Powered by Deep Web Technologies
Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Course Overview Pump Systems Matter Optimization | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Course Overview Pump Systems Matter Optimization Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve...

2

Overview of Pump Systems Matter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PumpSystemsMatter.pdf More Documents & Publications Summary of 2011 Accomplishments HI & PSM Course Overview Pump Systems Matter Optimization Hydraulic Institute Member Benefits...

3

Pump Systems Matter Mission and Vision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

issionofPumpSystemsMatter.pdf More Documents & Publications Overview of Pump Systems Matter Hydraulic Institute Member Benefits Course Overview Pump Systems Matter Optimization...

4

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

5

Match Pumps to System Requirements  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency matching pumps to system requirements

2005-10-01T23:59:59.000Z

6

Systems Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Program Partnership Program Presented to the Nuclear Energy Advisory Committee Paul Lisowski Deputy Assistant Secretary for Fuel Cycle Technology/GNEP Deputy Program Manager Office of Nuclear Energy U.S. Department of Energy April 21, 2008 April 21, 2007 NEAC GNEP Overview 2 Outline The Global Nuclear Energy Partnership Program - GNEP Program overview - Major Program Accomplishments - Summary Industry Input - Dan Stout - DOE Research and Development Program - Phillip Finck INL International Program - Ed McGinnis - DOE April 21, 2007 NEAC GNEP Overview 3 World energy demand is growing substantially, especially in developing nations World energy consumption is predicted by the Energy Information Administration to increase by 57 percent through 2030. Total energy consumption in non-

7

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

8

Hanford System Overview  

CHG0612-16.0 CH2M-32399-VA Hanford System Overview Hanford System Overview January 23-24, 2007 Paul Certa Tom Crawford Aluminum and Chromium Leaching for

9

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

10

Absorption heat pump system  

DOE Patents (OSTI)

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

11

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

Drumheller, Douglas S. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

12

Well-pump alignment system  

DOE Patents (OSTI)

An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

Drumheller, D.S.

1998-10-20T23:59:59.000Z

13

Absorption heat pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

1984-01-01T23:59:59.000Z

14

Pump Systems Optimization: Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Optimization: Energy Efficiency and Bottom-Line Savings Host this one-day course to help participants learn how to identify and reduce hidden operation and energy costs. Participants will: * Identify energy savings * Increase profitability * Increase reliability * Earn seven PDH credits Attendees of the "Pump Systems Optimization" one-day course will gain valuable new skills to help them improve centrifugal pump system efficiency to reduce energy and operating costs while earning seven professional development hour (PDH) credits from the Hydraulic Institute. Topics covered include:* * Why Efficient Pump Systems Are Important

15

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

16

Pumped oil feed systems for rotary vacuum pumps  

Science Conference Proceedings (OSTI)

Pumped oil feed systems developed by the authors and their colleagues provide positive lubrication under all inlet pressure conditions

H. Wycliffe; B. D. Power

1981-01-01T23:59:59.000Z

17

Heat Pump Systems  

Energy.gov (U.S. Department of Energy (DOE))

Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate...

18

Pump control system for windmills  

DOE Patents (OSTI)

A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

Avery, Don E. (45-437 Akimala St., Honolulu, HI 96744)

1983-01-01T23:59:59.000Z

19

Ground-coupled heat pump systems: a pumping analysis.  

E-Print Network (OSTI)

??Ground-coupled heat pump (GCHP) systems use the ground as a heat source or sink that absorbs heat from or rejects heat to the soil, respectively; (more)

Mays, Cristin Jean

2012-01-01T23:59:59.000Z

20

Pump Systems Matter Mission and Vision:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Matter Mission and Vision: Pump Systems Matter Mission and Vision: Pump Systems Matter(tm) (PSM) places a primary focus on pump systems education and outreach and addresses energy savings and total cost of pump ownership. Vision: Pump Systems Matter initiative assists North American pump users gain a more competitive business advantage through strategic, broad-based energy management and pump system performance optimization. Mission: To provide the marketplace with tools and collaborative opportunities to integrate pump system performance optimization and efficient energy management practices into normal business operations. Essential Elements: * Build awareness of the benefits of systems optimization and pump system life cycle cost at the management, production and technical levels of companies throughout the supply chain.

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Heat Pump System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

22

North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement  

Science Conference Proceedings (OSTI)

A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Gigure, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

2011-01-01T23:59:59.000Z

23

Heat Pump Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pump Systems Pump Systems Heat Pump Systems May 16, 2013 - 5:33pm Addthis A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. What does this mean for me? Heat pumps can supply heat, cooling, and hot water. Your climate and site will determine the type of heat pump most appropriate for your home. For climates with moderate heating and cooling needs, heat pumps offer an energy-efficient alternative to furnaces and air conditioners. Like your refrigerator, heat pumps use electricity to move heat from a cool space to a warm space, making the cool space cooler and the warm space warmer. During the heating season, heat pumps move heat from the cool outdoors into

24

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

25

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaven, FL)

1977-01-01T23:59:59.000Z

26

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

27

Heat pump system  

DOE Patents (OSTI)

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1979-01-01T23:59:59.000Z

28

Optically pumped isotopic ammonia laser system  

DOE Patents (OSTI)

An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

Buchwald, Melvin I. (Santa Fe, NM); Jones, Claude R. (Los Alamos, NM); Nelson, Leonard Y. (Seattle, WA)

1982-01-01T23:59:59.000Z

29

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead...

30

Absorption-heat-pump system  

DOE Patents (OSTI)

An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

Grossman, G.; Perez-Blanco, H.

1983-06-16T23:59:59.000Z

31

Overview of locking systems  

Science Conference Proceedings (OSTI)

The purpose of this document is to present technical information that should be useful for understanding and applying locking systems for physical protection and control. There are major sections on hardware for locks, vaults, safes, and security containers. Other topics include management of lock systems and safety considerations. This document also contains notes on standards and specifications and a glossary.

Gee, K.T.; Scott, S.H.; Wilde, M.G. [Sandia National Labs., Albuquerque, NM (United States); Highland, S.E. [Albuquerque Safe Co., Albuquerque, NM (United States)

1993-12-01T23:59:59.000Z

32

Reciprocating Pump Systems for Space Propulsion  

DOE Green Energy (OSTI)

Small propellant pumps can reduce rocket hardware mass, while increasing chamber pressure to improve specific impulse. The maneuvering requirements for planetary ascent require an emphasis on mass, while those of orbiting spacecraft indicate that I{sub SP} should be prioritized during pump system development. Experimental efforts include initial testing with prototype lightweight components while raising pump efficiency to improve system I{sub SP}.

Whitehead, J C

2004-06-10T23:59:59.000Z

33

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Performance of ground source heat pump system in a near-zerosimulation tool for ground- source heat pump system designflow systems and ground source heat pump systems Abstract

Hong, Tainzhen

2010-01-01T23:59:59.000Z

34

Covered Product Category: Centrifugal Pumping System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centrifugal Pumping System Centrifugal Pumping System Covered Product Category: Centrifugal Pumping System October 7, 2013 - 11:25am Addthis FEMP provides acquisition guidance across a variety of product categories, including centrifugal pumping systems. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Buying Energy-Efficient Centrifugal Pumping Systems The most common applications for pumps at Federal facilities are for fresh water supply, hydronic heating and cooling systems, wastewater treatment, and drainage. For these applications, the most common type of pump is the centrifugal pump. Proper pump selection should consider both constant and variable flow and

35

Screening Pumping Systems for Energy Savings Opportunities  

E-Print Network (OSTI)

In most industrial settings, energy consumed by pumping systems is responsible for a major part of the overall electricity bill. In some cases, the energy is used quite efficiently; in others, it is not. Facility operators may be very familiar with pumping system equipment controllability, reliability, and availability, but only marginally aware of system efficiency. But there are some good reasons to increase that awareness: 1) As budgets shrink and the intensity of both domestic and international competition increases, the pressure to find additional ways of reducing costs will grow. 2) The reliability of pumps correlates with pump efficiency; that is, pumps operated near the design, or best efficiency point, will tend to perform more reliably and with greater availability. 3) The questions of whether global warming is truly occurring, and if it is, whether humankind's activities play a significant role may both be debatable. But there is no debating the fact that there are finite energy resources, particularly of the fossil fuel variety, on the earth. If we are to be counted as good stewards, then careful, if not frugal resource use is important. The cost of energy consumed by pumps usually dominates the pump life cycle cost. But many end users, already stretched to support day-to-day facility operations, lack the time and resources to perform a methodical engineering study of, in some cases, hundreds of pumps within their facilities to understand the energy costs and the potential opportunity for reduction. Under the auspices of the Department of Energy's (DOE) Motor Challenge Program, prescreening guidance documents and a computer program called PSAT (Pumping System Assessment Tool) have been developed to help end users, consultants, and equipment distributors recognize, both qualitatively and quantitatively, pumping system efficiency improvement opportunities. This paper describes the general methodologies employed and shows case study examples of the prescreening and software application.

Casada, D.

1999-05-01T23:59:59.000Z

36

System Overview | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

System Overview BG/Q Drivers Status Machine Overview Machine Partitions Torus Network Data Storage & File Systems Compiling & Linking Queueing & Running Jobs Data Transfer Debugging & Profiling Performance Tools & APIs Software & Libraries IBM References Intrepid/Challenger/Surveyor Tukey Eureka / Gadzooks Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] System Overview Machine Overview Machine Overview is a reference for the login and compile nodes, I/O nodes, and compute nodes of the BG/Q system. Machine Partitions Machine Partitions is a reference for the way that Mira, Vesta and Cetus are partitioned and discusses the network topology of the partitions.

37

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

38

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

39

Solar-powered turbocompressor heat pump system  

DOE Patents (OSTI)

The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

1982-08-12T23:59:59.000Z

40

EIA - The National Energy Modeling System: An Overview 2003-Report...  

Annual Energy Outlook 2012 (EIA)

Report Chapters The National Energy Modeling System: An Overview 2003 Report Chapters pdf image Preface pdf image Introduction pdf image Overview of NEMS pdf image Carbon Dioxide...

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

APT/LEDA RFQ vacuum pumping system  

DOE Green Energy (OSTI)

This paper describes the design and fabrication of a vacuum pumping system for the ATP/LEDA (Low Energy Demonstration Accelerator) RFQ (Radio Frequency Quadrupole) linac. Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2 x 10{sup -4} Torr-liters/sec, consisting mainly of hydrogen. The system is designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1 x 10{sup -6} Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

Shen, S., LLNL

1997-07-21T23:59:59.000Z

42

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

Chen, F.C.; Mei, V.C.; Murphy, R.W.

1998-12-08T23:59:59.000Z

43

Heat pump having improved defrost system  

DOE Patents (OSTI)

A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

1998-01-01T23:59:59.000Z

44

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

45

Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis  

DOE Patents (OSTI)

A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

2005-09-13T23:59:59.000Z

46

Macro-System Model Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Such a macro-system model is critical to assessing the transition from the existing energy infrastructure to one including hydrogen. Individual models spanning a wide range of...

47

TPX power systems design overview  

SciTech Connect

The power systems for the Tokamak Physics Experiment (TPX) supply the Toroidal Field (TF). Poloidal Field (PF), Field Error Correction (FEC), and Fast Vertical Position Control (FVPC) coil systems, the Neutral Beam (NB), Ion Cyclotron (IC), Lower Hybrid (LH) and Electron Cyclotron (EC) heating and current drive systems, and all balance of plant loads. Existing equipment from the Tokamak Fusion Test Reactor (TFTR), including the motor-generator (MG) sets and the rectifiers, can be adapted for the supply of the TPX PF systems. A new TF power supply is required. A new substation is required for the heating and current drive systems (NB, IC, LH, and EC). The baseline TPX load can be taken directly from the grid without special provision, whereas if all upgrade options are undertaken, a modest amount of reactive compensation will be required. This paper describes the conceptual design of the power systems, with emphasis on the AC, TF, and PF Systems, and the quench protection of the superconducting coils.

Neumeyer, C. [Ebasco Services, Inc., New York, NY (United States); Bronner, G.; Lu, E.; Ramakrishnan, S. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Jackson, M. [Lawrence Livermore National Lab., CA (United States)

1993-11-01T23:59:59.000Z

48

Advanced turbine systems program overview  

SciTech Connect

The US Department of Energy`s (DOE) Office of Fossil Energy and Office of Energy Efficiency & Renewable Energy are jointly supporting a program to develop Advanced Turbine Systems (ATS). Demonstrations of commercial prototypes will be completed by the year 2000 for both utility- and industrial-scale applications. The program is primarily directed toward natural gas utilization, but eventual application of the technology to coal-fired systems is not overlooked. In major procurements, contractors are required to address (in paper studies though not in testing) the eventual adaptation of their systems to coal firing. Implementation of the program is proceeding well. Phase 1 systems studies have been completed, and Phase 2 concept development has been underway for about a year. Release of solicitation for Phase 3 proposals has been announced for July, 1994. This phase of the program will see teams led by turbine manufacturers move into full scale testing of critical components. Generic research and development has been proceeding in parallel with the major development effort. METC has started testing in their Advanced Turbine Combustion test facility, and Oak Ridge National Laboratory has initiated a materials test program. The industry/university consortium established by the South Carolina Energy Research and Development Center has completed their second round of university awards, with 23 university projects now underway.

Webb, H.A.

1994-10-01T23:59:59.000Z

49

A Lithium Getter Pump System ---- nventors Richard Majeski, Eugene...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Lithium Getter Pump System ---- nventors Richard Majeski, Eugene Kearns, and John Schmitt This invention is a device to pump volatile gases that bond to lithium in a high vacuum...

50

"Stationary Flowing Liquid Lithium System For Pumping Out Atomic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary Flowing Liquid Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed...

51

DOE/ORNL heat pump design model, overview and application to R-22 alternatives  

SciTech Connect

This computer program is a public-domain system design tool for application to air-to-air heat pumps. The main aspects of the program are reviewed with emphasis on the newest features of the current fifth-generation version (Mark V) and an upcoming more fully HFC-capable release (Mark VI). Current model predictions are compared to test data for a leading HFC alternative to HCFC-22 in heat pumps. Examples are shown of some user interfaces that have been recently developed for the program. To demonstrate the design capabilities of the model for R-22 alternatives, a refrigerant-side optimization was conducted to find the best balance of heat transfer versus pressure drop for HCFC R-22, HFCs R-134a and R-410A, and the natural refrigerant propane. COP was maximized while refrigerant charge and tube size were minimized. Independent design parameters were fraction of total area in the outdoor coil, tube diameter and number of circuits for each heat exchanger, and condenser subcooling. Heat exchanger design tradeoffs are discussed for a heat pump relative to air conditioners and heating-only units. A design optimized for heating-only operation is presented.

Rice, C.K.

1997-12-01T23:59:59.000Z

52

EIA - The National Energy Modeling System: An Overview 2003-Appendix...  

Annual Energy Outlook 2012 (EIA)

Appendix: Bibliography The National Energy Modeling System: An Overview 2003 Appendix: Bibliography The National Energy Modeling System is documented in a series of model...

53

The EMMA Accelerator, a Diagnostic Systems Overview  

Science Conference Proceedings (OSTI)

The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

2011-09-04T23:59:59.000Z

54

Enhancement of heat transfer for ground source heat pump systems.  

E-Print Network (OSTI)

??Uptake of geothermal heat pump (GSHP) systems has been slow in some parts of the world due to the unpredictable operational performance, large installation space (more)

Mori, Hiromi

2010-01-01T23:59:59.000Z

55

Combined permeable pavement and ground source heat pump systems.  

E-Print Network (OSTI)

??The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in (more)

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

56

Ellipsometric Measurement of Contamination in an Oil Pumped uhv System  

Science Conference Proceedings (OSTI)

Determinations have been made of oil contamination on a surface in an oil pumped uhv system for DC702 and DC705 oil

R. M. Rollason; R. W. Fane; W. E. J. Neal

1972-01-01T23:59:59.000Z

57

Improving Pumping System Performance: A Sourcebook for Industry, Second Edition  

Science Conference Proceedings (OSTI)

Prepared for the DOE Industrial Technologies Program, this sourcebook contains the practical guidelines and information manufacturers need to improve the efficiency of their pumping systems.

Not Available

2006-05-01T23:59:59.000Z

58

Cray XC30 System: Overview Nathan Wichmann  

NLE Websites -- All DOE Office Websites (Extended Search)

XC30 System: XC30 System: Overview Nathan Wichmann wichmann@cray.com Outline 10/10/13 2 ● Building Blocks ● A new compute node ● Dragonfly Topology ● Network and benchmark performance Cray XC30 Compute Blade Architecture 3 XC30 Compute Blade 4 Compute Blade 4 Compute Nodes Chassis Rank 1 Network 16 Compute Blades No Cables 64 Compute Nodes Group Rank 2 Network Passive Electrical Network 2 Cabinets 6 Chassis 384 Compute Nodes System Rank 3 Network Active Optical Network Hundreds of Cabinets Up to 10s of thousands of nodes Cray XC30 System Building Blocks 5 Cray XC30 Compute node: Processor and environment comparison 10/10/13 6 DDR3 Channel DDR3 Channel DDR3 Channel DDR3 Channel DDR3 Channel DDR3 Channel DDR3 Channel DDR3 Channel 6MB L3 Cache Greyhound

59

Water-Loop Heat Pump Systems: Assessment Study Update  

Science Conference Proceedings (OSTI)

Water-loop heat pump systems, composed of multiple water-source heat pumps, a boiler, and a cooling tower operating in a closed water loop are a key segment of the commercial building heat pump market. This type of system provides a low-first-cost, versatile, and energy-efficient approach to space conditioning commercial buildings that have simultaneous heating and cooling loads.

1991-10-25T23:59:59.000Z

60

Expert system for online surveillance of nuclear reactor coolant pumps  

DOE Patents (OSTI)

An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

Gross, Kenny C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL); Humenik, Keith E. (Columbia, MD)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Expert system for online surveillance of nuclear reactor coolant pumps  

DOE Patents (OSTI)

This report describes an expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

Gross, K.C.; Singer, R.M.; Humenik, K.E.

1992-12-31T23:59:59.000Z

62

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

63

Pumping System Measurements To Estimate Energy Savings: Why and How  

E-Print Network (OSTI)

Measuring performance parameters (flow rate, pressures, and power) for existing systems is essential to understanding how both the pump(s) and system are actually performing. Examples of reasons why actual measurements are critical and practical means of getting and using the measured data to estimate savings potential using DOE tools are discussed.

Casada, D.

2007-01-01T23:59:59.000Z

64

Overview  

E-Print Network (OSTI)

Per the guidance in the August 25 memorandum, this update highlights the U.S. Nuclear Regulatory Commissions (NRCs) overall accomplishments in implementing the E-Government Act and discusses the Agencywide Documents Access and Management System (ADAMS), the NRCs document and records management system, as an example of an internal agencyspecific E-Government (E-Gov) initiative. Sections 2 and 3 of this update address the agencys process for determining which information should be made available on the NRCs public Web site and how information dissemination activities are coordinated with NRCs Freedom of Information Act (FOIA) operations. Section 1 Provide a brief overview of your agencys implementation of the Act, including a description of an internal agency-specific E-Government initiative. 1.a. Provide a brief overview of your agencys implementation of the Act. This section highlights the NRCs progress in implementing the E-Government Act under the following headings:

unknown authors

2006-01-01T23:59:59.000Z

65

Closed cycle steam turbine system with liquid vortex pump  

SciTech Connect

A closed cycle steam generating system is described comprising a steam boiler, and a steam turbine includes a vacuum pump of the liquid vortex type for condensing the exhaust steam from the turbine, a feedwater pump being employed for returning the condensate to the boiler. The tank of the vortex pump is maintained filled with water and the pressure in the tank is regulated automatically to maintain a predetermined value thereof.

Brown, K.D.

1976-08-10T23:59:59.000Z

66

Thermoeconomic Analysis of a Solar Heat-Pump System  

E-Print Network (OSTI)

This paper introduces a solar energy heat-pump system and analyzes the thermoeconomics. The results show that the solar energy heat-pump system can be operated in different modes and used for room heating in winter and cooling in summer and/or heating a hot water supply. The results also show that the efficiency of the system's components and how the investment costs greatly affect the wide acceptability and use of the system. Solar energy is clean and renewable and having not to pay the solar energy costs, the solar energy heat-pump system is still attractive and will have a large market.

Gao, Y.; Wang, S.

2006-01-01T23:59:59.000Z

67

The National Energy Modeling System: An overview  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

68

PUMPS  

DOE Patents (OSTI)

A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

Thornton, J.D.

1959-03-24T23:59:59.000Z

69

Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:  

SciTech Connect

A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; McDowell, T. P. [Thermal Energy Systems Specialists, Inc.; Shonder, John A [ORNL; Hughes, Patrick [ORNL; Pahud, D. [University of Applied Sciences of Southern Switzerland; Hellstrom, G. [Lund University

1997-06-01T23:59:59.000Z

70

Overview  

Science Conference Proceedings (OSTI)

Overview. A, B, C. 1, Validation, Tab, Note. 2, Codes and other facets must have definitions. FacetBlankDefs, Fixed and added ...

2013-07-08T23:59:59.000Z

71

EIA - The National Energy Modeling System: An Overview 2003-Overview of  

Gasoline and Diesel Fuel Update (EIA)

Overview of NEMS Overview of NEMS The National Energy Modeling System: An Overview 2003 Overview of NEMS NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Summary of NEMS Detail Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Figure 1. Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. National Energy Modeling System. Need help, contact the National Energy Information Center at 202-586-8800. Since energy costs and availability and energy-consuming characteristics

72

Water-Loop Heat Pump Systems: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets.

1993-04-01T23:59:59.000Z

73

Energy Efficient Pump Control for an Offshore Oil Processing System Yang, Zhenyu; Soleiman, Kian ; Lhndorf, Bo  

E-Print Network (OSTI)

Energy Efficient Pump Control for an Offshore Oil Processing System Yang, Zhenyu; Soleiman, Kian. (2012). Energy Efficient Pump Control for an Offshore Oil Processing System: IFAC Workshop - Automatic of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump

Yang, Zhenyu

74

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings  

E-Print Network (OSTI)

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings

Grbner, Oswald

1971-01-01T23:59:59.000Z

75

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings  

E-Print Network (OSTI)

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings

1968-01-01T23:59:59.000Z

76

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

77

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

78

Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview The mission of the Department of Energy is to ensure America's security and prosperity by addressing its energy, environmental and nuclear challenges through transformative science and technology solutions. A cornerstone of technology leadership and its accompanying jobs is a vibrant science and technology enterprise. To achieve this, the Department needs to cultivate the entire technology innovation chain, from enabling discoveries to research, development, demonstration, and deployment. The Department must create the conditions today that will harness the next generation of scientists and engineers to support its mission, administer its programs, and conduct the research that will support energy economic development and realize the nation's science, technology, and

79

Pumping systems efficiency improvements flow straight to thebottom line  

SciTech Connect

Industrial electrical motors account for two-thirds of theUS industrial electricity usage. Pumping systems account for an estimated25 percent of this electrical motor consumption, while pumping systems inuse in US chemical facilities consume over 37,000 GWh/year, based on USDepartment of Energy (DOE) data. A study funded by DOE estimatespotential energy savings within the chemical industry alone ofapproximately 20 percent, representing an energy savings of over 7,500GWh/year, through industrial pumping systems optimization using existing,proven techniques and technologies. This energy savings potentialrepresents significant cost savings potential for industrial facilities.Additionally, it has been shown that energy efficiency improvements toindustrial systems usually provide improved reliability, improvedproductivity, and reduced environmental costs.

Tutterow, Vestal; Casada, Don; McKane, Aimee

2002-07-08T23:59:59.000Z

80

VAPOR COMPRESSION HEAT PUMP SYSTEM FIELD TESTS AT THE TECH COMPLEX  

E-Print Network (OSTI)

, two conventional air- to-ir heat pumps, an air-to-air heat pump with desuperheater water heater for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ROCKY MOUNTAIN OILFIELD TESTING CENTER Texaco Dual Action Pumping System  

NLE Websites -- All DOE Office Websites (Extended Search)

Texaco Dual Action Pumping System Texaco Dual Action Pumping System PROJECT TEST RESULTS March 16, 1998 Michael R. Tyler Project Manager Abstract The Texaco Dual Action Pumping System (DAPS) is designed to separate water from the oil in the casing-tubing annulas and inject most of the water into a lower formation while lifting the oil and remaining water to the surface. As oil production declines in a well the water production can increase. The lifting cost can be reduced per barrel of oil if less water is brought to the surface and processed. The DAPS was installed in a well that had been producing four (4) barrels of oil per day (bopd) and 46 barrels of water per day (bwpd), from the zone that became the injection zone. The well was recompleted in a shallower zone that was expected to yield an excessive quantity of

82

Multi-Source Hydronic Heat Pump System Performance Test Bed  

E-Print Network (OSTI)

An extensive independent evaluation recently was completed of the Multi-Source Hydronic Heat Pump (MSHHP) system, a proprietary heating, ventilating and air conditioning (HVAC) system developed by Meckler Systems Group. The MSHHP tests were conducted on a unique test bed designed and constructed by National Technical Systems (NTS) through a research and development grant program funded by Southern California Edison Company. This paper outlines testing methods and results, including evaluations of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates. Lower heat pump capacities are a main feature of the MSHHP. This is accomplished by pre-cooling return air from the zone space, a process that also allows the heat pump to operate at a higher Coefficient of Performance (COP), thereby contributing to further energy savings.

Meckler, M.

1984-01-01T23:59:59.000Z

83

Characterization analysis database system (CADS): A system overview  

SciTech Connect

The CADS database is a standardized, quality-assured, and configuration-controlled data management system developed to assist in the task of characterizing the DOE surplus HEU material. Characterization of the surplus HEU inventory includes identifying the specific material; gathering existing data about the inventory; defining the processing steps that may be necessary to prepare the material for transfer to a blending site; and, ultimately, developing a range of the preliminary cost estimates for those processing steps. Characterization focuses on producing commercial reactor fuel as the final step in material disposition. Based on the project analysis results, the final determination will be made as to the viability of the disposition path for each particular item of HEU. The purpose of this document is to provide an informational overview of the CADS database, its evolution, and its current capabilities. This document describes the purpose of CADS, the system requirements it fulfills, the database structure, and the operational guidelines of the system.

1997-12-01T23:59:59.000Z

84

Hanford's 200 West Pump and Treat System Garners Worldwide Attention |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200 West Pump and Treat System Garners Worldwide 200 West Pump and Treat System Garners Worldwide Attention Hanford's 200 West Pump and Treat System Garners Worldwide Attention August 27, 2013 - 12:00pm Addthis The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL’s Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The award recognized CH2M HILL for its excellence in the international water industry. CH2M HILL's Water Business Group's International Client Sector Director Peter Nicol accepted the award from Global Water Awards Speaker and former Mexican President Vicente Fox. The 200 West Pump and Treat System design and construction teams utilized energy efficient and sustainable design elements, including recycled steal. This photo shows the system’s processing equipment. Approximately 539 tons, or 5 percent, of the steel used in construction was recycled.

85

2005 ASHRAE. 109 Groundwater heat pump systems using standing column  

E-Print Network (OSTI)

©2005 ASHRAE. 109 ABSTRACT Groundwater heat pump systems using standing column wells Carl D. Orio Carl N. Johnson, PhD, PE Simon J. Rees, PhD Member ASHRAE Member ASHRAE Member ASHRAE A. Chiasson, PhD, PE Zheng Deng, PhD Jeffrey D. Spitler, PhD, PE Member ASHRAE Student Member ASHRAE Fellow

86

Feedwater Pump Turbine Controls and Oil System Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to personnel involved in the mechanical hydraulic controls (MHCs) of the feedwater pump turbine (FWPT), its associated components, and inherent oil system, including good maintenance practices, condition monitoring, predictive and preventive maintenance techniques, probable failure modes, and troubleshooting guidance. The guide was developed to provide maintenance and troubleshooting information as well as a basic background in mechanical hydraulic controls.

2001-12-20T23:59:59.000Z

87

EIA - The National Energy Modeling System: An Overview 2003 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview 2003 Preface The National Energy Modeling System: An Overview 2003 provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003 (AEO2003), (DOE/EIA-0383(2003)), released in January 2003. AEO2003 presents national forecasts of energy markets for five primary cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

88

The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) The National Energy Modeling System: An Overview 2003 March 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/aeo/overview/index.html The National Energy Modeling System: An Overview 2003 provides a summary description of the National En- ergy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, im- ports, and

89

Power Shape Monitoring System (PSMS), Volume 1: Overview and Performance  

Science Conference Proceedings (OSTI)

Volume 1 provides an overview of the first-generation power shape monitoring system (PSMS) for BWRs, which has been undergoing field testing at the Oyster Creek nuclear plant. The system's functional requirements and its hardware and software are described. The accuracy of the Oyster Creek PSMS is evaluated--specifically, its power prediction capabilities.

1981-02-01T23:59:59.000Z

90

CORE COMPETENCY Overview Engineered Specialty Systems  

Remote and Specialty Systems SRNL expertise in remote and specialty systems spans the entire engineered ... simulation, radioactive materials handling ...

91

The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction  

E-Print Network (OSTI)

Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed to be applied in the deep well pump so as to save energy.

Dai, X.; Song, S.

2006-01-01T23:59:59.000Z

92

Overview  

Gasoline and Diesel Fuel Update (EIA)

Companies, First Quarter 2007 Companies, First Quarter 2007 Overview First Quarter 2007 Key Findings Net Income $23.9 billion Revenues $261.2 billion Trends Unchanged net income relative to first quarter of 2006 Lower oil and gas prices, higher oil and gas production Twenty major energy companies reported overall net income (excluding unusual items) of $23.9 billion on revenues of $261.2 billion during the first quarter of 2007 (Q107). The level of net income for Q107 was essentially unchanged relative to the first quarter of 2006 (Q106) (Table 1). Net income for Q107 was unchanged as the effects of lower prices were offset by the effects of higher worldwide production of crude oil and natural gas liquids, and increased domestic production of natural gas. Overall, the petroleum line of business (which includes both oil and natural gas production and

93

Overview  

Gasoline and Diesel Fuel Update (EIA)

2007 Overview Second Quarter 2007 Key Findings Net Income $30.7 billion Revenues $301.7 billion Trends 4-percent increase in net income relative to second quarter of 2006 Lower oil prices, and lower oil and gas production Twenty-two major energy companies a reported overall net income (excluding unusual items) of $30.7 billion on revenues of $301.7 billion during the second quarter of 2007 (Q207). The level of net income for Q207 was 4-percent higher than in the second quarter of 2006 (Q206) (Table 1). Net income for Q207 increased as the effects of higher natural gas prices and much higher refining margins offset the effects of lower oil prices, lower worldwide production of oil and natural gas, and lower refinery throughput. Overall, the petroleum line of business (which includes both oil and natural gas production and

94

Overview  

Gasoline and Diesel Fuel Update (EIA)

7 7 Fourth Quarter 2007 Key Findings Net Income $28.3 billion Revenues $329.6 billion Highlights 24-percent increase in net income relative to fourth quarter of 2006 (31-percent increase relative to the fourth-quarter average for 2003-2006) effects of higher oil and natural gas prices overwhelm lower worldwide oil production and U.S. refining margins Overview Sixteen major energy companies [1] reported overall net income (excluding unusual items) of $28.3 billion on revenues of $329.6 billion during the fourth quarter of 2007 (Q407). The level of net income for Q407 was 24- percent higher than in the fourth quarter of 2006 (Q406) (Table 1), and was 31-percent higher than the fourth- quarter average for 2003-2006 after adjusting for inflation. Net income for Q407 increased as the effects of lower

95

Overview  

Gasoline and Diesel Fuel Update (EIA)

8 8 First Quarter 2008 Key Findings Net Income $28.3 billion Revenues $343.4 billion Highlights Major energy companies reported an 18-percent increase in net income relative to first quarter of 2007 (42-percent increase relative to the first-quarter average for 2003- 2007). Return on sales (net income ÷ revenue) fell from 9.5 percent in the first quarter of 2007 to 8.2 percent in the first quarter of 2008 due to the 37 percent increase in revenue. The effects of higher oil and natural gas prices overwhelm lower worldwide oil production and U.S. refining margins. Overview Nineteen major energy companies [1] reported overall net income (excluding unusual items) of $28.3 billion on revenues of $343.4 billion during the first quarter of 2008 (Q108). The level of net income for Q108 was 18-

96

Overview  

Gasoline and Diesel Fuel Update (EIA)

7 7 Third Quarter 2007 Key Findings Net Income $26.5 billion Revenues $301.8 billion Highlights 11-percent decrease in net income relative to third quarter of 2006 (25-percent increase relative to the third-quarter average for 2003-2006) effects of higher oil prices overwhelmed by lower worldwide oil production and U.S. refining margins Overview Twenty-two major energy companies 1 reported overall net income (excluding unusual items) of $26.5 billion on revenues of $301.8 billion during the third quarter of 2007 (Q307). The level of net income for Q307 was 11- percent lower than in the third quarter of 2006 (Q306) (Table 1), but was 25-percent higher than the third-quarter average for 2003-2006 after adjusting for price changes. Net income for Q307 decreased as the effects of lower

97

Overview  

Gasoline and Diesel Fuel Update (EIA)

8 8 Second Quarter 2008 Key Findings Net Income $30.4 billion Revenues $423.4 billion Highlights Major energy companies reported a 1-percent decline in net income relative to second quarter of 2007. However, this also represents a 31-percent increase relative to the second-quarter average for 2003-2007. Return on sales (net income ÷ revenue) fell from 10.5 percent in the second quarter of 2007 to 7.2 percent in the second quarter of 2008 due to the 44 percent increase in revenue. The effects of higher oil and natural gas prices overwhelm lower worldwide oil production and world-wide refining margins. Overview Nineteen major energy companies [1] reported overall net income (excluding unusual items) of $30.4 billion on revenues of $423.4 billion during the second quarter of 2008 (Q208). The level of net income for Q208 was 1-

98

Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-------------------------Chapter 7.3 (September, 2013) ACQUISITION PLANNING IN THE M&O ENVIRONMENT Overview The purpose of this chapter is to discuss the unique acquisition planning and approval requirements associated with the Management and Operating (M&O) form of contract. References 1. FAR Part 7 Acquisition Planning 2. FAR Subpart 17.6 Management and Operating Contracts 3. DEAR 970.1706 Management and Operating Contracts 4. DOE Acquisition Guide, Chapter 7.1 Acquisition Planning 5. DOE Acquisition Guide, Chapter 71.1 Headquarters Business Clearance Process Background Subpart 17.6 of the FAR prescribes policies and procedures for the award, renewal, and extension of M&O contracts. Section 17.602 permits Heads of Agencies to award and renew

99

Heat pump assisted geothermal heating system for Felix Spa, Romania  

Science Conference Proceedings (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

100

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ground Source Heat Pump System Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

102

Ground Source Heat Pump System Data Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

103

2$sup 0$K vacuum pumping system for Baseball II  

DOE Green Energy (OSTI)

A vacuum pumping system that provides a cryo surface for condensing and freezing of H/sub 2/ gas is described. A closed-loop vacuum system was designed and built at Lawrence Livermore Laboratory to pump down the neutralizer LH/sub e/ dewar with a volurae of 350 l and the lambda point dewar with a LH/sub e/ volume of 250 l. Both of these dewars can be pumped down simultaneously or one at a time. 100% of the H/sub e/ gas is recovered free of contaminations. The vacuum pump can handle 340 SCFM of gas. The LH/sub e/ dewars are pumped down below the lambda point. This condition reduces the LH/sub e/ container wall temperature to 2.1 deg K giving a base pressure of 10/sup -13/ torr for H/sub 2/ gas/sup 2/. To attain a stable condition the LH /sub e/ baths are puuped down to 33 torr or lower to give a surface temperatare of about 2/sup 0/K/sup 3/. The Baseball II helium factlity is a close loop system. The H/sub e/ gas is recovered from all the LH/sub e/ usage point. This gas is accumulated in one of the two 8000 cu ft inflatable gas bags. The gas from the gas bags is compressed into storage tanks at 1800 psig. The gas is purified to 99.99999% and it is liquified at a rate of 100 liquid liters per hour. (auth)

Denhoy, B.S.

1973-08-20T23:59:59.000Z

104

ASHRAE Research PROGRAM OVERVIEW  

E-Print Network (OSTI)

ASHRAE Research PROGRAM OVERVIEW November 8, 2011 Michael R. Vaughn, P.E. Manager, Research and Technical Services MORTS@ashrae.net #12;What we will cover · Introduction to ASHRAE Research · ASHRAE's Strategic Plan for Research · Research and Objectives related to Heat Pumps · GSHP System at ASHRAE HQ

Oak Ridge National Laboratory

105

Ada in distributed systems: an overview  

Science Conference Proceedings (OSTI)

This paper reviews the available literature on the use of Ada in distributed systems. The following issues are discussed in more detail: units of distribution, program partitioning, building configurations, interprogram communication, type checking, ... Keywords: Ada, distributed systems, program partitioning

Marcin Paprzycki; Janusz Zalewski

1997-03-01T23:59:59.000Z

106

Information systems and the overview report for computing curricula 2004  

Science Conference Proceedings (OSTI)

My purpose is to inform you of the draft "Overview Report" for Computing Curricula 2004 and Information Systems (IS) role in it. This draft report is available for comment. It is the first volume in a computing compendium, referred to as Computing Curricula. ...

John T. Gorgone

2004-12-01T23:59:59.000Z

107

Process Control System Cyber Security Standards - An Overview  

Science Conference Proceedings (OSTI)

The use of cyber security standards can greatly assist in the protection of process control systems by providing guidelines and requirements for the implementation of computer-controlled systems. These standards are most effective when the engineers and operators, using the standards, understand what each standard addresses. This paper provides an overview of several standards that deal with the cyber security of process measurements and control systems.

Robert P. Evans

2006-05-01T23:59:59.000Z

108

EIA - The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System: An Overview 2003 This report provides a summary description of the NEMS which was used to generate the projections of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003. Preface Introduction Overview of NEMS Carbon Dioxide and Methane Emissions Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Renewable Fuels Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Bibliography Download the Report NEMS: An Overview 2003 Cover. Need help, contact the National Energy Information Center at 202-586-8800.

109

ABSORPTION HEAT PUMP SYSTEM AND METHOD OF USING THE SAME - Energy ...  

An absorption heat pump system that can include a first assembly, ... Building Energy Efficiency; ... Solar Thermal; Startup America;

110

Pumped Solar Domestic Hot Water (SDHW) system design guidelines  

SciTech Connect

This article provides practical guidelines based on experience gained from the design, installation, and commissioning of a pumped Solar Domestic Hot Water (SDHW) system in Saudi Arabia. The authors believe that such information is not readily available and will be useful to designers and installers of SDHW systems within the region. Since the current motivation for buying SDHW systems in Saudi Arabia is not strictly economic, it is imperative that a professional reference be available, against which the soundness of any technical decisions could be confirmed prior to their implementation. The intent is to ensure that systems designed and installed will operate reliably, therefore enhancing customer satisfaction.

Arshad, K.; Said, S.A.M. (King Fahd Univ. of Petroleum Minerals, Dhahran (Saudi Arabia))

1989-01-01T23:59:59.000Z

111

Overview  

Science Conference Proceedings (OSTI)

... Space; Underwater; USPS; Underground coal mining. 1. Multiple Hierarchical Control Levels. A control system contains multiple ...

2011-01-14T23:59:59.000Z

112

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

113

World Energy Projection System Plus: An Overview  

Reports and Publications (EIA)

This report contains a summary description of the methodology and scope of WEPS+ and each of its component models. WEPS+ is a computer-based, energy modeling system of long-term international energy markets for the period through 2035. The system was used to produce the International Energy Outlook 2011.

Brian Murphy

2011-09-29T23:59:59.000Z

114

The Utility Battery Storage Systems Program Overview  

SciTech Connect

Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

1994-11-01T23:59:59.000Z

115

Cooperation of heat pump and solar system in the common power unit  

Science Conference Proceedings (OSTI)

The paper explains new possibilities of heat pumps usage in the common power units. The result of applied research is an examination of heat pump and active solar system cooperation eligibility. The aspects of such a cooperation are examined mainly from ... Keywords: combined heating system, heat pump, heating factor, heating factor increase, natural energy, solar system

Mastny Petr

2007-05-01T23:59:59.000Z

116

Overview of Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems Program win lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: Highly efficient (15 Percent improvement over today`s best systems); Environmentally superior (10 percent reduction in nitrogen oxides over today`s best systems); Cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements: Innovative Cycle Development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High-Temperature Development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic Component Development/Demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology Base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal Application studies will adapt technology developed in the ATS Program to coal-fired systems being developed in other DOE programs.

Webb, H.A.; Bajura, R.A.

1992-11-01T23:59:59.000Z

117

Overview of Advanced Turbine Systems Program  

Science Conference Proceedings (OSTI)

The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems Program win lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: Highly efficient (15 Percent improvement over today's best systems); Environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); Cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements: Innovative Cycle Development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High-Temperature Development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic Component Development/Demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology Base will support the overall program by conducting research and development (R D) on generic technology issues. Coal Application studies will adapt technology developed in the ATS Program to coal-fired systems being developed in other DOE programs.

Webb, H.A.; Bajura, R.A.

1992-01-01T23:59:59.000Z

118

Prospects for inertial fusion energy based on a diode-pumped solid-state laser (DPSSL) driver: Overview and development path  

SciTech Connect

It is now known with certainty that the type of fusion known as inertial fusion will work with sufficient energy input, so inertial fusion is really beyond the ``scientific breakeven`` point in many respects. The most important question that remains for inertial fusion energy (IFE) is whether this type of fusion can operate with sufficiently low input energy to make it economically feasible for energy production. The constraint for low input energy demands operation near the inertial fusion ignition threshold, and such operation creates enormous challenges to discover a target design that will produce sufficient energy gain. There are also multiple issues relating to the scientific feasibility of using a laboratory-type ``driver`` to energize a target, such as those concerning bandwidth and beam smoothing for ``direct drive,`` and extension of hohlraum plasma physics to the IFE scale for ``indirect drive.`` One driver that appears as though it will be able to meet the IFE requirements, assuming modest development and sufficient target gain, is a diode-pumped solid-state laser (DPSSL). We give an overview of this type of laser system, and explain what development remains for the economic production of electricity using this type of driver for IFE.

Orth, C.D.

1997-03-01T23:59:59.000Z

119

Overview of the RF Systems for LCLS  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time [1]. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and peak current phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these tight constraints.

McIntosh, P.; Akre, R.; Boyce, R.; Emma, P.; Hill, A.; Rago, C.; /SLAC

2005-06-15T23:59:59.000Z

120

Overview of the RF Systems for LCLS  

E-Print Network (OSTI)

The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these constraints.

McIntosh, Peter; Boyce, Richard; Emma, Paul; Hill, Alan; Rago, Carl

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overview of Capabilities Conversion System Technology  

E-Print Network (OSTI)

-scale composite structures Advanced coatings Laser processing Distributed Generation & Smart Grid Broad in technology demonstration and transition to application. Modeling and control architecture of the SmartGrid - Condition Based Maintenance - Integrated Health Management System Design & Optimization - Automated

Lee, Dongwon

122

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

123

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

124

Passive space heating with a self-pumping vapor system  

DOE Green Energy (OSTI)

In this system, which should be useful for space or water heating, a refrigerant is evaporated in a solar collector and condensed within thermal storage located in the building below the collector. The vapor pressure generated in the collector periodically forces the condensed liquid upward to the location of the collector. This paper reports results of an operational test, in which this system provided passive space heating for an outdoor test cell during a winter season. The daily average energy yield and the elevation of collector temperature caused by self-pumping are reported, as well as observations on failure modes, system reliability, and suggestions for a practical configuration.

Hedstrom, J.C.; Neeper, D.A.

1986-01-01T23:59:59.000Z

125

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM  

DOE Green Energy (OSTI)

In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

126

Superconductivity for electric power systems: Program overview  

SciTech Connect

Largely due to government and private industry partnerships, electric power applications based upon high-temperature superconductivity are now being designed and tested only seven years after the discovery of the high-temperature superconductors. These applications offer many benefits to the national electric system including: increased energy efficiency, reduced equipment size, reduced emissions, increased stability/reliability, deferred expansion, and flexible electricity dispatch/load management. All of these benefits have a common outcome: lower electricity costs and improved environmental quality. The U.S. Department of Energy (DOE) sponsors research and development through its Superconductivity Program for Electric Power Systems. This program will help develop the technology needed for U.S. industries to commercialize high-temperature superconductive electric power applications. DOE envisions that by 2010 the U.S. electric power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition.

Not Available

1995-02-01T23:59:59.000Z

127

Industrial Advanced Turbine Systems Program overview  

DOE Green Energy (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

128

NCIS - a Nuclear Criticality Information System (overview)  

SciTech Connect

A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information.

Koponen, B.L.; Hampel, V.E.

1983-07-01T23:59:59.000Z

129

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents (OSTI)

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

Myneni, G.R.

1997-12-30T23:59:59.000Z

130

Ultra high vacuum pumping system and high sensitivity helium leak detector  

DOE Patents (OSTI)

An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

Myneni, Ganapati Rao (Yorktown, VA)

1997-01-01T23:59:59.000Z

131

EIA - The National Energy Modeling System: An Overview 2003-Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The National Energy Modeling System: An Overview 2003 Introduction The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2025. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview 2003 presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

132

Chemical heat pump and chemical energy storage system  

DOE Patents (OSTI)

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

133

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

134

Nuclear Maintenance Applications Center: Reactor Coolant Pump/Reactor Recirculation Pump Motor Lubrication Oil Systems Maintenance G uide  

Science Conference Proceedings (OSTI)

RCP and RRP Motor Lubrication system issues have ranked high on NMAC maintenance Issues Surveys in recent years. Problems reported have included oil leakage at power, the need for additional reservoirs to accommodate leakage, oil degradation (foaming, particulate) as well as sludge problems due to the design of the motor and some as a result of new oil formulations and other changes made by the oil suppliers. Reactor Coolant Pumps (RCP) used in Pressurized Water Reactors and Reactor Recirculation Pumps ...

2006-12-22T23:59:59.000Z

135

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

136

Energy Basics: Absorption Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

137

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

138

Overview of interstate hydrogen pipeline systems.  

DOE Green Energy (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

139

Refrigeration system with a compressor-pump unit and a liquid ...  

The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigera ...

140

Going with the flow: Life cycle costing for industrial pumping systems  

E-Print Network (OSTI)

Stavale et al. 2001) for a cooling tower application at thisparameters. The cooling tower pumping system serves asecond system for another cooling tower. To date, the actual

Tutterow, Vestal; Hovstadius, Gunnar; McKane, Aimee

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Open-Cycle Vapor Compression Heat Pump System  

E-Print Network (OSTI)

In many industrial processes, large quantities of energy are often wasted in the form of low pressure steam and low-grade heat. Economical recovery of these waste energy sources is often difficult due to such factors as low temperature levels and contamination of the steam. In industrial processes that utilize steam directly or as a mode of energy transport, waste energy can be efficiently recovered and upgraded in the form of high-pressure steam by means of an open-cycle steam heat pump system. Recovery and upgrading of these waste steam or heat sources offer a great potential for energy conservation. Thermo Electron has developed, under sponsorship by the Gas Research Institute, Southern California Gas Company, and the Consolidated Natural Gas Service Company, an open-cycle steam heat pump to recover this waste energy in the form of high-pressure process steam. The system utilizes excess low-pressure steam (or that produced from an excess heat source with a waste heat boiler) and compresses this steam to the desired pressure level for process use. The compressor is driven by a gas turbine or gas engine prime mover. To enhance the system performance, the prime mover exhaust and/or cooling jacket heat is recovered to generate additional process steam or hot water. Utilizing the Thermo Electron system, fuel consumption can be 30 percent lower in comparison to a direct-fired boiler. Simple payback periods of 1 to 3 years are generally found for most applications.

Pasquinelli, D. M.; Becker, F. E.

1983-01-01T23:59:59.000Z

142

Overview  

E-Print Network (OSTI)

This report highlights the U.S. Nuclear Regulatory Commissions (NRCs) accomplishments in implementing the E-Government Act of 2002 (E-Gov Act), describes the agencys National Source Tracking System to illustrate an agency-specific E-Gov initiative, and explains NRCs process for determining whether to make information publically available on the Internet. Agencys Overall Implementation of the E-Gov Act Compliance With OMB Guidance: NRC has taken a number of steps to institutionalize OMBs guidance on the E-Gov program. The Office of Administration has instructed NRCs Contract Management Centers to use the SmartBuy contract as the preferred choice for software acquisitions. NRC has added an acquisition official from the Office of Administration to its Information Technology Business Council (ITBC) to ensure that agency investments in information technology do not overlap E-Gov initiatives. NRC has also given OMB NRCs E-Gov implementation plan and has begun tracking high-risk E-Gov initiatives as required. Implementations Completed/Planned: NRC has completed migrations to E-Payroll, E-Clearance (E-Qip), and a number of Integrated Acquisition System (IAS) sub components and has a working agreement with USA Services. In addition to basic services, USA Services will provide help desk support for the licensing proceeding for the proposed high-level waste repository at Yucca Mountain. NRC is currently migrating to four other initiatives: E-Training,

On E-government; Act Of

2005-01-01T23:59:59.000Z

143

Geothermal pump down-hole energy regeneration system  

DOE Patents (OSTI)

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

144

SNAP I POWER CONVERSION SYSTEM PUMP DEVELOPMENT. Period covered: February 1, 1957 to June 30, 1959  

SciTech Connect

S>Pump development for the SNAP I power conversion system is described. A four-vaned impeller pump supplemented by a jet boost stage was selected for development to meet the final design requirements. Information on other designs, pump test facilities, and conclusions are included. (J.R.D.)

1960-06-20T23:59:59.000Z

145

Numerical simulation of hydraulic shock in a water pumping system protected by air  

Science Conference Proceedings (OSTI)

Air may be efficiently used in water pumping system protection from hydraulic shock, due to its elasticity. The paper presents the results regarding the extreme pressures in the discharge duct of a pumping installation, obtained by numerical simulation ... Keywords: air chamber, biphasic flow, dissolution, hydraulic shock, pumping installation

Anca Constantin; Claudiu Stefan Nitescu

2010-10-01T23:59:59.000Z

146

Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction  

DOE Patents (OSTI)

A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

Lemoff, Asuncion V. (Union City, CA); Lee, Abraham P. (Irvine, CA)

2010-07-13T23:59:59.000Z

147

Air source heat pump system for drying application  

Science Conference Proceedings (OSTI)

This paper investigates the performance of an air source heat pump for drying purpose. In order to evaluate the performance analysis; a simulation study has been done. The results of simulation of heat pump dryer for different evaporator temperatures ... Keywords: air source heat pump, coefficient of performance (COP), condenser temperature and compressor work, dryer, evaporator temperature

R. Daghigh; M. H. Ruslan; A. Zaharim; K. Sopian

2010-10-01T23:59:59.000Z

148

Inverter control systems in the residential heat pump air conditioner  

SciTech Connect

A compressor capacity control with an inverter has been considered from the viewpoint of high energy saving in a refrigerating cycle. However, the system has not been put into practical use because of high initial cost, technical problems of electronic parts, and complexity of system control. In this connection, we developed the new inverter-controlled heat-pump air conditioner by using the latest electronics and refrigeration technology. This paper discusses the trend of energy saving in air conditioners in Japan and the objectives of developing the inverter controlled air conditioner. It also discusses the following items with respect to the inverter controlled air conditioner and the effects of employing an inverter: 1. Inverter for air conditioning; 2. Refrigeration cycle; 3. Air conditioner control with inverter.

Shimma, Y.; Tateuchi, T.; Suglura, H.

1985-01-01T23:59:59.000Z

149

ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system  

Science Conference Proceedings (OSTI)

The aim of this study is to demonstrate the comparison of an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) for the prediction performance of a vertical ground source heat pump (VGSHP) system. The VGSHP system using ... Keywords: Adaptive neuro-fuzzy inference system, Coefficient of performance, Ground source heat pump, Membership functions, Vertical heat exchanger

Hikmet Esen; Mustafa Inalli

2010-12-01T23:59:59.000Z

150

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air-conditioning system including investment, operating fee and pay-back time. The results show that waste water resource heat pump air-conditioning system has a low investment, low operating fee and short payback time.

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

151

Experimental Analysis of Variable Capacity Heat Pump Systems equipped with a liquid-cooled frequency inverter.  

E-Print Network (OSTI)

?? Using an inverter-driven compressor in variable capacity heat pump systems has a main drawback, which is the extra loss in the inverter. The present (more)

Ebraheem, Thair

2013-01-01T23:59:59.000Z

152

Trends in "Green" Design - making ground source heat pumps the system of choice.  

E-Print Network (OSTI)

??Ground source heat pump systems have been around for nearly 50 years. The efficiencies that can be achieved today are difficult to match with any (more)

Hasler, Fred L.

2008-01-01T23:59:59.000Z

153

Dynamic modeling and control of hybrid ground source heat pump systems.  

E-Print Network (OSTI)

??Ground source heat pump (GSHP) systems are one of the fastest growing applications of renewable energy in the world with annual increases of 10% over (more)

Chen, Chang

2008-01-01T23:59:59.000Z

154

Viability Of Hybrid Ground Source Heat Pump System With Solar Thermal Collectors.  

E-Print Network (OSTI)

??This thesis presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental (more)

Rad, Farzin M.

2009-01-01T23:59:59.000Z

155

OPTIMIZED CONTROL STRATEGIES FOR A TYPICAL WATER LOOP HEAT PUMP SYSTEM.  

E-Print Network (OSTI)

??Water Loop Heat Pump (WLHP) System has been widely utilized in the Heating, Ventilating and Air Conditioning (HVAC) industry for several decades. There is no (more)

Lian, Xu

2011-01-01T23:59:59.000Z

156

Overview of the DIII-D program computer systems  

Science Conference Proceedings (OSTI)

Computer systems pervade every aspect of the DIII-D National Fusion Research program. This includes real-time systems acquiring experimental data from data acquisition hardware; cpu server systems performing short term and long term data analysis; desktop activities such as word processing, spreadsheets, and scientific paper publication; and systems providing mechanisms for remote collaboration. The DIII-D network ties all of these systems together and connects to the ESNET wide area network. This paper will give an overview of these systems, including their purposes and functionality and how they connect to other systems. Computer systems include seven different types of UNIX systems (HP-UX, REALIX, SunOS, Solaris, Digital UNIX, Ultrix, and IRIX), OpenVMS systems (both BAX and Alpha), MACintosh, Windows 95, and more recently Windows NT systems. Most of the network internally is ethernet with some use of FDDI. A T3 link connects to ESNET and thus to the Internet. Recent upgrades to the network have notably improved its efficiency, but the demand for bandwidth is ever increasing. By means of software and mechanisms still in development, computer systems at remote sites are playing an increasing role both in accessing and analyzing data and even participating in certain controlling aspects for the experiment. The advent of audio/video over the interest is now presenting a new means for remote sites to participate in the DIII-D program.

McHarg, B.B. Jr.

1997-11-01T23:59:59.000Z

157

Heat Pump Thermal Distribution Systems, Volumes 1 and 2: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The thermal distribution system significantly affects the first cost and the operating cost of heat pumps. A detailed study has identified central and zoned systems that promise performance and cost benefits. This report discusses the thermal distribution system's applicability to air-source, ground-coupled, nonazeotropic refrigerant mixture and dual-fuel heat pumps.

1990-06-28T23:59:59.000Z

158

The National Energy Modeling System: An overview 1998  

Science Conference Proceedings (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors world energy markets, resource availability and costs, behavior and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. 21 figs.

NONE

1998-02-01T23:59:59.000Z

159

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

160

Role of Pumped Storage Hydro Resources in Electricity Markets and System Operation: Preprint  

DOE Green Energy (OSTI)

The most common form of utility- sized energy storage system is the pumped storage hydro system. Originally, these types of storage systems were economically viable simply because they displace more expensive generating units. However, over time, as those expensive units became more efficient and costs declined, pumped hydro storage units no longer have the operational edge. As a result, in the current electricity market environment, pumped storage hydro plants are struggling. To offset this phenomenon, certain market modifications should be addressed. This paper will introduce some of the challenges faced by pumped storage hydro plants in today's markets and purpose some solutions to those problems.

Ela, E.; Kirby, B.; Botterud, A.; Milostan, C.; Krad, I.; Koritarov, V.

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Facility HVAC System Conversion to Ground Source Heat Pump Geothermal...  

Open Energy Info (EERE)

ventilators will utilize the hot water to "temper" outdoor air ventilation. Although the heat pump modules can provide both heating and cooling, the space requires heating only....

162

Investigations of novel heat pump systems for low carbon homes.  

E-Print Network (OSTI)

??The European standard EN15450 states that the Coefficient of Performance (COP) target range for a Ground Source Heat Pump (GSHP) installation should lie within the (more)

Mempouo, B.

2011-01-01T23:59:59.000Z

163

An Overview of Liquid Fluoride Salt Heat Transport Systems  

SciTech Connect

Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and this report also describes more recently developed technologies such as dry gas seals. This report also provides a high-level, parametric evaluation of LSHT loop performance to allow general intercomparisons between heat-transport fluid options as well as provide an overview of the properties and requirements for a representative loop. A compilation of relevant thermophysical properties of useful fluoride salts is also included for salt heat transport systems. Fluoride salts can be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report includes an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize corrosion issues. Salt chemistry control technology, however, remains at too low a level of understanding for widespread industrial usage. Loop operational issues such as start-up procedures and system freeze-up vulnerability are also discussed. Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an over

Holcomb, David Eugene [ORNL; Cetiner, Mustafa Sacit [ORNL

2010-09-01T23:59:59.000Z

164

Survey of hybrid solar heat pump drying systems  

Science Conference Proceedings (OSTI)

Solar drying is in practice since the ancient time for preservation of food and agriculture crops. The objective of most drying processes is to reduce the moisture content of the product to a specified value. Solar dryers used in agriculture for food ... Keywords: coefficient of performance (COP), direct expansion SAHD, drying chamber, heat pump, solar assisted heat pumps dryer (SAHPD), solar fraction

R. Daghigh; K. Sopian; M. H. Ruslan; M. A. Alghoul; C. H. Lim; S. Mat; B. Ali; M. Yahya; A. Zaharim; M. Y. Sulaiman

2009-02-01T23:59:59.000Z

165

Residual?Gas Analysis of a DC-705 Oil?Diffusion?Pumped uhv System  

Science Conference Proceedings (OSTI)

The residual gases present in a DC-705 oil?diffusion?pump uhv system have been determined as a function of various trapping conditions. The system was equipped with a metal 2-in. oil?diffusion pump in series with a specially designed trap in which zeolite was used. The configuration of the trap permitted the trapping zone to be immersed in cryogenic liquids

Charles M. Gosselin; Paul J. Bryant

1965-01-01T23:59:59.000Z

166

Modelling of a vertical ground coupled heat pump system by using artificial neural networks  

Science Conference Proceedings (OSTI)

This paper describes the applicability of artificial neural networks (ANNs) to estimate of performance of a vertical ground coupled heat pump (VGCHP) system used for cooling and heating purposes experimentally. The system involved three heat exchangers ... Keywords: Cooling, Ground, Heat exchanger, Heat pump, Heating, Neural network

Hikmet Esen; Mustafa Inalli

2009-09-01T23:59:59.000Z

167

Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report  

DOE Green Energy (OSTI)

The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

NONE

1997-03-01T23:59:59.000Z

168

Development of distributed ion pumps for g-2 beam vacuum system  

Science Conference Proceedings (OSTI)

Distributed ion pumps (DIPs) will be used for the beam vacuum system of the g-2 muon storage ring. The magnetic field intensity and alignment angle at the DIP locations are not uniform. The pumping behavior of several different ion pump elements under this non-uniform magnetic field has been studied. The results are compared with the theoretical predictions. Based on these results, the optimum design of the g-2 DIPs has been developed.

Hseuh, H.C.; Mapes, M.; Snydstrup, L.

1993-06-01T23:59:59.000Z

169

Development of distributed ion pumps for g-2 beam vacuum system  

Science Conference Proceedings (OSTI)

Distributed ion pumps (DIPs) will be used for the beam vacuum system of the g-2 muon storage ring. The magnetic field intensity and alignment angle at the DIP locations are not uniform. The pumping behavior of several different ion pump elements under this non-uniform magnetic field has been studied. The results are compared with the theoretical predictions. Based on these results, the optimum design of the g-2 DIPs has been developed.

Hseuh, H.C.; Mapes, M.; Snydstrup, L.

1993-01-01T23:59:59.000Z

170

EIA - The National Energy Modeling System: An Overview 2003-Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The National Energy Modeling System: An Overview 2003 Petroleum Market Module Figure 17. Petroleum Market Module Structure. Need help, contact the National Energy Information Center. Need help, contact the National Energy Information Center at 202-586-8800. Figure 18. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Products Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800. Crude Oil Categories in PMM Table. Need help, contact the National Energy Information Center at 202-586-8800. Refinery Processing Units Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800.

171

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

172

EIA - The National Energy Modeling System: An Overview 2003-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The National Energy Modeling System: An Overview 2003 Electricity Market Module Figure 9. Electricity Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Electricity Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Electricity Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Central-Station Generating Technologies. Need help, contact the National Energy Information Center at 202-586-8800. 2002 Overnight Capital Costs (including Contingencies), 2002 Heat Rates, and Online Year by Technology for the AEO2003 Reference Case Table. Need help, contact the National Energy Information Center at 202-586-8800.

173

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

174

U.S. Department of Energy Pumping System Assessment  

E-Print Network (OSTI)

://www.epa.gov/climateleaders/smallbiz/footprint.html #12;Emissions Savings · Pump kWh savings ­ 824 MWH savings · (981.1 ­ 157.0 MWH) · Location eGrid

Oak Ridge National Laboratory

175

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

176

A capital cost comparison of commercial ground-source heat pump systems  

DOE Green Energy (OSTI)

The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

Rafferty, K.

1994-06-01T23:59:59.000Z

177

Performance prediction of a ground-coupled heat pump system using artificial neural networks  

Science Conference Proceedings (OSTI)

This paper describes the applicability of artificial neural networks (ANNs) to predict performance of a horizontal ground-coupled heat pump (GCHP) system. Performance forecasting is the precondition for the optimal control and energy saving operation ... Keywords: Artificial neural network, Coefficient of performance, Ground-coupled heat pump, Horizontal heat exchanger, Learning algorithm

Hikmet Esen; Mustafa Inalli; Abdulkadir Sengur; Mehmet Esen

2008-11-01T23:59:59.000Z

178

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

179

EIA - The National Energy Modeling System: An Overview 2003-Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module The National Energy Modeling System: An Overview 2003 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) links NEMS to the rest of the economy by providing projections of economic driver variables for use by the supply, demand, and conversion modules of NEMS. The derivation of the baseline macroeconomic forecast lays a foundation for the determination of the energy demand and supply forecast. MAM is used to present alternative macroeconomic growth cases to provide a range of uncertainty about the growth potential for the economy and its likely consequences for the energy system. MAM is also able to address the macroeconomic impacts associated with changing energy market conditions, such as alternative world oil price assumptions. Outside of the Annual Energy Outlook setting, MAM represents a system of linked modules which can assess the potential impacts on the economy of changes in energy events or policy proposals. These economic impacts then feed back into NEMS for an integrated solution. MAM consists of five modules:

180

Manufactured residential utility wall system (ResCore), overview  

SciTech Connect

This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

Wendt, R. [Oak Ridge National Lab., TN (United States); Lundell, C.; Lau, T.M. [Auburn Univ., AL (United States)

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Overview study of LNG release prevention and control systems  

SciTech Connect

The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

1982-03-01T23:59:59.000Z

182

Adjudication Concerning 70 Additional Sputter-Ion Pumps for the Vacuum System of the Intersecting Storage Rings  

E-Print Network (OSTI)

Adjudication Concerning 70 Additional Sputter-Ion Pumps for the Vacuum System of the Intersecting Storage Rings

1968-01-01T23:59:59.000Z

183

Generic Guide Specification for Geothermal Heat Pump Systems  

SciTech Connect

The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the design development phase. Use of this guide specification for any project is strictly optional and at the discretion of the responsible party in charge. If used as a construction specification master template for GHP systems, this guide specification must, in all cases, be edited to apply to the specific project in question and to reflect the site-specific conditions relevant to the project. There is no guarantee of accuracy or applicability with respect to any portion of this specification and the user assumes all risk associated with the application of the information contained in this document.

Thomas, WKT

2000-04-12T23:59:59.000Z

184

The National Energy Modeling System: An Overview 1998 - Overview of NEMS  

Gasoline and Diesel Fuel Update (EIA)

OVERVIEW OF NEMS OVERVIEW OF NEMS blueball.gif (205 bytes) Major Assumptions blueball.gif (205 bytes) NEMS Modular Structure blueball.gif (205 bytes) Integrating Module NEMS represents domestic energy markets by explicitly representing the economic decisionmaking involved in the production, conversion, and consumption of energy products. For example, the penetration of a new or advanced technology for electricity generation is projected only if the technology is deemed to be economic when considering the cost-minimizing mix of fuels over the life of the equipment. Since energy costs and availability and energy- consuming characteristics can vary widely across regions, considerable regional detail is included. Other details of production and consumption categories are represented to

185

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

186

Overview of systems analysis, market assessment, and controls work  

DOE Green Energy (OSTI)

Progress is reported on the following: heat pump analysis, absorption and Rankine cooling analysis, and desiccant cooling analysis. National energy savings, meeting cost and performance goals, recent simulation analysis, and controls research are discussed. (MHR)

Warren, M.L.

1981-08-01T23:59:59.000Z

187

Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview  

Science Conference Proceedings (OSTI)

An overview of some of the mathematical models appearing in the literature for use in the glucose-insulin regulatory system in relation to diabetes is given, enhanced with a survey on available software. The models are in the form of ordinary differential, ... Keywords: Diabetes, Glucose-insulin, Mathematical models, Overview, Software tools

Athena Makroglou; Jiaxu Li; Yang Kuang

2006-03-01T23:59:59.000Z

188

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost of underground water has also been considered. The economics of the heat pump and other cooling and heating sources has been compared and then several simple methods to improve the thermal economics of the underground water heat pump system have been put forward.

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

189

HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+  

E-Print Network (OSTI)

incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling-to-air heat pump (Yavuzturk 2000), heated pavement systems (Chiasson, et al. 2000a), shallow cooling ponds

190

Simulation Study of Hybrid Ground Source Heat Pump System in the Hot-Humid Climate.  

E-Print Network (OSTI)

??The beachfront hotel with hybrid geothermal heat pump system (HyGSHP), located in the hot-humid climate, is simulated by TRNSYS in the thesis, and the simulation (more)

Zhu, Jiang

2011-01-01T23:59:59.000Z

191

Solar-assisted heat pump system for cost-effective space heating and cooling  

DOE Green Energy (OSTI)

The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

Andrews, J W; Kush, E A; Metz, P D

1978-03-01T23:59:59.000Z

192

Boise Paper: Process Pumping System Optimization Saves Energy and Improves Production  

SciTech Connect

This DOE Industrial Technologies Program spotlight describes how Boise Paper is saving 498,000 kWh annually after improving the process pumping system efficiency of its Wallula, Washington, mill.

2006-05-01T23:59:59.000Z

193

Microsoft PowerPoint - 01XEPO-0_SystemOverview.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

and Cray XE and Cray XE y y System Overview Customer Documentation and Training Overview Topics * System Overview - Cabinets, Chassis, and Blades - Compute and Service Nodes - Components of a Node Opteron Processor Opteron Processor SeaStar ASIC * Portals API Design Gemini ASIC * System Networks * Interconnection Topologies 10/18/2010 2 Cray Private Cray XT System 10/18/2010 3 Cray Private System Overview GigE X Y Z 10 GigE GigE Fibre SMW RAID Subsystem Channels Compute node Login node g Network node Boot /Syslog/Database nodes I/O and Metadata nodes 10/18/2010 4 Cray Private Cabinet - The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules) - All components of the system are air cooled A blower in the bottom of the

194

Simulation of Hybrid Ground Source Heat Pump Systems and Experimental Validation  

E-Print Network (OSTI)

Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and auxiliary heat rejecters, such as cooling towers, fluid coolers, cooling ponds, or pavement heating systems. The design of the hybrid ground source heat pump system involves many degrees of freedom; e.g. the size of the cooling tower interacts with the control strategy, the ground loop heat exchanger design, and other parameters. This paper presents a simulation of such a system using a direct contact evaporative cooling tower as the supplemental heat rejecter. The simulation is performed in a component-based modeling environment using component models of a vertical ground loop heat exchanger, plate frame heat exchanger, cooling tower, circulating pumps, and heat pumps. Seven months (March to September 2005) of five-minutely experimental data from a hybrid ground source heat pump system were used for validation purposes. The source side of the system consists of two packaged water-to-water heat pumps, a three-borehole ground loop heat exchanger, and a direct contact evaporative cooling tower, isolated by a plate frame heat exchanger. The load side serves two small buildings with hydronic heating and cooling. Experimental validations of each component simulation and the entire system simulation are presented.

Jason E. Gentry; Jeffrey D. Spitler; Daniel E. Fisher; Xiaowei Xu

2006-01-01T23:59:59.000Z

195

Laboratory and Field Evaluation of Four Heat Pump Water Heater Systems  

Science Conference Proceedings (OSTI)

Water heating represents the second-largest load in residential buildings in the United States, and also a large load in many commercial and industrial buildings. The Electric Power Research Institute (EPRI) continues research on heat pump water heater (HPWH) systems, which provide high-efficiency electric water heating using the heat pump cycle. In this study, four systems, representing both residential and commercial applications, were tested in the laboratory and/or in the field. An A.O. Smith ...

2012-12-14T23:59:59.000Z

196

Development of High-Pressure Dry Feed Pump for Gasification Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressure Dry Feed Pressure Dry Feed Pump for Gasification Systems Background Even though coal-based power generation via Integrated Gasification Combined Cycle (IGCC) is more efficient, cleaner, and uses less water than conventional pulverized coal burning systems, widespread IGCC deployment has not occurred because of its relatively high cost. The Pratt & Whitney Rocketdyne (PWR) high-pressure dry feed pump addresses IGCC cost disparity by enabling lower cost and more reliable coal feed

197

Feasibility demonstration of the Sperry down-well pumping system. Final report  

DOE Green Energy (OSTI)

Advantages of down-well pumping (vs. free-flowing) of geothermal hot-water wells are presented, and criteria for such a system are discussed. The main body of the report is presented under the following section headings: the Sperry down-well pumping system; field test program; field operations; test results; and, conclusions and recommendations. The appendix includes a summary of boiler heat transfer and pressure drop calculations. (JGB)

Not Available

1977-05-01T23:59:59.000Z

198

Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems  

DOE Green Energy (OSTI)

This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

Cummings, J.; Withers, C.

2011-12-01T23:59:59.000Z

199

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

200

Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line  

DOE Patents (OSTI)

The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

Gaul, Christopher J. (Thornton, CO)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Circulating pump impeller: Presbyterian Intercommunity Hospital, Klamath Falls, Oregon, geothermal heating system. Failure analysis report  

DOE Green Energy (OSTI)

The Presbyterian Intercommunity Hospital located in Klamath Falls, Oregon utilizes geothermal fluid pumped from its own well to provide space heat and domestic hot water. During an inspection of the heating system after a chemical cleaning of the heat exchangers, the circulating pump was dismantled to replace its seals which were found to be leaking. At that time, the impeller was found to contain many cracks. The analysis of those cracks and a scale sample removed from the impeller is presented. (MHR)

Mitchell, D.A.; Ellis, P.F.

1979-11-30T23:59:59.000Z

202

2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the  

E-Print Network (OSTI)

pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment condsing Oil non condensing Heat pumps Biomass 612.500638.000550.000 618.500762.000751.500 735#12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation

Oak Ridge National Laboratory

203

Voting Systems Performance and Test Standards: An Overview  

E-Print Network (OSTI)

). This overview serves as a companion document for understanding and interpreting both Volume I, the performance provisions of the Standards, and Volume II, the testing specifications. Background The program to develop) produced a joint report, Effective Use of Computing Technology in Vote Tallying. This report concluded

Rivest, Ronald L.

204

Brochure Hydraulic Institute Standards Overview  

Energy.gov (U.S. Department of Energy (DOE))

If you specify, select, design, test, install or operate pumps or pumping systems, you will find ANSI/HI Pump Standards to be invaluable tools.

205

Designing, selecting and installing a residential ground-source heat pump system  

Science Conference Proceedings (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

206

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

207

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network (OSTI)

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water easy. Since refrigeration equipment runs more than heat pumps, energy savings can be large for ground-coupled refrigeration. The paper presents a design procedure for ground loops for heat pumps, hot water, ice machines, and water-cooled refrigeration. It gives an overview of the commercial ground-coupled systems in Louisiana that have both refrigeration and heat pumps. Systems vary from small offices to a three-story office building with 187 tons. A chain of hamburger outlets uses total ground-coupling in all of its stores. A grocery store has ground-coupling for heat pumps and refrigeration. Desuperheaters provide 80 percent of the hot water for a coin laundry in the same building. A comparison of energy costs in a bank with a ground-coupled heat pump system to a similar bank with air-conditioning and gas for heat revealed a 31 percent reduction in utility costs for the ground-coupled building. Two buildings of the Mississippi Power and Light Co. have ground-coupled heat pumps in one, and high efficiency air source heat pumps in the other. Energy savings in nine months was 60,000 kWh (25 percent), and electric peak demand was reduced 42 kW (35 percent).

Braud, H. J.

1986-01-01T23:59:59.000Z

208

Systems Study Of Drilling For Installation Of Geothermal Heat Pumps  

E-Print Network (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the...

John Finger William; William N. Sullivan; Ronald D. Jacobson; Kenneth G. Pierce

1997-01-01T23:59:59.000Z

209

Systems study of drilling for installation of geothermal heat pumps  

DOE Green Energy (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

210

Hybrid Ground Source Heat Pump System Simulation Using Visual Modeling Tool For Hvacsim  

E-Print Network (OSTI)

This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling ponds, or pavement heating systems. HVACSIM+ capabilities have recently been extended by the addition of ground loop heat exchanger models, water-to-water and waterto-air heat pump models, pavement heating system models, and heat rejection pond models. New component models are discussed and a hybrid ground source heat pump system with heated pavement as a supplemental cooler is simulated using the visual modeling tool. First, though, an introduction to a new graphical user interface for HVACSIM+ is given. The user interface that originally came with the program could not be characterized as user-friendly. The new graphical interface allows users to develop system models by hooking components together. Provisions for controlling the simulation, setting the component parameters, editing the boundary file, and plotting the output are also included.

M. H. Khan; A. Varanasi; J. D. Spitler; D. E. Fisher; R. D. Delahoussaye

2003-01-01T23:59:59.000Z

211

Advanced Heat Pump Water Heating Technology: Testing Commercial and Residential Systems in the Laboratory and Field  

Science Conference Proceedings (OSTI)

Heat pump water heaters (HPWHs) provide electric water heating at a much greater overall efficiency than conventional electric resistance systems. In the residential market, approximately half of all water heaters are electric resistance; these systems can be replaced by HPWHs in most applications with expected savings of 30%60%. In commercial applications, most systems presently use natural gas or another fuel in direct combustion. Emerging HPWH systems are now able to provide water heating ...

2013-12-20T23:59:59.000Z

212

An investigation of photovoltaic powered pumps in direct solar domestic hot water systems  

DOE Green Energy (OSTI)

The performance of photovoltaic powered pumps in direct solar domestic hot water (PV-SDHW) systems has been studied. The direct PV- SDHW system employs a photovoltaic array, a separately excited DC- motor, a centrifugal pump, a thermal collector, and a storage tank. A search methodology for an optimum PV-SDHW system configuration has been proposed. A comparison is made between the long-term performance of a PV-SDHW system and a conventional SDHW system operating under three control schemes. The three schemes are: an ON-OFF flow controlled SDHW system operating at the manufacturer-recommended constant flow rate, and a linear proportional flow controlled SDHW system with the flow proportional to the solar radiation operating under an optimum proportionality. 13 refs., 6 figs.

Al-Ibrahim, A.M.; Klein, S.A.; Mitchell, J.W.; Beckman, W.A.

1996-09-01T23:59:59.000Z

213

Energy Basics: Ductless, Mini-Split Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

214

Renewable Energy Water Pumping Systems Handbook; Period of Performance: April 1--September 1, 2001  

DOE Green Energy (OSTI)

Water is one of the most basic necessities of rural development. This book provides valuable information on how renewable energy technologies can be used for irrigation, livestock watering, and domestic water supplies. This report emphasizes wind and solar energy resources, and hybrid water pumping systems.

Argaw, N.

2004-07-01T23:59:59.000Z

215

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

216

Performance Assessment of a Variable Refrigerant Flow Heat Pump Air Conditioning System  

Science Conference Proceedings (OSTI)

Variable refrigerant flow (VRF) technology uses smart integrated controls, variable speed drives, and refrigerant piping to provide energy efficiency, flexible operation, ease of installation, low noise, zone control, and comfort through all-electric technology. This report describes and documents the construction, performance, and application of a heat pump air conditioning system that uses VRF technology8212the Daikin VRV system. This variable refrigerant volume (VRV) system is manufactured by Daikin I...

2008-12-17T23:59:59.000Z

217

Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area  

E-Print Network (OSTI)

The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical efficiency. It started operating in 2001, achieving high efficiency and a large amount of reduction of greenhouse gas emission, as well as low heat-charge. The system performance was verified by the continued commissioning of the system.

Yanagihara, R.; Okagaki, A.

2006-01-01T23:59:59.000Z

218

Original article: A three-dimensional model for the study of the cooling system of submersible electric pumps  

Science Conference Proceedings (OSTI)

We study the cooling system for submersible electric pumps. This study aims to provide some guidelines to improve the existing cooling system of these electric pumps when they work partially or totally not immersed in the service fluid. Note that inefficient ... Keywords: Finite element method, Heat transfer, Numerical approximation

N. Egidi; P. Maponi; L. Misici; S. Rubino

2012-08-01T23:59:59.000Z

219

Overview of Pulse Jet Mixer/Hybrid Mixing System Development to Support the Hanford Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in underground tanks at the Hanford Site. Pulse jet mixer (PJM) technology was selected for mixing the contents of many of the process vessels. Several of the tanks are expected to contain concentrated slurries that exhibit a non-Newtonian rheology and the understanding required to apply this technology to mobilize the non-Newtonian slurries was not mature. Consequently, an experimental testing effort was undertaken to investigate PJM performance in several scaled versions of WTP vessels and to develop mixing system configurations that met WTP requirements. This effort evolved into a large, multifaceted test program involving many different test facilities. Elements of the test program included theoretical analysis, development and characterization of simulants, development of instrumentation and measurement techniques, hundreds of tests at various scales in numerous test stands, and data analysis and application. This program provided the technical basis for the selection of pulse jet mixers along with air spargers and steady jets generated by recirculation pumps to provide mixing systems for several of the vessels with non-Newtonian slurries. This paper provides an overview of the testing program and a summary of the key technical results that formed the technical basis of the final mixing system configurations to be used in the WTP.

Kurath, Dean E.; Meyer, Perry A.; Stewart, Charles W.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

220

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Engine having hydraulic and fan drive systems using a single high pressure pump  

DOE Patents (OSTI)

An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

222

The Stirling alternative. Power systems, refrigerants and heat pumps  

SciTech Connect

This book provides an up-to-date reference on the technology, history, and practical applications of Stirling engines, including recent developments in the field and a convenient survey of the Stirling engine literature. The topics of the book include: fundamentals of Stirling technology, definition and terminology, thermodynamic laws and cycles: some elementary considerations, the Stirling cycle, practical regenerative cycle, theoretical aspects and computer simulation of Stirling machines, mechanical arrangements, control systems, heat exchangers, performance characteristics, working fluids, applications of Stirling machines, advantages of Stirling machines, disadvantages of Stirling machines, Stirling versus internal combustion engines, Stirling versus Rankine engines, applications for Stirling machines, Stirling power systems, the literature and sources of supply, the literature of Stirling engines, and the literature of cryocoolers.

Walker, G.; Reader, G.; Fauvel, O.R.; Bingham, E.R. (Univ. of Calgary, Alberta (Canada))

1993-01-01T23:59:59.000Z

223

Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology  

DOE Green Energy (OSTI)

Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

Strachan, J.W.; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States); Estrada, C. [Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Spain)

1995-11-01T23:59:59.000Z

224

An overview of reconfigurable hardware in embedded systems  

Science Conference Proceedings (OSTI)

Over the past few years, the realm of embedded systems has expanded to include a wide variety of products, ranging from digital cameras, to sensor networks, to medical imaging systems. Consequently, engineers strive to create ever smaller and faster ...

Philip Garcia; Katherine Compton; Michael Schulte; Emily Blem; Wenyin Fu

2006-01-01T23:59:59.000Z

225

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

226

Overview of ASC Capability Computing System Governance Model  

SciTech Connect

This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

Doebling, Scott W. [Los Alamos National Laboratory

2012-07-11T23:59:59.000Z

227

GM Project G.6 October 20005 -1 5. OVERVIEW OF THE MODELING SYSTEM  

E-Print Network (OSTI)

in the prices, #12;GM Project G.6 October 20005 - 3 or acquisition costs, of the goods or servicesGM Project G.6 October 20005 - 1 5. OVERVIEW OF THE MODELING SYSTEM 5.1 INTRODUCTION TO MODELING Our approach to projecting the number of fatalities involving older drivers used four distinct

228

TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T.M. Moynihan  

E-Print Network (OSTI)

849044 TEST RESULTS FOR A STIRLING-ENGINE-DRIVEN HEAT-ACTUATED HEAT PUMP BREADBOARD SYSTEM T- of the diaphragms, and corresponding displace- resonant -refrigerant compressor through a ment of oil, is a heat-actuated heat pump '_ ~*,^ (HAHP) that was developed for residential appli- -, / Combustor cations

Oak Ridge National Laboratory

229

Optimization of a Savonius rotor vertical-axis wind turbine for use in water pumping systems in rural Honduras  

E-Print Network (OSTI)

The D-lab Honduras team designed and constructed a wind-powered water pump in rural Honduras during IAP 2007. Currently, the system does not work under its own power and water must be pumped by hand. This thesis seeks to ...

Zingman, Aron (Aron Olesen)

2007-01-01T23:59:59.000Z

230

The National Energy Modeling System: An Overview 1998 - Appendix:  

Gasoline and Diesel Fuel Update (EIA)

APPENDIX: APPENDIX: BIBLIOGRAPHY The National Energy Modeling System is documented in a series of model documentation reports, available by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, National Energy Modeling System Integrating Module Documentation Report, DOE/EIA-M057(97) (Washington, DC, May 1997). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(97) (Washington, DC, December 1996). Energy Information Administration, Model Developer's Appendix to the Model Documentation Report: NEMS Macroeconomic Activity Module, DOE/EIA-M065A (Washington, DC, July 1994). Energy Information Administration, Documentation of the DRI Model of the

231

Overview and status of RF systems for the SSC Linac  

SciTech Connect

The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-{mu}s, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented.

Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

1993-05-01T23:59:59.000Z

232

Simulation and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area  

E-Print Network (OSTI)

The conventional heating mode is a one-way circulation in cold areas, which causes abatement in the reserves of energy source and increases environmental pollution. An ecological cycle heating system, an air-to-water + apartment water-to-water double-stage coupled heat pump system, is presented in this paper based on analyzing the characteristics of the villa district heating. Prediction and analysis of the feasibility of the double-stage coupled heat pump system in cold areas were carried after the components and characteristics of the system are introduced. The lumped parameter method was used to establish a mathematical model of the whole system, and the system control methods and the volume of the heat storage tank were decided to get the best value of the heating seasonal performance factor (HSPF). Furthermore, the application of the double-stage coupled heat pump system in some representative cities of cold areas in China was analyzed. The results show that the novel heat pump system can be used for heating the villa district in cold areas. To make the HSPF of the system much better, the water circulations of the double-stage coupled heat pump system also were analyzed in this paper; some improvements are put forward, and single-double stages mixed heat pumps system for the villa districts heating are introduced.

Yang, L.; Yao, Y.; Ma, Z.

2006-01-01T23:59:59.000Z

233

LMFBR with booster pump in pumping loop  

DOE Patents (OSTI)

A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

Rubinstein, H.J.

1975-10-14T23:59:59.000Z

234

An Exploratory Study of the New Performance Index of the Heat Pump System Based on the Second Law of Thermodynamics  

E-Print Network (OSTI)

The coefficient of performance (COP) of the heat pump system, based on the first law of thermodynamics and reflecting the quantity relation of input and output energy, has certain limitations on the evaluation of energy-saving efficiency and the feasibility of the heat pump system. Based on the analysis of this problem and the second law of thermodynamics, a new performance index called the heating load of unit exergy loss is proposed, which reflects energy-saving efficiency and the feasibility of the heat pump system more scientifically and more objectively.

Xu, W.; Li, H.

2006-01-01T23:59:59.000Z

235

Process Control System Cyber Security Standards - An Overview  

Science Conference Proceedings (OSTI)

The use of cyber security standards can greatly assist in the protection of critical infrastructure by providing guidelines and requisite imperatives in the implementation of computer-controlled systems. These standards are most effective when the engineers and operators using the standards understand what each of the standards addresses and does not address. This paper provides a review and comparison of ten documents dealing with control system cyber security. It is not meant to be a complete treatment of all applicable standards; rather, this is an exemplary analysis showing the benefits of comparing and contrasting differing documents.

Robert P. Evans; V Stanley Scown; Rolf Carlson; Shabbir Shamsuddin; George Shaw; Jeff Dagle; Paul W Oman; Jeannine Schmidt

2005-10-01T23:59:59.000Z

236

An overview: Component development for solar thermal systems  

DOE Green Energy (OSTI)

In this paper, I review the significant issues and the development of solar concentrators and thermal receivers for central-receiver power plants and dish/engine systems. Due to the breadth of the topic area, I have arbitrarily narrowed the content of this paper by choosing not to discuss line-focus (trough) systems and energy storage. I will focus my discussion on the development of heliostats, dishes, and receivers since the 1970s with an emphasis on describing the technologies and their evolution, identifying some key observations and lessons learned, and suggesting what the future in component development may be.

Mancini, T.R.

1994-10-01T23:59:59.000Z

237

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

238

The National Energy Modeling System: An Overview 2000 - appendix  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, Integrating Module of the National Energy Modeling System: Model Documentation DOE/EIA-M057(2000) (Washington, DC, December 1999). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2000) (Washington, DC, December 1999). Energy Information Administration, Documentation of the DRI Model of the U.S. Economy, DOE/EIA- M061 (Washington, DC, December 1993). Energy Information Administration, NEMS International Energy Module: Model Documentation Report, DOE/EIA-M071(99) (Washington, DC, February 1999).

239

Overview of the Blue Gene/L system architecture  

Science Conference Proceedings (OSTI)

The Blue Gene/L computer is a massively parallel supercomputer based on IBM system-on-a-chip technology. It is designed to scale to 65,536 dual-processor nodes, with a peak performance of 360 teraflops. This paper describes the project objectives ...

A. Gara; M. A. Blumrich; D. Chen; G. L.-T. Chiu; P. Coteus; M. E. Giampapa; R. A. Haring; P. Heidelberger; D. Hoenicke; G. V. Kopcsay; T. A. Liebsch; M. Ohmacht; B. D. Steinmacher-Burow; T. Takken; P. Vranas

2005-03-01T23:59:59.000Z

240

Finite Volume Based Computer Program for Ground Source Heat Pump System  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

Menart, James A. [Wright State University] [Wright State University

2013-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ???¢????????Finite Volume Based Computer Program for Ground Source Heat Pump Systems.???¢??????? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

242

The National Energy Modeling System: An Overview 1998 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

INTRODUCTION INTRODUCTION blueball.gif (205 bytes) Purpose of NEMS blueball.gif (205 bytes) Representations of Energy Market blueball.gif (205 bytes) Technology Representation blueball.gif (205 bytes) External Availability The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S.

243

An Overview of the Reliability and Availability Data System (RADS)  

SciTech Connect

The Reliability and Availability Data System (RADS) is a database and analysis code, developed by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Nuclear Regulatory Commission (USNRC). The code is designed to estimate industry and plant-specific reliability and availability parameters for selected components in risk-important systems and initiating events for use in risk-informed applications. The RADS tool contains data and information based on actual operating experience from U.S. commercial nuclear power plants. The data contained in RADS is kept up-to-date by loading the most current quarter's Equipment Performance and Information Exchange (EPIX) data and by yearly lods of initiating event data from licensee event reports (LERS). The reliability parameters estimated by RADS are (1) probability of failure on demand, (2) failure rate during operation (used to calculate failure to run probability) and (3) time trends in reliability parameters.

T. E. Wierman; K. J. Kvarfordt; S. A. Eide; D. M. Rasmuson

2005-09-01T23:59:59.000Z

244

Conversion system overview assessment. Volume 1: solar thermoelectrics  

DOE Green Energy (OSTI)

An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

Jayadev, T. S.; Henderson, J.; Finegold, J.; Benson, D.

1979-08-01T23:59:59.000Z

245

Reduce Pumping Costs through Optimum Pipe Sizing  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by reducing pumping costs through optimum pipe sizing.

2005-10-01T23:59:59.000Z

246

Select an Energy-Efficient Centrifugal Pump  

SciTech Connect

BestPractices Program tip sheet discussing pumping system efficiency by selecting an energy-efficient centrifugal pump.

2005-10-01T23:59:59.000Z

247

Solar assisted heat pump system with volume solar collector. Technical report  

DOE Green Energy (OSTI)

The system uses the attic of the house with a large south facing window as the solar collector. An air-to-water heat pump uses the attic air as a heat source to heat a volume of storage water during the heating season. During the cooling season the attic is ventilated and the heat pump uses the attic air as a heat sink while cooling the storage water. The computer program was developed to include a heat exchanger in the attic which could by-pass the heat pump condenser cooling water, thus permitting direct heat exchange between the attic air and the storage water whenever a favorable temperature existed. The program also accounts for the effect of the incidence angle of insolation and the effect of the number of glass plates on the transmittance and absorptance of the collector and windows. Other refinements include: the use of a sophisticated nighttime setback thermostat, account of internal heat generation and infiltration loss. Among all of the parameter variations, the use of an attic heat exchanger resulted in the maximum savings in the heating/cooling energy consumption of the house. The use of double-glazed windows too, resulted in substantial energy savings. The total energy consumption was found to depend strongly on the infiltration rate. The program was also used to simulate the same system under weather conditions existing at several different geographic areas.

Sabnis, J.S.; Hickox, W.J.; Drucker, E.E.; Ucar, M.; LaGraff, J.E.

1978-09-01T23:59:59.000Z

248

AGS tune jump system to cross horizontal depolarization resonances overview  

SciTech Connect

Two partial snakes overcome the vertical depolarizing resonances in the AGS. But a new type of depolarizing intrinsic resonance from horizontal motion appeared. We reduce these using horizontal tune jumps timed to these resonances. We gain a factor of six in crossing rate with a tune jump of 0.05 in 100 {micro}s. Two quadrapoles, we described in 2009, pulse 42 times, the current matching beam energy. The power supplies for these quads are described in detail elsewhere in this conference. The controls for the Jump Quad system is based on a BNL designed Quad Function Generator. Two modules are used; one for timing, and one to supply reference voltages. Synchronization is provided by a proprietary serial bus, the Event Link. The AgsTuneJump application predicts the times of the resonances during the AGS cycle and calculates the power supply trigger times from externally collected tune and energy versus time data and the Low and High PS voltage functions from a voltage to current model of the power supply. The system was commissioned during runs 09 & 10 and is operational. Many beam effects are described elsewhere. The TuneJump system has worked well and has caused little trouble save for the perturbations in the lattice having such a large effect due to our need to run with the vertical tune within a few thousandths of the integer tune. As these problems were mostly sorted out by correcting the 6th harmonic orbit distortions which caused a large 18 theta beta wave. Also running with minimal chromaticity reduces emittance growth. There are still small beta waves which are being addressed. The timing of the pulses is still being investigated, but as each crossing causes minimal polarization loss, this is a lengthy process.

Glenn, J.W.; Ahrens, L.; Fu, W.; Mi, J.L.; Rosas, P.; Schoefer, V.; Theisen, C.; Altinbas, Z.

2011-03-28T23:59:59.000Z

249

The National Energy Modeling System: An Overview 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market-clearing prices for natural gas supplies and for end-use consumption, given the information passed from other NEMS modules. A transmission and distribution network (Figure 15), composed of nodes and arcs, is used to simulate the interregional flow and pricing of gas in the contiguous United States and Canada in both the peak (December through March) and offpeak (April through November) period. This network is a simplified representation of the physical natural gas pipeline system and establishes the possible interregional flows and associated prices as gas moves from supply sources to end users. Figure 15. Natural Gas Transmission and Distribution Module Network

250

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS&GSHP system can serve as cold energy thermal storage at night, produce chilled water in the daytime in summer and provide hot water for heating in winter. This is followed by its schematic and characteristic description. Then the various operation modes of such system according to different operational strategies are demonstrated in sequence. The system, firstly seen in open literature, is energy-saving, environmental-friendly and promising in the field of air-conditioning systems, and will help solve the problems currently existing with the GSHP system and ITES air conditioning system.

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

251

State Energy Price System: 1983 update overview and documentation  

SciTech Connect

This report documents the update of the State Energy Price System (STEPS) for the 1970-1983 period. The STEPS data base, developed by the Pacific Northwest Laboratory (PNL) under contract to the Office of Energy Markets and End Use, Energy Information Administration, contains national and state-level energy price data for ten fuels and five end-use sectors. STEPS is intended to provide energy price information for Federal, state, and local government and private sector applications. The primary objective of this study is to document the update of the price series to include data for 1983. Concurrent with the 1983 update, PNL also began verifying the reproducibility of individual prices in the data base for the 1970 to 1982 period. While the reproducibility check work is completed for six of the ten fuels and is integrated in the documentation for those fuels, the findings from this task are not discussed.

Imhoff, K.L.; Fang, J.M.; McWethy, L.G.

1985-12-01T23:59:59.000Z

252

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

253

Overview of Open-Cycle Desiccant Cooling Systems and Materials  

DOE Green Energy (OSTI)

This paper has presented a review of the thermodynamics of three desiccant cooling cycles: the ventilation cycle, the recirculation cycle, and the Dunkle cycle. For the ventilation cycle the qualitative effects of changes in the effectiveness of individual components were analyzed. There are two possible paths to improved dehumidifier performance: changing the design of dehumidifiers using currently available desiccants so as to increase effectiveness without increasing parasitic losses, or developing new desiccants specifically tailored for solar cooling applications. The later part of this paper has considered the second option. A list of desirable desiccant properties was defined, properties of currently used solid and liquid desiccants were compared to this list, and a hypothetical desiccant type that would give improved system performance was discussed.

Collier, R.; Arnold, F.; Barlow, R.

1981-09-01T23:59:59.000Z

254

Overview of Common Mode Outages in Power Systems  

SciTech Connect

This paper is a result of ongoing activity carried out by Probability Applications for Common Mode Events (PACME) Task Force under the Reliability Risk and Probability Applications (RRPA) Subcommittee. The paper is intended to constitute a valid source of information and references about dealing with common-mode outages in power systems reliability analysis. This effort involves reviewing published literature and presenting state-of-the-art research and practical applications in the area of common-mode outages. Evaluation of available outage statistics show that there is a definite need for collective effort from academia and industry to not only recommended procedures for data collection and monitoring but also to provide appropriate mathematical models to assess such events.

Papic, Milorad; Awodele , Kehinde; Billinton, Roy; Dent, Chris; Eager, Dan; Hamoud, Gomaa; Jirutitijaroen, Panida; Kumbale, Murali; Mitra, Joydeep; Samaan, Nader A.; Schneider, Alex; Singh, Chanan

2012-11-10T23:59:59.000Z

255

Overview of recent trends and developments for BPM systems  

SciTech Connect

Beam position monitoring (BPM) systems are the workhorse of beam diagnostics for almost any kind of charged particle accelerator: linear, circular or transport-lines, operating with leptons, hadrons or heavy ions. BPMs are essential for beam commissioning, accelerator fault analysis and trouble shooting, machine optics, as well as lattice measurements, and finally, for accelerator optimization, in order to achieve the ultimate beam quality. This presentation summarizes the efforts of the beam instrumentation community on recent developments and advances on BPM technologies, i.e. BPM pickup monitors and front-end electronics (analog and digital). Principles, examples, and state-of-the-art status on various BPM techniques, serving hadron and heavy ion machines, sync light synchrotron's, as well as electron linacs for FEL or HEP applications are outlined.

Wendt, M.; /Fermilab

2011-08-01T23:59:59.000Z

256

The Borrower's Guide to Financing Solar Energy Systems: A Federal Overview: Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

FINANCING FINANCING SOLAR ENERGY SYSTEMS S E C O N D E D I T I O N PREPARED BY THE U.S. DEPARTMENT OF ENERGY T H E B O R R O W E R ' S G U I D E T O a federal overview C O N T E N T S Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Quick Guide to Financing Programs . . . . . . . . . . 4 About Today's Solar Systems . . . . . . . . . . . . . . . . 7 Photovoltaic Power Systems . . . . . . . . . . . . . . . . . . 7 Solar Thermal Systems . . . . . . . . . . . . . . . . . . . . . . 8 About the Financing Programs . . . . . . . . . . . . . 10 Fannie Mae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Federal Home Mortgage Loan Corporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 U.S. Department of Agriculture . . . . . . . . . . . . . . 14 U.S. Department of Energy

257

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

Science Conference Proceedings (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

258

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

259

State energy price system. Volume I: overview and technical documentation  

SciTech Connect

This study utilizes existing data sources and previous analyses of state-level energy prices to develop consistent state-level energy prices series by fuel type and by end-use sector. The fuels are electricity, natural gas, coal, distillate fuel oil, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. The end-use sectors are residential, commercial, industrial, transportation, and electric utility. Based upon an evaluation of existing data sources, recommendations were formulated on the feasible approaches for developing a consistent state energy price series. The data series were compiled based upon the approaches approved after a formal EIA review. Detailed documentation was provided, including annual updating procedures. Recommendations were formulated for future improvements in the collection of data or in data processing. Generally, the geographical coverage includes the 50 states and the District of Columbia. Information on state-level energy use was generally taken from the State Energy Data System (SEDS). Corresponding average US prices are also developed using volumes reported in SEDS. To the extent possible, the prices developed are quantity weighted average retail prices. Both a Btu price series and a physical unit price series are developed for each fuel. The period covered by the data series is 1970 through 1980 for most fuels, though prices for electricity and natural gas extend back to 1960. (PSB)

Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

1982-06-01T23:59:59.000Z

260

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network (OSTI)

For higher solar fraction and suitability for both heating and cooling, a solar heat pump system with seasonal storage was studied in this paper. The system scheme and control strategy of a solar heat pump system with seasonal storage for heating and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes, operating modes and weather conditions. The results show that 1) for most areas of China, the solar systems with seasonal storage can save energy; 2) for areas with cold winter and hot summer, it is suitable to store heat from summer to winter and store cold energy from winter to summer, but for chilly areas, it is suitable to only store heat from summer to winter; 3) when the ratio of volume of seasonal storage tank to collector areas is 2~3, the system performance is optimal and the payback period is shortest for most areas of north China; and 4) if cooling storage is needed, the seasonal storage coupled with short-term storage may raise the solar fraction largely.

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage  

E-Print Network (OSTI)

Based on the status quo that conventional energy sources are more and more reduced and environmental pollution is increasingly serious, this paper presents a new model system of conserving energy and environmental protection, namely, a Solar Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar heat collector is solved by latent heat storage. In order to obtain such system running conditions and effects in different heating periods, an experiment has been carried out during the whole heating period in Harbin, China. The experimental results show that this system is much better for heating in initial and late periods than that in middle periods. The average heating coefficient is 6.13 for heating in initial and late periods and 2.94 for heating in middle periods. At the same time, this paper also predicts system running properties in other regions.

Han, Z.; Zheng, M.; Liu, W.; Wang, F.

2006-01-01T23:59:59.000Z

262

Performance analysis of a two-stage variable capacity air source heat pump and a horizontal loop coupled ground source heat pump system.  

E-Print Network (OSTI)

??The thermal performance of a new two-stage variable capacity air source heat pump (ASHP) and a horizontal ground loop ground source heat pump (GSHP) was (more)

Safa, Amir Alizadeh

2012-01-01T23:59:59.000Z

263

US Department of Energy Solar Thermal Energy Systems Program. An overview presentation, August 1979  

DOE Green Energy (OSTI)

Intended as both a position paper and a progress report to industry, this document provides a comprehensive overview of the US Department of Energy's Solar Thermal Program. Cost goals, systems design parameters, applications considerations, and the potential for industry involvement in solar thermal development and commercialization are described in detail. Decentralized management of R and D functions is linked to priorities and strategies of the evolving program.

Braun, G W

1980-06-01T23:59:59.000Z

264

Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Conference  

E-Print Network (OSTI)

6/5/2013 1 Overview of Avista GHG Modeling NPCC Greenhouse Gas and the Regional Power System Natural Gas CO2 Emissions A Bridge to a Low Carbon Future, or the Future? 815 1,190 lbs/MWh Gas CCCT has ~35% of coal emissions on a per-MWh basis Gas CT has ~50% of coal emissions on a per-MWh basis 119 119

265

An overview of the TA-55, Building PF-4 ventilation system  

Science Conference Proceedings (OSTI)

An overview of the TA-55, Building PF-4 ventilation system is provided in the following sections. Included are descriptions of the zone configurations, equipment-performance criteria, ventilation support systems, and the ventilation-system evaluation criteria. Section 4.2.1.1 provides a brief discussion of the ventilation system function. Section 4.2.1.2 provides details on the overall system configuration. Details of system interfaces and support systems are provided in Section 4.2.1.3. Section 4.2.1.4 describes instrumentation and control needed to operate the ventilation system. Finally, Sections 4.2.1.5 and 4.2.1.6 describe system surveillance/maintenance and Technical Safety Requirements (TSR) Limitations, respectively. Note that the numerical parameters included in this description are considered nominal; set points and other specifications actually fall within operational bands.

NONE

1994-02-22T23:59:59.000Z

266

Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems  

SciTech Connect

Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

Wang, Kai [ORNL; Kisari, Padmaja [ORNL; Abdelaziz, Omar [ORNL; Vineyard, Edward Allan [ORNL

2010-01-01T23:59:59.000Z

267

Overview of biomass thermochemical conversion activities funded by the biomass energy systems branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively involved in the development of renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The overall objective of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement fuels from conventional sources. An overview of biomass thermochemical conversion projects sponsored by the Biomass Energy Systems Branch is presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-01-01T23:59:59.000Z

268

High Frequency Effects of Variable Frequency Drives (VFD) on Electrical Submersible Pump (ESP) Systems  

E-Print Network (OSTI)

Variable frequency drives (VFD) and subsea (umbilical) cables are frequently used in electrical submersible pump (ESP) systems for offshore platforms. There are two basic system configurations for ESP systems; VFD can be installed on the platform and the motor is connected to it through an umbilical cable, and VFD and the motor are installed closely and they are connected to the system through an umbilical cable. In this thesis, the pros and cons of each configuration are mentioned, but the focus is on the system with a VFD controlled motor through a long umbilical cable. A 36-pulse VFD is studied. Since multilevel VFDs have high frequency harmonics, high frequency modeling of the umbilical cable is used, and skin effect is also taken into consideration in the cable. The effect of the interactions between the umbilical cable and high frequency harmonics on the motor terminal voltage is explored.

Ozkentli, Esra

2012-08-01T23:59:59.000Z

269

Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System  

E-Print Network (OSTI)

A heat pump using disposed sewage as a heat source to heat raw sewage is presented to solve the problem that sewage temperature is low in sewage biologic treatment in cold region. According to the status of one medicine factory in Harbin, China, system performances are simulated. Then the impact of fouling on system performance is emulated in detail. The results show that the novel system is feasible to be utilized in sewage treatment for its energy-saving and high efficient characteristics, and that raw sewage temperature can be enhanced to 29.569?, and EER of system can reach 4.177. Fouling impact on system not only depends on the fouling thermal resistance, but also is related to heat transfer coefficient. Increased fouling leads to severely deteriorated performance of the compressor, and a decrease in EER and refrigerant mass flow rate.

Song, Y.; Yao, Y.; Ma, Z.; Na, W.

2006-01-01T23:59:59.000Z

270

Systems Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Partnership Energy Partnership The Global Nuclear Energy Partnership From Vision to Reality April 2008 Edward McGinnis Deputy Assistant Secretary Office of Nuclear Energy U.S. Department of Energy and Chair of the Global Nuclear Energy Partnership Steering Group 2 Challenges Facing Global Energy Needs Electricity demand is expected to increase 40% in the U.S. by 2030 and nearly 100% globally over the same period. Nuclear power produces nearly 20 percent of total U.S. electricity output-this 20 percent share represents 70 percent of all non-carbon emitting electricity production. And in the United States, 19 utility companies are currently projected to build thirty- three new reactors. When completed, these new nuclear power plants will provide over 43 GWe of electricity, enough to power 30 million homes."

271

Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2  

SciTech Connect

This document has been updated during the definitive design portion of the first phase of the W-314 Project to capture additional software requirements and is planned to be updated during the second phase of the W-314 Project to cover the second phase of the Project's scope. The objective is to provide requirement traceability by recording the analysis/basis for the functional descriptions of the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment.

BEVINS, R.R.

2000-03-24T23:59:59.000Z

272

Second generation ground coupled solar assisted heat pump systems. Six month progress report  

DOE Green Energy (OSTI)

Progress is reported on an investigation of the technical and commercial viability of a novel ground coupled, solar assisted heat pump system for residential space heating and cooling applications. Specific areas of study are solar collector/heat rejector performance, flat plate earth heat exchanger performance, system performance simulations, and commercialization and marketing analysis. Collector/rejector performance, determined by various thermal experiments, is discussed. The design and construction of an experimental site to study ground coupling is discussed. Theoretical analysis is also presented. The performance of the GCSAHP system and conventional alternatives, as determined by simple computer models, is presented and discussed. Finally, the commercial viability of this unique space conditioning system is examined.

Rhodes, G W; Backlund, J C; Helm, J M

1981-01-01T23:59:59.000Z

273

Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report  

SciTech Connect

The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

Bloomquist, R.G. [Washington, State Univ., Pullman, WA (United States); Wegman, S. [South Dakota Utilities Commission (United States)

1998-04-01T23:59:59.000Z

274

HYCSOS: a chemical heat pump and energy conversion system based on metal hydrides. 1979 status report  

DOE Green Energy (OSTI)

The current status of the HYCSOS chemical heat pump and energy conversion system based on metal hydrides is described. Heat transfer fluid loops were insulated and modified for isothermal operation. Software development for HYCSOS manual mode operation was completed. Routines to handle data acquisition, logging, compression, correction and plotting, using a Tektronix Graphics system with flexible disk data storage, provide a rapid and versatile means of presenting HYCSOS data for analysis. Advanced concept heat exchangers to improve the heat transfer of the hydride bed with the heat transfer fluid are discussed. Preliminary tests made with a LaNi/sub 5/ loaded aluminum foam test unit showed that heat transfer properties are very markedly improved. Thermodynamic expressions are applied to the selection of alloys for use in HYCSOS. The substitution of aluminum for nickel in AB/sub 5/ type alloys is shown to reduce hysteresis and permits the use of potentially lower cost materials with added flexibility for the optimization of engineering design and performance characteristics of the hydride heat pump system. Transient thermal measurements on hydride beds of CaNi/sub 5/ and LaNi/sub 5/ show no deterioration with cycling. Relatively slow heat transfer between the hydride beds and heat transfer fluid in the coiled tube heat exchangers is indicated by temperature lag of the bed and heat transfer fluid. Improved heat transfer is anticipated with aluminum foam heat exchangers.

Sheft, I.; Gruen, D.M.; Lamich, G.

1979-04-01T23:59:59.000Z

275

Analysis of the Hydrologic Response Associated with Shutdown and Restart of the 200-ZP-1 Pump-and-Treat System  

Science Conference Proceedings (OSTI)

A number of programs have been implemented on the Hanford Site that utilize the pumping and treatment of contaminated groundwater as part of their remediation strategy. Often the treated water is reinjected into the aquifer at injection well sites. The implementation of remedial pump and treat systems, however, results in hydraulic pressure responses, both areally and vertically (i.e., with depth) within the pumped aquifer. The area within the aquifer affected by the pump and treat system (i.e., radius of influence) is commonly estimated based on detecting associated water-level responses within surrounding monitor wells. Natural external stresses, such as barometric pressure fluctuations, however, can have a discernible impact on well water-level measurements. These temporal barometric effects may significantly mask water-level responses within more distant wells that are only slightly affected (< 0.10 m) by the test system. External stress effects, therefore, can lead to erroneous indications of the radius of influence of the imposed pump and treat system remediation activities and can greatly diminish the ability to analyze the associated well responses for hydraulic property characterization. When these extraneous influences are significant, adjustments or removal of the barometric effects from the test-response record may be required for quantitative hydrologic assessment. This report examines possible hydrologic effects of pump and treat remediation actions and provides a detailed analysis of water-level measurements for selected 200-ZP-1 pump and treat system monitor wells during the recent Y2K shutdown (December 1999) and restart activity (January 2000). The general findings presented in this report have universal application for unconfined and confined aquifer systems.

Spane, Frank A.; Thorne, Paul D.

2000-09-08T23:59:59.000Z

276

Simulation of a photovoltaic/thermal heat pump system having a modified collector/evaporator  

SciTech Connect

A new photovoltaic/thermal heat pump (PV/T-HP) system having a modified collector/evaporator (C/E) has been developed and numerically studied. Multi-port flat extruded aluminum tubes were used in the modified C/E, as compared to round copper tubes used in a conventional C/E. Simulation results suggested that a better operating performance can be achieved for a PV/T-HP system having such a modified C/E. In addition, using the meteorological data in both Nanjing and Hong Kong, China, the simulation results showed that this new PV/T-HP system could efficiently generate electricity and thermal energy simultaneously in both cities all-year-round. Furthermore, improved operation by using variable speed compressor has been designed and discussed. (author)

Xu, Guoying [School of Energy and Environment, Southeast University, 210096 Nanjing (China); Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Deng, Shiming [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Zhang, Xiaosong; Yang, Lei; Zhang, Yuehong [School of Energy and Environment, Southeast University, 210096 Nanjing (China)

2009-11-15T23:59:59.000Z

277

Reperforation of North Sea electric submersible pump wells using an ESP/Y-tool/TCP system  

Science Conference Proceedings (OSTI)

As a result of the increasing emphasis on reducing operating costs and minimizing deferred production, a new system was designed for the reperforation of wells lifted with Electric Submersible Pumps (ESP's). This paper describes an alternative method that can be used when a Tubing Conveyed Perforating (TCP) system is required for the underbalanced reperforation of an ESP well. The method employs a combined ESP/Y-tool/TCP assembly and can save approximately 24 hours in rig time over conventional methods. Use of the method can avoid substantial deferred or lost production, particularly when other wells requiring workovers are awaiting use of a rig at considerable cost. The system can also be used for the completion of new wells where an ESP is required from the outset.

Dudley, R.W.

1987-01-01T23:59:59.000Z

278

Session 1: Geothermal Pumping Systems and Two-Phase Flow Studies  

DOE Green Energy (OSTI)

Improvements in electric submersible pumping systems have resulted in a demonstrated downhole running life of one year for low horsepower units operating in 180 C brine. The implementation of a prototype pressurized lubrication system to prevent brine intrusion and loss of lubricating oil from the motor and protector sections has been successfully tested. Second generation pressurized lubrication systems have been designed and fabricated and will be utilized in downhole production pumping tests during FY84. Pumping system lifetime is currently limited by available power cable designs that are degraded by high-temperature brine. A prototype metal-sheathed power cable has been designed and fabricated and is currently undergoing destructive and nondestructive laboratory testing. This cable design has the potential for eliminating brine intrusion into the power delivery system through the use of a hermatically sealed cable from the surface to the downhole motor. The two-phase flow program is directed at understanding the hydrodynamics of two-phase flows. The two-phase flow regime is characterized by a series of flow patterns that are designated as bubble, slug, churn, and annular flow. Churn flow has received very little scientific attention. This lack of attention cannot be justified because calculations predict that the churn flow pattern will exist over a substantial portion of the two-phase flow zone in producing geothermal wells. The University of Houston is experimentally investigating the dynamics of churn flow and is measuring the holdup over the full range of flow space for which churn flow exists. These experiments are being conducted in an air/water vertical two-phase flow loop. Brown University has constructed and is operating a unique two-phase flow research facility specifically designed to address flow problems of relevance to the geothermal industry. An important feature of the facility is that it is dedicated to two-phase flow of a single substance (including evaporation and condensation) as opposed to the case of a two-component two-phase flow. This facility can be operated with horizontal or vertical test sections of constant diameter or with step changes in diameter to simulate a geothermal well profile.

Hanold, R.J.

1983-12-01T23:59:59.000Z

279

Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method  

E-Print Network (OSTI)

Based on the weather data of a standard year in Wuhan, derived from the data of the latest 15 years, the data for the BIN (temperature and humidity frequency) method of an annual and 8-hour system were calculated. Then the BIN method was adopted to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show that the energy consumption of the former was approximately less 23.3% than that of the latter in summer and 19.1% in winter.

Wen, Y.; Zhao, F.

2006-01-01T23:59:59.000Z

280

Agelidis, Inverter for Single-Phase Grid Connected Photovoltaic Systems An Overview, Power Electron  

E-Print Network (OSTI)

Abstract- An overview on recent developments and a summary of the state-of-the-art of inverter technology in Europe for single-phase grid-connected Photovoltaic (PV) systems for power levels up to 5 kW is provided in this paper. The information includes details not only on the topologies commercially available but also on the switching devices employed and the associated switching frequencies, efficiency, price trends and market share. Finally, the paper outlines issues associated with the development of relevant international industry standards affecting PV inverter technology. I.

Martina Calais; Johanna Myrzik; Ted Spoone; Vassilios G. Agelidis

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Deposition of novel nanocomposite films by a newly developed differential pumping co-sputtering system  

SciTech Connect

A differential pumping co-sputtering system was developed to facilitate a controlled, but flexible fabrication of multifunctional nanocomposite films with compositions not limited by thermodynamic restrictions. This system features a multichamber design with a differential pumping system. Dividing atmospheres with this set up greatly reduced the cross-contamination between chambers, and each material could be co-deposited by rapid rotation of the substrate. The clearance between the substrate holder and the chamber was set at 1-2 mm, and the conductance of the clearance was examined roughly using conductance equations for typical types of orifices. It was found that the potential difference (PD) value of the clearance between the two chambers was less than 0.01; the gas flow between the two chambers through the clearance thus appears to be a practical molecular flow. The PD value, where P is a pressure (Pa) and D is a diameter of an orifice or a pipe (m), is a gas flow indicator or parameter obtained from an equation of Knudsen number. The changes in the oxygen partial pressure and glow discharge plasma in the left chamber were investigated using a process gas monitor (PGM) and optical emission spectroscope (OES) by introducing different gases to each chamber. The PGM results revealed that the cross-contamination of oxygen from the other chamber was suppressed to 10 {+-} 3% of the original. In addition, the OES measurement for glow discharge plasma did not detect substantial oxygen contamination from the other chamber. Using the newly developed system, an AlN/SiO{sub x} nanocomposite film consisting of B4-type AlN and amorphous SiO{sub x} was obtained successfully.

Nose, Masateru; Kurimoto, Takeshi; Saiki, Atsushi; Matsuda, Kenji; Terayama, Kiyoshi [Faculty of Art and Design, University of Toyama, Takaoka 933-8588 (Japan); School of Science and Engineering, University of Toyama, Toyama 930-8555 (Japan)

2012-01-15T23:59:59.000Z

282

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network (OSTI)

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system. Significant energy usage and demand savings are verified for the retrofitted injection molding machine. The savings are realized by electronically attenuating the torque of a positive displacement pump irrespective of the volumetric flow required by the cycle. With help of a power analyzer, power quality issues are addressed. Some voltage distortion was observed due to the harmonic currents introduced by the control algorithm of the high efficiency hydraulic system. A comparative study of electrical energy and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented.

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

283

Modeling, analysis and neural MPPT control design of a PV-generator powered dc motor-pump system  

Science Conference Proceedings (OSTI)

This paper presents the optimization of a photovoltaic (PV) water pumping system using maximum power point tracking technique (MPPT). The optimization is suspended to reference optimal power. This optimization technique is developed to assure the optimum ... Keywords: artificial neural network controller, drive systems, maximum power point tracking, photovoltaic

Ahmed. M. Kassem

2011-12-01T23:59:59.000Z

284

Vacuum-Pump Control System Using Programmable Logic Controllers on the TCP/IP Network for the 2.5-GeV Storage Ring  

E-Print Network (OSTI)

Vacuum-Pump Control System Using Programmable Logic Controllers on the TCP/IP Network for the 2.5-GeV Storage Ring

Kanaya, N; Maezawa, H; Factory, P

1999-01-01T23:59:59.000Z

285

Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump  

DOE Green Energy (OSTI)

Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

1983-06-22T23:59:59.000Z

286

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

Science Conference Proceedings (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

287

Requirements Analysis Study for Master Pump Shutdown System Project Development Specification [SEC 1 and 2  

SciTech Connect

This study is a requirements document that presents analysis for the functional description for the master pump shutdown system. This document identifies the sources of the requirements and/or how these were derived. Each requirement is validated either by quoting the source or an analysis process involving the required functionality, performance characteristics, operations input or engineering judgment. The requirements in this study apply to the first phase of the W314 Project. This document has been updated during the definitive design portion of the first phase of the W314 Project to capture additional software requirements and is planned to be updated during the second phase of the W314 Project to cover the second phase of the project's scope.

BEVINS, R.R.

2000-09-20T23:59:59.000Z

288

DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)  

DOE Green Energy (OSTI)

This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

Anderson, E. R.

2010-12-14T23:59:59.000Z

289

Technology assessment of external heat systems for Stirling heat pumps. Final report  

SciTech Connect

A technology assessment and design improvement effort was undertaken for the Stirling engine heat pump external heat system (EHS) in order to reduce costs. It was found that only two applicable EHS design approaches have been developed to any extent: a relatively undeveloped design featuring a premixed fuel and air transpiration burner, and a turbulent diffusion type burner system developed by Mechanical Technology, Inc. To evaluate and optimize the design concepts, an analytical model was developed that examined design and performance variables. The model calculated key temperatures, allowing the specification of materials requirements. Adherence to American National Standards Institute appliance furnace code material specifications was assumed. Concepts for EHS control systems were evaluated, and a cost-effective control system design was developed for the turbulent diffusion burner EHS. The study reveals that optimizing the diffusion burner EHS design can result in significant cost savings. No clear choice between the diffusion burner and transpiration burner systems could be determined from this study, but the designs of both were further developed and improved. Estimates show the EHS based on a transpiration burner to have a manufactured cost that is roughly 70% of the turbulent diffusion burner EHS cost, but fuel efficiency is lower by about 18%.

Vasilakis, A.D. [Advanced Mechanical Technology, Inc., Newton, MA (United States)

1993-12-01T23:59:59.000Z

290

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

291

Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps Heat Pumps Heat Pumps Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Learn more about how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. In moderate climates, heat pumps can be an energy-efficient alternative to furnaces and air conditioners. Several types of heat pumps are available, including air-source; geothermal; ductless, mini-split; and absorption heat pumps. Learn more about the different options and how to use your heat pump efficiently to save money and energy at home. Featured Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

292

Overview and Status of the Power Conditioning System for the National Ignition Facility  

DOE Green Energy (OSTI)

The National Ignition Facility (NIF) Power Conditioning System (PCS) is a modular capacitive energy storage system that provides over 34 kilojoules of energy to each of the nearly 8000 flashlamps in the NIF laser. Up to 400 megajoules of energy can be stored in the NIF PCS system, discharged through spark gaps and delivered to the flashlamps through a coaxial transmission line system requiring nearly 100 miles of high-voltage cable. The NIF PCS has been under development for nearly 4 years. During this time, the system was developed and designed by Sandia National Laboratory in Albuquerque, NM (SNLA) in conjunction with Lawrence Livermore National Laboratory (LLNL). Extensive reliability testing was performed at SNLA on the First Article NIF Test Module (FANTM) test facility and design improvements were implemented based on FANTM test results, leading to the final design presently undergoing system reliability testing at LLNL. Low-cost energy-storage capacitors, charging power supplies, and reliable, fault-tolerant components were developed through partnerships with numerous contractors. Extensive reliability and fault testing of components has also been performed. This paper will provide an overview of the many efforts that have culminated in the final design of the NIF PCS. The PCS system design will be described and the cost tradeoffs discussed. Plans for fabrication and installation of the NIF PCS system over the next 6 years will be presented.

Newton, M A; Fulkerson, E S; Hulsey, S D; Kamm, R E; Pendleton, D L; Petersen, D E; Smith, C R; Ullery, G T; McKay, P F; Moore, W B; Muirhead, D A

2001-09-11T23:59:59.000Z

293

Jet pump feeds corrosion inhibitor in Russian waterflood  

SciTech Connect

The Russian company Orenburgneft JSC tested a proportioning jet pump for injecting corrosion inhibitor into the water injection system at its Tananykskoye waterflood. The jet pump has no moving parts and, therefore, provides an hermetic system with zero emissions of pumped and working fluid. This pump reduces weight, dimensions, and costs compared to mechanical pumps. The paper describes jet pumping and the pump design.

Yuden, I.S. [JKX Oil and Gas, Guildford (United Kingdom); Sazanov, Y.A.; Yeliseev, V.N.; Malov, B.A. [Orenburgneft JSC, Moscow (Russian Federation)

1997-01-27T23:59:59.000Z

294

PUMP CONSTRUCTION  

DOE Patents (OSTI)

A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

Strickland, G.; Horn, F.L.; White, H.T.

1960-09-27T23:59:59.000Z

295

AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research  

E-Print Network (OSTI)

exchanger, comfort. #12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo* ABSTRACT A two constrained optimization procedure was used to select heat exchanger proportions, air flow rates National Laboratory. * S. E. Veyo, Mgr., Heat Exchange Systems, Westinghouse R&D Center, Pittsburgh, PA

Oak Ridge National Laboratory

296

Optimal Scheduling and Control of a Multi-Pump Boosting System Zhenyu Yang and Hakon Brsting  

E-Print Network (OSTI)

, refrigeration, sewage treatment, oil and gas pipeline transportation, marine relevant services etc.. Today over efficient manner. In or- der to handle versatile applications, pumps enhanced with variable speed functionality, which are often referred to as Variable Speed Pumps (VSP), have also been developed

Yang, Zhenyu

297

Study on Hybrid Solar Energy and Ground-Source Heat Pump System  

Science Conference Proceedings (OSTI)

Aim at the weakness of more influenced by the environment etc. factor and the heat flow density lower when the solar energy was make use of heating, so the design method of the hybrid solar energy and ground-source heat pump is proposed, and the operating ... Keywords: solar energy, ground-source, heat pump, coefficient of performance

Liu Yi; Li Bing-xi; Zhou Yi; Fu Zhong-bin; Xu Xin-hai

2009-10-01T23:59:59.000Z

298

Feasibility of using power steering pumps in small-scale solar thermal electric power systems  

E-Print Network (OSTI)

The goal of this study was to determine performance curves for a variety of positive displacement pumps in order to select an efficient and low cost option for use as a boiler feed pump in a 1-kWe organic Rankine cycle ...

Lin, Cynthia, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

299

Development and Implementation of an Expert System for Vibration Monitoring and Diagnoses for Hydroelectric Pumped Storage Units  

Science Conference Proceedings (OSTI)

A reliable expert diagnostic system supports a condition-based approach to maintenance that enables plant management to extend the time between outages and plan specific maintenance efforts. This report describes the two-phase development and implementation of a rule-based expert system for performing vibration monitoring and diagnostics on four hydroelectric pumped storage units of the New York Power Authority (NYPA). Developers estimate that the system could save plants $150,000/yr in forced outage cos...

1998-11-11T23:59:59.000Z

300

Control system for electric water heater with heat pump external heat source  

Science Conference Proceedings (OSTI)

A control system for an electric water heater operatively associated with an external heat source, such as a heat pump. The water heater includes a water storage tank provided with an electric tank heating unit having a tank thermostat which closes in response to water temperature in the tank, allowing a flow of current through the tank heating unit so as to turn it on to heat the water, and which opens when the tank thermostat has been satisfied, interrupting the current flow so as to turn the tank heating unit off. The control system as responsive to the initial current surge through the tank heating unit when the tank thermostat closes to interrupt the current flow to the tank heating unit so as to maintain the heating unit off and to turn on the external heat source and maintain it on until the tank thermostat opens. The initial current surge cleans the contacts of the tank thermostat by burning off any insulating oxide residues which may have formed on them. The control system includes means responsive to abnormal conditions which would prevent the external heat source from heating water effectively for turning off the external heat source and turning on the tank heating unit and maintaining the external heat source off and the tank heating unit on until the tank thermostat is satisfied.

Shaffer Jr., J. E.; Picarello, J. F.

1985-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Earth-Coupled or Geothermal Heat Pump Air Conditioning System  

E-Print Network (OSTI)

As utility costs have risen despite political campaign promises and energy conserving measures implemented by the utility companies such as alternative fuel use (coal and nuclear), co-generation, etc., homeowners have begun to search for effective methods of reducing their electricity bills. In some cases homeowners are faced with utility bills That are approaching the cost of their mortgage payments. For those with fixed incomes, such as the elderly or those looking forward to retirement in the near future, this has become an alarming reality. Virtually every homeowner would like to reduce his utility bill but the question is, what items should he address in order to have a significant impact on his electricity costs? According to Houston Lighting h Power Company, 50% of an electricity bill can be attributed to the air conditioning system, and another 15-20% to the hot water heating system. Therefore, to dramatically reduce utility costs one should look first at these two "energy gulpers" and next at proper home insulation, window coverings, etc. The other electrical appliances in the home use relatively minor amounts of electricity compared to the air conditioning and hot water heating system. This paper will describe the geothermal heat pump and the desuperheater as the latest developments in energy efficient air conditioning and water heating.

Wagers, H. L.; Wagers, M. C.

1985-01-01T23:59:59.000Z

302

Initial findings: The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

1989-01-01T23:59:59.000Z

303

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

comparison of VAV and VRF air conditioning systems in anThe variable refrigerant flow (VRF) and ground source heatthe energy efficiency of VRF systems compared with GSHP

Hong, Tainzhen

2010-01-01T23:59:59.000Z

304

EIA - The National Energy Modeling System: An Overview 2003-Coal Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The National Energy Modeling System: An Overview 2003 Coal Market Module Figure 19. Coal Market Module Demand Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 20. Coal Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 21. Coal Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Coal Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end–use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal

305

EIA - The National Energy Modeling System: An Overview 2003-Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuelsl Module Renewable Fuelsl Module The National Energy Modeling System: An Overview 2003 Renewable Fuels Module Figure 11. Renewable Fuels Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Renewable Fuels Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The renewable fuels module (RFM) represents renewable energy resoures and large–scale technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (biomass, conventional hydroelectricity, geothermal, landfill gas, solar photovoltaics, solar thermal, and wind) are used to generate electricity, the RFM primarily interacts with the electricity market module (EMM). New renewable energy generating capacity is either model–determined or

306

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

307

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

308

Update on maintenance and service costs of commercial building ground-source heat pump systems  

Science Conference Proceedings (OSTI)

An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

Cane, D.; Garnet, J.M.

2000-07-01T23:59:59.000Z

309

Pump8  

NLE Websites -- All DOE Office Websites (Extended Search)

Preferred Upstream Management Practices Preferred Upstream Management Practices Rewriting the Meaning of "Standard Business Practices" PUMP U.S. Department of Energy * National Energy Technology Laboratory TECHNOLOGY TRANSFER TO THE USER * Regional Production Obstacles: Identification of specific regional obstacles to oil production, and the preferred management practices to overcome the problems. Demonstrate drilling, field opera- tions technology, reservoir man- agement approaches, computer tools, or better ways to comply with environmental regulations in a case study. * Research Groups or Councils: Use established groups or councils in a region to formulate the "best practices" appropriate to that region. The goal is to develop a self- sustaining system to identify pro- duction constraints and solve them

310

Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC  

E-Print Network (OSTI)

With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold. It is critical and important to know how to choose the terminal and make it workable. This paper makes a technical and economic comparison of various heating terminals (with the example of a north residential district which adopts ground source heat pump as the cold and heat source) and gets the optimum scheme.

Mu, W.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

311

Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report  

DOE Green Energy (OSTI)

Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

Beck, Douglas S.

2003-01-10T23:59:59.000Z

312

Commercial building unitary heat pump system with solar heating. Final report, May 1, 1976--October 31, 1977  

DOE Green Energy (OSTI)

A generalized dynamic computer program (SYRSOL) has been developed for the mathematical simulation of the thermal behavior of multi-zone solar heated buildings. The system modeled employs a series of water-to-air heat pumps connected in a closed loop, flat-plate liquid cooled solar collector, a water storage tank, and a cooling tower. Weather data are represented by sinusoids, which provide a convenient and economical alternative to weather tapes. Results indicate that the use of sinusoidal functions for temperature and monthly average values for cloud cover is quite realistic and accurate. Temperature functions for thirteen cities are presented. A preliminary analysis has been done of the feasibility of using solar-energized desiccant dehumidification systems to reduce summer cooling loads. Service hot water production using a water-to-water heat pump from the storage tank is shown to be highly effective and idle solar collectors can be used directly to make service hot water in the summer. A new mathematical heat pump heating model, in which the COP increases linearly with the source water temperature, has been developed and incorporated into SYRSOL. The computer simulation capability has been extended from a heating season to an entire year. The results of some experiments, that have improved the COP of a heat pump, are also reported.

Drucker, E.E.; Ucar, M.; LaGraff, J.E.

1978-05-01T23:59:59.000Z

313

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due to the different heating and cooling load of a building, which will consistently deteriorate the heat pump efficiency leading even to the breakdown of the heat pump. This paper brings forward a design method of adding supplemental heat rejection equipment, a cooling tower, in the system to solve the problem in a cold area. Taking an office building in Beijing as an example, the authors simulate the GSHP system with two different connection methods between the cooling tower and vertical buried-pipe heat exchangers (in series and in parallel) using TRNSYS simulation software, and put forward several design schemes that can ensure the whole system continually operates with high efficiency. This also makes it possible to perform a more detailed economic optimization of the GSHP-based system in the future.

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

314

HEAT PUMP AND AIR CONDITIONING SYSTEM ANALYSIS BASED ON VARIABLE SPEED COMPRESSOR.  

E-Print Network (OSTI)

??Mechanical Engineering M.S.E. Experiments were carried out to investigate the effect of ambient air temperatures on the heat pump performance using a variable speed compressor. (more)

Zhang, Hao

2010-01-01T23:59:59.000Z

315

Optimal power consumption in a central heating system with geothermal heat pump  

E-Print Network (OSTI)

Abstract: A ground source heat pump connected to a domestic hydronic heating network is studied to be driven with the minimum electric power. The hypothesis is to decrease the forward temperature to the extent that one of the hydronic heaters work at full capacity. A less forward temperature would result in a dramatic temperature drop in the room with saturated actuator. The optimization hypothesis is inspired by the fact that, the consumed electric power by the heat pump has a strong positive correlation with the generated forward temperature. A model predictive control scheme is proposed in the current study to achieve the optimal forward temperature. At the lower hierarchy level, local PI controllers seek the corresponding room temperature setpoint. Simulation results for a multi-room house case study show considerable energy savings compared to the heat pumps traditional control scheme.

F. Tahersima; J. Stoustrup; H. Rasmussen

2011-01-01T23:59:59.000Z

316

Stirling cycle heat pump for heating and/or cooling systems  

Science Conference Proceedings (OSTI)

This patent describes a duplex Stirling cycle machine acting as a heat pump. It comprises: a Stirling engine having pistons axially displaceable within parallel cylinders, the engine further having a swashplate rotatable about an axis of, rotation parallel to the cylinders and defining a plane inclined from the axis of rotation. The pistons connected to the swashplate via crossheads whereby axial displacement of the pistons is converted to rotation of the swashplate, and a Stirling cycle heat pump having a compression heat exchanger, an expansion heat exchanger and a regenerator with pistons equal in number to the engine pistons and axially displaceable within cylinders which are oriented co-axially with the engine cylinders. The crossheads further connected to the heat pump pistons whereby the heat pump pistons move simultaneously with the engine pistons over an equal stroke distance.

Meijer, R.J.; Khalili, K.; Meijer, E.; Godett, T.M.

1991-03-05T23:59:59.000Z

317

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

Hong, Tainzhen

2010-01-01T23:59:59.000Z

318

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

Marseille, T.J.; Schliesing, J.S.

1990-09-01T23:59:59.000Z

319

Electrokinetic pumps and actuators  

DOE Green Energy (OSTI)

Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

Phillip M. Paul

2000-03-01T23:59:59.000Z

320

The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers  

DOE Green Energy (OSTI)

Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

Wills, R.H. [Solar Design Associates, Harvard, MA (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ELECTROMAGNETIC PUMP  

DOE Patents (OSTI)

This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

Pulley, O.O.

1954-08-17T23:59:59.000Z

322

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

323

EVALUATION METHODOLOGY FOR PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION OF GENERATION IV NUCLEAR ENERGY SYSTEMS: AN OVERVIEW.  

SciTech Connect

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: (1) System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. (2) Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. (3) Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

BARI, R.; ET AL.

2006-03-01T23:59:59.000Z

324

Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview  

SciTech Connect

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

T. Bjornard; R. Bari; R. Nishimura; P. Peterson; J. Roglans; D. Bley; J. Cazalet; G.G.M. Cojazzi; P. Delaune; M. Golay; G. Rendad; G. Rochau; M. Senzaki; I. Therios; M. Zentner

2006-05-01T23:59:59.000Z

325

The integration of water loop heat pump and building structural thermal storage systems  

DOE Green Energy (OSTI)

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

326

The integration of water loop heat pump and building structural thermal storage systems  

SciTech Connect

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

Marseille, T.J.; Schliesing, J.S.

1991-10-01T23:59:59.000Z

327

STE-QUEST Mission and System Design - Overview after completion of Phase-A  

E-Print Network (OSTI)

STE-QUEST is a fundamental science mission which is considered for launch within the Cosmic Vision programme of the European Space Agency (ESA). Its main scientific objectives relate to probing various aspects of Einstein's theory of general relativity by measuring the gravitational red-shift of the earth, the moon and the sun as well as testing the weak equivalence principle to unprecedented accuracy. In order to perform the measurements, the system features a spacecraft equipped with two complex instruments, an atomic clock and an atom interferometer, a ground-segment encompassing several ground-terminals collocated with the best available ground atomic clocks, and clock comparison between space and ground via microwave and optical links. The baseline orbit is highly eccentric and exhibits strong variations of incident solar flux, which poses challenges for thermal and power subsystems in addition to the difficulties encountered by precise-orbit-determination at high altitudes. The mission assessment and definition phase (Phase-A) has recently been completed and this paper gives a concise overview over some system level results.

Gerald Hechenblaikner; Marc-Peter Hess; Marianna Vitelli; Jan Beck

2013-09-30T23:59:59.000Z

328

NORMETEX PUMP ALTERNATIVES STUDY  

SciTech Connect

A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.

Clark, Elliot A.

2013-04-25T23:59:59.000Z

329

An overview of the DC wiring system design issues in the SMUD Phase I photovoltaic power plant  

Science Conference Proceedings (OSTI)

The DC wiring system of a photovoltaic power requires a number of safety features that result from the unique aspects of photovoltaic devices. This paper presents an overview of the DC wiring system design developed for the Sacramento Municipal Utilities District (SMUD) Phase I photovoltaic power plant. The specific challenges that photovoltaic devices present to a power plant designer are identified along with the specific solutions adopted in the SMUD design.

Rosen, D.; Simburger, E.J.; Sugimura, R.S.

1984-09-01T23:59:59.000Z

330

LMR (liquid metal reactor) centrifugal pump coastdowns  

Science Conference Proceedings (OSTI)

A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps.

Dunn, F.E.; Malloy, D.J.

1987-01-01T23:59:59.000Z

331

Selection criteria for oil?free vacuum pumps  

Science Conference Proceedings (OSTI)

Some high?vacuum pumps without oil in the swept pumping volume are now available for the evacuation and process pumping of vacuum systems. These pumps are from different principles

Pierre Duval

1989-01-01T23:59:59.000Z

332

SAMS Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Materials Management & Safeguards System > SAMS Overview SAMS Overview U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

333

Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment  

SciTech Connect

The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct so

Baxter, Van D [ORNL

2007-05-01T23:59:59.000Z

334

Save by absorption heat pumping  

SciTech Connect

The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

Davidson, W.F.; Campagne, W.V.L.

1987-12-01T23:59:59.000Z

335

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

336

Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system  

Science Conference Proceedings (OSTI)

The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5x10{sup 17} m{sup -3} which corresponds to a local carbon concentration of 2%.

Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr [Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Burhenn, Rainer [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-17491 Greifswald (Germany)

2008-09-15T23:59:59.000Z

337

Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature  

DOE Patents (OSTI)

A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.

Sievers, Robert K. (N. Huntingdon, PA); Cooper, Martin H. (Churchill, PA); Tupper, Robert B. (Greensburg, PA)

1987-01-01T23:59:59.000Z

338

Conversion system overview assessment. Volume II. Solar-wind hybrid systems  

SciTech Connect

Solar-wind hybrid systems are discussed. It is shown that there are large areas in the United States where solar and wind resources are comparable in magnitude and there are diurnal and seasonal complementarities which offer the potential for cost-effective hybrid systems. There are also distinct engineering features of the two conversion technologies. Electric power generation from wind is straightforward and cost-effective, whereas solar thermal conversion to generate heat is more cost-effective than to generate electricity. Examples of hybrid systems utilizing these features in total energy applications are presented.

Jayadev, T. S.; Henderson, J.; Bingham, C.

1979-08-01T23:59:59.000Z

339

Investigation of component failures in downhole geothermal pumping systems. Final report  

DOE Green Energy (OSTI)

This study investigated component failures in electric, downhole submersible pumps which prevented the attainment of one year continuous downhole running times in geothermal wells at temperatures up to 375/sup 0/F. The feasibility of a pressurized motor to prevent brine intrusion was investigated, as well as improved pothead and packoff designs, and brine scale buildup on impeller sleeve bearings and thrust washers. (ACR)

Werner, D.K.

1985-03-15T23:59:59.000Z

340

Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System  

SciTech Connect

This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

Kisner, Roger A [ORNL; Fugate, David L [ORNL; Melin, Alexander M [ORNL; Holcomb, David Eugene [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Cruz Molina, Carola [ORNL

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SURVEY OF SODIUM PUMP TECHNOLOGY  

SciTech Connect

A review is presented of the current status of sodium pump development as related to nuclear power applications. A description is given of the design features and performance characteristics of the more important types of sodium and sodium-- potassium alloy (NaK) pumps. Some requirements for sodium pumps for future large liquid metal reactor systems are presented with some preliminary consideration of the potential of various pump types to meet these requirements. (auth)

Nixon, D.R.

1963-06-01T23:59:59.000Z

342

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

343

Performance of a solar energy-assisted heat pump heating system: analysis and correlation of field-collected data  

SciTech Connect

An analysis of building energy usage and thermal load for the Solar Building during the winter heating seasons of 1974-75 and 1975-76 is reported. The one-story office building is located in Albuquerque, New Mexico. Its mechanical heating and cooling equipment is categorized as a solar-assisted heat pump system consisting of solar collectors, water thermal storage, a water-to-water heat pump and five smaller water-to-air heat pump packaged units. Building energy usage was examined with emphasis on the time of day energy was consumed and the source from which the energy was obtained; i.e., from the electricity for lighting, office equipment and mechanical equipment, and from the heat output of the thermal storage and heat pumps. The rate of electrical energy consumption was found to be very dependent on building use. High rates of electrical energy usage during occupied periods required cooling during parts of even the coldest days. Mechanical equipment heating was found to vary as a function of building usage as well as a function of the indoor-outdoor temperature differential. Energies supplied to and withdrawn from the building were examined and are presented for hourly, daily, and seasonal periods. A comparison of the two heating seasons was made. Energy losses and gains from the building to the surroundings were examined for both steady-state and transient load profiles. Envelope conductive heat losses and losses due to infiltration and ventilation were calculated using actual weather data through the use of the Building Environmental Analysis Program (BEAP). The effect of building thermal storage on heating and cooling loads was examined and a set of building balance-point temperatures was established. Comparisons between the building energy consumption and a calculated load were made for hourly, daily, and seasonal periods.

Williams, R.C.

1979-08-01T23:59:59.000Z

344

SHINE VACUUM PUMP TEST VERIFICATION  

Science Conference Proceedings (OSTI)

Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ?Normetex replacement?) pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ?booster? pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ?booster? pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this case the ?booster pump? is an Adixen Molecular Drag Pump (MDP 5011) and the backing pump is an Edwards (nXDS15iC) scroll pump. Various configurations of the two pumps and associated lengths of ? inch tubing (0 feet to 300 feet) were used in combination with hydrogen and nitrogen flow rates ranging from 25-400 standard cubic centimeters per minute (sccm) to determine whether the proposed pump configuration meets the design criteria for SHINE. The results of this study indicate that even under the most severe conditions (300 feet of tubing and 400 sccm flow rate) the Adixen 5011 MDP can serve as a booster pump to transport gases from the accelerator (NDAS) to the TPS. The Target Gas Receiving System pump (Edwards nXDS15iC) located approximately 300 feet from the accelerator can effectively back the Adixen MDP. The molecular drag pump was able to maintain its full rotational speed even when the flow rate was 400 sccm hydrogen or nitrogen and 300 feet of tubing was installed between the drag pump and the Edwards scroll pump. In addition to maintaining adequate rotation, the pressure in the system was maintained below the target pressure of 30 torr for all flow rates, lengths of tubing, and process gases. This configuration is therefore adequate to meet the SHINE design requirements in terms of flow and pressure.

Morgan, G.; Peters, B.

2013-09-30T23:59:59.000Z

345

Thermochemical conversion of biomass: an overview of R and D activities sponsored by the Biomass Energy Systems Branch of DOE  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is actively developing renewable energy sources through research and development programs sponsored by the Biomass Energy Systems Branch. The mission of the thermochemical conversion element of the Biomass Energy Systems Program is to develop competitive processes for the conversion of renewable biomass resources into clean fuels and chemical feedstocks which can supplement those produced from conventional sources. A description of thermochemical conversion program areas and an overview of specific thermochemical conversion projects sponsored by the Biomass Energy Systems Branch are presented in this paper.

Schiefelbein, G.F.; Sealock, L.J. Jr.; Ergun, S.

1979-10-01T23:59:59.000Z

346

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source scheme in economical, technical, and environmental aspects, it is determined that the scheme of the groundwater source heat pump has better energy efficiency than others. The GHPWTS can take full advantage of the heat source from groundwater and benefit of electricity difference pricing during a day. Its character is a combination of a strength and another strength. It is the lowest cycle cost of all chide and heat source schemes. The GHPWTS has the best economic benefit and runs stably and reliably. Its advantage is clearly compared with other schemes. There is a real value for the project that is similar to the characteristic of this project and the condition of the water source.

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

347

Pressure charged airlift pump  

DOE Patents (OSTI)

A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

Campbell, Gene K. (Las Vegas, NV)

1983-01-01T23:59:59.000Z

348

Solar-powered saline sorbent-solution heat pump/storage system. [Coastal Energy Laboratory-Chemical Heat Pump (CEL-CHEAP)  

SciTech Connect

Coastal Energy Laboratory Chemical Heat Pump (CEL-CHEAP) is a redesigned open-cycle liquid desiccant air conditioner. Heat is discharged to shallow-well water by dehumidification-humidification for cooling and extracted by humidification-dehumidification for heating. Direct solar radiation concentrates the desiccant. For continuous operation, a small uninsulated tank stores concentrated solution. 6 refs.

Robison, H.; Houston, S.

1981-01-01T23:59:59.000Z

349

Long Term Geothermal Heat Pump System Ground Loop Heat Exchanger Performance: Field Data from a Quick Service Restaurant Application  

Science Conference Proceedings (OSTI)

This report summarizes measured long-term performance of the ground loop heat exchanger in a geothermal heat pump system in a McDonald's Quick Service Restaurant located in Westland near Detroit, Michigan. Heat build-up in the soil around the heat exchanger over a long period of time has always been a concern, but only limited data has been available in the past. The gradual increase in the return loop temperature over a period of five years is evidence of the heat built up in the ground loop field, whic...

2003-01-22T23:59:59.000Z

350

Microhydropower Turbines, Pumps, and Waterwheels  

Energy.gov (U.S. Department of Energy (DOE))

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity.

351

Franklin Job Launch Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Job Launch Overview Job Launch Overview Job Launch Overview Overview and Basic Description Franklin has three basic types of nodes. Compute Nodes The 9,572 compute nodes each have a quad-core 2.3 GHz Opteron processor and 8 GB of memory shared by the 4 cores. The compute nodes run a restricted low-overhead operating system optimized for high performance computing. This OS supports only a limited number of system calls and UNIX commands, and does not officially support user-created dynamic-load libraries. A single given compute node is always allocated to run a single user job; multiple jobs never share a compute node. Service Nodes (Login Nodes) Franklin's service nodes run a full Linux operating system and provide support services for the system. Some of these service nodes serve

352

Comparing maintenance costs of geothermal heat pump systems with other HVAC systems: Preventive maintenance actions and total maintenance costs  

SciTech Connect

Total annual heating, ventilating, and air-conditioning (HVAC) maintenance costs were determined for 20 schools in the Lincoln, Nebraska, Public School District. Each school examined provides cooling to over 70% of its total floor area and relies on one of the following heating and cooling systems to provide the majority of space conditioning: vertical-bore, geothermal heat pumps (GHPs), air-cooled chiller with gas-fired hot water boiler (ACC/GHWB), or water-cooled chiller with gas-fired steam boiler (WCC/GSB). A precursor to this study examined annual costs associated with repair, service, and corrective maintenance activities tracked in a work order database. This follow-up study examines costs associated with preventive maintenance (PM) activities conducted by the district. Annual PM costs were 5.87 {cents}/yr-ft{sup 2} (63.14 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 7.14 {cents}/yr-ft{sup 2} (76.86 {cents}/yr-m{sup 2}) for GHP, 9.82 {cents}/yr-ft{sup 2} (105.39 {cents}/yr-m{sup 2}) for WCC/ GSB, and 12.65 {cents}/yr-ft{sup 2} (136.30 {cents}/yr-m{sup 2}) for WCC/GHWB. The results of the two analyses are combined to produce an estimate of total annual maintenance costs, by system type, for the 20 schools. Total annual maintenance costs were 8.75 {cents}/yr-ft{sup 2} (94.20 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 9.27 {cents}/yr-ft{sup 2} (99.76 {cents}/yr-m{sup 2}) for GHP, 13.54 {cents}/yr-ft{sup 2} (145.49 {cents}/yr-m{sup 2}) for WCC/GSB, and 18.71 {cents}/yr-ft{sup 2} (201.61 {cents}/yr-m{sup 2}) for WCC/GHWB. It should be noted that these costs represent only the trends seen in the maintenance database of the Lincoln School District. Because of differences in the number of schools using each system type, varying equipment age, and the small total number of schools included in the study, the maintenance costs presented here may not be representative of the maintenance costs seen for similar equipment in other locations.

Martin, M.A.; Madgett, M.G.; Hughes, P.J.

2000-07-01T23:59:59.000Z

353

Open-cycle chemical heat pump and energy storage system. Final report of Research Program, June 1982-September 1983  

DOE Green Energy (OSTI)

A liquid desiccant heat pump that can heat, cool, humidify, and dehumidify, as well as heat domestic water, has been designed, developed, and tested over a six-year period. Successful operation of the machine demonstrated that a heating cycle utilizing the heat of sorption of a desiccant solution could be added to a desiccant cooling system, thus creating an open-cycle liquid desiccant heat pump. The liquid system was shown to possess a unique capability: the ability to store energy, not as sensible heat but as chemical potential energy, in an uninsulated storage tank with a volume that is an order of magnitude smaller than the insulated volumes needed for water or rock bed storage systems. The spent absorbent solution was reconcentrated in a roof-top solar-collector/reconcentrator. Additionally, it was shown that a packed-column could also act as the reconcentrator; for this operation, the desiccant solution was heated by flat-plate solar collectors, by off-peak electricity, and by waste heat from a vapor compressor.

Robison, H.I.

1983-10-01T23:59:59.000Z

354

An Overview  

Science Conference Proceedings (OSTI)

Conference Tools for 2010 TMS Annual Meeting & Exhibition ... An overview of the state-of-the-art based on the published literature is also presented.

355

Thailand Overview  

U.S. Energy Information Administration (EIA)

Countries Thailand Last Updated: February 20, 2013 (Notes) full report Overview Thailand is a net importer of oil and natural gas, although the ...

356

NGL Overview  

Gasoline and Diesel Fuel Update (EIA)

2 EIA's Proposed NGL Realignment: Overview June 4, 2013 Butanes include normal butane and isobutane. 3 Changes proposed by EIA to realign NGL data and related terminology...

357

EXECUTIVE OVERVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the Waste Management Conference ("Visible, Endurable, Enforceable Institutional Controls: Weldon Spring Site-A 10-Year Journey"). EXECUTIVE OVERVIEW U.S. Department of Energy...

358

Kazakhstan Overview  

U.S. Energy Information Administration (EIA)

Countries Kazakhstan Last Updated: October 28, 2013 (Notes) full report Overview Kazakhstan, an oil producer since 1911, has the second largest oil ...

359

Reperforation of North Sea electric-submersible-pump wells with an ESP/Y-Tool/TCP system  

Science Conference Proceedings (OSTI)

As a result of the increasing emphasis on reducing operating costs and minimizing deferred production, a new system was designed for the reperforation of wells lifted with electric submersible pumps (ESP's). This paper describes an alternative method that can be used when a tubing-conveyed-perforating (TCP) system is required for the underbalanced reperforation of an ESP well. The method, which uses a combined ESP/Y-Tool/TCP assembly, can save about 24 hours in rig time over conventional methods. Use of the method can avoid substantial deferred or lost production, particularly when other wells requiring workovers are awaiting use of a rig at considerable cost. The system can also be used for the completion of new wells where an ESP is required from the outset and, under certain conditions, has an application during drillstem tests (DST's).

Dudley, R.W.

1989-05-01T23:59:59.000Z

360

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

362

Best Practice for Energy Efficient Cleanrooms: Variable Speed Pumping  

E-Print Network (OSTI)

e.g. , chilled water pumps, or condenser water pumps, systemCooling tower and condenser water systems ? Free cooling ?of chilled water and condenser pumps, along with chiller

Xu, Tengfang

2005-01-01T23:59:59.000Z

363

PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE  

DOE Green Energy (OSTI)

The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

364

NREL GHP [Geothermal Heat Pump] Showcase: GHP Installation and Intensive in situ and Performance Monitoring at NREL's Solar Radiation and Research Laboratory; Preprint  

Science Conference Proceedings (OSTI)

This document provides an overview of the geothermal heat pump (GHP) showcase at NREL and how it will help the SRRL site move forward with the goal of being a model of sustainability within the NREL campus, providing an effective demonstration of GHP systems and needed space conditioning for laboratory expansion.

Anderson, E. R.

2010-07-01T23:59:59.000Z

365

Ecological and Economical efficient Heating and Cooling by innovative Gas Motor Heat Pump Systems and Solutions  

E-Print Network (OSTI)

options ·Universal application as an Air-Air System (VRF), Air-Water System or combined as a Mixed System application options · Option 1: Air-Air System (VRF) #12;· Option 2: Air-Air System (HVAC System) Gas Heat

Oak Ridge National Laboratory

366

Field comparison of conventional HVAC systems with a residential gas-engine-driven heat pump  

SciTech Connect

Through its Office of Federal Energy Management Program (FEMP), the US Department of Energy (DOE) provides technical and administrative support to federal agency programs directed at reducing energy consumption and cost in federal buildings and facilities. One such program is the New Technology Demonstration Program (NTDP). In this context, NTDP is a demonstration of a US energy-related technology at a federal site. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate new technologies. The partnership of these interests is secured through a Cooperative Research and Development Agreement (CRADA). The Fort Sam Houston (San Antonio, Texas) NTDP is a field evaluation of a 3-ton gas-engine-driven residential heat pump. Details of the technical approach used in the evaluation, including instrumentation and methodology, are presented. Dynamic performance maps, based on field data, are developed for the existing residential furnaces and air conditioners at Fort Sam Houston. These maps are the basis for comparisons between the candidate and current equipment. The approach offers advantages over pre/post-measure evaluations by decoupling the measured equipment performance from the effects of different envelope characteristics, occupant behavior, and weather.

Miller, J.D.

1994-08-01T23:59:59.000Z

367

A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems: A Case Study of the Oil Pump Industrial Example  

E-Print Network (OSTI)

In this paper, we propose an approach to reduce the optimal controller synthesis problem of hybrid systems to quantifier elimination; furthermore, we also show how to combine quantifier elimination with numerical computation in order to make it more scalable but at the same time, keep arising errors due to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC within the European project Quasimodo as a case study throughout this paper, and show that our method improves (up to 7.5%) the results reported in [3] based on game theory and model checking.

Zhao, Hengjun; Kapur, Deepak; Larsen, Kim G

2012-01-01T23:59:59.000Z

368

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network (OSTI)

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling unit of the phase change heat transfer model. It was solved numerically by an enthalpy-based finite difference method and was validated by experimental data. CaCl26H2O was used as the PCM in the latent heat storage system of SAGSHP system. In the tank, the PCMs are encapsulated in plastic kegs that are setting on the serpentine coil. The experiments were performed from March 12 to April 10, 2004 in the heating season of the transition period. In order to reflect the effects of the system, two days were chosen to compare the numerical results with experimental data. The inlet and outlet temperature of the water in the PCST, temperature of PCM and storage and emission heat of PCST were measured. The trends of the variation of numerical results and experimental data were in close agreement. Numerical results can reflect the operation mode of the system very well.

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

369

Analysis of Selection of Single or Double U-bend Pipes in a Ground Source Heat Pump System  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system is widely used because of its energy-saving and environmental-friendly characteristics. The buried pipes heat exchangers play an important role in the whole GSHP system design. However, in most cases, single U-bend pipes are adopted only for their simplicity in design and construction instead of high efficiency and less operation cost of the whole system. In this paper, we make a comparison between single and double U-bend pipe heat exchangers in their heat exchange rate per depth, the number of boreholes needed for the same amount of cooling load, total lengths of pipes for the two different types of heat exchangers, and seasonal overall energy efficiency of the two GSHP systems. An economic analysis method is also presented. Finally, conclusions are made for the selection of single or double U-bend pipe heat exchangers in a GSHP system after a case study using TRNSYS simulation software is carried out.

Shu, H.; Duanmu, L.; Hua, R.

2006-01-01T23:59:59.000Z

370

RPWG Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

RPWG RPWG Overview of the Radiative Processes Working Group Dave Turner RPWG Chair 2008 ARM Science Team Meeting 11 March 2008 Norfolk, Virginia Overview of the RPWG RPWG Steering Group * Bob Ellingson * Chuck Long * Sally McFarlane * Andy Vogelmann Represent about 40 RPWG members Overview of the RPWG ARM Program Objectives * Relate observed radiative energy (spectrally and temporally resolved) to temperature and composition of the atmosphere * Develop and test parameterizations of the radiative properties and processes of water vapor, clouds, and aerosols, and incorporate these parameterizations in GCMs ARM Science Plan October 2004 Overview of the RPWG Clear-sky GCM vs observations comparisons Wild, Long, Ohmura, 2006, JGR Improved agreement for clear-sky SW from AMIP1

371

Electrically Distributed Optically Pumped Laser Spark Plug and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Optically Pumped Laser Spark Plug and Ignition System Opportunity Research is active on the patent-pending technology, titled "Electrically Distributed Optically Pumped...

372

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

373

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

374

An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications  

SciTech Connect

The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

Robert Jetter

2011-04-01T23:59:59.000Z

375

Geothermal Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and a heat exchanger-a system of pipes buried in shallow ground. In the winter, the heat pump removes heat from the heat exchanger and pumps it into the indoor air delivery...

376

Assessment of New Energy Efficient Circulator Pump Technology  

Science Conference Proceedings (OSTI)

Electric pumps are the workhorses behind several industrial processes that help in transferring liquids, gases, and slurries from one location to another. From simple water pumping systems to sophisticated oil refineries, electric pumps find their application in many different areas. From hot water circulation systems to pool pumps, electric pumps also are used in various capacities in commercial and residential sectors. This technical update provides a technical assessment of a new circulator pump techn...

2010-11-15T23:59:59.000Z

377

Comparing Maintenance Costs of Geothermal Heat Pump Systems with other HVAC Systems in Lincoln Public Schools: Repair, Service, and Corrective Actions  

DOE Green Energy (OSTI)

The Lincoln Public School District, in Lincoln, Nebraska, recently installed vertical-bore geothermal heat pump systems in four, new, elementary schools. Because the district has consistent maintenance records and procedures, it was possible to study repair, service and corrective maintenance requests for 20 schools in the district. Each school studied provides cooling to over 70% of its total floor area and uses one of the following heating and cooling systems: vertical-bore geothermal heat pumps (GHPs), air-cooled chiller with gas-fired hot water boiler (ACUGHWB), water-cooled chiller with gas-fired hot water boiler (WCCYGHWB), or water-cooled chiller with gas-fired steam boiler (WCUGSB). Preventative maintenance and capital renewal activities were not included in the available database. GHP schools reported average total costs at 2.13 cents/ft{sup 2}-yr, followed by ACC/GHWB schools at 2.88 cents/ft{sup 2}-yr, WCC/GSB schools at 3.73 cents/ft{sup 2}-yr, and WCC/GHWB schools at 6.07 cents/ft{sup 2}-yr. Because of tax-exemptions on material purchases, a reliance on in-house labor, and the absence of preventative maintenance records in the database, these costs are lower than those reported in previous studies. A strong relationship (R{sup 2}=O.52) was found between costs examined and cooling system age: the newer the cooling equipment, the less it costs to maintain.

Martin, M.A.; Durfee, D.J.; Hughes, P.J.

1999-06-19T23:59:59.000Z

378

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

379

Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement System July 2008 Microsoft PowerPoint - Overview Briefing - Tab 1...

380

K-Basin sludge treatment facility pump test report  

Science Conference Proceedings (OSTI)

Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems.

SQUIER, D.M.

1999-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Management Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VHTR Materials Overview VHTR Materials Overview Richard Wright Idaho National Laboratory DOE-NE Materials Crosscut Coordination Meeting Tuesday July 30, 2013 High Temperature Metals Overview  Focus of the program is characterization of Alloy 617 behavior and high temperature design methods for ASME Code qualification  ASME Task Group on Alloy 617 Qualification has been established - Two part activity * Subsection NB Below 427 o C data nearly complete - fatigue design curve remaining to be determined * Subsection NH above 427 o C significant ongoing elevated temperature testing  Support from NGNP Program, Small Modular Reactor Program and NEUP 2 100 1000 10000 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10 S (MPa) Cycles to Failure Si=0.5(Det)E Diercks design curve I-9.5M hypothetical design curve

382

Home systems research house: Gas heat pump cooling characterization test results. Topical report, July-September 1991  

Science Conference Proceedings (OSTI)

Cooling performance characterization tests were performed at the GRI Home Systems Research House located in the NAHB Research Home Park in Prince George's County, Maryland. Test protocols followed guidelines set forth in GRI's Research House Utilization Plan (RHUP). A combination of minute-by-minute and hourly average data consisting of weather, comfort, and energy parameters was collected by using an automated data acquisition system. The tests were performed from July 1991 through September 1991. The gas heat pump (GHP) had an average daily gas coefficient of performance (COP) value of 1.49 at an outdoor temperature of 72.8 F and 0.84 at an outdoor temperature of 83.9 F. The average test period gas COP was 1.13. The GHP peak cooling capacity achieved was approximately 34,000 Btuh. The GHP provided good overall thermal comfort control on the first-floor and moderate thermal comfort control on the second floor. Reduced second floor performance was primarily due to thermostat location and the stack effect. Good latent heat removal existed throughout the test period. Unit modulation kept room air stratification to a minimum. Thermostat setback saved energy at high average daily outdoor temperatures and used more energy at lower average daily outdoor temperatures, compared to a constant thermostat setpoint control, due to changes in unit gas COP values from low-speed to high-speed operation.

Reigel, H.D.; Kenney, T.M.; Liller, T.C.

1993-01-01T23:59:59.000Z

383

Lighting Group: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

384

Analysis of Pump-Turbine S Instability and Reverse Waterhammer Incidents in Hydropower Systems  

DOE Green Energy (OSTI)

Hydraulic systems continually experience dynamic transients or oscillations which threaten the hydroelectric plant from extreme water hammer pressures or resonance. In particular, the minimum pressure variations downstream of the turbine runner during the load rejection or other events may cause dangerous water column separation and subsequent rejoinder. Water column separation can be easily observed from the measurements of site transient tests, and has indeed caused serious historical damages to the machine and water conveyance system. Several technical issues regarding water column separation in draft tubes, including S instability of turbine characteristic curves, numerical instability and uncertainty of computer programs, are discussed here through case studies and available model and site test data. Catastrophic accidents experienced at a Kaplan turbine and in a long tailrace tunnel project, as well as other troubles detected in a more timely fashion, are revisited in order to demonstrate the severity of reverse water hammer. However, as there is no simple design solutions for such complex systems, this paper emphasizes that the design of hydraulic systems is always difficult, difficulties that are compounded when the phenomena in question are non-linear (water hammer), dynamic (involving wave interaction and complex devices of turbines, controls, and electrical systems), and non-monotonic (severity of response is seldom simply connected to severity of load as with vibrations and resonance, and the complexity of transient loads), and thus may lead to high economic and safety challenges and consequences.

Pejovic, Dr. Stanislav [University of Toronto; Zhang, Qin Fen [ORNL; Karney, Professor Byran W. [University of Toronto; Gajic, Prof. Aleksandar [University of Belgrade, Belgrade, Serbia

2011-01-01T23:59:59.000Z

385

Heat Pump Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

386

Optimal (short-term) pump schedule detection for water distribution systems by neutral evolutionary search  

Science Conference Proceedings (OSTI)

The application of neutrality is a straightforward tool to preserve population diversity since it allows the genotype (on the represented search space) to be changed without affecting the corresponding fitness. To implement neutrality the literature ... Keywords: Evolutionary computing, Neutrality, Scheduling, Water distribution systems

IstvN Selek; JZsef Gergely Bene; Csaba Hs

2012-08-01T23:59:59.000Z

387

Ground Source Heat Pump Air Conditioner Monitoring Control System Design Based on CAN Bus  

Science Conference Proceedings (OSTI)

Based on CAN bus technology, chooses ST's ARM Cortex-M3 core, new generation STM32 embedded enhanced processor STM32F103 as main control chip, designs the overall structure of system, CAN functional block diagram, CAN communication software and so on. ... Keywords: CAN bus embedded STM32F103

Tong Gang; Li Ping

2010-06-01T23:59:59.000Z

388

SYSTEM PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network (OSTI)

+Introduction on Low Thermal Energy Stirling Engine Photos from the last friendship get-together #12;-Nano System Engineering Title of his talk: I am a Gaijin: From Dream to Expectation to Reality Dr. Emanuel Leleito International Student Advisor, School of Engineering Title of his talk: Japan Life: Looking Back

Oak Ridge National Laboratory

389

Microsoft PowerPoint - Overview Briefing - Tab 1 DOE's Procurement System July 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

' ' s P r o c u r e m e n t S y s t e m D O E ' s P r o c u r e m e n t S y s t e m 1 - 2 DOE's Procurement System The System Infrastructure What Organizations Govern/Influence the System? What is the Statutory/Regulatory Framework of the System? What Roles Do DOE Officials Play In the Process? What Does DOE's Procurement System Encompass? 1 - 3 What Does DOE's Procurement System Encompass? The integration of the procurement process (acquisition of property and services), the professional development of procurement personnel, and the management structure for carrying out the procurement function. For purposes of this presentation, DOE's Procurement System includes policies, procedures and management systems pertaining to the provision of financial assistance (grants and cooperative agreements).

390

Regulatory overview  

Science Conference Proceedings (OSTI)

The end of 2012 and beginning of 2013 was a busy time for US regulators and standard-setters as two regulations and one consensus standard made the news. All have implications for oilseed processing and edible oil refining. Regulatory overview Public

391

Overview of existing residential energy-efficiency rating systems and measuring tools  

SciTech Connect

Three categories of rating systems/tools were identified: prescriptive, calculational, and performance. Prescriptive systems include rating systems that assign points to various conservation features. Most systems that have been implemented to date have been prescriptive systems. The vast majority of these are investor-owned utility programs affiliated with the National Energy Watch program of the Edison Electric Institute. The calculational category includes computational tools that can be used to estimate energy consumption. This estimate could then be transformed, probably by indexing, into a rating. The available computational tools range from very simple to complex tools requiring use of a main-frame computer. Performance systems refer to residential energy-efficiency ratings that are based on past fuel consumption of a home. There are few of these systems. For each identified system/tool, the name, address, and telephone number of the developer is included. In addition, relevant publications discussing the system/tool are cited. The extent of field validation/verification of individual systems and tools is discussed. In general, there has been little validation/verification done. A bibliography of literature relevant to the use and implementation of a home energy rating system is also included.

Hendrickson, P.L.; Garrett-Price, B.A.; Williams, T.A.

1982-10-01T23:59:59.000Z

392

Work plan, AP-102 mixer pump removal and pump replacement  

DOE Green Energy (OSTI)

The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ``green house`` will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken.

Jimenez, R.F.

1994-09-01T23:59:59.000Z

393

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

394

Overview of the principal Brookhaven energy system optimization models. [BESOM, three variants, and two applications  

Science Conference Proceedings (OSTI)

The Brookhaven Energy System Optimization Model (BESOM), three of its variants, and two examples of characteristic applications are described. BESOM is a linear-programming model that was developed for the quantitative evaluation of energy technologies and policies within a systems framework. The model is designed to examine interfuel substitutions in the context of constraints on the availability of competing resources and technologies. BESOM provides a snapshot of the national energy system configuration, while MARKAL and TESOM provide, respectively, a farsighted time dimension and a simulation capability for the examination of the evolution of a national energy system over a time horizon.

Kydes, A S

1980-11-01T23:59:59.000Z

395

Climate Science Overview  

Science Conference Proceedings (OSTI)

NIST Home > Climate Science Overview. NIST Greenhouse Gas Measurements and Climate Research Program Overview. Earth's climate is ...

2010-07-06T23:59:59.000Z

396

Optimal Well-Group Distribution of a Groundwater Source Heat Pump System  

E-Print Network (OSTI)

It is critical to determine how the well group arranges for application of the GWSHP system. Based on the fact that water movement is the most important factor influencing heat transfer in an aquifer, this paper presents a two-step analysis method and analyzes the inter-well thermal transfixion method as follows. First, we forecast the least influence radius through calculating the thermal diffusion function of aquifer. Then, we perform an analysis on the inter-well thermal transfixion, using the streamline analysis method and doing a quantitative analysis of the effects that inter-well distance and flux have on it. We discuss the well group arrangement and puts forward optimal scheme by means of the thermal diffusion and streamline simulation.

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

397

The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research  

E-Print Network (OSTI)

It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze the inter-well thermal transfixion, method as follows: (1) Forecast the least influence radius through calculating the thermal diffusion function of aquifer; (2) The analysis on the inter-well thermal transfixion makes use of the streamline analysis method and makes quantitative analysis of the effect that inter-well distance and flux make on it. It labors the well group arrangement and puts forward optimal scheme by means of the thermal diffusion and streamline simulation.

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

398

Overview of the US Department of Energy Utility Battery Storage Systems Program  

SciTech Connect

The US Department of Energy (DOE) is sponsoring the Utility Battery Storage Systems Program at Sandia National Laboratories and its contractors. This program is specifically aimed at developing battery energy storage systems for electric utility applications commencing in the mid to late 1990s. One factory-integrated utility battery system and three battery technologies: sodium/sulfur, zinc/bromine, and lead-acid are being developed under this program. In the last few years the emphasis of this program has focused on battery system development. This emphasis has included greater interactions with utilities to define application requirements. Recent activities have identified specific applications of battery energy storage in certain utility systems and quantified the value of these applications to these utility companies. In part due to these activities, battery energy storage is no longer regarded by utilities as a load-leveling resource only, but as a multifunction, energy management resource.

Eaton, R. [USDOE, Washington, DC (United States); Akhil, A.; Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Hurwitch, J. [Energetics, Inc., Columbia, MD (United States)

1993-08-01T23:59:59.000Z

399

Comparing maintenance costs of geothermal heat pump systems with other HVAC systems in Lincoln public schools: Repair, service, and corrective actions  

SciTech Connect

The Lincoln Public School District, in Lincoln, Nebraska, recently installed vertical-bore geothermal heat pump systems in four new elementary schools. Because the district has consistent maintenance records and procedures, it was possible to study repair, service, and corrective maintenance requests for 20 schools in the district. Each school studied provides cooling to over 70% of its total floor area and uses one of the following heating and cooling systems: vertical-bore geothermal heat pumps (GHPs), air-cooled chiller with gas-fired hot water boiler (ACC/GHWB), water-cooled chiller with gas-fired hot water boiler (WCC/GHWB), or water-cooled chiller with gas-fired steam boiler (WCC/GSB). Preventative maintenance and capital renewal activities were not included in the available database. GHP schools reported average total costs at 2.13{cents}/ft{sup 2}-yr, followed by ACC/GHWB schools at 2.884{cents}/ft{sup 2}-yr, WCC/GSB schools at 3.73{cents}/ft{sup 2}-yr, and WCC/GHWB schools at 6.07{cents}/ft{sup 2}-yr. Because of tax exemptions on material purchases, a reliance on in-house labor, and the absence of preventative maintenance records in the database, these costs are lower than those reported in previous studies. A strong relationship (R{sup 2} = 0.52) was found between costs examined and cooling system age: the newer the cooling equipment, the less it costs to maintain.

Martin, M.A.; Durfee, D.J.; Hughes, P.J.

1999-07-01T23:59:59.000Z

400

Overview | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Overview: APS Overview: Introduction APS Systems Map LINAC Booster Synchrotron Storage Ring Insertion Devices Experiment Hall LOMs & Beamlines Overview of the APS The Advanced Photon Source (APS) at the U.S. Department of Energy's Argonne National Laboratory provides this nation's (in fact, this hemisphere's) brightest storage ring-generated x-ray beams for research in almost all scientific disciplines. Photo: Aerial Photo of APS Aerial photo of the Advanced Photon Source These x-rays allow scientists to pursue new knowledge about the structure and function of materials in the center of the Earth and in outer space, and all points in between. The knowledge gained from this research can impact the evolution of combustion engines and microcircuits, aid in the development of new pharmaceuticals, and pioneer nanotechnologies whose

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

30-MJ superconducting magnetic-energy-storage stabilizing system: an overview  

DOE Green Energy (OSTI)

The 30-MJ superconducting magnetic-energy-storage (SMES) system was devised as an alternate means to modulate the Bonneville Power Administration (BPA) Pacific AC Intertie, a part of the Western US Power System, to prevent undamped power oscillations at 0.35 Hz that were observed to be associated with high power transmission. The SMES system was installed at the BPA Tacoma Substation and successfully operated as an experimental device to initiate tests to determine power system dynamics, to investigate their variability, to assess system response to SMES modulation with a major variable load, and to use SMES to develop stability-control techniques. The system has been operated at frequencies of 0.1 to 1.0 Hz at power levels of +- 8.3 MW with a parallel modulation of the converter bridges and up to 9.5 MW reactive power together with +- 4.5 MW real power in constant VAR mode with buck-boost modulation of the bridges. The coil has been charged at a maximum rate of 11.8 MW. Operation of the SMES system is now under BPA jurisdiction, and all hardware has been transferred to BPA.

Roger, J.D.; Boenig, H.J.; Dean, J.W.; Schermer, R.I.; Annestrand, S.A.; Hauer, J.F.; Miller, B.L.

1983-01-01T23:59:59.000Z

402

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest winter nights, compared to 175% to 250% for air-source heat pumps on cool

403

Central Receiver Solar Thermal Power System, Phase 1: CDRL Item 2, Pilot plant preliminary design report. Volume 1. Executive overview  

SciTech Connect

This summary introduces the McDonnell Douglas Astronautics Company (MDAC) Central Receiver System Preliminary Design and reports the results of the Subsystem Research Experiments (SRE) recently completed. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) An external receiver mounted on a tower, and located in a 360-deg array of sun-tracking heliostats which comprise the collector subsystem. (B) Feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes.

Hallet, Jr., R. W.; Gervais, R. L.

1977-10-01T23:59:59.000Z

404

A generic multi-scale modeling framework for reactive observing systems: an overview  

Science Conference Proceedings (OSTI)

Observing systems facilitate scientific studies by instrumenting the real world and collecting corresponding measurements, with the aim of detecting and tracking phenomena of interest. A wide range of critical environmental monitoring objectives in resource ...

Leana Golubchik; David Caron; Abhimanyu Das; Amit Dhariwal; Ramesh Govindan; David Kempe; Carl Oberg; Abhishek Sharma; Beth Stauffer; Gaurav Sukhatme; Bin Zhang

2006-05-01T23:59:59.000Z

405

The University of South Alabama Mesonet and Coastal Observing System: A Technical and Statistical Overview  

Science Conference Proceedings (OSTI)

The University of South Alabama Mesonet consists of 26 sites across the north-central Gulf of Mexico coast. Although the original purpose of the mesonet was monitoring landfalling tropical systems, meteorological data are collected and ...

Sytske K. Kimball; Madhuri S. Mulekar; Shailer Cummings; Jack Stamates

2010-09-01T23:59:59.000Z

406

Energy Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview for CNA Panel Discussion May 8, 2013 | Crystal City, VA by Howard Gruenspecht, Deputy Administrator Non-OECD nations drive the increase in energy demand 2 world energy consumption quadrillion Btu Source: EIA, International Energy Outlook 2011 0 100 200 300 400 500 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Non-OECD OECD 244 260 482 288 History Projections 2008 Howard Gruenspecht , CNA Panel May 8, 2013 Growth in income and population drive rising energy use; energy intensity improvements moderate increases in energy demand 3 average annual change (2008-2035) percent per year Source: EIA, International Energy Outlook 2011 -4 -3 -2 -1 0 1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia

407

Management Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview - Fast Reactor and Overview - Fast Reactor and LWR Fuel Cladding Stuart A. Maloy Core Materials Technical Lead for Fuels Los Alamos National Laboratory DOE NE Materials-Cross-Coordination Webinar July 30, 2013 LA-UR-13-25972 2 Contributors  LANL: Tarik Saleh, Toby Romero, Bill Crooks, Ed Garcia, Rob Aikin jr., Osman Anderoglu, Ming Tang, Sara Perez-Berquist, Mark Bourke, Don Brown, Bjorn Clausen  PNNL: Mychailo Toloczko, Glenn Grant, David Senor, Jim Buelt  INL: Jim Cole, Randy Fielding, Jian Gan, Mitch Meyer, Bulent H. Sencer, Emmanuel Perez, Michael Teague  ORNL: T.S. Byun, David Hoelzer, M. Brady, K. Terrani, M. Fechter, L. Snead, B. Pint  Techsource: F. Garner  UCSB: G.R. Odette  UCB: P. Hosemann  SDSMT: M. West, B. Jasthi

408

A Management and Selection System for R&D Projects, Volume I - Overview  

DOE Green Energy (OSTI)

This report describes an RCD project management and selection system developed for the Utilization Technology Branch of the Division of Geothermal Energy, Department of Energy. The proposed project management system (PMS) consists of a project data system (PDS) and a project selection procedure (PSP). The project data system consists of a series of project data forms and project status logs, and descriptions of information pathways. The PDS emphasizes timely monitoring of the technical and financial progress of projects, maintenance of the history of the project and rapid access to project information to facilitate responsive reporting to DGE and DOE upper management. The project selection procedure emphasizes an RCD product-oriented approach to benefit/cost analysis of individual projects. The report includes: (a) a description of the system, and recommendations for its implementation, (b) the PDS forms and an explanation of their use, (c) a glossary of terms for use on the forms, (d) a description of the benefit/cost approach, (e) a data base for estimating RCD benefits, and (f) examples of test applications of the system to nine current DGE projects.

Dhillon, Harpal S.; Entingh, Daniel J.

1978-05-01T23:59:59.000Z

409

Commercial Building Energy Asset Score System: Program Overview and Technical Protocol (Version 1.0)  

SciTech Connect

The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system that includes an energy asset score tool to help building owners evaluate their buildings with respect to the score system. The goal of the energy asset score system is to facilitate cost-effective investment in energy efficiency improvements of commercial buildings. The system will allow building owners and managers to compare their building infrastructure against peers and track building upgrade progress over time. The system can also help other building stakeholders (e.g., building operators, tenants, financiers, and appraisers) understand the relative efficiency of different buildings in a way that is independent from their operations and occupancy. This report outlines the technical protocol used to generate the energy asset score, explains the scoring methodology, and provides additional details regarding the energy asset score tool. This report also describes alternative methods that were considered prior to developing the current approach. Finally, this report describes a few features of the program where alternative approaches are still under evaluation.

Wang, Na; Gorrissen, Willy J.

2013-01-11T23:59:59.000Z

410

Advanced control strategies for HVAC&R systemsAn overview: Part II: Soft and fusion control  

SciTech Connect

A chronological overview of the advanced control strategies for HVAC&R is presented. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and the fusion or hybrid of hard and soft control techniques. Part I focused on hardcontrol strategies; Part II focuses on soft and fusion control and some future directions in HVA&R research. This overview is not intended to be an exhaustive survey on this topic, and any omissions of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-04-01T23:59:59.000Z

411

Overview and performance of the FNAL KTeV DAQ system  

SciTech Connect

KTeV is a new fixed target experiment at Fermilab designed to study CP violation in the neutral kaon system. The KTeV Data Acquisition System (DAQ) is out of the highest performance DAQ`s in the field of high energy physics. The sustained data throughput of the KTeV DAQ reaches 160 Mbytes/sec, and the available online level 3 processing power is 3600 Mips. In order to handle such high data throughput, the KTeV DAQ is designed around a memory matrix core where the data flow is divided and parallelized. In this paper, we present the architecture and test results of the KTeV DAQ system.

Nakaya, T.; O`Dell, V. [Fermi National Accelerator Lab., Batavia, IL (United States); Hazumi, M.; Yamanaka, T. [Osaka Univ., Toyonaka (Japan)

1995-11-01T23:59:59.000Z

412

An overview of solar assisted air-conditioning system application in small office buildings in Malaysia  

Science Conference Proceedings (OSTI)

In many regions of the world especially tropical weather in Malaysia, the demand for cooling of indoor air is growing due to increasing comfort expectations and increasing cooling loads. Air-conditioning, the most common cooling mechanism for providing ... Keywords: Malaysian climatic conditions, absorption chiller, evacuated tube solar collector, high energy consumption, peak load demand, solar assisted air conditioning system, solar energy

Lim Chin Haw; Kamaruzzaman Sopian; Yusof Sulaiman

2009-02-01T23:59:59.000Z

413

Field and Laboratory Study of a Ground-Coupled Water Source Heat Pump with an Integral Enthalpy Exchange System for Classrooms  

E-Print Network (OSTI)

School classroom space-conditioning equipment in hot and humid climates is often excessively burdened by the requirement to dehumidify incoming air to maintain proper thermal comfort and air quality. To that end, application of new or modified technologies is needed to increase the dehumidification abilities of equipment without compromising energy efficiency or the need for fresh ventilation air. To study the effectiveness of integrated heat pump and enthalpy exchange equipment, a nominal 4-ton water-source heat pump, coupled with a geothermal water loop and incorporating a forced fresh-air enthalpy exchange system was installed in a typical middle school classroom in Oak Ridge, Tennessee. This project is a joint effort among Oak Ridge School District, Tennessee Valley Authority, Energy Office of the State of Tennessee, and Oak Ridge National Laboratory. The retrofit classroom, along with a similar baseline classroom (employing a water source heat pump supplied by a boiler/cooling tower loop), were instrumented with an Internet-based system to control and monitor performance, efficiency, and a variety of air states. Those include classroom air, outdoor air, semi-conditioned fresh air, and supply air. Particular attention was dedicated to the humidity content and the carbon dioxide content of conditioned space (classroom) air and to the intake rate of forced fresh air. This field study builds on a previous laboratory study of a water-source heat pump coupled to an enthalpy recovery system. The laboratory work showed good potential for reducing the moisture load from forced ventilation air. At simulated outdoor conditions of 90F (32.2C) and 90% RH, the enthalpy recovery wheel in the nominal 2-ton system was able to capture and exhaust 9.9 lb of moisture that would otherwise have to be handled solely by the cooling coil.

Domitrovic, R.; Hayzen, G. J.; Johnson, W. S.; Chen, F. C.

2002-01-01T23:59:59.000Z

414

Hydride heat pump  

DOE Patents (OSTI)

Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

Cottingham, James G. (Center Moriches, NY)

1977-01-01T23:59:59.000Z

415

Material and energy recovery in integrated waste management systems: Project overview and main results  

Science Conference Proceedings (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

416

An overview of RDF processing systems: Current status, design features, and future trends  

DOE Green Energy (OSTI)

This paper discusses the recent history of refuse-derived fuel (RDF) processing facilities in the United States. The current status of these facilities, including environmental, institutional, and economic considerations is discussed. The unit operations used to produce a desired RDF product are described, and the future potential of RDF processing systems is evaluated. Current research sponsored by the US Department of Energy is also presented. 6 refs., 3 figs., 8 tabs.

Ohlsson, O.O. (Argonne National Lab., IL (United States)); Walter, D.K. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Waste Material Management Div.); Goodman, B.J. (Solar Energy Research Inst., Golden, CO (United States))

1991-01-01T23:59:59.000Z

417

Overview of M-C Power`s MCFC power generation system  

SciTech Connect

The IMHEX{reg_sign} fuel cell power generation system is a skid mounted power plant which efficiently generates electricity and useful thermal energy. The primary benefits are its high electric generation efficiency (50% or greater), modular capacities (500 kW to 3 MW per unit) and minimal environmental impacts (less than 1 ppM NO{sub x}). A cost effective, modular capacity fuel cell power plant provides the industry with an attractive alternative to large central station facilities, and its advantages have the potential to optimize the way electric power is generated and distributed to the users. Environmental issues are becoming the single most uncertain aspect of the power business. These issues may be manifested in air emissions permits or allowances for NO{sub x} or SO{sub 2}, energy taxes, CO{sub 2} limits, ``carbon taxes,`` etc. and may appear as siting permits for generation, transmission, or distribution facilities. Utilities are ``down-sizing`` with the goal of becoming the lowest cost supplier of electricity and are beginning to examine the concepts of ``energy service`` to improve their economic competitiveness. These issues are leading utilities to examine the benefits of distributed generation. Siting small capacity generation near the customer loads or at distribution substations can improve system efficiency and quality while reducing distribution system costs. The advantages that fuel cell power plants have over conventional technologies are critical to the success of these evolving opportunities in the power generation marketplace.

Benjamin, T.G.; Woods, R.R.

1993-11-01T23:59:59.000Z

418

Energy Basics: Microhydropower Turbines, Pumps, and Waterwheels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity....

419

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

420

Overview of fuel processing options for polymer electrolyte fuel cell systems  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is being developed for use in heavy- and light-duty transportation applications. While this fuel cell has been used successfully in buses and vans with compressed hydrogen as the on-board fuel [1,2], the fuel cell system must incorporate fuel processing (reforming) for any other on-board fuel to produce the hydrogen or hydrogen-rich fuel gas to be fed to the fuel cell stack. This is true even for alternative methods of storing hydrogen, such as use of a metal hydride or liquefied hydrogen. The ``fuel processing`` needed to recover the hydrogen includes providing the heat of dissociation of the hydride and cooling the hydrogen to the temperature of the fuel cell stack. Discussed below are some of the options being considered for processing of on-board fuels (other than compressed hydrogen) to generate the fuel cell anode gas, and the effects of fuel processing on system design, efficiency, steady-state and dynamic performance, and other factors.

Kumar, R.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MEETING OVERVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jacksonville 1999 Meeting Jacksonville 1999 Meeting Jacksonville 1999 Meeting MEETING OVERVIEW The Transportation External Coordination Working Group (TEC/WG) held its 14th semi-annual meeting January 20-22, 1999 in Jacksonville, Florida. Over 160 members, participants, and observers representing state, tribal, and local governments, regional groups, industry and professional organizations, and the Department of Energy (DOE) met to address a variety of issues related to DOE's transportation activities for radioactive materials. A number of Departmental programs with transportation components were represented, including: the Office of Environmental Management (EM); the Office of Civilian Radioactive Waste Management

422

MEETING OVERVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Las Vegas Meeting - January 1998 Las Vegas Meeting - January 1998 MEETING OVERVIEW The Transportation External Coordination Working Group (TEC/WG) held its 13th semi-annual meeting January 20-22, 1998 in Las Vegas, Nevada. Over 150 members, participants, and observers representing state, tribal, and local governments, regional groups, industry and professional organizations, and the Department of Energy met to address a variety of issues related to DOE's transportation activities for radioactive materials. A number of Departmental programs with transportation components were represented, including: the Office of Environmental Management (EM); the Office of Civilian Radioactive Waste Management; the Office of Naval Reactors (NR); the Waste

423

Management Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership Partnership Status of Industry Engagement Nuclear Energy Advisory Committee (NEAC) Dan Stout Director of Nuclear Fuel Recycling Office of Nuclear Energy April 21, 2008 April 21, 2008 NEAC Meeting 2 Outline Industry Engagement Activities Funding Opportunity Announcement (FOA) - Scope, Design Requirements, Selection Criteria Industry Teams Awarded Cooperative Agreements DOE Evaluation of Industry Deliverables - Overview, initial facilities, approaches, issues and summary Next Steps April 21, 2008 NEAC Meeting 3 GNEP Industry Engagement Activities Expressions of Interest (2006) - Requested August 2006 - Received responses in September 2006 - Description: * Confidence that large facilities could be deployed by 2020 (using mature technologies) * Submittals were "proprietary"

424

Mechanical drive for blood pump  

DOE Patents (OSTI)

This patent relates to a highly efficient blood pump to be used as a replacement for a ventricle of the human heart to restore people disabled by heart disease. The mechanical drive of the present invention is designed to operate in conjunction with a thermoelectric converter power source. The mechanical drive system essentially converts the output of a rotary power into pulsatile motion so that the power demand from the thermoelectric converter remains essentially constant while the blood pump output is pulsed. (auth)

Bifano, N.J.; Pouchot, W.D.

1975-07-29T23:59:59.000Z

425

Overview of the State-of-the-Art Laboratory Instrumentation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

State-of-the-Art Laboratory State-of-the-Art Laboratory Instrumentation Systems Applied Research Laboratory The Pennsylvania State University 1 Arnold A. Fontaine Marine and Hydrokinetic Instrumentation, Measurement & Computer Modeling Workshop July 10, 2012 Session: Field and Laboratory Measurement and Instrumentation Track: Laboratory Testing Methods 2 Instrumentation Requirements * Low TRL level Proof-of-Concept evaluation  Macroscopic device performance  Relaxed spatial and temporal requirements  steady  Moderate levels of accuracy Test Goals Drive Instrumentation Needs * Validation & Verification Testing 1-5  Macro & microscopic device performance - near-field performance, far-field boundary conditions - Accurate model characterization  Refined spatial and temporal resolution  dictated by physics at model scale

426

STE-QUEST Mission and System Design - Overview after completion of Phase-A  

E-Print Network (OSTI)

STE-QUEST is a fundamental science mission which is considered for launch within the Cosmic Vision programme of the European Space Agency (ESA). Its main scientific objectives relate to probing various aspects of Einstein's theory of general relativity by measuring the gravitational red-shift of the earth, the moon and the sun as well as testing the weak equivalence principle to unprecedented accuracy. In order to perform the measurements, the system features a spacecraft equipped with two complex instruments, an atomic clock and an atom interferometer, a ground-segment encompassing several ground-terminals collocated with the best available ground atomic clocks, and clock comparison between space and ground via microwave and optical links. The baseline orbit is highly eccentric and exhibits strong variations of incident solar flux, which poses challenges for thermal and power subsystems in addition to the difficulties encountered by precise-orbit-determination at high altitudes. The mission assessment and de...

Hechenblaikner, Gerald; Vitelli, Marianna; Beck, Jan

2013-01-01T23:59:59.000Z

427

OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS  

SciTech Connect

The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.

Swetz, D. S.; Devlin, M. J.; Dicker, S. R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Ade, P. A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Amiri, M.; Battistelli, E. S.; Burger, B.; Halpern, M.; Hasselfield, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Appel, J. W.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Hincks, A. D.; Jarosik, N. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Chervenak, J. [Code 553/665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doriese, W. B.; Hilton, G. C.; Irwin, K. D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); Duenner, R. [Departamento de Astronomia y Astrofisica, Facultad de Fisica, PontificIa Universidad Catolica, Casilla 306, Santiago 22 (Chile)

2011-06-01T23:59:59.000Z

428

Systematic hydraulic study on pumping stations equipped with surge tank mounted next to the pump  

Science Conference Proceedings (OSTI)

An important number of pumping stations, part of the Romanian irrigation systems, were conceived with surge tank mounted on the discharge duct, next to the pump, in order to protect the installation from hydraulic shock. In practice, the dimensioning ... Keywords: air chamber, geodetic head, head loss, pumping station, surge tank

Claudiu Stefan Nitescu; Anca Constantin

2010-07-01T23:59:59.000Z

429

NREL: Learning - Geothermal Heat Pump Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Pump Basics Heat Pump Basics Photo of the West Philadelphia Enterprise Center. The West Philadelphia Enterprise Center uses a geothermal heat pump system for more than 31,000 square feet of space. Geothermal heat pumps take advantage of the nearly constant temperature of the Earth to heat and cool buildings. The shallow ground, or the upper 10 feet of the Earth, maintains a temperature between 50° and 60°F (10°-16°C). This temperature is warmer than the air above it in the winter and cooler in the summer. Geothermal heat pump systems consist of three parts: the ground heat exchanger, the heat pump unit, and the air delivery system (ductwork). The heat exchanger is a system of pipes called a loop, which is buried in the shallow ground near the building. A fluid (usually water or a mixture of

430

Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)--towards water toxicity  

E-Print Network (OSTI)

, and the results were quantified using a Live/DeadTM cell assay. This work is a preliminary study cell line (RTgill-W1)--towards water toxicity testing Tomasz Glawdel,a Caglar Elbuken,a Lucy E. J. Leeb that incorporates electroosmotic pumps, a concentration gradient generator and a fish cell line (rainbow trout gill

Le Roy, Robert J.

431

Thermally activated heat pumps  

SciTech Connect

This article describes research to develop efficient gas-fired heat pumps heat and cool buildings without CFCs. Space heating and cooling use 46% of all energy consumed in US buildings. Air-conditioning is the single leading cause of peak demand for electricity and is a major user of chlorofluorocarbons (CFCs). Advanced energy conversion technology can save 50% of this energy and eliminate CFCs completely. Besides saving energy, advanced systems substantially reduce emissions of carbon dioxide (a greenhouse gas), sulfur dioxide, and nitrogen oxides, which contribute to smog and acid rain. These emissions result from the burning of fossil fuels used to generate electricity. The Office of Building Technologies (OBT) of the US Department of Energy supports private industry`s efforts to improve energy efficiency and increase the use of renewable energy in buildings. To help industry, OBT, through the Oak Ridge National Laboratory, is currently working on thermally activated heat pumps. OBT has selected the following absorption heat pump systems to develop: generator-absorber heat-exchange (GAX) cycle for heating-dominated applications in residential and light commercial buildings; double-condenser-coupled (DCC) cycle for commercial buildings. In addition, OBT is developing computer-aided design software for investigating the absorption cycle.

NONE

1995-05-01T23:59:59.000Z

432

Critical infrastructure protection decision support system decision model : overview and quick-start user's guide.  

SciTech Connect

The Critical Infrastructure Protection Decision Support System Decision Model (CIPDSS-DM) is a useful tool for comparing the effectiveness of alternative risk-mitigation strategies on the basis of CIPDSS consequence scenarios. The model is designed to assist analysts and policy makers in evaluating and selecting the most effective risk-mitigation strategies, as affected by the importance assigned to various impact measures and the likelihood of an incident. A typical CIPDSS-DM decision map plots the relative preference of alternative risk-mitigation options versus the annual probability of an undesired incident occurring once during the protective life of the investment, assumed to be 20 years. The model also enables other types of comparisons, including a decision map that isolates a selected impact variable and displays the relative preference for the options of interest--parameterized on the basis of the contribution of the isolated variable to total impact, as well as the likelihood of the incident. Satisfaction/regret analysis further assists the analyst or policy maker in evaluating the confidence with which one option can be selected over another.

Samsa, M.; Van Kuiken, J.; Jusko, M.; Decision and Information Sciences

2008-12-01T23:59:59.000Z

433

Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 December 2009 Net Metering Policy Development in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap Elizabeth Doris, Sarah Busche, and Stephen Hockett National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46670 December 2009 Net Metering Policy Development in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

434

Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

Becker, D.L.; Green, D.J.; Lindquist, M.R.

1993-07-01T23:59:59.000Z

435

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

436

Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels  

DOE Green Energy (OSTI)

While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

2000-01-19T23:59:59.000Z

437

Advanced control strategies for heating, ventilation, air-conditioning, and refrigeration systemsAn overview: Part I: Hard control  

SciTech Connect

A chronological overview of the advanced control strategies for heating, ventilation, air-conditioning, and refrigeration (HVAC&R) is presented in this article. The overview focuses on hard-computing or control techniques, such as proportional-integral-derivative, optimal, nonlinear, adaptive, and robust; soft-computing or control techniques, such as neural networks, fuzzy logic, genetic algorithms; and on the fusion or hybrid of hard- and soft-control techniques. Thus, it is to be noted that the terminology hard and soft computing/control has nothing to do with the hardware and software that is being generally used. Part I of a two-part series focuses on hard-control strategies, and Part II focuses on softand fusion-control in addition to some future directions in HVAC&R research. This overview is not intended to be an exhaustive survey on this topic, and any omission of other works is purely unintentional.

D. Subbaram Naidu; Craig G. Rieger

2011-02-01T23:59:59.000Z

438

SAMS Overview | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

SAMS Overview | National Nuclear Security Administration SAMS Overview | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog SAMS Overview Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management & Safeguards System > SAMS Overview SAMS Overview U.S. Department of Energy / U.S. Nuclear Regulatory Commission

439

Overview Brochures  

Office of Science (SC) Website

Brochures Brochures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » News & Resources Brochures Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences (BES) informational brochures provide an overview of BES research areas, scientific user facilities, and the relevance of the

440

Hybrid: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

Note: This page contains sample records for the topic "overview pump systems" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MEETING OVERVIEW  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charleston Meeting - January 1997 Charleston Meeting - January 1997 MEETING OVERVIEW The Transportation External Coordination Working Group (TEC/WG) held its eleventh semi-annual meeting January 14-16, 1997 in Charleston, South Carolina. Over one hundred participants, representing state, tribal and local governments, regional groups, industry, professional organizations, and the U.S. Department of Energy, met to address a variety of issues related to DOE's transportation activities for radioactive materials. The following summarizes the major discussions and action items from the meeting. TOPIC GROUP SUMMARIES Topic Groups have been formed with TEC/WG participants having particular interest or expertise in each of four areas: Route Identification, Funding and Technical Assistance for Emergency Preparedness, Railroad Operational

442

Hybrid: Overview  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar button highlighted Starting Button Cruising Button Passing Button Braking Button Stopped Button subbanner graphic: gray bar OVERVIEW Hybrid-electric vehicles combine the benefits of gasoline engines and electric motors to provide improved fuel economy. The engine provides most of the vehicle's power, and the electric motor provides additional power when needed, such as for accelerating and passing. This allows a smaller, more-efficient engine to be used. The electric power for the motor is generated from regenerative braking and from the gasoline engine, so hybrids don't have to be "plugged in" to an electrical outlet to recharge. stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection.

443

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

444

JGI - CSP Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the Community Science Program CSP | Overview | How to Propose a Project | Review Process | DOE Relevance Proposal Schedule | FAQ What is the Community Science Program?...

445

UnitOverview  

NLE Websites -- All DOE Office Websites (Extended Search)

UNIT OVERVIEW A general overview of LHC physics, accelerator and detector design, and how data inform claims and reasoning begins with an exploration of the "Big Questions" that...

446

Verti Jack Pumping Unit evaluation  

Science Conference Proceedings (OSTI)

The Verti Jack Pumping Unit was tested primarily to establish the energy comsumption efficiency of the unit as compared with that of conventional pumping unit. Before the unit was field tested, extensive static testing was performed to determine the effect of the counterbalance system throughout the operational cycle. The field test included comparing the performance of the Verti Jack Unit and conventional pump jacks - a Bethlehem 16 and Cabot 25 pumping unit. The Verti Jack unit was operated at four different pumping conditions. The Verti Jack unit peformed satisfactorily during the testing. Only minor problems that could not be attributed to the design or operation of the unit were encountered. Changing the stroke length was difficult in the field, but such operational problems were expected in operating the first phototype and can be corrected on future models. During the higher pumping rate tests of the Verti Jack unit, the well ceased to deliver fluid quantities at rates adequate to the pumping rate. These data are shown in table 8. Therefore, evaluation data are based on theoretical pump performance and are presented in table 9. The data show that the Verti Jack is more efficient than the conventional units tested. The most direct comparison was the Verti Jack test at 36-inch stroke and 12 1/2 strokes per minute versus the Cabot unit at 37-inch stroke and 12 strokes per minute. In the comparison the Verti Jack operated about 24 percent more efficiently than the Cabot unit. Comparing the summation of all Verti Jack tests with that of all conventional unit tests, the Verti Jack operated about 15 percent more efficiently. Compared to the Cabot unit only, the Verti Jack was about 17 percent more energy efficient. 13 figs., 12 tabs.

Porter, R.; Spence, K.

1985-11-01T23:59:59.000Z

447

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

448

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

449

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

450

Chemical heat pump  

DOE Patents (OSTI)

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

451

Alternative backing up pump for turbomolecular pumps  

DOE Patents (OSTI)

As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

Myneni, Ganapati Rao (Yorktown, VA)

2003-04-22T23:59:59.000Z

452

Geothermal heat pumps in Pierre  

SciTech Connect

There are two municipal connected heat pumps in Pierre, South Dakota: the South Dakota Discovery Center and Pierre City Hall.Both systems now utilize plate heat exchanger between the city water loop and the building loop. This article describes the geothermal system used in Pierre for both space heating and cooling of municipal buildings.

Wegman, S. [South Dakota Public Utilities Commission, Pierre, SD (United States)

1997-12-01T23:59:59.000Z

453

Pathway and Resource Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

454

Heat pump arrangement  

SciTech Connect

The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

Abrahamsson, T.; Hansson, K.

1981-03-03T23:59:59.000Z

455

IECM Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- Selexol - Sulfinol Sulfur Recovery System * Claus Plant * Beavon-Stretford Unit Gas Turbine - GE 7FA - GE 7FB Heat Recovery Steam Generator Steam Turbine Boiler Feedwater System...

456

NETL Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Systems Integration System modeling