's 9th congressional district Clean Technology Sustainable Industries Organization Compact Power Inc CPI Energy Conversion Devices Energy Conversion Devices Inc aka ECD Ovonics Friction Control Solutions Inc FriCSo Guardian Industries Guardian Industries Corp Luma Resources LLC Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Pulte Uni-Solar United Solar Systems

190

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

Science Conference Proceedings (OSTI)

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

191

Wind-To-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration  

DOE Green Energy (OSTI)

The Wind2H2 system is fully functional and continues to gather performance data. In this report, specifications of the Wind2H2 equipment (electrolyzers, compressor, hydrogen storage tanks, and the hydrogen fueled generator) are summarized. System operational experience and lessons learned are discussed. Valuable operational experience is shared through running, testing, daily operations, and troubleshooting the Wind2H2 system and equipment errors are being logged to help evaluate the reliability of the system.

Harrison, K. W.; Martin, G. D.; Ramsden, T. G.; Kramer, W. E.; Novachek, F. J.

2009-03-01T23:59:59.000Z

192

HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM  

Science Conference Proceedings (OSTI)

An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not large enough to noticeably affect sales penetration. A tax of $116 per metric ton makes centrally produced hydrogen profitable in the very first year but results in only 64% penetration by year 20 as opposed to the 60% penetration in the benchmark case. Provision of 15 seed stations publicly provided at the beginning of the simulation, in addition to the 15 existing stations in the benchmark case, gives sales penetration rates very close to the benchmark after 20 years, namely, 63% and 59% depending on where they are placed.

Tolley, George S

2010-06-29T23:59:59.000Z

193

Design and Development of New Carbon-Based Sorbent Systems for an Effective Containment of Hydrogen  

DOE Green Energy (OSTI)

This is a summary for work performed under cooperative agreement DE FC36 04GO14006 (Design and Development of New Carbon-based Sorbent Systems for an Effective Containment of Hydrogen). The project was directed to discover new solid and liquid materials that use reversible catalytic hydrogenation as the mechanism for hydrogen capture and storage. After a short period of investigation of solid materials, the inherent advantages of storing and transporting hydrogen using liquid-phase materials focused our attention exclusively on organic liquid hydrogen carriers (liquid carriers). While liquid carriers such as decalin and methylcyclohexane were known in the literature, these carriers suffer from practical disadvantages such as the need for very high temperatures to release hydrogen from the carriers and difficult separation of the carriers from the hydrogen. In this project, we were successful in using the prediction of reaction thermodynamics to discover liquid carriers that operate at temperatures up to 150 C lower than the previously known carriers. The means for modifying the thermodynamics of liquid carriers involved the use of certain molecular structures and incorporation of elements other than carbon into the carrier structure. The temperature decrease due to the more favorable reaction thermodynamics results in less energy input to release hydrogen from the carriers. For the first time, the catalytic reaction required to release hydrogen from the carriers could be conducted with the carrier remaining in the liquid phase. This has the beneficial effect of providing a simple means to separate the hydrogen from the carrier.

Alan C. Cooper

2012-05-03T23:59:59.000Z

194

DOE Hydrogen and Fuel Cells Program: Macro System Model  

NLE Websites -- All DOE Office Websites (Extended Search)

and Energy Use in Transportation (GREET; versions 1 and 2) H2A Production H2A Delivery Scenario Analysis Model (HDSAM) Hydrogen Demand and Resource Analysis (HyDRA) HyPro...

195

Membrane-based systems for carbon capture and hydrogen purification  

DOE Green Energy (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

196

Hydrogen recovery by novel solvent systems. Final report  

DOE Green Energy (OSTI)

The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

Shinnar, R.; Ludmer, Z.; Ullmann, A.

1991-08-01T23:59:59.000Z

197

The atomic hydrogen cloud in the saturnian system W.-L. Tseng a,n  

E-Print Network (OSTI)

The atomic hydrogen cloud in the saturnian system W.-L. Tseng a,n , R.E. Johnson b , W.-H. Ip c, National Central University, Chungli City, Taoyuan County, Taiwan a r t i c l e i n f o Article history of Titan's H torus shaped by solar radiation pressure and of hydrogen atoms flowing out of Saturn

Johnson, Robert E.

198

The Atomic Hydrogen Cloud in the Saturnian System1 W.-L. Tseng1  

E-Print Network (OSTI)

The Atomic Hydrogen Cloud in the Saturnian System1 W.-L. Tseng1 , R. E. Johnson2 and W.-H. Ip3 2 1. Institute of Astronomy, National Central University, Chungli City, Taoyuan County, Taiwan7 8 Abstract9 The Voyager flyby observations revealed that a very broad doughnut shaped distribution of10 the hydrogen atoms

Johnson, Robert E.

199

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

DOE Green Energy (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

200

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Printable Version 2009 Annual Progress Report VII. Systems Analysis This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Systems Analysis Program Element Introduction, Fred Joseck, U.S. Department of Energy (PDF 411 KB) HyDRA: Hydrogen Demand and Resource Analysis Tool (PDF 243 KB), Johanna Levene, National Renewable Energy Laboratory Water Needs and Constraints for Hydrogen Pathways (PDF 99 KB), A.J. Simon, Lawrence Livermore National Laboratory Cost Implications of Hydrogen Quality Requirements (PDF 817 KB), Shabbir Ahmed, Argonne National Laboratory Macro-System Model (PDF 384 KB), Mark Ruth, National Renewable

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

202

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

203

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

204

Electrolysis based hydrogen storage system. Semiannual report, January 1--June 30, 1977  

SciTech Connect

The work described in this report was accomplished during the period January 1 to June 30, 1977 on an ERDA-sponsored program aimed at improving the cost and efficiency of electrolytic hydrogen production and at developing the technique of using metal-hydride hydrogen storage for stationary and transportation applications. The related work of organizations having subcontracts with BNL is included; and the effort on natural-gas supplementation, systems analysis, and project management of the ERDA Hydrogen Program by BNL are summarized. Work in the hydrogen production area includes hardware development and cell materials testing for both acid and alkaline water electrolyzers. Also reported is related work on development of the reversible H/sub 2/-Cl/sub 2/ electrochemical cell which is the key component in an electrical energy storage system proposed for utility use. In the area of Hydrogen Storage Subsystems, the progress is reported on solutions to the hydride expansion problem, design of the Hydrogen Technology Advanced Component Test System, design of two hydrogen reservoirs, improved Fe-Ti-based hydrides, and studies on the recovery of storage capacity following poisoning by impurities in the hydrogen.

Salzano, F.J.

1977-10-01T23:59:59.000Z

205

A Circulating Hydrogen Ultra-High Purification System for the MuCap Experiment  

E-Print Network (OSTI)

The MuCap experiment is a high-precision measurement of the rate for the basic electroweak process of muon capture, mu- + p -> n + nu . The experimental approach is based on an active target consisting of a time projection chamber (TPC) operating with pure hydrogen gas. The hydrogen has to be kept extremely pure and at a stable pressure. A Circulating Hydrogen Ultrahigh Purification System was designed at the Petersburg Nuclear Physics Institute (PNPI) to continuously clean the hydrogen from impurities. The system is based on an adsorption cryopump to stimulate the hydrogen flow and on a cold adsorbent for the hydrogen cleaning. It was installed at the Paul Scherrer Institute (PSI) in 2004 and performed reliably during three experiment runs. During several months long operating periods the system maintained the hydrogen purity in the detector on the level of 20 ppb for moisture, which is the main contaminant, and of better than 7 ppb and 5 ppb for nitrogen and oxygen, respectively. The pressure inside the TPC was stabilized to within 0.024% of 10 bar at a hydrogen flow rate of 3 standard liters per minute.

V. A. Ganzha; P. A. Kravtsov; O. E. Maev; G. N. Schapkin; G. G. Semenchuk; V. Trofimov; A. A. Vasilyev; M. E. Vznuzdaev; S. M. Clayton; P. Kammel; B. Kiburg; M. Hildebrandt; C. Petitjean; T. I. Banks; B. Lauss

2007-05-10T23:59:59.000Z

206

Hydrogen Analysis Group  

DOE Green Energy (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

207

Biological Systems for Hydrogen Photoproduction - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Maria L. Ghirardi (Primary Contact), Paul W. King, Kathleen Ratcliff and David Mulder National Renewable Energy Laboratory (NREL) 1617 Cole Blvd. Golden, CO 80401 Phone: (303) 384-6312 Email: maria.ghirardi@nrel.gov DOE Manager Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractors: * Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia * Dr. Eric Johnson, Johns Hopkins University, Baltimore, MD Project Start Date: October 1, 2000 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Primary Objectives

208

Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems  

Science Conference Proceedings (OSTI)

Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

2012-01-01T23:59:59.000Z

209

Blending of hydrogen in natural gas distribution systems. Volume I. Gas blends flow in distribution system, mixing points, and regulatory standards. Final report, June 1, 1976--August 30, 1977. [10 and 20% hydrogen  

DOE Green Energy (OSTI)

This volume of the subject study ''Blending of Hydrogen in Natural Gas Distribution Systems'' describes studies on the determination of gas distribution system flows with hydrogen - natural gas blends, potential hydrogen admission points to gas distribution systems, and the impact of hydrogen - natural gas blends on regulatory standards for gas distribution systems. The studies resulted in the following principal findings: (1) Most existing natural gas distribution systems could adequately transport 20% blends of hydrogen by volume with little or no modification. (2) The best point of admission of the hydrogen into a natural gas distribution system would be at the meter and regulating stations supplying a particular distribution system. (3) The impact of hydrogen - natural gas blends on state regulatory standards appears to be minimal for PSE and G, but requires further study for various National Codes and for other states.

None

1977-09-01T23:59:59.000Z

210

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

211

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The re

212

System for exchange of hydrogen between liquid and solid phases  

DOE Patents (OSTI)

The reversible reaction M + x/2 H/sub 2/ reversible MH/sub x/, wherein M is a reversible metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under an inert liquid, thereby reducing contamination, providing better temperature control, providing in situ mobility of the reactants, and increasing flexibility in process design. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to a temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen and to release previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the actual H/sub 2/ pressure is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the actual pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Johnson, J.R.; Winsche, W.E.

1985-02-22T23:59:59.000Z

213

Reduction and Unfolding for Quantum Systems: the Hydrogen Atom  

E-Print Network (OSTI)

In this paper we propose a ``quantum reduction procedure'' based on the reduction of algebras of differential operators on a manifold. We use these techniques to show, in a systematic way, how to relate the hydrogen atom to a family of quantum harmonic oscillators, by the means of the Kustaahneimo-Stiefel fibration.

A. D'Avanzo; G. Marmo; A. Valentino

2005-04-08T23:59:59.000Z

214

Electrolysis based hydrogen storage systems. Annual report, January 1, 1976--December 31, 1976  

SciTech Connect

This report describes work completed during the period January 1, 1976 to December 31, 1976, on an ERDA-sponsored program aimed at improvement in the cost and efficiency of electrolytic hydrogen production and development of the technique of using metal hydrides for hydrogen storage for stationary and transportation applications. The work on electrolytic hydrogen production includes work on advanced barrier materials for alkaline cells, studies of nickel alloy based and oxide catalysts for oxygen evolution. Related work on the program involving the H/sub 2/--Cl/sub 2/ electrochemical cell for energy storage is described. Work on hydrogen storage subsystems involving storage reservoir designs for the Hydrogen Technology Advanced-Component Test System (HYTACTS), engineering and metal hydride material test beds and tests of candidate container materials is presented. Progress on the development of new metal hydride materials and tailoring and testing of new alloy systems is summarized. This work emphasizes improvement in the initial activation step, high-cycle test of selected materials and the physical characteristics of cycled materials. The efforts on natural gas supplementation, hydrogen storage systems analysis and the project management of the ERDA Hydrogen Program by BNL are summarized.

Salzano, F J

1977-01-01T23:59:59.000Z

215

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

216

Hydrogen and Oxygen Gas Monitoring System Design and Operation  

DOE Green Energy (OSTI)

This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or fencepost) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the gases or vapors, liquids with volatility need sensors near the potential sources of release, nature and concentration of gas releases, natural and mechanical ventilation, detector installation locations not vulnerable to mechanical or water damage from normal operations, and locations that lend themselves to convenient maintenance and calibration. The guidance also states that sensors should be located in all areas where hazardous accumulations of gas may occur. Such areas might not be close to release points but might be areas with restricted air movement. Heavier than air gases are likely to accumulate in pits, trenches, drains, and other low areas. Lighter than air gases are more likely to accumulate in overhead spaces, above drop ceilings, etc. In general, sensors should be located close to any potential sources of major release of gas. The paper gives data on monitor sensitivity and expected lifetimes to support the monitor selection process. Proper selection of indoor and outdoor locations for monitors is described, accounting for the vapor densities of hydrogen and oxygen. The latest information on monitor alarm setpoint selection is presented. Typically, monitors require recalibration at least every six months, or more frequently for inhospitable locations, so ready access to the monitors is an important issue to consider in monitor siting. Gas monitors, depending on their type, can be susceptible to blockages of the detector element (i.e., dus

Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

2007-06-01T23:59:59.000Z

217

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and

218

High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides  

DOE Green Energy (OSTI)

This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

2007-07-27T23:59:59.000Z

219

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

220

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.

Hua, T.; Ahluwalia, R.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX LLC)

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

222

Computer systems and software description for Standard-E+ Hydrogen Monitoring System (SHMS-E+)  

DOE Green Energy (OSTI)

The primary function of the Standard-E+ Hydrogen Monitoring System (SHMS-E+) is to determine tank vapor space gas composition and gas release rate, and to detect gas release events. Characterization of the gas composition is needed for safety analyses. The lower flammability limit, as well as the peak burn temperature and pressure, are dependent upon the gas composition. If there is little or no knowledge about the gas composition, safety analyses utilize compositions that yield the worst case in a deflagration or detonation. Knowledge of the true composition could lead to reductions in the assumptions and therefore there may be a potential for a reduction in controls and work restrictions. Also, knowledge of the actual composition will be required information for the analysis that is needed to remove tanks from the Watch List. Similarly, the rate of generation and release of gases is required information for performing safety analyses, developing controls, designing equipment, and closing safety issues. This report outlines the computer system design layout description for the Standard-E+ Hydrogen Monitoring System.

Tate, D.D.

1997-05-01T23:59:59.000Z

223

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

2010-05-01T23:59:59.000Z

224

Hydrogen-control systems for severe LWR accident conditions - a state-of-technology report  

Science Conference Proceedings (OSTI)

This report reviews the current state of technology regarding hydrogen safety issues in light water reactor plants. Topics considered in this report relate to control systems and include combustion prevention, controlled combustion, minimization of combustion effects, combination of control concepts, and post-accident disposal. A companion report addresses hydrogen generation, distribution, and combustion. The objectives of the study were to identify the key safety issues related to hydrogen produced under severe accident conditions, to describe the state of technology for each issue, and to point out ongoing programs aimed at resolving the open issues.

Hilliard, R.K.; Postma, A.K.; Jeppson, D.W.

1983-03-01T23:59:59.000Z

225

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

226

FUNDAMENTAL SAFETY TESTING AND ANALYSIS OF HYDROGEN STORAGE MATERIALS AND SYSTEMS  

DOE Green Energy (OSTI)

Hydrogen is seen as the future automobile energy storage media due to its inherent cleanliness upon oxidation and its ready utilization in fuel cell applications. Its physical storage in light weight, low volume systems is a key technical requirement. In searching for ever higher gravimetric and volumetric density hydrogen storage materials and systems, it is inevitable that higher energy density materials will be studied and used. To make safe and commercially acceptable systems, it is important to understand quantitatively, the risks involved in using and handling these materials and to develop appropriate risk mitigation strategies to handle unforeseen accidental events. To evaluate these materials and systems, an IPHE sanctioned program was initiated in 2006 partnering laboratories from Europe, North America and Japan. The objective of this international program is to understanding the physical risks involved in synthesis, handling and utilization of solid state hydrogen storage materials and to develop methods to mitigate these risks. This understanding will support ultimate acceptance of commercially high density hydrogen storage system designs. An overview of the approaches to be taken to achieve this objective will be given. Initial experimental results will be presented on environmental exposure of NaAlH{sub 4}, a candidate high density hydrogen storage compound. The tests to be shown are based on United Nations recommendations for the transport of hazardous materials and include air and water exposure of the hydride at three hydrogen charge levels in various physical configurations. Additional tests developed by the American Society for Testing and Materials were used to quantify the dust cloud ignition characteristics of this material which may result from accidental high energy impacts and system breach. Results of these tests are shown along with necessary risk mitigation techniques used in the synthesis and fabrication of a prototype hydrogen storage system.

Anton, D

2007-05-01T23:59:59.000Z

227

HIERARCHICAL METHODOLOGY FOR MODELING HYDROGEN STORAGE SYSTEMS. PART I: SCOPING MODELS  

DOE Green Energy (OSTI)

Detailed models for hydrogen storage systems provide essential design information about flow and temperature distributions, as well as, the utilization of a hydrogen storage media. However, before constructing a detailed model it is necessary to know the geometry and length scales of the system, along with its heat transfer requirements, which depend on the limiting reaction kinetics. More fundamentally, before committing significant time and resources to the development of a detailed model, it is necessary to know whether a conceptual storage system design is viable. For this reason, a hierarchical system of models progressing from scoping models to detailed analyses was developed. This paper, which discusses the scoping models, is the first in a two part series that presents a collection of hierarchical models for the design and evaluation of hydrogen storage systems.

Hardy, B; Donald L. Anton, D

2008-12-22T23:59:59.000Z

228

Reference concepts for a space-based hydrogen-oxygen combustion, turboalternator, burst power system  

DOE Green Energy (OSTI)

This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform. All of the concepts are open''; that is, they exhaust hydrogen or a mixture of hydrogen and water vapor into space. We considered the situation where hydrogen is presumed to be free to the power system because it is also needed to cool the platform's weapon and the situation where hydrogen is not free and its mass must be added to that of the power system. We also considered the situation where water vapor is an acceptable exhaust and the situation where it is not. The combination of these two sets of situations required four different power generation systems, and this report describes each, suggests parameter values, and estimates masses for each of the four. These reference concepts are expected to serve as a baseline'' to which other types of power systems can be compared, and they are expected to help guide technology development efforts in that they suggest parameter value ranges that will lead to optimum system designs. 7 refs., 18 figs., 5 tabs.

Edenburn, M.W.

1990-07-01T23:59:59.000Z

229

Systems Modeling, Simulation and Material Operating Requirements for Chemical Hydride Based Hydrogen Storage  

Science Conference Proceedings (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydride based hydrogen storage. AB was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A new systems concept based on augers, ballast tank, hydrogen heat exchanger and H2 burner was designed and implemented in simulation. In this design, the chemical hydride material was assumed to produce H2 on the augers itself, thus minimizing the size of ballast tank and reactor. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure, in various components of the storage system. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. The control variable AB (or alane) flow rate was determined through a simple expression based on the ballast tank pressure, H2 demand from the fuel cell and hydrogen production from AB (or alane) in the reactor. System simulation results for solid AB, liquid AB and alane for both steady state and transient drive cycle cases indicate the usefulness of the model for further analysis and prototype development.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.

2012-02-01T23:59:59.000Z

230

Estimating Hydrogen Demand Distribution Using Geographic Information Systems (GIS)  

E-Print Network (OSTI)

Design of Optimized Fossil Energy Systems with Capture andDesign of Optimized Fossil Energy Systems with Capture and

Ni, Jason; Johnson, Nils; Ogden, Joan M; Yang, Christopher; Johnson, Joshua

2005-01-01T23:59:59.000Z

231

Operating experience with a liquid-hydrogen fueled Buick and refueling system  

DOE Green Energy (OSTI)

An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

Stewart, W.F.

1982-01-01T23:59:59.000Z

232

High Density Hydrogen Storage Systems Demonstration Using NaAIH4  

NLE Websites -- All DOE Office Websites (Extended Search)

Density Hydrogen Storage Density Hydrogen Storage System Demonstration Using NaAlH 4 Complex Compound Hydrides D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello United Technologies Research Center East Hartford, Connecticut Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610 December 19, 2006 * * Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team This presentation does not contain proprietary or confidential information 2 Overview Objective: Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which differ from conventional metal hydride systems, to meet DOE system targets. Approach: Design, fabricate and test a sequence of subscale and full scale

233

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

234

DOE Hydrogen Analysis Repository: Automotive System Cost Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive System Cost Model (ASCM) Project Summary Full Title: Automotive System Cost Model (ASCM) Project ID: 118 Principal Investigator: Sujit Das Purpose Estimate current and...

235

Dynamic Modeling and Simulation Based Analysis of an Ammonia Borane (AB) Reactor System for Hydrogen Storage  

DOE Green Energy (OSTI)

Research on ammonia borane (AB, NH3BH3) has shown it to be a promising material for chemical hydrogen storage in PEM fuel cell applications. AB was selected by DOEs Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to 19.6% by weight for the release of three molar equivalents of hydrogen gas) and its stability under typical ambient conditions. A model of a bead reactor system which includes feed and product tanks, hot and cold augers, a ballast tank/reactor, a H2 burner and a radiator was developed to study AB system performance in an automotive application and estimate the energy, mass, and volume requirements for this off-board regenerable hydrogen storage material. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate appropriate trends in the reactor system dynamics. A new controller was developed and validated in simulation for a couple of H2 demand cases.

Devarakonda, Maruthi N.; Holladay, Jamelyn D.; Brooks, Kriston P.; Rassat, Scot D.; Herling, Darrell R.

2010-10-02T23:59:59.000Z

236

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

237

Chemical/hydrogen energy storage systems. Annual report, January 1, 1979-December 31, 1979  

SciTech Connect

The progress made in 1979 in the Chemical/Hydrogen Energy Storage Systems Program is described. The program is managed by Brookhaven National Laboratory for the Division of Energy Storage Systems of the Department of Energy. The program consists of research and development activities in the areas of Hydrogen Production, Storage and Materials, End-Use Applications/Systems Studies, and in Chemical Heat Pumps. The report outlines the progress made by key industrial contractors such as General Electric in the development of SPE water electrolyzers; INCO in the studies of surface poisoning (and reactivation) of metal hydrides; and Air Products and Chemicals in the evaluation of hydrogen production at small hydropower sites. The BNL in-house supporting research, as well as that at universities and other national laboratories for which BNL has technical oversight, is also described.

1980-05-01T23:59:59.000Z

238

Effect of Al(OH)3 on the hydrogen generation of aluminumewater system Hsin-Te Teng a  

E-Print Network (OSTI)

Effect of Al(OH)3 on the hydrogen generation of aluminumewater system Hsin-Te Teng a , To-Ying Lee effect of Al(OH)3 powders on Al/H2O system for hydrogen generation was demonstrated. crystalline Al(OH)3 powder acts an effective additive to the Al/H2O system.

Cao, Guozhong

239

GEOMETRY, HEAT REMOVAL AND KINETICS SCOPING MODELS FOR HYDROGEN STORAGE SYSTEMS  

DOE Green Energy (OSTI)

It is recognized that detailed models of proposed hydrogen storage systems are essential to gain insight into the complex processes occurring during the charging and discharging processes. Such insight is an invaluable asset for both assessing the viability of a particular system and/or for improving its design. The detailed models, however, require time to develop and run. Clearly, it is much more efficient to begin a modeling effort with a good system design and to progress from that point. To facilitate this approach, it is useful to have simplified models that can quickly estimate optimal loading and discharge kinetics, effective hydrogen capacities, system dimensions and heat removal requirements. Parameters obtained from these models can then be input to the detailed models to obtain an accurate assessment of system performance that includes more complete integration of the physical processes. This report describes three scoping models that assess preliminary system design prior to invoking a more detailed finite element analysis. The three models address the kinetics, the scaling and heat removal parameters of the system, respectively. The kinetics model is used to evaluate the effect of temperature and hydrogen pressure on the loading and discharge kinetics. As part of the kinetics calculations, the model also determines the mass of stored hydrogen per mass of hydride (in a particular reference form). As such, the model can determine the optimal loading and discharge rates for a particular hydride and the maximum achievable loading (over an infinite period of time). The kinetics model developed with the Mathcad{reg_sign} solver, runs in a mater of seconds and can quickly be used to identify the optimal temperature and pressure for either the loading or discharge processes. The geometry scoping model is used to calculate the size of the system, the optimal placement of heat transfer elements, and the gravimetric and volumetric capacities for a particular geometric configuration and hydride. This scoping model is developed in Microsoft Excel{reg_sign} and inputs the mass of hydrogen to be stored, mass of stored hydrogen to mass of hydride (from the kinetics model), component densities, etc. The heat removal scoping model is used to calculate coolant flowrates, pressure drops and temperature increases over the length of the cooling channels. The model also calculates the convection heat transfer coefficient required to remove the heat of reaction associated with hydrogen uptake. The heat removal model inputs dimensions and the mass of hydrogen to be stored directly from the geometry scoping model. Additionally, the model inputs the heats of reaction, the thermal properties of the coolant and the time required to charge the bed.

Hardy, B

2007-11-16T23:59:59.000Z

240

Pressure Relief Devices for High-Pressure Gaseous Storage Systems: Applicability to Hydrogen Technology  

DOE Green Energy (OSTI)

Pressure relief devices (PRDs) are viewed as essential safety measures for high-pressure gas storage and distribution systems. These devices are used to prevent the over-pressurization of gas storage vessels and distribution equipment, except in the application of certain toxic gases. PRDs play a critical role in the implementation of most high-pressure gas storage systems and anyone working with these devices should understand their function so they can be designed, installed, and maintained properly to prevent any potentially dangerous or fatal incidents. As such, the intention of this report is to introduce the reader to the function of the common types of PRDs currently used in industry. Since high-pressure hydrogen gas storage systems are being developed to support the growing hydrogen energy infrastructure, several recent failure incidents, specifically involving hydrogen, will be examined to demonstrate the results and possible mechanisms of a device failure. The applicable codes and standards, developed to minimize the risk of failure for PRDs, will also be reviewed. Finally, because PRDs are a critical component for the development of a successful hydrogen energy infrastructure, important considerations for pressure relief devices applied in a hydrogen gas environment will be explored.

Kostival, A.; Rivkin, C.; Buttner, W.; Burgess, R.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Novel hydrogen separation device development for coal gasification system applications. Final report  

DOE Green Energy (OSTI)

This study was undertaken for the development of a novel Electrochemical Hydrogen Separator (EHS) technology for low-cost hydrogen separation from coal derived gases. Design and operating parameter testing was performed using subscale cells (25 cm{sup 2}). High H{sub 2} purity, >99% is one of the main features of the EHS. It was found that N{sub 2}, CO{sub 2} and CH{sub 4} behave as equivalent inerts; EHS performance is not affected by the balance of feed gas containing these components. This product purity level is not sacrificed by increased H{sub 2} recovery. CO, however, does adversely affect EHS performance and therefore feed stream pretreatment is recommended. Low levels of H{sub 2}S and NH{sub 3} were added to the feed gas stream and it was verified that these impurities did not affect EHS performance. Task 2 demonstrated the scale-up to full size multi-cell module operation while maintaining a stable energy requirement. A 10-cell full-size module (1050 cm{sup 2} cell active area) was operated for over 3,800 hours and gave a stable baseline performance. Several applications for the EHS were investigated. The most economically attractive systems incorporating an EHS contain low pressure, dilute hydrogen streams, such as coal gasification carbonate fuel cell systems, hydrogen plant purification and fluid catalytic cracker units. In addition, secondary hydrogen recovery from PSA or membrane tailstreams using an EHS may increase overall system efficiency.

Not Available

1993-08-01T23:59:59.000Z

242

Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems  

SciTech Connect

Hydrogen power park experiments in Hawaii produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawaii Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of traditional photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust three-stage fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel four-terminal devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

Rocheleau, Richard E.

2008-09-30T23:59:59.000Z

243

Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems  

Science Conference Proceedings (OSTI)

Hydrogen power park experiments in Hawaii produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawaii Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of traditional photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust three-stage fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel four-terminal devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

Rocheleau, Richard E.

2008-09-30T23:59:59.000Z

244

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

DOE Green Energy (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

245

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

246

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Cycle Analysis of Hydrogen-Powered Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million through FY08 * Funding received in FY07: $450k * Funding for FY08: $840k Budget * H2A team * PSAT team * NREL * Industry stakeholders Partners Timeline Barriers to Address 3 Objectives * Expand and update the GREET model for hydrogen production pathways and for applications of FCVs and other FC systems

247

DOE Hydrogen Analysis Repository: Policy Office Electricity Modeling System  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy Office Electricity Modeling System (POEMS) Policy Office Electricity Modeling System (POEMS) Project Summary Full Title: Policy Office Electricity Modeling System (POEMS) Project ID: 93 Principal Investigator: Lessly Goudarzi Purpose Designed and built by OnLocation specifically to address electricity industry restructuring issues Performer Principal Investigator: Lessly Goudarzi Organization: OnLocation, Inc. Address: Suite 300, 501 Church Street Vienna, VA 22180 Telephone: 703-938-5151 Email: goudarzi@onlocationinc.com Project Description Type of Project: Model Category: Energy Infrastructure Products/Deliverables Description: National Transmission Grid Study - Appendix A Publication Title: Policy Office Electricty Modeling System (POEMS) and Documentation for Transmission Analysis (PDF 461 KB) Download Adobe Reader.

248

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

249

NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results...

250

Thermal Management of Onboard Cryogenic Hydrogen Storage Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan: (A) System Weight and Volume (C) Efficiency (E) ChargingDischarging Rates (J) Thermal Management Technical Targets In this project, studies are being conducted to develop...

251

Hydrogen as a fuel  

SciTech Connect

A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

1979-01-01T23:59:59.000Z

252

Method and System for the Production of Hydrogen at Reduced VHTR Outlet Temperatures  

DOE Green Energy (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. The integrated system of a Very High Temperature Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) hydrogen production plant is being investigated and this system, as it is currently envisioned, will produce hydrogen by utilizing a highly efficient VHTR with a VHTR outlet temperature of 900C to supply the necessary energy and electricity to the HTSE unit. Though the combined system may produce hydrogen and electricity with high efficiency, the choices of materials that are suitable for use at 900C are limited due to high-temperature strength, corrosion, and durability (creep) considerations. The lack of materials that are ASME (American Society of Mechanical Engineers) code-certified at these temperatures is also a problem, and is a barrier to commercial deployment. If the current system concept can be modified to produce hydrogen with comparable efficiency at lower temperatures, then the technical barriers related to materials selection and use might be eliminated, and the integrated system may have a much greater probability of succeeding at the commercial scale. This paper describes a means to reduce the outlet temperature of the VHTR to approximately 700C while still maintaining plant high efficiency.

Chang H. Oh; Eung S. Kim

2009-10-01T23:59:59.000Z

253

Hydrogen--halogen energy storage system. Annual report, January--December 1977  

DOE Green Energy (OSTI)

Work at Brookhaven National Laboratory on the electrochemically regenerative hydrogen--chlorine energy storage system has included electrochemical investigations, materials studies, and technoeconomic assessment. Electrochemical studies have confirmed the reversibility of the cell reactions and the possibility of using the same cell in the electrolysis and fuel cell mode. The hydrogen--chlorine cell differs from most batteries in that the open circuit potential varies appreciably with temperature and depth of discharge. The temperature variation of the open circuit potential reflects the large negative entropy of formation of HCl. A detailed heat and mass balance analysis has been carried out for the H/sub 2//Cl/sub 2/ system for one method of reactant storage and two schemes of heat exchange between the hydrochloric acid storage subsystem and the reactant storage subsystems. Characterization of Nafion membranes in H/sub 2//Cl/sub 2/ cells is reported. From a cost comparison on a 20 MW/200 MWh electrochemically regenerative hydrogen--halogen system it was concluded that the use of either clorine or bromine or alternative methods of chlorine storage had an insignificant effect on the overall cost of the system. The most cost effective method of hydrogen storage is very dependent on the cost of activated metal hydrides.

McBreen, J.; Srinivasan, S.; Salzano, F.J.; Beaufrere, A.H.

1978-09-01T23:59:59.000Z

254

Optimization of Utility-Scale Wind-Hydrogen-Battery Systems: Preprint  

Science Conference Proceedings (OSTI)

Traditional utility-scale wind energy systems are not dispatchable; that is, the utility cannot instantaneously control their power output. Energy storage, which can come in many forms, is needed to add dispatchability to a wind farm. This study investigates two options: batteries and hydrogen.

Fingersh, L. J.

2004-07-01T23:59:59.000Z

255

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

Florida Energy Office, Hydrogen Programs Manager, June 27.Agency (2005a). California Hydrogen Blueprint Plan: Volume1 Final Report, California Hydrogen Highway Network, May.

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

256

DOE Hydrogen Analysis Repository: Renewable Energy Power System Modular  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Power System Modular Simulator (RPM-Sim) Renewable Energy Power System Modular Simulator (RPM-Sim) Project Summary Full Title: Renewable Energy Power System Modular Simulator (RPM-Sim) Project ID: 104 Principal Investigator: Edward Muljadi Keywords: Renewable; hybrid electric vehicles (HEV) Purpose This is a package software program developed based on a modular concept. Each module consists of a type of equipment or an element of a power system (for example, diesel-genset, wind turbine generator, village load, rotary converter, PV-inverter module, fuel cell-inverter module (developed by Prof. Hashem Nehrir, Montana State University), electrolysis module (developed by Prof. Hosein Salehfar and Prof. Mann University of North Dakota). Performer Principal Investigator: Edward Muljadi Organization: National Renewable Energy Laboratory (NREL)

257

Hydrogen Storage and Supply for Vehicular Fuel Systems  

alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects. Replacing gasoline and other refined hydrocarbon fuels ...

258

Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP`s performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12.

Lott, D.T.

1995-05-18T23:59:59.000Z

259

DOE Hydrogen and Fuel Cells Program: Hydrogen Analysis Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Analysis Repository H2A Analysis Hydrogen Analysis Resource Center Scenario Analysis Well-to-Wheels Analysis Systems Integration U.S. Department of Energy Search help Home > Systems Analysis > Hydrogen Analysis Resource Center Printable Version Hydrogen Analysis Resource Center The Hydrogen Analysis Resource Center provides consistent and transparent data that can serve as the basis for hydrogen-related calculations, modeling, and other analytical activities. This new site features the Hydrogen Data Book with data pertinent to hydrogen infrastructure analysis; links to external databases related to

260

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geometry, Heat Removal and Kinetics Scoping Models for Hydrogen Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

WSRC-TR-2007-00439, REVISION 0 WSRC-TR-2007-00439, REVISION 0 Keywords: Hydrogen Kinetics, Hydrogen Storage Vessel Metal Hydride Retention: Permanent Geometry, Heat Removal and Kinetics Scoping Models for Hydrogen Storage Systems Bruce J. Hardy November 16, 2007 Washington Savannah River Company Savannah River Site Aiken, SC 29808 Prepared for the U.S. Department of Energy Under Contract Number DEAC09-96-SR18500 DISCLAIMER This report was prepared for the United States Department of Energy under Contract No. DE-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for accuracy, completeness, or

262

High Level Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Level Computational Chemistry Approaches Level Computational Chemistry Approaches to the Prediction of the Energetic Properties of Chemical Hydrogen Storage Systems David A. Dixon Chemistry, University of Alabama, Tuscaloosa, AL Cast: Myrna Hernandez-Matus, Daniel Grant, Jackson Switzer, Jacob Batson, Ronita Folkes, Minh Nguyen Anthony J. Arduengo & co-workers Maciej Gutowski (PNNL) Robert Ramsay Chair Fund Shelby Hall Funding provided in part by the Department of Energy, Office of Energy Efficiency and Renewable Energy under the Hydrogen Storage Grand Challenge, Solicitation No. DE-PS36- 03GO93013 Chemical H 2 Storage Center of Excellence The Promise of Chemical Hydrogen Storage * Chemical reaction releases H 2 at suitable pressures and temperatures - Reaction thermodynamics dictate max. H 2 pressure as function of T -

263

Hydrogen isotope distillation for the Tritium Systems Test Assembly  

DOE Green Energy (OSTI)

A system of four, interlinked, cryogenic fractional distillation columns has been designed as a prototype for fuel processing for fusion power reactors. The distillation system will continuously separate a feedstream of 360 g moles/day of roughly 50-50 deuterium-tritium containing approximately 1% H into four product streams: (1) a tritium-free stream of HD for waste disposal; (2) a stream of high-purity D/sub 2/ for simulated neutral beam injection; (3) a stream of DT for simulated reactor refueling; and (4) a stream of high purity T/sub 2/ for refueling and studies on properties of tritium and effects of tritium on materials.

Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

1978-01-01T23:59:59.000Z

264

Development of a Natural Gas-to-Hydrogen Fueling System  

E-Print Network (OSTI)

Water Losses Steam Methane Reformer/Fuel Processor CH4 + 2 H20 4H2 + CO2 #12;8 Some Keys to Success 99 fuel processing using efficient steam methane reforming process Advanced oil-free high- pressure with gasoline on a $/vehicle mile basis > Challenges ­ Flexible fuel reformers & systems ­ Fuel purity ­ Long

265

System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities  

DOE Green Energy (OSTI)

This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the spreadsheets when better information is available or to allow the performance of sensitivity studies. The selected reference plant design for this study was a 1500 kg/day forecourt hydrogen production plant operating in the thermal-neutral mode. The plant utilized industrial natural gas-fired heaters to provide process heat, and grid electricity to supply power to the electrolyzer modules and system components. Modifications to the reference design included replacing the gas-fired heaters with electric resistance heaters, changing the operating mode of the electrolyzer (to operate below the thermal-neutral voltage), and considering a larger 50,000 kg/day central hydrogen production plant design. Total H2A-calculated hydrogen production costs for the reference 1,500 kg/day forecourt hydrogen production plant were $3.42/kg. The all-electric plant design using electric resistance heaters for process heat, and the reference design operating below the thermal-neutral voltage had calculated lifecycle hydrogen productions costs of $3.55/kg and $5.29/kg, respectively. Because of its larger size and associated economies of scale, the 50,000 kg/day central hydrogen production plant was able to produce hydrogen at a cost of only $2.89/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-05-01T23:59:59.000Z

266

Compact fuel cell system utilizing a combination of hydrogen storage materials for optimized performance.  

SciTech Connect

An entirely new class of light-weight reversible hydrides was recently discovered (the Ti-doped alanates)[1]. These NaAIH{sub 4}-based materials have demonstrated reversible hydrogen storage capacities of up to 5 wt%, nearly 4 times the gravimetrically density of commercial metal hydrides. For this reason, they have been considered a breakthrough for hydrogen storage in fuel cell vehicles. This project is the first to publish the use of alanates for the generation of electrical power and the first demonstration of a hydride-fueled elevated-temperature PEM Fuel Cell. Because the kinetics of hydrogen uptake and release by the alanate improves with elevated temperatures, novel concepts were tested for the purpose of developing a highly efficient stand-alone power system. A major focus of this work was on the modeling, design, construction and testing of an integrated fuel cell stack and hydrogen storage system that eliminates the need of complicated heat transfer systems and media. After extensive modeling efforts, a proof-of-concept system was built that employs an integrated fuel cell stack and hydride beds that balancing the generation of fuel cell waste heat with the endothermic release of hydrogen from the alanates. Our demonstration unit was capable of greater than one hour of operation on a single charge of hydrogen from the integrated 173 gram alanate bed. In addition, composite hydride materials with synergistic reaction heats were evaluated and tested to enhance the operational performance of the alanates. The composites provide a unique opportunity to utilize the heat produced from hydriding classic metal hydrides to improve both absorption and desorption rates of the alanates. A particular focus of the mixed storage materials work was to balance the thermodynamics and kinetics of the hydrides for start-up conditions. Modeling of the sorption properties proved invaluable in evaluating the optimum composition of hydrides. The modeling efforts were followed by full validation by experimental measurements. This project successfully completed the proof-of-concept goals and generated a powerful set of tools for optimizing the complete power-generation system. It has also created a new direction for hydrogen power generation as well the potential for new R&D based on this work.

Chan, Jennifer P.; Dedrick, Daniel E.; Gross, Karl J.; Ng, Greg L.

2004-12-01T23:59:59.000Z

267

Equilibria and thermodynamic properties of the plutonium-hydrogen system  

SciTech Connect

Equilibrium, kinetic and x ray diffraction data show the existence of two stability regimes in the Pu-H system. A metastable solid solution between CaF/sub 2/-type PuH/sub 1/ /sub 9/ and anti-Fe/sub 3/Al-type PuH/sub 3/ /sub 0/ forms at low temperature and behaves as an ideal solid solution. Equilibrium and calorimetric results show that the enthalpy of formation varies linearly from -38 to -50 kcal/mol between the lower phase boundary and the trihydride. The phase relationships established at high temperature are similar to those of the lanthanide difluoride-lanthanide trifluoride systems. A series of CaF/sub 2/-related phases apparently forms between PuH/sub 1/ /sub 9/ and PuH/sub 2/ /sub 5/; a nonstoichiometric hexagonal (LaF/sub 3/-type) hydride exists in the range PuH/sub 2/ /sub 9/-PuH/sub 3/ /sub 0/. A procedure for preparing pure hexagonal puH/sub 3/ /sub 00/ is described, and the hysteresis behavior of the Pu-H system is discussed.

Haschke, J.M.; Hodges, A.E. III; Smith, C.M.; Oetting, F.L.

1980-01-01T23:59:59.000Z

268

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

269

Hydrogen turbines for space power systems: A simplified axial flow gas turbine model  

SciTech Connect

This paper descirbes a relatively simple axial flow gas expansion turbine mass model, which we developed for use in our space power system studies. The model uses basic engineering principles and realistic physical properties, including gas conditions, power level, and material stresses, to provide reasonable and consistent estimates of turbine mass and size. Turbine design modifications caused by boundary layer interactions, stress concentrations, stage leakage, or bending and thermal stresses are not accounted for. The program runs on an IBM PC, uses little computer time and has been incorporated into our system-level space power platform analysis computer codes. Parametric design studies of hydrogen turbines using this model are presented for both nickel superalloy and carbon/carbon composite turbines. The effects of speed, pressure ratio, and power level on hydrogen turbine mass are shown and compared to a baseline case 100-MWe, 10,000-rpm hydrogen turbine. Comparison with more detailed hydrogen turbine designs indicates that our simplified model provides mass estimates that are within 25% of the ones provided by more complex calculations. 8 figs.

Hudson, S.L.

1988-01-01T23:59:59.000Z

270

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

Science Conference Proceedings (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

271

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

DOE Green Energy (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

272

DOE Hydrogen and Fuel Cells Program Record 11012: Fuel Cell System Cost - 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: August 17, 2011 2 Date: August 17, 2011 Title: Fuel Cell System Cost - 2011 Update to: Record 10004 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 7, 2011 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2011 technology 1 and operating on direct hydrogen is projected to be $49/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2011, Strategic Analysis, Inc. (SA) 2 updated the 2010 Directed Technologies, Inc. (DTI) cost analysis of 80-kW net direct hydrogen PEM automotive fuel cell systems, based on 2011 technology and projected to a manufacturing volume of 500,000 units per year [1]. Results from the analysis were communicated to the DOE

273

DOE Hydrogen and Fuel Cells Program Record 8002: Fuel Cell System Cost - 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: October 31, 2008 02 Date: October 31, 2008 Title: Fuel Cell System Cost - 2007 Update to: Record 5005 Originator: Nancy Garland and Jason Marcinkoski Approved by: Sunita Satyapal Date: April 3, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $94/kW for 2007 technology in 2007 dollars ($82/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2007, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2006 cost analyses of direct hydrogen, 80-kW, PEM automotive fuel cell systems based on 2007 technology and projected to manufacturing volumes of 500,000 units per year [1,2].

274

DOE Hydrogen and Fuel Cells Program Record 9012: Fuel Cell System Cost - 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: October 7, 2009 2 Date: October 7, 2009 Title: Fuel Cell System Cost - 2009 Update to: Record 8019 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 7, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $61/kW for 2009 technology in 2009 dollars ($51/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2009, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2008 cost analyses of 80-kW direct hydrogen PEM automotive fuel cell systems based on 2009 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. DTI and TIAX use Design for Manufacturing and Assembly

275

Addressing System Integration Issues Required for the Developmente of Distributed Wind-Hydrogen Energy Systems: Final Report  

DOE Green Energy (OSTI)

Wind generated electricity is a variable resource. Hydrogen can be generated as an energy storage media, but is costly. Advancements in power electronics and system integration are needed to make a viable system. Therefore, the long-term goal of the efforts at the University of North Dakota is to merge wind energy, hydrogen production, and fuel cells to bring emission-free and reliable power to commercial viability. The primary goals include 1) expand system models as a tool to investigate integration and control issues, 2) examine long-term effects of wind-electrolysis performance from a systematic perspective, and 3) collaborate with NREL and industrial partners to design, integrate, and quantify system improvements by implementing a single power electronics package to interface wild AC to PEM stack DC requirements. This report summarizes the accomplishments made during this project.

Mann, M.D; Salehfar, H.; Harrison, K.W.; Dale, N.; Biaku, C.; Peters, A.J.; Hernandez-Pacheco: E.

2008-04-01T23:59:59.000Z

276

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

277

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

09-33 09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

278

Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems  

DOE Green Energy (OSTI)

The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

Rocheleau, Richard E.

2008-09-30T23:59:59.000Z

279

Oxygen-hydrogen meter assembly for use in remote sodium sampling systems  

SciTech Connect

An assembly of an electrolytic oxygen meter and a diffusion type hydrogen meter was designed to fit into the Multipurpose Sampler hardware already installed and operating on the four FFTF sodium systems. One of the key elements in this assembly is a ceramic-metal sealed oxygen sensor which allows use of a metal tube to extend the 51 cm (20 in.) between the sampler top and the flowing sodium region.

Barton, G.B.; Bohringer, A.P.; Yount, J.A.

1980-02-01T23:59:59.000Z

280

System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons  

DOE Patents (OSTI)

A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

Reilly, Peter T. A. (Knoxville, TN)

2010-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations  

DOE Patents (OSTI)

An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

Elliot, Douglas C. (Richland, WA); Werpy, Todd A. (West Richland, WA); Wang, Yong (Richland, WA); Frye, Jr., John G. (Richland, WA)

2001-01-01T23:59:59.000Z

282

State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979  

DOE Green Energy (OSTI)

Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

1980-03-01T23:59:59.000Z

283

The setup of an extraction system coupled to a hydrogen isotopes distillation column  

Science Conference Proceedings (OSTI)

Among the most difficult problems of cryogenic distillation one stands apart: the extraction of the heavy fraction. By an optimal design of the cycle scheme, this problem could be avoided. A 'worst case scenario' is usually occurring when the extracted fraction consists of one prevalent isotope such as hydrogen and small amounts of the other two hydrogen isotopes (deuterium and/or tritium). This situation is further complicated by two parameters of the distillation column: the extraction flow rate and the hold-up. The present work proposes the conceptual design of an extraction system associated to the cryogenic distillation column used in hydrogen separation processes. During this process, the heavy fraction (DT, T{sub 2}) is separated, its concentration being the highest at the bottom of the distillation column. From this place the extraction of the gaseous phase can now begin. Being filled with adsorbent, the extraction system is used to temporarily store the heavy fraction. Also the extraction system provides samples for the gas Chromatograph. The research work is focused on the existent pilot plant for tritium and deuterium separation from our institute to validate the experiments carried out until now. (authors)

Zamfirache, M.; Bornea, A.; Stefanescu, I.; Bidica, N.; Balteanu, O.; Bucur, C. [INC-DTCI, ICSIRm. Valcea, Uzinei Street 4, Rm. Valcea (Romania)

2008-07-15T23:59:59.000Z

284

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

285

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

286

DOE Hydrogen and Fuel Cells Program Record 5005: Fuel Cell System Cost - 2002 versus 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: March 20, 2005 5 Date: March 20, 2005 Title: Fuel Cell System Cost - 2002 vs 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Date: May 22, 2006 Item: "Reduced the high-volume cost of automotive fuel cells from $275/kW (50kW system) in 2002 to $110/kW (80kW system) in 2005." Supporting Information: In 2002, TIAX reported a cost of $324/kW for a 50-kW automotive PEM fuel cell system operating on gasoline reformate, based on their modeling of projected cost for 500,000 units per year. See Eric Carlson et al., "Cost Analyses of Fuel Cell Stack/System." U.S. DOE Hydrogen Program Annual Progress Report. (2002) at http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/33098_sec4-1.pdf. Also see "Cost Modeling of PEM Fuel Cell Systems for Automobiles," Eric Carlson et al., SAE

287

The family of standard hydrogen monitoring system computer software design description: Revision 2  

DOE Green Energy (OSTI)

In March 1990, 23 waste tanks at the Hanford Nuclear Reservation were identified as having the potential for the buildup of gas to a flammable or explosive level. As a result of the potential for hydrogen gas buildup, a project was initiated to design a standard hydrogen monitoring system (SHMS) for use at any waste tank to analyze gas samples for hydrogen content. Since it was originally deployed three years ago, two variations of the original system have been developed: the SHMS-B and SHMS-C. All three are currently in operation at the tank farms and will be discussed in this document. To avoid confusion in this document, when a feature is common to all three of the SHMS variants, it will be referred to as ``The family of SHMS.`` When it is specific to only one or two, they will be identified. The purpose of this computer software design document is to provide the following: the computer software requirements specification that documents the essential requirements of the computer software and its external interfaces; the computer software design description; the computer software user documentation for using and maintaining the computer software and any dedicated hardware; and the requirements for computer software design verification and validation.

Bender, R.M.

1994-11-16T23:59:59.000Z

288

System Dynamics: HyDIVE(TM) (Hydrogen Dynamic Infrastructure and Vehicle Evolution) Model (Presentation)  

DOE Green Energy (OSTI)

This presentation by Cory Welch at the 2007 DOE Hydrogen Program Annual Merit Review Meeting focuses on Hydrogen Dynamic Infrastructure and Vehicle Evolution Model.

Welch, C.

2007-05-16T23:59:59.000Z

289

Real-World Research and Testing: Producing and Using Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel (Hydrogen) Pilot Plant - design & operations - Hydrogen subsystem - CNG subsystem - Safety system * Fuel Dispensing * Hydrogen & HCNG Internal Combustion...

290

Fuel Cell Technologies Office: Strategic Directions for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

291

Hydrogen Pipeline Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

praxair.com praxair.com Copyright © 2003, Praxair Technology, Inc. All rights reserved. Hydrogen Pipeline Discussion BY Robert Zawierucha, Kang Xu and Gary Koeppel PRAXAIR TECHNOLOGY CENTER TONAWANDA, NEW YORK DOE Hydrogen Pipeline Workshop Augusta, GA August 2005 2 Introduction Regulatory and technical groups that impact hydrogen and hydrogen systems ASME, DOE, DOT etc, Compressed Gas Association activities ASTM TG G1.06.08 Hydrogen pipelines and CGA-5.6 Selected experience and guidance Summary and recommendations 3 CGA Publications Pertinent to Hydrogen G-5: Hydrogen G-5.3: Commodity Specification for Hydrogen G-5.4: Standard for Hydrogen Piping at Consumer Locations G-5.5: Hydrogen Vent Systems G-5.6: Hydrogen Pipeline Systems (IGC Doc 121/04/E) G-5.7: Carbon Monoxide and Syngas

292

Nuclear magnetic resonance wide-line study of hydrogen in the yttrium-yttrium dihydride system  

DOE Green Energy (OSTI)

The /sup 1/H nuclear magnetic resonance was studied in the yttrium-hydrogen system YH/sub x/ in the composition range 0.20 less than or equal to x less than or equal to 1.98 and temperature range 77 K less than or equal to T less than or equal to 490/sup 0/K. Both ..cap alpha..- and ..beta..-phases of YH/sub x/ were investigated in polycrystalline (powdered) specimens. Rigid lattice proton resonance second moments were obtained for both ..cap alpha..- and ..beta..-phase samples. Analysis of the second moment for ..cap alpha..-YH/sub x/ (..cap alpha..-phase) indicates that the hydrogen resides in both the tetrahedral and octahedral interstitial sites of the hcp Y lattice. Second moment values for ..beta..-YH/sub x/ (..beta..-phase) indicate that a sizeable fraction of the octahedral interstitial sites in the fcc yttrium metal lattice are occupied by hydrogen, while a nonnegligible fraction of the tetrahedral interstitial sites are vacant. For example, in YH/sub 1.98/, 28% of the octahedral sites are occupied, while 15% of the tetrahedral sites are vacant. The results for ..beta..-YH/sub x/ also indicate that as the H concentration increases, the probability of H occupation of octahedral sites increases.

Anderson, D.L.

1980-03-01T23:59:59.000Z

293

System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

DOE Green Energy (OSTI)

This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump`s ability to mitigate the SY-101 tank hydrogen gas hazard.

Truitt, R.W. [Westinghouse Hanford Co., Richland, WA (United States); Pounds, T.S.; Smith, S.O. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

1994-08-24T23:59:59.000Z

294

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

295

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

296

Computer system design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

DOE Green Energy (OSTI)

Description of the Proposed Activity/REPORTABLE OCCURRENCE or PIAB: This ECN changes the computer systems design description support document describing the computers system used to control, monitor and archive the processes and outputs associated with the Hydrogen Mitigation Test Pump installed in SY-101. There is no new activity or procedure associated with the updating of this reference document. The updating of this computer system design description maintains an agreed upon documentation program initiated within the test program and carried into operations at time of turnover to maintain configuration control as outlined by design authority practicing guidelines. There are no new credible failure modes associated with the updating of information in a support description document. The failure analysis of each change was reviewed at the time of implementation of the Systems Change Request for all the processes changed. This document simply provides a history of implementation and current system status.

Ermi, A.M.

1997-05-01T23:59:59.000Z

297

TWRS hydrogen mitigation gas characterization system design and fabrication engineering task plan  

DOE Green Energy (OSTI)

The flammable gas watch-list (FGWL) tanks, which have demonstrated a gas release event (GRE) exceeding 0.625% hydrogen by volume will require additional characterization. The purpose of this additional characterization is to accurately measure the flammable and hazardous gas compositions and resulting lower flammability limit (LFL) of the tank vapor space during baseline and GRE emissions. Data from this characterization will help determine methods to resolve the unreviewed safety questions for the FGWL tanks. This document details organization responsibilities and engineering requirements for the design and fabrication of two gas characterization systems used to monitor flammable gas watch-list tanks.

Straalsund, E.K.

1995-01-01T23:59:59.000Z

298

Thermodynamic, economic, and environmental modeling of hydrogen (H2) co-production integrated with stationary Fuel Cell Systems (FCS).  

DOE Green Energy (OSTI)

The objective of this project is to analyze the potential for hydrogen co-production within high-temperature stationary fuel cell systems (H2-FCS) and identify novel designs with minimum CO2 and cost. Specific objectives are to (1) develop novel H2-FCS designs that release low greenhouse gas emissions; and (2) develop novel H2-FCS designs with low hydrogen production cost.

Margalef, Pere (University of California at Irvine); Brouwer, Jack (University of California at Irvine); Colella, Whitney; Rankin, Aerel; Sun, Amy Cha-Tien

2009-05-01T23:59:59.000Z

299

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

300

Analytical performance of direct-hydrogen-fueled polymer electrolyte fuel cell (PEFC) systems for transportation applications.  

DOE Green Energy (OSTI)

The performance of a stand-alone polymer electrolyte fuel cell (PEFC) system directly fueled by hydrogen has been evaluated for transportation vehicles. The study was carried out using a systems analysis code and a vehicle analysis code. The systems code includes models for the various PEFC components and is applicable for steady-state and transient situations. At the design point the system efficiency is above 50% for a 50-kW system. The efficiency improves under partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the V-I polarization curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and eventually the fuel cell. The system performance suffers at lower temperatures, as the V-I characteristic curve for the fuel cell shifts downward because of the increased ohmic losses. The results of the transient analysis indicate that the hydrogen-fueled PEFC system can start rather rapidly, within seconds from ambient conditions. However, the warm-up time constant to reach the design operating temperatures is about 180 s. It is important during this period for the coolant to bypass the system radiator until the coolant temperature approaches the design temperature for the fuel cell. The systems analysis code has been applied to two mid-size vehicles: the near-term Ford AIV Sable and the future P2000 vehicle. The results of this study show that the PEFC system in these vehicles can respond well to the demands of the FUDS and Highway driving cycles, with both warm and cold starting conditions. The results also show that the fuel-cell AIV Sable vehicle has impressive gains in fuel economy over that of the internal combustion engine vehicle. However, this vehicle will not be able to meet the PNGV goal of 80 mpg. On the other hand, the P2000 vehicle approaches this goal with variable efficiency of the compressor and expander. It is expected to exceed that goal by a big margin, if the efficiency of the compressor and expander can be maintained constant (at 0.8) over the power range of the fuel cell system.

Doss, E. D.

1998-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated High Temperature Coal-to-Hydrogen System with CO2 Separation  

DOE Green Energy (OSTI)

A significant barrier to the commercialization of coal-to-hydrogen technologies is high capital cost. The purity requirements for H{sub 2} fuels are generally met by using a series of unit clean-up operations for residual CO removal, sulfur removal, CO{sub 2} removal and final gas polishing to achieve pure H{sub 2}. A substantial reduction in cost can be attained by reducing the number of process operations for H{sub 2} cleanup, and process efficiency can be increased by conducting syngas cleanup at higher temperatures. The objective of this program was to develop the scientific basis for a single high-temperature syngas-cleanup module to produce a pure stream of H{sub 2} from a coal-based system. The approach was to evaluate the feasibility of a 'one box' process that combines a shift reactor with a high-temperature CO{sub 2}-selective membrane to convert CO to CO{sub 2}, remove sulfur compounds, and remove CO{sub 2} in a simple, compact, fully integrated system. A system-level design was produced for a shift reactor that incorporates a high-temperature membrane. The membrane performance targets were determined. System level benefits were evaluated for a coal-to-hydrogen system that would incorporate membranes with properties that would meet the performance targets. The scientific basis for high temperature CO{sub 2}-selective membranes was evaluated by developing and validating a model for high temperature surface flow membranes. Synthesis approaches were pursued for producing membranes that integrated control of pore size with materials adsorption properties. Room temperature reverse-selectivity for CO{sub 2} was observed and performance at higher temperatures was evaluated. Implications for future membrane development are discussed.

James A. Ruud; Anthony Ku; Vidya Ramaswamy; Wei Wei; Patrick Willson

2007-05-31T23:59:59.000Z

302

Demonstration and System Analysis of High Temperature Steam Electrolysis for Large-Scale Hydrogen Production Using SOFCs  

DOE Green Energy (OSTI)

At the Idaho National Engineering Laboratory, an integrated laboratory scale (ILS), 15 kW high-temperature electrolysis (HTE) facility has been developed under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other integral issues. Additionally, a reference process model of a commercial-scale high-temperature electrolysis plant for hydrogen production has been developed. The reference plant design is driven by a 600 megawatt thermal high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The electrolysis unit used to produce hydrogen consists of 4.01106 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohmcm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.1% at a hydrogen production rate of 2.36 kg/s with the high-temperature helium-cooled reactor concept. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation. The paper will also present the optimized design for the reference nuclear-driven HTE hydrogen production plant which may be compared with other hydrogen production methods and power cycles to evaluate relative performance characteristics and plant economics.

Michael G. McKellar; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

303

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

2012-11-01T23:59:59.000Z

304

The Effect of Alloying on the Properties of Metal-Hydrogen Systems  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Multiscale Approaches to Hydrogen-assisted Degradation of Metals.

305

www.hydrogenics.com Hydrogenics Corporation  

E-Print Network (OSTI)

integration capabilities · Control and load profile software Hydrogen Energy Storage and Power Systems · Off Power ...Powering Change #12;www.hydrogenics.com Hydrogenics Profile Designer and manufacturer-grid renewable power · On-grid community or residential power · Grid incentives for load control · Renewable

306

DOE Hydrogen Analysis Repository: Production of Hydrogen byPhotovolta...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Project ID: 132 Principal Investigator: DL Block Purpose Compare the cost of hydrogen produced using photo electric chemical systems to the cost of hydrogen...

307

DOE Hydrogen Program Record 5030: Hydrogen Baseline Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

kg of hydrogen) .56 Production unit energy efficiency 70% Compression electricity consumption (kWhrkg of hydrogen) 2.9 Total system energy efficiency 65% Feedstock and Utility...

308

Engineering design and testing of a ground water remediation system using electrolytically generated hydrogen with a palladium catalyst for dehalogenation of chlorinated hydrogen  

DOE Green Energy (OSTI)

Recent studies have shown that dissolved hydrogen causes rapid dehalogenation of chlorinated hydrocarbons in the presence of a palladium catalyst. The speed and completeness of these reactions offer advantages in designing remediation technologies for certain ground water contamination problems. However, a practical design challenge arises in the need to saturate the aqueous phase with hydrogen in an expeditious manner. To address this issue, a two-stage treatment reactor has been developed. The first stage consists of an electrolytic cell that generates hydrogen by applying a voltage potential across the influent water stream. The second stage consists of a catalyst column of palladium metal supported on alumina beads. A bench-scale reactor has been used to test this design for treating ground water contaminated with trichloroethene and other chlorinated hydrocarbons. In influent streams containing contaminant concentrations up to 4 ppm, initial results confirm that destruction efficiencies greater than 95% may be achieved with residence times short enough to allow practical implementation in specially designed flow-through treatment wells. Results from the bench-scale tests are being used to design a pilot ground water treatment system.

Ruiz, R.

1997-12-01T23:59:59.000Z

309

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

DOE Green Energy (OSTI)

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

310

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-10/24 ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

311

Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

1986-01-28T23:59:59.000Z

312

Sensitive hydrogen leak detector  

DOE Patents (OSTI)

A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

Myneni, Ganapati Rao (Yorktown, VA)

1999-01-01T23:59:59.000Z

313

Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures  

E-Print Network (OSTI)

development helping to stream hydrogen policies into theconcepts and knowledge in hydrogen energy systems and theirSpazzafumo, G. , Drafting a Hydrogen Vision for Tasmania,

Pigneri, Attilio

2005-01-01T23:59:59.000Z

314

DOE Hydrogen Analysis Repository: Hydrogen Technology Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process Project ID: 121 Principal...

315

DOE Hydrogen Analysis Repository: Hydrogen Passenger Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers,...

316

Proposal of a novel multifunctional energy system for cogeneration of coke, hydrogen, and power - article no. 052001  

SciTech Connect

This paper proposes a novel multifunctional energy system (MES), which cogenerates coke, hydrogen, and power, through the use of coal and coke oven gas (COG). In this system, a new type of coke oven, firing coal instead of COG as heating resource for coking, is adopted. The COG rich in H{sub 2} is sent to a pressure swing adsorption (PSA) unit to separate about 80% of hydrogen first, and then the PSA purge gas is fed to a combined cycle as fuel. The new system combines the chemical processes and power generation system, along with the integration of chemical conversion and thermal energy utilization. In this manner, both the chemical energy of fuel and thermal energy can be used more effectively. With the same inputs of fuel and the same output of coking heat, the new system can produce about 65% more hydrogen than that of individual systems. As a result, the thermal efficiency of the new system is about 70%, and the exergy efficiency is about 66%. Compared with individual systems, the primary energy saving ratio can reach as high as 12.5%. Based on the graphical exergy analyses, we disclose that the integration of synthetic utilization of COG and coal plays a significant role in decreasing the exergy destruction of the MES system. The promising results obtained may lead to a clean coal technology that will utilize COG and coal more efficiently and economically.

Jin, H.G.; Sun, S.; Han, W.; Gao, L. [Chinese Academy of Sciences, Beijing (China)

2009-09-15T23:59:59.000Z

317

Universal alignment of hydrogen levels in semiconductors,  

E-Print Network (OSTI)

understanding of hydrogen in solids is required to support development of improved hydrogen-storage systems3 that determine the properties of hydrogen are (1) the formation energy, that is, the energy needed to incorporate.............................................................. Universal alignment of hydrogen

318

Hydrogen Macro System Model User Guide, Version 1.2.1  

NLE Websites -- All DOE Office Websites (Extended Search)

Model (HDSAM), and GREET models, thus allowing analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways....

319

Integrated System Dramatically Improves Hydrogen Molar Yield from Biomass via Fermentation (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in fermentative and electrohydrogenic production of hydrogen from corn stover. Work was performed by NREL's Biosciences Center and Pennsylvania State University.

Not Available

2010-11-01T23:59:59.000Z

320

Thermodynamic performance assessment of three biomass-based hydrogen production systems.  

E-Print Network (OSTI)

??Hydrogen is likely to be an important energy carrier in the future. It can be produced by the steam reforming of natural gas, coal gasification (more)

Cohce, Mehmet Kursad

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Storing Hydrogen  

DOE Green Energy (OSTI)

Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

2010-05-31T23:59:59.000Z

322

Kinetic measurement and prediction of the hydrogen outgassing from the polycrystalline LiH/LiOH system  

DOE Green Energy (OSTI)

In this report, we present the use of temperature programmed reaction/decomposition (TPR) in the isoconversion mode to measure outgassing kinetics and to make kinetic prediction concerning hydrogen release from the polycrystalline LiH/LiOH system in the absence of any external H{sub 2}O source.

Dinh, L N; Grant, D M; Schildbach, M A; Smith, R A; Leckey, J H; Siekhaus, W J; Balazs, B; McLean II, W

2005-03-09T23:59:59.000Z

323

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

324

Generic Assessment for Optimized Reactor Coolant System Hydrogen of a Four-loop Westinghouse Pressurized Water Reactor  

Science Conference Proceedings (OSTI)

The Chemistry, Fuel Reliability, and Material Reliability Programs at the Electric Power Research Institute (EPRI) have developed a comprehensive elevated reactor coolant system (RCS) hydrogen program that is focused on qualification of plant operation with dissolved hydrogen concentration in the RCS greater than 50 standard cubic centimeters per kilogram (scc/kg) (1.38 in.3/lbm), up to 60 scc/kg (1.66 in.3/lbm), to mitigate primary water stress corrosion cracking (PWSCC) in nickel-based alloys. Currentl...

2011-12-23T23:59:59.000Z

325

DOE Hydrogen and Fuel Cells Program: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Hydrogen Delivery Hydrogen Storage Hydrogen Manufacturing Fuel Cells Applications/Technology Validation Safety Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Hydrogen Production Printable Version Hydrogen Production Hydrogen can be produced from diverse domestic feedstocks using a variety of process technologies. Hydrogen-containing compounds such as fossil fuels, biomass or even water can be a source of hydrogen. Thermochemical processes can be used to produce hydrogen from biomass and from fossil fuels such as coal, natural gas and petroleum. Power generated from sunlight, wind and nuclear sources can be used to produce hydrogen electrolytically. Sunlight alone can also drive photolytic production of

326

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

327

Hydrogen Sensor  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor for detectingquantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces...

328

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network (OSTI)

energy source. (Barrier V-Renewable Integration) Hydrogen storage & distribution system. (Barrier V fueled vehicle hydrogen dispensing system. Demonstrate hydrogen as an energy carrier. Investigate Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2

329

HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY SYSTEM SIMULATION AND ECONOMICS  

DOE Green Energy (OSTI)

A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

2009-05-01T23:59:59.000Z

330

Composite Data Products (CDPs) from the Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF)  

DOE Data Explorer (OSTI)

The Hydrogen Secure Data Center (HSDC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. NREL partners submit operational, maintenance, safety, and cost data to the HSDC on a regular basis. NREL's Technology Validation Team uses an internal network of servers, storage, computers, backup systems, and software to efficiently process raw data, complete quarterly analysis, and digest large amounts of time series data for data visualization. While the raw data are secured by NREL to protect commercially sensitive and proprietary information, individualized data analysis results are provided as detailed data products (DDPs) to the partners who supplied the data. Individual system, fleet, and site analysis results are aggregated into public results called composite data products (CDPs) that show the status and progress of the technology without identifying individual companies or revealing proprietary information. These CDPs are available from this NREL website: 1) Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration; 2) Early Fuel Cell Market Demonstrations; 3) Fuel Cell Technology Status [copied with editing from http://www.nrel.gov/hydrogen/facilities_secure_data_center.html].

331

Blending of hydrogen in natural gas distribution systems. Volume II. Combustion tests of blends in burners and appliances. Final report, June 1, 1976--August 30, 1977. [8, 11, 14, 20, 22, 25, and 31% hydrogen  

DOE Green Energy (OSTI)

The emerging ''hydrogen economy'' is a strong contender as one method to supplement or extend the domestic natural gas supply. This volume of the subject study ''Blending Hydrogen in Natural Gas Distribution Systems'' describes combustion studies to determine the maximum amount of hydrogen that can be blended in natural gas and utilized satisfactorily in typical appliances with no adjustment or conversion. Eleven pilot burners and twenty-three main burners typical of those in current use were operated on hydrogen-natural gas mixtures containing approximately 8, 11, 14, 20, 22, 25, and 31 percent, by volume, hydrogen. The eleven pilot burners and thirteen main burners were tested outside the appliance they were a part of. Ten main burners were tested in their respective appliances. Performance of the various burners tested are as follows: (1) Gas blends containing more than 6 to 11% hydrogen are the limiting mixtures for target type pilot burners. (2) Gas blends containing more than 20 to 22% hyrogen are the limiting mixtures for main burners operating in the open. (3) Gas blends containing more than 22 to 25% hydrogen are the limiting mixtures for main burners tested in appliances. (4) Modification of the orifice in target pilots or increasing the supply pressure to a minimum of 7 inches water column will permit the use of gas blends with 20% hydrogen.

None

1977-10-01T23:59:59.000Z

332

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

333

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

334

Hydrogen Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

335

TRITIUM MOVEMENT AND ACCUMULATION IN THE NGNP SYSTEM INTERFACE AND HYDROGEN PLANT  

DOE Green Energy (OSTI)

Tritium movement and accumulation in the Next Generation Nuclear Plant (NGNP) employing either a high-temperature electrolysis (HTE) process or a thermochemical water-splitting Sulfur-Iodine (SI) process to produce hydrogen is estimated by a numerical code, THYTAN, as a function of design, operational and material parameters. Estimated tritium concentrations in the hydrogen product and in the process chemicals of the hydrogen plant using the HTE process are slightly higher than the limit in drinking water defined by the U.S. Environmental Protection Agency (EPA) and in effluent at the boundary of an unrestricted area defined by the U.S. Nuclear Regulatory Commission (NRC), respectively. Estimated tritium concentrations in the NGNP using the SI hydrogen production process are significantly higher, and are largely affected by undetermined parameters (i.e., tritium permeability of heat exchanger materials, hydrogen concentration in the helium energy transport fluids, equilibrium constant of the tritium isotope exchange reaction between HT and H{sub 2}SO{sub 4}). These parameters should be measured or estimated in the near future, as should the tritium generation and release rate from the NGNP nuclear reactor core. Decreasing the tritium permeation rate between the primary and secondary heat transport circuits is an effective measure to decrease the tritium concentrations in the hydrogen product, hydrogen plant process chemicals, and the tertiary heat transport fluid.

Sherman, S

2008-03-20T23:59:59.000Z

336

Hydrogen Publications  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. ... These articles, of interest to the hydrogen community, can be viewed by clicking on the title. ...

337

Properties Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. PROPERTIES, ... For information on a PC database that includes hydrogen property information click here. ...

338

Hydrogen Generation by Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

339

Dynamic modeling efforts for system interface studies for nuclear hydrogen production.  

DOE Green Energy (OSTI)

System interface studies require not only identifying economically optimal equipment configurations, which involves studying mainly full power steady-state operation, but also assessing the operability of a design during load change and startup and assessing safety-related behavior during upset conditions. This latter task is performed with a dynamic simulation code. This report reviews the requirements of such a code. It considers the types of transients that will need to be simulated, the phenomena that will be present, the models best suited for representing the phenomena, and the type of numerical solution scheme for solving the models to obtain the dynamic response of the combined nuclear-hydrogen plant. Useful insight into plant transient behavior prior to running a dynamics code is obtained by some simple methods that take into account component time constants and energy capacitances. Methods for determining reactor stability, plant startup time, and temperature response during load change, and tripping of the reactor are described. Some preliminary results are presented.

Vilim, R. B.; Nuclear Engineering Division

2007-08-15T23:59:59.000Z

340

Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System  

DOE Green Energy (OSTI)

The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to ?-Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

Eric W. McFarland

2011-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Molecular hydrogen in damped Ly-alpha systems: clues to interstellar physics at high-redshift  

E-Print Network (OSTI)

In order to interpret H2 (molecular hydrogen) quasar absorption line observations of damped Ly-alpha systems (DLAs) and sub-DLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of gas by using H2 data. Using H2 excitation data for DLA with H2 detections, we derive a gas density 1.5 gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and sub-DLAs with H2 fractions less than ~ 10^-6 are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction (gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase and the large variations of H2 abundance for \\kappa > 1/30. We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.

H. Hirashita; A. Ferrara

2004-11-10T23:59:59.000Z

342

ENVIRONMENTAL REACTIVITY OF SOLID-STATE HYDROGEN SYSTEMS: FUNDAMENTAL TESTING AND EVALUATION  

DOE Green Energy (OSTI)

In order to enable the commercial acceptance of solid state hydrogen storage materials and systems it is important to understand the risks associated with the environmental exposure of various materials. In some instances, these materials are sensitive to the environment surrounding the material and the behavior is unique and independent to each material. The development of testing procedures to evaluate a material's behavior with different environmental exposures is a critical need. In some cases material modifications may be needed in order to reduce the risk of environmental exposure. We have redesigned two standardized UN tests for clarity and exactness; the burn rate and self-heating tests. The results of these and other UN tests are shown for ammonia borane, NH{sub 3}BH{sub 3}, and alane, AlH{sub 3}. The burn rate test showed a strong dependence on the preparation method of aluminum hydride as the particle size and trace amounts of solvent greatly influence the test results. The self-heating test for ammonia borane showed a failed test as low as 70 C in a modified cylindrical form. Finally, gas phase calorimetry was performed and resulted in an exothermic behavior within an air and 30%RH environment.

James, C.; Cortes-Concepcion., J; Anton, D.; Tamburello, D.

2010-12-13T23:59:59.000Z

343

Hanford Waste Vitrification Plant hydrogen generation study: Formation of ammonia from nitrate and nitrate in hydrogen generating systems  

DOE Green Energy (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed for the Departrnent of Energy (DOE) to immobilize pretreated highly radioactive wastes in glass for permanent disposal in the HWVP, formic acid is added to the waste before vitrification to adjust glass redox and melter feed rheology. The operation of the glass melter and durability of the glass are affected by the glass oxidation state. Formation of a conductive metallic sludge in an over-reduced melt can result in a shortened melter lifetime. An over-oxidized melt may lead to foaming and loss of ruthenium as volatile RuO{sub 4}. Historically, foaming in the joule heated ceramic melter has been attributed to gas generation in the melt which is controlled by instruction of a reductant such as formic acid into the melter feed. Formic acid is also found to decrease the melter feed viscosity thereby facilitating pumping. This technical report discusses the noble metal catalyzed formic acid reduction of nitrite and/or nitrate to ammonia, a problem of considerable concern because of the generation of a potential ammonium nitrate explosion hazard in the plant ventilation system.

King, R.B.; Bhattacharyya, N.K.

1996-02-01T23:59:59.000Z

344

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Chicago team. On-board hydrogen storage is critical to the development of future high energy efficiency transportation technologies, such as hydrogen-powered fuel...

345

Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems  

E-Print Network (OSTI)

criteria.htmlS. Accessed on NRC, 1991. Rethinking the OzonePress, Washington, DC. NRC, 2004. The Hydrogen Economy:hours of the summer months (NRC, 1991). In summary the

Wang, Guihua; Ogden, Joan M; Chang, Daniel P.Y.

2007-01-01T23:59:59.000Z

346

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

347

Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Mark Paster Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technology Program Hydrogen Production and Delivery Team Hydrogen Delivery Goal Hydrogen Delivery Goal Liquid H 2 & Chem. Carriers Gaseous Pipeline Truck Hydrides Liquid H 2 - Truck - Rail Other Carriers Onsite reforming Develop Develop hydrogen fuel hydrogen fuel delivery delivery technologies that technologies that enable the introduction and enable the introduction and long long - - term viability of term viability of hydrogen as an energy hydrogen as an energy carrier for transportation carrier for transportation and stationary power. and stationary power. Delivery Options * End Game - Pipelines - Other as needed * Breakthrough Hydrogen Carriers * Truck: HP Gas & Liquid Hydrogen

348

Enabling the Hydrogen Economy  

Science Conference Proceedings (OSTI)

... Act of 2002 to develop research and standards for gas pipeline integrity, safety ... for materials used in hydrogen systems (eg, pipelines) developed in ...

2010-10-05T23:59:59.000Z

349

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Hydrogen Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Donna Heimiller (2005). For more information on hydrogen resources, access the Hydrogen Energy Analysis and Tools site. For Geographic Information System (GIS) hydrogen resource...

350

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network (OSTI)

of battery and hydrogen energy storage systems integratedenergy future: comparing hydrogen and electricity transmission, storagethe greater energy storage and quick refueling of hydrogen

Yang, Christopher

2008-01-01T23:59:59.000Z

351

Phase 1 feasibility study of an integrated hydrogen PEM fuel cell system. Final report  

DOE Green Energy (OSTI)

Evaluated in the report is the use of hydrogen fueled proton exchange membrane (PEM) fuel cells for devices requiring less than 15 kW. Metal hydrides were specifically analyzed as a method of storing hydrogen. There is a business and technical part to the study that were developed with feedback from each other. The business potential of a small PEM product is reviewed by examining the markets, projected sales, and required investment. The major technical and cost hurdles to a product are also reviewed including: the membrane and electrode assembly (M and EA), water transport plate (WTP), and the metal hydrides. It was concluded that the best potential stationary market for hydrogen PEM fuel cell less than 15 kW is for backup power use in telecommunications applications.

Luczak, F.

1998-03-01T23:59:59.000Z

352

Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant  

DOE Green Energy (OSTI)

Tritium movement and accumulation in a Next Generation Nuclear Plant with a hydrogen plant using a high temperature electrolysis process and a thermochemical water splitting sulfur iodine process are estimated by the numerical code THYTAN as a function of design, operational, and material parameters. Estimated tritium concentrations in the hydrogen product and in process chemicals in the hydrogen plant of the Next Generation Nuclear Plant using the high temperature electrolysis process are slightly higher than the drinking water limit defined by the U.S. Environmental Protection Agency and the limit in the effluent at the boundary of an unrestricted area of a nuclear plant as defined by the U.S. Nuclear Regulatory Commission. However, these concentrations can be reduced to within the limits through use of some designs and modified operations. Tritium concentrations in the Next Generation Nuclear Plant using the Sulfur-Iodine Process are significantly higher as calculated and are affected by parameters with large uncertainties (i.e., tritium permeability of the process heat exchanger, the hydrogen concentration in the heat transfer and process fluids, the equilibrium constant of the isotope exchange reaction between HT and H2SO4). These parameters, including tritium generation and the release rate in the reactor core, should be more accurately estimated in the near future to improve the calculations for the NGNP using the Sulfur-Iodine Process. Decreasing the tritium permeation through the heat exchanger between the primary and secondary circuits may be an an effective measure for decreasing tritium concentrations in the hydrogen product, the hydrogen plant, and the tertiary coolant.

Hirofumi Ohashi; Steven R. Sherman

2007-06-01T23:59:59.000Z

353

Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)  

DOE Green Energy (OSTI)

The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

Truitt, R.W.

1994-08-01T23:59:59.000Z

354

A Design Tool for the Optimization of Stand-alone Electric Power Systems with Combined Hydrogen-Battery Energy Storage  

E-Print Network (OSTI)

A simulation design tool was developed to investigate the design and performance of stand-alone distributed renewable electric power systems. The temporal mismatch between energy production and use results in the inclusion of energy storage devices that can become an important and expensive component of these systems. To properly size all system components, a time response model with one hour resolution was developed. Specifically, the model developed here simulates one year of grid operation with the constraint that it be "stand-alone" - that is, that there be no net change in stored energy. With two storage components, hydrogen and batteries, the system size was calculated as a function of the battery storage size, and the total system was costed with battery size as the parameter. Calculations were performed for the specific case of residential use in Yuma, Arizona. In addition to determining the size and cost of this grid, it was found that the system costs using a combination of h...

Steven Vosen Combustion; S. R. Vosen; Microfiche Copy Ao; Steven R. Vosen

1997-01-01T23:59:59.000Z

355

Indirect measurements of hydrogen: The deficit method for a many-component system  

DOE Green Energy (OSTI)

We have developed a simple technique for determining hydrogen atomic fraction from the ion backscattering spectrometry (IBS) signals of the remaining species. This technique uses the surface heights of various IBS signals in the form of a linear matrix equation. We apply this technique to in situ analysis of ion-beam-induced densification of sol-gel zirconia thin films, where hydrogen is the most volatile species during irradiation. Attendant errors are discussed with an emphasis on stopping powers and Bragg`s rule.

Levine, T.E. [Cornell Univ., Ithaca, NY (United States). Dept. of Materials Science and Engineering; Yu, Ning; Kodali, P.; Walter, K.C.; Nastasi, M.; Tesmer, J.R.; Maggiore, C.J. [Los Alamos National Lab., NM (United States); Mayer, J.W. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemical, Bio and Materials Engineering

1995-05-01T23:59:59.000Z

356

Use of Federated Object Modeling to Develop a Macro-System Model for the U.S. Department of Energy's Hydrogen Program; Preprint  

DOE Green Energy (OSTI)

DOE is working on changing transportation fuel to hydrogen. To assist in that effort, we are developing a macro-system model that will link existing or developmental component models together.

Ruth, M. F.; Vanderveen, K. B.; Sa, T. J.

2006-07-01T23:59:59.000Z

357

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

358

Hydrogen Highways  

E-Print Network (OSTI)

Joan Ogden, The Hope for Hydrogen, Issues in Science andand James S. Cannon. The Hydrogen Energy Transition: MovingHydrogen Highways BY TIMOTHY LIPMAN H 2 T H E S TAT E O F C

Lipman, Timothy

2005-01-01T23:59:59.000Z

359

Malm Hydrogen and CNG/Hydrogen filling station and Hythane bus project  

E-Print Network (OSTI)

by Vandenborre Hydrogen Systems in Belgium, a subsidiary of Stuart Energy, Canada now owned by Hydrogenics ltd % Fig 1. Hydrogen storage pressure tanks Fig 2. Hydrogen storage The above pictures show the compressed hydrogen storage at the site. The hydrogen storage is placed closed to the electrolyser unit. The pressure

360

Phase II Final Project Report SBIR Project: "A High Efficiency PV to Hydrogen Energy System"  

Science Conference Proceedings (OSTI)

The innovative research conducted for this project contributed greatly to the understanding of generating low-cost hydrogen from solar energy. The projects research identified two highly leveraging and complementary pathways. The first pathway is to dramatically increase the efficiency of converting sunlight into electricity. Improving solar electric conversion efficiency directly increases hydrogen production. This project produced a world record efficiency for silicon solar cells and contributed to another world record efficiency for a solar concentrator module using multijunction solar cells. The projects literature review identified a second pathway in which wasted heat from the solar concentration process augments the electrolysis process generating hydrogen. One way to do this is to use a heat mirror that reflects the heat-producing infrared and transmits the visible spectrum to the solar cells; this also increases solar cell conversion efficiency. An economic analysis of this concept confirms that, if long-term concentrator photovoltaic (CPV) and solid-oxide electrolyzer cost goals can be achieved, hydrogen will be produced from solar energy cheaper than the cost of gasoline. The potential public benefits from this project are significant. The project has identified a potential energy source for the nations future electricity and transportation needs that is entirely home grown and carbon free. As CPV enter the nations utility markets, the opportunity for this approach to be successful is greatly increased. Amonix strongly recommends further exploration of this projects findings.

Slade, A; Turner, J; Stone, K; McConnell, R

2008-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Micro-Mixing Lean-Premix System for Ultra-Low Emission Hydrogen/Syngas Combustion  

DOE Green Energy (OSTI)

The focus of this project was to develop the next generation of fuel injection technologies for environmentally friendly, hydrogen syngas combustion in gas turbine engines that satisfy DOE's objectives of reducing NOx emissions to 3 ppm. Building on Parker Hannifin's proven Macrolamination technology for liquid fuels, Parker developed a scalable high-performing multi-point injector that utilizes multiple, small mixing cups in place of a single conventional large-scale premixer. Due to the small size, fuel and air mix rapidly within the cups, providing a well-premixed fuel-air mixture at the cup exit in a short time. Detailed studies and experimentation with single-cup micro-mixing injectors were conducted to elucidate the effects of various injector design attributes and operating conditions on combustion efficiency, lean stability and emissions and strategies were developed to mitigate the impact of flashback. In the final phase of the program, a full-scale 1.3-MWth multi-cup injector was built and tested at pressures from 6.9bar (100psi) to 12.4bar (180psi) and flame temperatures up to 2000K (3150 F) using mixtures of hydrogen and natural gas as fuel with nitrogen and carbon dioxide as diluents. The injector operated without flash back on fuel mixtures ranging from 100% natural gas to 100% hydrogen and emissions were shown to be insensitive to combustor pressure. NOx emissions of 3-ppm were achieved at a flame temperature of 1750K (2690 F) when operating on a fuel mixture containing 50% hydrogen and 50% natural gas by volume with 40% nitrogen dilution and 1.5-ppm NOx was achieved at a flame temperature of 1680K (2564 F) using only 10% nitrogen dilution. NOx emissions of 3.5-ppm were demonstrated at a flame temperature of 1730K (2650 F) with only 10% carbon dioxide dilution. Finally, 3.6-ppm NOx emissions were demonstrated at a flame temperature over 1600K (2420 F) when operating on 100% hydrogen fuel with 30% carbon dioxide dilution. Superior operability was demonstrated for the hydrogen-natural gas fuel. The micro-mixing fuel injectors show great promise for use in future gas turbine engines operating on hydrogen, syngas or other fuel mixtures of various compositions, supporting the Department of Energy goals related to increased energy diversity while reducing greenhouse gases.

Erlendur Steinthorsson; Brian Hollon; Adel Mansour

2010-06-30T23:59:59.000Z

362

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

363

Hydrogen sensor  

DOE Patents (OSTI)

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

364

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

365

DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION  

DOE Green Energy (OSTI)

The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

Professor Richard Eisenberg

2012-07-18T23:59:59.000Z

366

Energy Dense, Lighweight, Durable, Systems for Storage and Delivery of Hydrogen  

Science Conference Proceedings (OSTI)

The work presented in this report summarizes the current state-of-the-art in on-board storage on compressed gaseous hydrogen as well as the development of analysis tools, methods, and theoretical data for devising high performance design configurations for hydrogen storage. The state-of-the-art in the area of compressed hydrogen storage reveals that the current configuration of the hydrogen storage tank is a seamless cylindrical part with two end domes. The tank is composed of an aluminum liner overwrapped with carbon fibers. Such a configuration was proved to sustain internal pressures up to 350 bars (5,000 psi). Finite-element stress analyses were performed on filament-wound hydrogen storage cylindrical tanks under the effect of internal pressure of 700 bars (10,000 psi). Tank deformations, stress fields, and intensities induced at the tank wall were examined. The results indicated that the aluminum liner can not sustain such a high pressure and initiate the tank failure. Thus, hydrogen tanks ought to be built entirely out of composite materials based on carbon fibers or other innovative composite materials. A spherical hydrogen storage tank was suggested within the scope of this project. A stress reduction was achieved by this change of the tank geometry, which allows for increasing the amount of the stored hydrogen and storage energy density. The finite element modeling of both cylindrical and spherical tank design configurations indicate that the formation of stress concentration zones in the vicinity of the valve inlet as well as the presence of high shear stresses in this area. Therefore, it is highly recommended to tailor the tank wall design to be thicker in this region and tapered to the required thickness in the rest of the tank shell. Innovative layout configurations of multiple tanks for enhanced conformability in limited space have been proposed and theoretically modeled using 3D finite element analysis. Optimum tailoring of fiber orientations and lay-ups are needed to relieve the high stress in regions of high stress concentrations between intersecting tanks/ tank sections. Filament winding process is the most suitable way for producing both cylindrical and spherical hydrogen storage tanks with high industrial quality. However, due to the unavailability of such equipment at West Virginia University and limited funding, the composite structures within this work were produced by hand layup and bag molding techniques. More advanced manufacturing processes can significantly increase the structural strength of the tank and enhances its performance and also further increase weight saving capabilities. The concept of using a carbon composite liner seems to be promising in overcoming the low strength of the aluminum liner at internal high pressures. This could be further enhanced by using MetPreg filament winding to produce such a liner. Innovative designs for the polar boss of the storage tanks and the valve connections are still needed to reduce the high stress formed in these zones to allow for the tank to accommodate higher internal pressures. The Continuum Damage Mechanics (CDM) approach was applied for fault-tolerant design and efficient maintenance of lightweight automotive structures made of composite materials. Potential effects of damage initiation and accumulation are formulated for various design configurations, with emphasis on lightweight fiber-reinforced composites. The CDM model considers damage associated with plasticity and fatigue.

Jacky Pruez; Samir Shoukry; Gergis William; Thomas Evans; Hermann Alcazar

2008-12-31T23:59:59.000Z

367

Hydrogen Storage Technologies Hydrogen Delivery  

E-Print Network (OSTI)

Hydrogen Storage Technologies Roadmap Hydrogen Delivery Technical Team Roadmap June 2013 #12;This.................................................................................. 13 6. Hydrogen Storage and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, nonbinding, and nonlegal

368

DOE Hydrogen Analysis Repository: Hydrogen Analysis Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Early Market Transition of Fuel Cell Vehicles Macro-System Model Stranded Biogas Decision Tool for Fuel Cell Co-Production Water for Hydrogen Pathways 2010 A Portfolio...

369

Hydrogen energy assessment  

SciTech Connect

The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

Salzano, F J; Braun, C [eds.

1977-09-01T23:59:59.000Z

370

National Hydrogen Association Conference - March 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

including: - ICE's burning advanced fuels, such as 100% hydrogen & hydrogenCNG-blended (HCNG) fuels - Hybrid electric, pure electric, & hydraulic drive systems APS...

371

NIST: Neutron Tomography of Hydrogen Storage Bed  

Science Conference Proceedings (OSTI)

... Future hydrogen fuel cell vehicles will require hydrogen storage vessels that ... will require understanding the coupled heat and mass transport system ...

2013-07-23T23:59:59.000Z

372

Status & Direction for Onboard Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Economy Manufacturing for the Hydrogen Economy Status & Direction for Onboard Hydrogen Storage Andy Abele Quantum Fuel Systems Technologies Worldwide, Inc. July 2005 This...

373

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

374

Fuel Cell Technologies Office: Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

375

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

376

Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

DOE Green Energy (OSTI)

The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank.

McClees, J.; Truitt, R.W.

1994-10-12T23:59:59.000Z

377

MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS  

DOE Green Energy (OSTI)

It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.

James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

2009-04-01T23:59:59.000Z

378

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

379

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006* U.S. Department of Energy Hydrogen Program *Revised June, 2008 #12;Table of Contents Introduction .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems

380

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through December 1999.

NONE

2000-01-01T23:59:59.000Z

382

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through June 1998.

NONE

1998-07-01T23:59:59.000Z

383

Engineering development of ceramic membrane reactor system for converting natural gas to hydrogen and synthesis gas for liquid transportation fuels  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through April 1998.

NONE

1998-05-01T23:59:59.000Z

384

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through January 2000.

NONE

2000-02-01T23:59:59.000Z

385

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through October 1999.

NONE

1999-11-01T23:59:59.000Z

386

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through November 1999.

NONE

1999-12-01T23:59:59.000Z

387

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through February 1999.

NONE

1999-03-01T23:59:59.000Z

388

ENGINEERING DEVELOPMENT OF CERAMIC MEMBRANE REACTOR SYSTEM FOR CONVERTING NATURAL GAS TO HYDROGEN AND SYNTHESIS GAS FOR LIQUID TRANSPORTATION FUELS  

DOE Green Energy (OSTI)

The objective of this contract is to research, develop and demonstrate a novel ceramic membrane reactor system for the low-cost conversion of natural gas to synthesis gas and hydrogen for liquid transportation fuels: the ITM Syngas process. Through an eight-year, three-phase program, the technology will be developed and scaled up to obtain the technical, engineering, operating and economic data necessary for the final step to full commercialization of the Gas-to-Liquids (GTL) conversion technology. This report is a summary of activities through September 1999.

NONE

1999-10-01T23:59:59.000Z

389

Validation of KENO V.a for highly enriched uranium systems with hydrogen and/or carbon moderation  

SciTech Connect

This paper describes the validation in accordance with ANSI/ANS-8.1-1983(R1988) of KENO V.a using the 27-group ENDF/B-IV cross-section library for systems containing highly-enriched uranium, carbon, and hydrogen and for systems containing highly-enriched uranium and carbon with high carbon to uranium (C/U) atomic ratios. The validation has been performed for two separate computational platforms: an IBM 3090 mainframe and an HP 9000 Model 730 workstation, both using the Oak Ridge Y-12 Plant Nuclear Criticality Safety Software (NCSS) code package. Critical experiments performed at the Oak Ridge Critical Experiments Facility, in support of the Rover reactor program, and at the Pajarito site at Los Alamos National Laboratory were identified as having the constituents desired for this validation as well as sufficient experimental detail to allow accurate construction of KENO V.a calculational models. Calculated values of k{sub eff} for the Rover experiments, which contain uranium, carbon, and hydrogen, are between 1.0012 {+-} 0.0026 and 1.0245 {+-} 0.0023. Calculation of the Los Alamos experiments, which contain uranium and carbon at high C/U ratios, yields values of k{sub eff} between 0.9746 {+-} 0.0028 and 0.9983 {+-} 0.0027. Safety criteria can be established using this data for both types of systems.

Elliott, E.P.; Vornehm, R.G. [Oak Ridge Y-12 Plant, TN (United States); Dodds, H.L. Jr. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.

1993-06-04T23:59:59.000Z

390

Renewable Electrolysis Integrated Systems Development and Testing - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin Harrison National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-7091 Email: Kevin.Harrison@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contributors: Chris Ainscough and Michael Peters Subcontractor: Marc Mann, Spectrum Automation Controls, Arvada, CO Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Validate stack and system efficiency and contributing * sub-system performance of DOE-awarded advanced electrolysis systems Collaborate with industry to optimize and demonstrate *

391

Code for Hydrogen Hydrogen Pipeline  

E-Print Network (OSTI)

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

392

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

393

Hydrogen Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 Background The development and promulgation of codes and standards are essential if hydrogen is to become a significant energy carrier and fuel because codes and standards are critical to establishing a market-receptive environment for commercializing hydrogen-based products and systems. The Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL), with the help of the National Hydrogen Association (NHA) and other key stakeholders, are coordinating a collaborative national effort by government and industry to prepare, review, and promulgate hydrogen codes and standards needed to expedite hydrogen infrastructure development. The

394

Method for heavy-water extraction from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange system  

SciTech Connect

A method is disclosed for heavy-water extraction from nonelectrolytic hydrogen streams using a modified combined electrolysis and catalytic exchange-heavy water process (Cecehwp). The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from such nonelectrolytic hydrogen stream and partly from an electrolytic hydrogen stream so as to enrich the feed water with deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium enriched water to an electrolyzer wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column.

Butler, J.P.; Hammerli, M.; Leroy, R.L.

1980-09-30T23:59:59.000Z

395

Hydrogen Conference: Workshop Proceedings  

Science Conference Proceedings (OSTI)

Hydrogen is currently a major chemical/fuel with long-term energy system benefits that may impact the industry's physical and economic well-being. EPRI's recent hydrogen conference concluded that to be competitive, the production cost must take into account environmental and end-use efficiency benefits.

1989-10-20T23:59:59.000Z

396

First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems  

SciTech Connect

The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.

J. Karl Johnson

2011-05-20T23:59:59.000Z

397

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

398

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

399

Accelerating Acceptance of Fuel Cell Backup Power Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1799 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Subcontractor: IdaTech LLC, Bend, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the performance of 20 low-temperature fuel * cell systems at two locations Optimize the maintenance of the systems and data * collection practices The project is intended to increase distributed power * generation, improve reliability and efficiency of

400

FCT Hydrogen Delivery: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Delivery: Current Technology on Facebook Tweet about FCT Hydrogen Delivery: Current Technology on Twitter Bookmark FCT Hydrogen Delivery: Current Technology on Google Bookmark FCT Hydrogen Delivery: Current Technology on Delicious Rank FCT Hydrogen Delivery: Current Technology on Digg Find More places to share FCT Hydrogen Delivery: Current Technology on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Production Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology Today, hydrogen is transported from the point of production to the point of use via pipeline, over the road in cryogenic liquid trucks or gaseous tube

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Peer Review of the Hydrogen Program Hydrogen Briefing  

E-Print Network (OSTI)

) Program Transferred from NSF to DOE Energy Storage Program in 1978 Hydrogen R&D Program becomes budget. Hydrogen storage system that can provide 6% by weight hydrogen and 250 ­ 400 miles of range. Validate-fossil sources. 3. Initiated a number of collaborations with Wind, CSP and DER programs using energy storage. 4

402

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network (OSTI)

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation Standards Relevant Design and Operating Standards ANSI/ASME B31.8 49 CFR 192 CGA H2 Pipeline Standard (in

403

Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials  

DOE Green Energy (OSTI)

This is the final report of our program on hydrogen storage in thin film and nanoparticle metal hydrides.

Bruce M. Clemens

2010-08-26T23:59:59.000Z

404

Wind Energy and Production of Hydrogen and Electricity -- Opportunities for Renewable Hydrogen: Preprint  

DOE Green Energy (OSTI)

An assessment of options for wind/hydrogen/electricity systems at both central and distributed scales provides insight into opportunities for renewable hydrogen.

Levene, J.; Kroposki, B.; Sverdrup, G.

2006-03-01T23:59:59.000Z

405

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

406

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

electric drive systems for vehicles, demonstrated its V2G system with the companys Gen-2 AC150 drivetrain at the Electric Transportation Industry

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

407

Selective Catalytic Oxidation of Hydrogen Sulfide--Systems Analysis for IGCC Applications  

SciTech Connect

Selective catalytic oxidation of hydrogen sulfide (SCOHS) has been evaluated conceptually for IGCC applications, and the theoretical limits of reaction performance, process performance, and economic potential in IGCC have been estimated. Syngas conditions that have high partial pressures of total sulfur result in substantial liquid sulfur retention within the catalyst bed, with relatively complex processing being required. Applications that have much lower total sulfur partial pressure in the process gas might permit SCOHS operation under conditions where little liquid sulfur is retained in the catalyst, reducing the processing complexity and possibly improving the desulfurization performance. The results from our recent IGCC process evaluations using the SCOHS technology and conventional syngas cleaning are presented, and alternative SCOHS process configurations and applications that provide greater performance and cost potential are identified.

Newby, R.A.; Keairns, D.L.; Alvin, M.A.

2006-09-01T23:59:59.000Z

408

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

409

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

410

Hydrogen Radialysis  

INL scientists have invented a process of forming chemical compositions, such as a hydrides which can provide a source of hydrogen. The process exposes the chemical composition decaying radio-nuclides which provide the energy to with a hydrogen source ...

411

Hydrogen Safety  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet, intended for a non-technical audience, explains the basic properties of hydrogen and provides an overview of issues related to the safe use of hydrogen as an energy carrier.

412

Hydrogen wishes  

Science Conference Proceedings (OSTI)

Hydrogen Wishes, presented at MIT's Center for Advanced Visual Studies, explores the themes of wishes and peace. It dramatizes the intimacy and power of transforming one's breath and vocalized wishes into a floating sphere, a bubble charged with hydrogen. ...

Winslow Burleson; Paul Nemirovsky; Dan Overholt

2003-07-01T23:59:59.000Z

413

Hydrogen rotation-vibration oscillator  

DOE Patents (OSTI)

A laser system is described wherein molecular species of hydrogen and hydrogen isotopes are induced to oscillate on rotational-vibrational levels by subjecting the hydrogen to a transverse beam of electrons of a narrowly defined energy between about 1 and 5 eV, thereby producing high intensity and high energy output. (Official Gazette)

Rhodes, C.K.

1974-01-29T23:59:59.000Z

414

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

415

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory  

E-Print Network (OSTI)

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory Presentation at thePresentation at the Hydrogen Storage Grand ChallengeHydrogen Storage expertise to hydrogen storage, fuel cells, and system integration issues ­Novel membranes and other

416

Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems  

Science Conference Proceedings (OSTI)

A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method'?s potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H{sub 2} dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH{sub 4}){sub 4} stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH{sub 4}){sub 4} ligand complex in SiO{sub 2} aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH{sub 4}){sub 2} and Mg(BH{sub 4}){sub 2} in nano-frameworks did not improve their H{sub 2} absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

Xia Tang , Susanne M. Opalka , Daniel A. Mosher, Bruce L. Laube, Ronald J. Brown, Thomas H. Vanderspurt, Sarah Arsenault, Robert Wu, Jamie Strickler, Ewa. Ronnebro, Tim. Boyle and Joseph Cordaro

2010-06-30T23:59:59.000Z

417

Work plan for the Hydrogen Mitigation Test (HMT) rotation motor heater system  

DOE Green Energy (OSTI)

Workplan to design, fabricate, and install a heater system and cover hood for the HMT rotation motor and gearbox.

Vargo, G.F. Jr.

1995-02-16T23:59:59.000Z

418

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

419

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

420

Hydrogenation apparatus  

DOE Patents (OSTI)

Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

Friedman, J.; Oberg, C.L.; Russell, L.H.

1981-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "ovonic hydrogen systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE Hydrogen Analysis Repository: Hydrogen (H2) Co-Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated with Stationary Fuel Cell Systems Project Summary Full Title: Thermodynamic, Economic, and Environmental Modeling of Hydrogen (H2) Co-Production Integrated...

422

DOE Hydrogen Analysis Repository: Impact of Renewables on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

in terms of contributing factors Technologies Considered: Biomass; wind; photovoltaic (PV) Models Used: NASA's Earth Observing System; TIAX Hydrogen Logistics Model Outputs:...

423

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

424

Validation of an Integrated System for a Hydrogen-Fueled Power Park  

E-Print Network (OSTI)

analysis #12;5 Base System 50-200 kW reformer system ­ 100 kW system chosen for base case ­ Steam Methane Reforming ­ Pressure swing adsorption ­ PEM fuel cells 3 buildings located 200 yards each from the central reformer with equal loads All waste heat can be utilized 3-5 kW commercially available PEM fuel cells

425

Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation  

E-Print Network (OSTI)

concepts for the distributed generation of electrical powerthat combines distributed generation of electrical power andresource (DER) or distributed generation systems include

Lipman, Timothy; Shaheen, Susan

2005-01-01T23:59:59.000Z

426

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jamie D. Holladay (Primary Contact), Kriston P. Brooks, Ewa C.E. Rönnebro, Kevin L. Simmons and Mark R. Weimar. Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 371-6692 Email: Jamie.Holladay@pnnl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-AC05-76RL01830

427

Florida Hydrogen Initiative  

SciTech Connect

The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cel

Block, David L

2013-06-30T23:59:59.000Z

428

Use of federated object modeling to develop a macro-system model for the U.S. Department of Energy's hydrogen program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is working on technology that could change our transportation fuel from gasoline to hydrogen. To assist in that effort, we are developing a macro-system model (MSM) that will link existing or developmental component ...

Mark F. Ruth; Keith B. Vanderveen; Timothy J. Sa

2006-12-01T23:59:59.000Z

429

In situ spectroscopic detection of SMSI effect in a Ni/CeO2 system: hydrogen-induced burial and dig out of metallic nickel  

SciTech Connect

In situ APPES technique demonstrates that the strong metal support interaction effect (SMSI) in the Ni-ceria system is associated with the decoration and burial of metallic particles by the partially reduced support, a phenomenon reversible by evacuation at high temperature of the previously absorbed hydrogen.

Caballero, Alfonso; Holgado, Juan P.; Gonzalez-delaCruz, Victor M.; Habas, Susan e.; Herranz, Tirma; Salmeron, Miquel

2010-06-29T23:59:59.000Z

430

Modeling of Plasma-Assisted Conversion of Liquid Ethanol into Hydrogen Enriched Syngas in the Nonequilibrium Electric Discharge Plasma-Liquid System  

E-Print Network (OSTI)

In this work we report recent results of our experimental and theoretical studies related to plasma conversion of liquid ethanol into hydrogen-enriched syngas in the plasma-liquid system with the electric discharge in a gas channel with liquid wall using available diagnostics and numerical modeling.

Levko, Dmitry; Naumov, Vadim; Chernyak, Valery; Yukhymenko, Vitaly; Prysiazhnevych, Irina; Olszewski, Sergey

2008-01-01T23:59:59.000Z

431

Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be held July 13-14, 2005 Washington, DC July 7, 2005 Introduction In his...

432