Sample records for oven gases waste

  1. Method of recovering sulfur from the hydrogen sulfide contained in coke oven gases

    SciTech Connect (OSTI)

    Laufhutte, D.

    1985-04-30T23:59:59.000Z

    Ammonia and hydrogen sulfide are washed out of the coke oven gas and stripped from the wash liquor in the form of gases and fumes or vapors. The ammonia is decomposed in a nickel catalyzer and a small part of the decomposition gases is supplied directly to a combustion furnace, while the larger part of the combustion gases is first cooled and freed from condensate, and only then supplied to the combustion furnace. In the combustion furnace, the proportion of H/sub 2/S/SO/sub 2/ needed for the Claus process is adjusted by a partial combustion of the decomposition gases. The gases from the combustion furnace are then processed in the Claus plant to sulfur.

  2. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22T23:59:59.000Z

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  3. SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste

    SciTech Connect (OSTI)

    Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

    1994-09-01T23:59:59.000Z

    For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

  4. Low-Value Waste Gases as an Energy Source 

    E-Print Network [OSTI]

    Waibel, R. T.

    1996-01-01T23:59:59.000Z

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  5. Low-Value Waste Gases as an Energy Source

    E-Print Network [OSTI]

    Waibel, R. T.

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  6. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2000-01-01T23:59:59.000Z

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  7. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01T23:59:59.000Z

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  8. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14T23:59:59.000Z

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  9. Steam Production from Waste Stack Gases in a Carbon Black Plant

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01T23:59:59.000Z

    gases to produce steam has two very important rewards - energy conservation and pollution abatement. Energy conservation is achieved by using waste gases in place of fuel oil to produce the steam required by the various plants. Pollution abatement is due...

  10. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  11. Process for separating, especially in multiple stages, acid components such as CO/sub 2/, HCN and specifically H/sub 2/S, from gases, especially from coke oven gases, by means of ammonia recirculation scrubbing

    SciTech Connect (OSTI)

    Bauer, H.K.; Otte, E.A.W.

    1984-10-16T23:59:59.000Z

    A process of separating in multiple stages acid components in coke oven gas such as CO/sub 2/, HCN and particularly H/sub 2/S by ammonia scrubbing wherein the ammonia used in scrubbing is deacidified to remove the acid components and is recirculated to the scrubbing process at least in part as substantially pure liquid ammonia.

  12. Greenhouse gases accounting and reporting for waste management - A South African perspective

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa); Trois, Cristina [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa)

    2010-11-15T23:59:59.000Z

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  13. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  14. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, J.L.

    1998-09-15T23:59:59.000Z

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  15. Radiolytic and radiolytically induced generation of gases in simulated waste solutions

    SciTech Connect (OSTI)

    Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

    1990-12-31T23:59:59.000Z

    The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

  16. Radiolytic and radiolytically induced generation of gases in simulated waste solutions

    SciTech Connect (OSTI)

    Meisel, D.; Sauer, M.C. Jr.; Jonah, C.D.; Diamond, H.; Matheson, M.S.; Barnabas, F.; Cerny, E.; Cheng, Y.

    1990-01-01T23:59:59.000Z

    The radiolytic generation of gases in simulated mixed waste solutions was studied. Computer modeling of the non-homogeneous kinetic processes in these highly concentrated homogeneous solutions was attempted. The predictions of the modeling simulations were verified experimentally. Two sources for the radiolytic generation of H{sub 2} are identified: direct dissociation of highly energetic water molecules and hydrogen abstraction from the organic molecules by hydrogen atoms. Computer simulation of the homogeneous kinetics of the NO{sub X} system indicate that no N{sub 2}O will be produced in the absence of organic solutes and none was experimentally detected. It was also found that long term pre-irradiation of the simulated waste solutions leads to enhanced thermal production of these two gases. 22 refs., 5 figs., 3 tabs.

  17. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Huckaby, James L.; Bryan, Samuel A.; Johnson, Gerald D.

    2000-07-19T23:59:59.000Z

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, flammability and detonability limits of the gas constituents, and availability of ignition sources. The intrinsic flammability (or non-flammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, and volume of the release and the tank ventilation rate, which are not covered in this report.

  18. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21T23:59:59.000Z

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  19. Process for the elimination of waste water produced upon the desulfurization of coking oven gas by means of wash solution containing organic oxygen-carrier, with simultaneous recovery of elemental sulfur

    SciTech Connect (OSTI)

    Diemer, P.; Brake, W.; Dittmer, R.

    1985-04-16T23:59:59.000Z

    A process is disclosed for the elimination of waste water falling out with the desulfurization of coking oven gas by means of an organic oxygen carrier-containing washing solution with simultaneous recovery of elemental sulfur. The waste water is decomposed in a combustion chamber in a reducing atmosphere at temperatures between about 1000/sup 0/ and 1100/sup 0/ C. under such conditions that the mole ratio of H/sub 2/S:SO/sub 2/ in the exhaust gas of the combustion chamber amounts to at least 2:1. Sulfur falling out is separated and the sensible heat of the exhaust gas is utilized for steam generation. The cooled and desulfurized exhaust gas is added to the coking oven gas before the pre-cooling. Sulfur falling out from the washing solution in the oxidizer is separated out and lead into the combustion chamber together with the part of the washing solution discharged as waste water from the washing solution circulation. Preferred embodiments include that the sulfur loading of the waste water can amount to up to about 370 kg sulfur per m/sup 3/ waste water; having the cooling of sulfur-containing exhaust gas leaving the combustion chamber follow in a waste heat boiler and a sulfur condenser heated by pre-heated boiler feed water, from which condenser sulfur is discharged in liquid state.

  20. Radiolytic and radiolytically induced generation of gases from synthetic wastes. Final report

    SciTech Connect (OSTI)

    Meisel, D.; Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Sauer, M.C. Jr.

    1993-10-01T23:59:59.000Z

    To better understand the processes leading to the generation and release of gases from waste tanks, the authors studied the radiolytic and thermal generation of H{sub 2}, N{sub 2}O, N{sub 2}, O{sub 2}, and NH{sub 3} in nonradioactive waste simulant solutions and slurries. The radiolytic sources for H{sub 2} are e{sub aq}{sup {minus}} and its predecessors and H atoms. Radiolysis of the water generates some H{sub 2} and an additional amount comes from the hydrogen abstraction reaction H + RH{yields}H{sub 2}+R{center_dot}. Nitrate scavenges e{sub aq}{sup {minus}} and its predecessors whereas nitrite is the major H-atom scavenger. Computer modeling shows that if [NO{sub 3}{sup {minus}}] is above 0.5 M, and [NO{sub 2}{sup {minus}}] is above 2M, the addition of other scavengers will have little effect on the yield of H{sub 2}. In the presence of organic molecules O{sub 2} is efficiently destroyed. Small yields of ammonia were measured and the yields increase linearly with dose. The nitrogen in NH{sub 3} comes from organic chelators. The yields of gases in solution depend only weakly on temperature. The rate of thermal generation of gases increases upon preirradiation, reaches a maximum, and then declines. The known radiolytic degradation products of chelators, NTA, IDA, glycolate, glyoxylate, formaldehyde, formate, oxalate, and hydroxylainine were examined for their roles in the thermal generation of H{sub 2} and N{sub 2}O at 60{degrees}C. In solution or slurry only radiolytically produced Pd intermediate strongly retains H{sub 2}. Radiolytic yields of N{sub 2}O are strongly reduced by Cr(III). In irradiated slurry, loose and tight gas were found. The loose gas could be removed by bubbling from the slurry, but the tight gas could be released only by dissolution of the slurry.

  1. Production of ethanol from refinery waste gases. Phase 2, technology development, annual report

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1995-07-01T23:59:59.000Z

    Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

  2. Production of ethanol from refinery waste gases. Final report, April 1994--July 1997

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Breshears, F.S.; Gaines, L.D.; Hays, K.S.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

    1997-08-01T23:59:59.000Z

    The objective of this program was to develop a commercial process for producing ethanol from refinery waste gases. this report presents results from the development phases. The major focus of this work was the preparation of the prototype design which will demonstrate this technology in a 2.5 lb/hr ethanol production facility. Additional areas of focus included efforts in obtaining an industrial partner to help finance the prototype, and advanced engineering experiments concentrating on process optimization in various areas needing future development and optimization. The advanced engineering experiments were performed in the laboratory in these areas: treatment and use of recycle water from distillation back to fermentation; alternative methods of removing cells from the fermentation broth; the fermentation of streams containing CO{sub 2}/H{sub 2} alone, with little to no CO present; dealing with methanogen contaminants that are capable of fermenting CO{sub 2} and H{sub 2} to methane; and acetate tolerance by the culture. Results from the design, industrial partner search and the laboratory R&D efforts are discussed in this report.

  3. New process for coke-oven gas desulfurization

    SciTech Connect (OSTI)

    Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

    1995-10-01T23:59:59.000Z

    With the EPA reclassifying spent iron oxide as a hazardous waste material in 1990, an alternative technology was sought for desulfurizing coke-oven gas. Vacasulf technology was adopted for reasons that included: producing of coke battery heating gas without further polishing and high-quality elemental sulfur; lowest operating cost in comparison with other methods; no waste products; and integrates with existing ammonia destruction facility. Vacasulf requires a single purchased material, potassium hydroxide, that reacts with carbon dioxide in coke-oven gas to form potassium carbonate which, in turn, absorbs hydrogen sulfide. Operation of the system has been successful following the resolution of relatively minor start-up problems.

  4. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect (OSTI)

    Johnson, G.D. (comp.)

    1991-08-01T23:59:59.000Z

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  5. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

    1980-04-22T23:59:59.000Z

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  6. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  7. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11T23:59:59.000Z

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  8. Convection automated logic oven control

    SciTech Connect (OSTI)

    Boyer, M.A.; Eke, K.I. [Apollo U.S.A. Inc., Orlando, FL (United States)] [Apollo U.S.A. Inc., Orlando, FL (United States)

    1998-03-01T23:59:59.000Z

    For the past few years, there has been a greater push to bring more automation to the cooling process. There have been attempts at automated cooking using a wide range of sensors and procedures, but with limited success. The authors have the answer to the automated cooking process; this patented technology is called Convection AutoLogic (CAL). The beauty of the technology is that it requires no extra hardware for the existing oven system. They use the existing temperature probe, whether it is an RTD, thermocouple, or thermistor. This means that the manufacturer does not have to be burdened with extra costs associated with automated cooking in comparison to standard ovens. The only change to the oven is the program in the central processing unit (CPU) on the board. As for its operation, when the user places the food into the oven, he or she is required to select a category (e.g., beef, poultry, or casseroles) and then simply press the start button. The CAL program then begins its cooking program. It first looks at the ambient oven temperature to see if it is a cold, warm, or hot start. CAL stores this data and then begins to look at the food`s thermal footprint. After CAL has properly detected this thermal footprint, it can calculate the time and temperature at which the food needs to be cooked. CAL then sets up these factors for the cooking stage of the program and, when the food has finished cooking, the oven is turned off automatically. The total time for this entire process is the same as the standard cooking time the user would normally set. The CAL program can also compensate for varying line voltages and detect when the oven door is opened. With all of these varying factors being monitored, CAL can produce a perfectly cooked item with minimal user input.

  9. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  10. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect (OSTI)

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  11. Solar Oven, Take One: FAIL | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Oven, Take One: FAIL Solar Oven, Take One: FAIL June 15, 2011 - 11:56am Addthis Our homemade solar oven. | Courtesy of Moon Choe Our homemade solar oven. | Courtesy of Moon...

  12. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01T23:59:59.000Z

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  13. Coke oven gas desulfurization: at Republic Steel's New Coking Facility, Warren, OH

    SciTech Connect (OSTI)

    Boak, S.C.; Prucha, D.G.; Turic, H.L.

    1981-01-01T23:59:59.000Z

    Our performance test indicates that the Sulfiban process is an effective method for removing H/sub 2/S from coke-oven gas. The process is able to handle variations in coke-oven gas flow and composition. Continuing efforts are underway to maintain optimum desulfurization conditions while trying to reduce waste production and MEA consumption. The problems which have prevented us from operating continuously have given us a better understanding of the process. This has contributed to better plant operations and greater equipment reliability for us to obtain continuous coke-oven gas desulfurization. 2 figures, 1 table.

  14. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

  15. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

    2013-05-15T23:59:59.000Z

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  16. Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels BiomassOutstanding-Long-Term-Liabilities

  17. Desulphurization of coke oven gas by the Stretford Process

    SciTech Connect (OSTI)

    Plenderleith, J.

    1981-01-01T23:59:59.000Z

    The Stretford process is probably the most effective means available for removing hydrogen sulphide from gas streams. For streams which do not contain hydrogen cyanide or excessive oxygen it should be nearly ideal. However, the large volume of waste liquor generated by fixation of hydrogen cyanide has prevented its widespread adoption for coke oven gas treatment. Investigations of various proposals for treating the waste liquor indicate that the only practicable way of dealing with it is by reductive incineration. Although attempts to apply the Peabody-Holmes reductive incineration process have been disappointing, significant progress in overcoming some of its deficiencies has been made. The Zimpro wet oxidation process will provide a convenient method of treating the HCN scrubber effluent at No. 1 Plant. However, it will not treat the sodium based liquor from the Stretford plant. Its application to Stretford waste treatment is limited to situations where ammonium liquors and ammonium sulphate recovery facilities are available. Commissioning of this plant has been delayed while a defect in the air compressor supplied for the plant is being remedied. When the problem of liquid effluent disposal has been overcome, and if reagent chemicals continue to be available at reasonable prices, the Stretford process will be a good choice for coke oven gas desulphurization. 8 figures.

  18. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas 

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are ...

  19. Rapid baking characteristics and energy efficiency of an impingement air oven compared to a reel oven

    E-Print Network [OSTI]

    Smith, Lloyd Hobart

    1983-01-01T23:59:59.000Z

    those baked in the reel oven. Buna baked in t h e im pi ngement ove n wer e a pp rex imately 10X smaller in volume. Instron shear force measurements o f the change i n f i rmnes s t h a t r el a te to sta ling showed that the impingement baked buna... isture leve 1 s with in the oven. Modern reel ovens can be heated quickly, have easily adjustable temperature control and have high heat ing e ff ic iency. In 1 975, Smi t h was granted a patent for the "Jet Sweep" air impingement oven in which jets...

  20. Method for processing coke oven gas

    SciTech Connect (OSTI)

    Flockenhaus, C.; Meckel, J.F.; Wagener, D.

    1980-11-25T23:59:59.000Z

    Coke oven gas is subjected, immediately after the discharge thereof from coke ovens, and without any preliminary cooling operation or any purification operation other than desulfurization, to a catalytic cracking operation to form a hot cracked gas which is rich in hydrogen and carbon monoxide. The catalytic cracking reaction is carried out in the presence of a hydrogen-containing and/or CO2-containing gas, with a steam reforming catalyst.

  1. Method for removing hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Ritter, H.

    1982-08-03T23:59:59.000Z

    An improved sulfur-ammonia process is disclosed for removing hydrogen sulfide from coke oven gases. In the improved process, a concentrator formerly used for standby operation is used at all normal times as an ammonia scrubber to improve the efficiency of gas separation during normal operation and is used as a concentrator for its intended standby functions during the alternative operations. In its normal function, the concentrator/scrubber functions as a scrubber to strip ammonia gas from recirculating liquid streams and to permit introduction of an ammonia-rich gas into a hydrogen sulfide scrubber to increase the separation efficiency of that unit. In the standby operation, the same concentrator/scrubber serves as a concentrator to concentrate hydrogen sulfide in a ''strong liquor'' stream for separate recovery as a strong liquor.

  2. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  3. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  4. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-01T23:59:59.000Z

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  5. Design and operation of the coke-oven gas sulfur removal facility at Geneva Steel

    SciTech Connect (OSTI)

    Havili, M.U.; Fraser-Smyth, L.L.; Wood, B.W. [Geneva Steel, Provo, UT (United States)

    1996-02-01T23:59:59.000Z

    The coke-oven gas sulfur removal facility at Geneva Steel utilizes a combination of two technologies which had never been used together. These two technologies had proven effective separately and now in combination. However, it brought unique operational considerations which has never been considered previously. The front end of the facility is a Sulfiban process. This monoethanolamine (MEA) process effectively absorbs hydrogen sulfide and other acid gases from coke-oven gas. The final step in sulfur removal uses a Lo-Cat II. The Lo-Cat process absorbs and subsequently oxidizes H{sub 2}S to elemental sulfur. These two processes have been effective in reducing sulfur dioxide emissions from coke-oven gas by 95%. Since the end of the start-up and optimization phase, emission rate has stayed below the 104.5 lb/hr limit of equivalent SO{sub 2} (based on a 24-hr average). In Jan. 1995, the emission rate from the sulfur removal facility averaged 86.7 lb/hr with less than 20 lb/hr from the Econobator exhaust. The challenges yet to be met are decreasing the operating expenses of the sulfur removal facility, notably chemical costs, and minimizing the impact of the heating system on unit reliability.

  6. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect (OSTI)

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-02-15T23:59:59.000Z

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  7. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

    1997-12-31T23:59:59.000Z

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  8. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 1, January 1, 1991--June 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-24T23:59:59.000Z

    The coke plant at the Sparrows Point Plant consist of three coke oven batteries and two coal chemical plants. The by-product coke oven gas (COG) consists primarily of hydrogen, methane, carbon monoxide, nitrogen and contaminants consisting of tars, light oils (benzene, toluene, and xylene) hydrogen sulfide, ammonia, water vapor and other hydrocarbons. This raw coke oven gas needs to be cleaned of most of its contaminants before it can be used as a fuel at other operations at the Sparrows Point Plant. In response to environmental concerns, BSC decided to replace much of the existing coke oven gas treatment facilities in the two coal chemical Plants (A and B) with a group of technologies consisting of: Secondary Cooling of the Coke oven Gas; Hydrogen Sulfide Removal; Ammonia Removal; Deacification of Acid Gases Removed; Ammonia Distillation and Destruction; and, Sulfur Recovery. This combination of technologies will replace the existing ammonia removal system, the final coolers, hydrogen sulfide removal system and the sulfur recovery system. The existing wastewater treatment, tar recovery and one of the three light oil recovery systems will continue to be used to support the new innovative combination of COG treatment technologies.

  9. Pipeline charging of coke ovens with a preheated charge

    SciTech Connect (OSTI)

    Karpov, A.V.; Khadzhioglo, A.V.; Kuznichenko, V.M.

    1983-01-01T23:59:59.000Z

    Work to test a pipeline charging method was conducted at the Konetsk Coke Works (a PK-2K coke oven system with a single gas main, oven width 407 mm, height 4300 mm, effective column 20.0 cm/sub 3/). This method consists of transporting the heated coal charge to the ovens through a pipe by means of steam. the charge is transported by high pressure chamber groups, and loaded by means of systems equipped with devices for separation, withdrawal and treatment of the spent steam. The principal goal of the present investigation was to test technical advances in the emission-free charging of preheated charges. The problem was, first, to create a reliable technology for separation of the steam from the charge immediately before loading it into the oven and, second, to provide a total elimination of emissions, thereby protecting the environment against toxic substances.

  10. Problem of improving coke oven gas purification systems

    SciTech Connect (OSTI)

    Goldin, I.A.

    1982-01-01T23:59:59.000Z

    A discussion of the problems of improving desulfurization processes of coke oven gas was presented. Of particular interest were control systems and increasing capacity of the coke ovens. Included in the discussion were the vacuum-carbonate and arsenic-soda sulfur removal systems. Problems involved with these systems were the number of treatment operations, the volume of the reagents used, and the operation of equipment for naphthalene and cyanide removal.

  11. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09T23:59:59.000Z

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  12. Grass roots technology and energy policy: Solar ovens and wind turbines in Kenya

    SciTech Connect (OSTI)

    Kammen, D.M. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

    1992-12-31T23:59:59.000Z

    Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxide elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.

  13. E-Print Network 3.0 - actinide waste forms Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    separated into a high-level radioactive stream and a fission product gases waste stream... Nuclear Waste Assessment System for Technical ... Source: U.S. Nuclear Waste...

  14. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26T23:59:59.000Z

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  15. Operating and maintenance benefits of automated oven wall temperature measurement

    SciTech Connect (OSTI)

    Leuchtmann, K.P. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany); Hinz, D.; Bergbau, D. [Ruhrkohle Bergbau AG, Bottrop (Germany). Prosper Coking Plant; Platts, M. [Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)

    1997-12-31T23:59:59.000Z

    For a very long time and regardless of all shortcomings associated with it, the manual measurement of the heating flue temperature has been the only method of monitoring the temperature prevailing in a coke oven battery and discovering weak points in the heating system. In the course of the last few years a number of automated temperature measuring systems have been developed that are intended to replace or supplement the manual heating flue measurement system. These measuring systems and their advantages/disadvantages are briefly described in this paper. Additionally, operational experience gathered with the oven chamber wall temperature measuring system is discussed in detail.

  16. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    Biological Removal of Siloxanes from Landfill and Digester Gases: Opportunities and Challenges S U) presents challenges for using landfill and digester gases as energy fuels because of the formation volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced

  17. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  18. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  19. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  20. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  1. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  2. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31T23:59:59.000Z

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  3. Process for removing hydrogen sulfide from gases particularly coal pyrolysis gases

    SciTech Connect (OSTI)

    Ritter, H.; Herpers, E.T.

    1985-02-12T23:59:59.000Z

    Hydrogen sulfide is first removed by ammoniacal liquor from coke oven gas in the bottom part of a gas scrubber. In the top part of the scrubber, two consecutively-arranged fine scrubbing stages remove hydrogen sulfide by treating the gases, in the upper stage, with a caustic soda solution or a caustic potash solution. Beneath the upper scrubbing stage is the second fine scrubbing stage fed with a subflow of an aqueous carbonate solution collecting at the outlet of the upper fine scrubbing stage and a subflow of cooled, regenerated carbonate solution discharged from the hydrogen-sulfide/hydrogen-cyanide stripper. From the hydrogen-sulfide/hydrogen-cyanide stripper, a second subflow is admixed with coal liquor for removing fixed ammonia therefrom in a separator. The separator produces water vapor with carbon dioxide vapors that are delivered to the hydrogen-sulfide/hydrogen-cyanide stripper for regenerating the aqueous carbonate washing solution.

  4. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31T23:59:59.000Z

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  5. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

    1997-12-31T23:59:59.000Z

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  6. Greenhouse Gases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Greenhouse Gases Greenhouse Gases Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate...

  7. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

    1997-12-31T23:59:59.000Z

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  8. X-ray evaluation of coke-oven gas line deposits

    SciTech Connect (OSTI)

    Swain, Y.T.

    1983-08-01T23:59:59.000Z

    Control of coke-oven gas pipeline deposits has been facilitated through the use of an X-ray technique that provides quantitative data without disrupting plant operations.

  9. Takahax-Hirohax process for coke oven gas desulfurization

    SciTech Connect (OSTI)

    Gastwirth, H.; Miner, R.; Stengle, W.

    1981-01-01T23:59:59.000Z

    This paper describes the Takahax-Hirohax process to desulfurize coke oven gas and to produce an ammonium sulfate end product. A review is also made of current operating experience and recent technical developments. The Takahax-Hirohax process is extremely useful when the COG contains a suitable ammonia to sulfur ratio and when ammonium sulfate is a desirable end product. No contaminated effluent streams are emitted from the process. The process is simple, reliable, flexible, and responds easily to COG variations. 4 figures, 3 tables. (DP)

  10. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

    1997-12-31T23:59:59.000Z

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  11. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect (OSTI)

    Not Available

    1992-10-16T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  12. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

    1995-12-01T23:59:59.000Z

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  13. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  14. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications 

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    2000-01-01T23:59:59.000Z

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  15. Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications

    E-Print Network [OSTI]

    Kosanovic, D.; Ambs, L.

    The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process...

  16. Process for dissolving coke oven deposits comprising atomizing a composition containing N-methyl-2-pyrrolidone into the gas lines

    SciTech Connect (OSTI)

    Stafford, M.L.; Nicholson, G.M.

    1993-07-06T23:59:59.000Z

    A method is described for cleaning gas lines in coke oven batteries comprising atomizing a composition into the gas lines of coke oven batteries, where the composition comprises N-methyl-2-pyrrolidone.

  17. Coke oven gas desulphurization by the Carl Still process

    SciTech Connect (OSTI)

    Knight, R.E.

    1981-01-01T23:59:59.000Z

    The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

  18. Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)

    E-Print Network [OSTI]

    Boyer, Edmond

    - 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

  19. Chapter 46. Ultracold Quantum Gases Ultracold Quantum Gases

    E-Print Network [OSTI]

    of strongly interacting Fermi gases is important for the modeling of neutron stars. Cold atomic gases allow potential of the gas. Away from resonance another length scale comes into play, the scattering length a

  20. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2006-04-01T23:59:59.000Z

    The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

  1. alkaline phosphate wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  2. alkaline tank waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  3. alkaline waste solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  4. alkaline nuclear wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  5. alkaline nuclear waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of alkaline paper mill...

  6. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Zevenhoven, Ron

    and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste

  7. Progressive Powder Coating: New Infrared Curing Oven at Metal Finishing Plant Increases Production by 50%

    SciTech Connect (OSTI)

    Not Available

    2003-05-01T23:59:59.000Z

    Progressive Powder Coating in Mentor, Ohio, is a metal finishing plant that uses a convection oven in its manufacturing process. In an effort to save energy and improve production, the company installed an infrared oven in between the powder coating booth and the convection oven on its production line. This installation allowed the plant to increase its conveyor line speed and increase production by 50 percent. In addition, the plant reduced its natural gas consumption, yielding annual energy savings of approximately$54,000. With a total project cost of$136,000, the simple payback is 2.5 years.

  8. Bethlehem Steel announces plans to control coke oven air and water pollution

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    Bethlehem Steel Corporation and the Maryland Department of the Environment have announced an agreement under which Bethlehem will spend an estimated $92-million at its Sparrows Points, Md., plant for technologically-advanced controls to further reduce air and water pollution, mainly from the plant's coke ovens. The two major systems include one to treat by-product coke oven gas and chemicals, and another to upgrade existing pushing emission controls on two older coke oven batteries. One of the new systems will replace most of the existing equipment that cleans gas and treats chemicals created by the coking process at the plant's three coke oven batteries. Because this system has the potential to greatly reduce sulfur dioxide and other pollutants, the United States Department of Energy (DOE) in September announced that its installation qualified for funding as part of the nationwide Innovative Clean Coal Technology Program.

  9. Additional Steam Traps Increase Production of a Drum Oven at a Petroleum Jelly Plant

    SciTech Connect (OSTI)

    Not Available

    2002-03-01T23:59:59.000Z

    Additional steam traps were installed on the drum oven at a petroleum jelly production facility at an ExxonMobil plant in Nigeria. The installation improved heat transfer and saved energy.

  10. Acoustic emission feedback control for control of boiling in a microwave oven

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  11. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31T23:59:59.000Z

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  12. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01T23:59:59.000Z

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  13. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  14. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2007-11-13T23:59:59.000Z

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

  15. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2007-11-19T23:59:59.000Z

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

  16. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  17. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  18. Development of a high-temperature oven for the 28 GHz electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Kidera, M.; Ozeki, K.; Nakagawa, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)] [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2014-02-15T23:59:59.000Z

    We have been developing the 28 GHz ECR ion source in order to accelerate high-intensity uranium beams at the RIKEN RI-beam Factory. Although we have generated U{sup 35+} beams by the sputtering method thus far, we began developing a high-temperature oven with the aim of increasing and stabilizing the beams. Because the oven method uses UO{sub 2}, a crucible must be heated to a temperature higher than 2000?°C to supply an appropriate amount of UO{sub 2} vapor to the ECR plasma. Our high-temperature oven uses a tungsten crucible joule-heated with DC current of approximately 450 A. Its inside dimensions are ?11 mm × 13.5 mm. Since the crucible is placed in a magnetic field of approximately 3 T, it is subject to a magnetic force of approximately 40 N. Therefore, we used ANSYS to carefully design the crucible, which was manufactured by machining a tungsten rod. We could raise the oven up to 1900?°C in the first off-line test. Subsequently, UO{sub 2} was loaded into the crucible, and the oven was installed in the 28 GHz ECR ion source and was tested. As a result, a U{sup 35+} beam current of 150 ?A was extracted successfully at a RF power of approximately 3 kW.

  19. Use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Marakhovskii, L.F.; Popov, A.A.; Rezunenko, Yu.I.

    1983-01-01T23:59:59.000Z

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution which show that the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be recovered in the form of ethylenethiourea - a marketable byproduct.

  20. The use of ethylenediamine to remove hydrogen sulfide from coke oven gas

    SciTech Connect (OSTI)

    Marakhovskii, L.F.; Rezunenko, Y.I.; Popov, A.A.

    1983-01-01T23:59:59.000Z

    The investigations of the equilibrium absorption of H/sub 2/S by an EDA solution showed the solubility of hydrogen sulfide in ethylenediamine solutions is almost twice that in monoethanolamine solutions. Ethylenediamine may be used as an absorber for thorough removal of H/sub 2/S from coke oven gas in the presence of CO/sub 2/ and HCN. The hydrogen cyanide of coke oven gas, having practically no effect on the equilibrium absorption of H/sub 2/S and CO/sub 2/, may in this case be used in the form of ethylenethiourea - a marketable byproduct.

  1. Identifying Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Identifying Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1 Vanderbilt.safety.vanderbilt.edu IDENTIFYING HAZARDOUS WASTES IN YOUR LAB Laboratory personnel should treat all waste chemical solids, liquids, or containerized gases as hazardous wastes unless a specific chemical waste has been confirmed to be a non-hazardous

  2. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01T23:59:59.000Z

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  3. alkaline high-level waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the atmosphere Geosciences Websites Summary: -solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere. ? 2008 ElsevierCarbonation of...

  4. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

  5. Improved correlations for retrograde gases 

    E-Print Network [OSTI]

    Crogh, Arne

    1996-01-01T23:59:59.000Z

    Three correlations for retrograde gases have been developed. First, a correlation was developed that relates the composition of a retrograde gas-condensate mixture at any depletion stage to the composition at its dew point ...

  6. Guidance Document CompressedGases

    E-Print Network [OSTI]

    electricity. Oxygen by itself does not burn, but it will support or accelerate combustion of flammable the regulator is completely closed. 3. When possible use flammable and reactive gases in a fume hood. Certain

  7. Extra Crispy OvenFried Drumsticks 3 cups cornflake cereal, crushed

    E-Print Network [OSTI]

    Jawitz, James W.

    Extra Crispy OvenFried Drumsticks 3 cups cornflake cereal, crushed 1/3 cup grated Parmesan pepper sauce 8 chicken drumsticks, skinned Vegetable cooking spray 1. Combine buttermilk and hot pepper sauce in an extralarge ziptop freezer bag. Add chicken drumsticks, turning to coat. Place bag

  8. PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    . BACKGROUND This paper will evaluate current practices of clients in the New England/New York whichPROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University

  9. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24T23:59:59.000Z

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  10. Startup and initial operation of a DFGD and pulse jet fabric filter system on Cokenergy's Indiana Harbor coke oven off gas system

    SciTech Connect (OSTI)

    Morris, W.J.; Gansley, R.R.; Schaddell, J.G.

    1999-07-01T23:59:59.000Z

    This paper describes the design, initial operation and performance testing of a Dry Flue Gas Desulfurization (DFGD) and Modular Pulse Jet Fabric Filter (MPJFF) system installed at Cokenergy's site in East Chicago, Indiana. The combined flue gas from the sixteen (16) waste heat recovery boilers is processed by the system to control emissions of sulfur dioxide and particulates. These boilers recover energy from coke oven off gas from Indiana Harbor Coke Company's coke batteries. The DFGD system consists of two 100% capacity absorbers. Each absorber vessel uses a single direct drive rotary atomizer to disperse the lime slurry for SO{sub 2} control. The MPJFF consists of thirty two (32) modules arranged in twin sixteen-compartment (16) units. The initial start up of the DFGD/MPJFF posed special operational issues due to the low initial gas flows through the system as the four coke oven batteries were cured and put in service for the first time. This occurred at approximately monthly intervals beginning in March 1998. A plan was implemented to perform a staged startup of the DFGD and MPJFF to coincide with the staged start up of the coke batteries and waste heat boilers. Operational issues that are currently being addressed include reliability of byproduct removal. Performance testing was conducted in August and September 1998 at the inlet of the system and the outlet stack. During these tests, particulate, SO{sub 2}, SO{sub 3}, and HCI emissions were measured simultaneously at the common DFGD inlet duct and the outlet stack. Measurements were also taken for average lime, water, and power consumption during the tests as well as system pressure losses. These results showed that all guarantee parameters were achieved during the test periods. The initial operation and performance testing are described in this paper.

  11. Innovative coke oven gas cleaning system for retrofit applications

    SciTech Connect (OSTI)

    Not Available

    1992-09-21T23:59:59.000Z

    The EMP consists of a Compliance Monitoring Sampling Program and a Supplemental monitoring Sampling Program. The Compliance Monitoring Sampling Program will be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Project and during a summer and a winter period following the successful Startup and Operational phase of the completed Project. compliance monitoring consist of conducting all the sampling and observation programs associated with existing required Federal, State, and Local Regulations, Permits and Orders. These include air, water, and waste monitoring and OSHA and NESHAP monitoring. The Supplemental Monitoring Program will also be conducted during a summer and a winter Baseline periods during the Pre-Construction/Construction phases of the Demonstration Facility and during a summer and a winter period following the successful startup and Operational phase of the completed Facility. Supplemental Monitoring includes sampling of 27 additional streams that are important to measure operational or environmental performance and impacts of the installation of the new COG treatment facilities.

  12. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  13. Method of prevention of deposits in the pipes of waste heat boilers

    SciTech Connect (OSTI)

    Gettert, H.; Kaempfer, K.

    1983-12-13T23:59:59.000Z

    A process is disclosed for preventing deposits in the pipes of waste heat boilers employed for cooling gases in the partial autothermal oxidation of fossil fuels to prepare hydrogen or synthesis gases, wherein the pipes are flushed, at the operating temperature, with hydrogen-containing gases which contain little or no H/sub 2/S.

  14. Coke oven doors: Historical methods of emission control and evaluation of current designs

    SciTech Connect (OSTI)

    Pettrey, J.O.; Greene, D.E. (Armco Steel Co., Middletown, OH (United States))

    1993-01-01T23:59:59.000Z

    The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

  15. Mathematical modeling of clearance between wall of coke oven and coke cake

    SciTech Connect (OSTI)

    Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

    1995-12-01T23:59:59.000Z

    A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

  16. Choosing a coke-oven gas desulfurization system: a review of current technology

    SciTech Connect (OSTI)

    Lynch, P.A.

    1982-12-01T23:59:59.000Z

    Installation of coke-oven gas desulphurizing systems is primarily the result of air pollution control regulations. Although not currently profitable, operating costs can be minimized by choosing the technology most suited to the particular application. The Stretford Holmes, Takahax/Hirohax, Koppers Vacuum Carbonate, Sulfiban and Dravo/Still processes are discussed, together with criteria for economic analysis based on technical and by-product market evaluations.

  17. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01T23:59:59.000Z

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  18. Method of washing hydrogen sulfide from coke oven gas by the ammonium sulfide method

    SciTech Connect (OSTI)

    Ritter, H.

    1985-05-21T23:59:59.000Z

    An improved coke oven gas washing process for removing hydrogen sulfide is proposed wherein the coke oven gas is treated in a hydrogen sulfide scrubber by counterflow with an aqueous ammonia wash water. A stream of aqueous weak ammonia liquor is cooled and sprayed through nozzles in the mid-region of the hydrogen sulfide scrubber. A quantity of aqueous ammonia liquor, corresponding to the quantity which is sprayed through the said nozzles, is withdrawn from the hydrogen sulfide scrubber at a level below the nozzles and is introduced into the top of the said hydrogen sulfide scrubber. Ammonia vapor released at the nozzles has a higher partial pressure than the ammonia partial pressure of the coke oven gas in the region of the nozzle. The aqueous ammonia liquor from the deacidifier is the source of the cooled aqueous ammonia liquor which is introduced through the nozzles. A portion of the aqueous ammonia liquor from the deacidifier is introduced directly into the top of the hydrogen sulfide scrubber as a portion of the required aqueous ammonia wash water.

  19. Utilizing secondary heat to heat wash oil in the coke-oven gas desulfurization division

    SciTech Connect (OSTI)

    Volkov, E.L.

    1981-01-01T23:59:59.000Z

    Removal of hydrogen sulfide from the coke-oven gas by the vacuum-carbonate method involves significant energy costs, comprising about 47% of the total costs of the process. This is explained by the significant demand of steam for regeneration of the wash oil, the cost of which exceeds 30% of the total operating costs. The boiling point of the saturated wash oil under vacuum does not exceed 70/sup 0/C, thus the wash oil entering the regenerator can be heated either by the direct coke-oven gas or by the tar supernatant from the gas collection cycle. Utilizing the secondary heat of the direct coke-oven gas and the tar supernatant liquor (the thermal effect is approximately the same) to heat the wash oil from the gas desulfurization shops significantly improves the industrial economic indices. Heating the wash oil from gas desulfurization shops using the vacuum-carbonate method by the heat of the tar supernatant liquor may be adopted at a number of coking plants which have a scarcity of thermal resources and which have primary coolers with vertical tubes.

  20. Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant

    SciTech Connect (OSTI)

    Not Available

    1990-04-24T23:59:59.000Z

    Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

  1. ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORBIT2012 G ESTABoues, a decision tool to assess greenhouse gases of sewage sludge treatment and di-laure.reverdy@irstea.fr EXECUTIVE SUMMARY Sewage sludge production increases continuously reaching almost 20% (946 700 t 1 118 795% was incinerated (with or without household wastes) or landfilled. Nowadays, sludge reduction is a major concern

  2. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BARKER, S.A.

    2006-07-27T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  3. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    TU, T.A.

    2007-01-04T23:59:59.000Z

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  4. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect (OSTI)

    Terza, R.R. (USS Clairton Works, PA (United States)); Sardesai, U.V. (Westfield Engineering and Services, Inc., Houston, TX (United States))

    1993-01-01T23:59:59.000Z

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  5. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  6. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01T23:59:59.000Z

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  7. Conserving Energy by Recovering Heat from Hot Waste Gases 

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    -04-08 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 the boiler, ductwork and a low tempera Fig. No. 21 ture boiler control valve; or all or part PRESENT WORTH FACTORS (PWF) LIFETIME goes through duct work.... 528 1.440 1. 317 low temperature exhaust or boiler control 3 2.723 2.487 2.283 2.106 1. 952 1. 742 valve is in the open or partly open posi 4 3.546 3.170 2.855 2.589 2.362 2.061 5 4.329 3.791 3.352 2.991 2.689 2.302 tion and the high...

  8. Conserving Energy by Recovering Heat from Hot Waste Gases

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01T23:59:59.000Z

    supply, and 1150?1500 Cement kiln (wet process) 8oo~1100 isn't a shortage of energy then at least somewhat of a Copper reverberatory furnace 2000?~.'500 crisis? Diesel engine exhaust 1000?1200 Forge and billet.heating furnaces 1700?~ZOO... Temp. F aren't they really agreeing that there is going to be Ammonia oxidation process 1350?1475 an energy crisis? Steep price increases occur when Annealing furnace 1100?2000 Cement kiln (dry process) there are shortages, when demand exceeds...

  9. Industrial Gases as a Vehicle for Competitiveness

    E-Print Network [OSTI]

    Dale, J. R.

    -based separation technology was developing to offer an alternative to cryogenic separation for those instances when neither high purity or cryogenic properties were required by the application. It resulted in gas of lower than 99.9995%, "five-nines", purity...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

  10. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01T23:59:59.000Z

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  11. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

    2001-01-01T23:59:59.000Z

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  12. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

    1999-01-01T23:59:59.000Z

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. Thermal and chemical remediation of mixed waste

    DOE Patents [OSTI]

    Nelson, P.A.; Swift, W.M.

    1994-08-09T23:59:59.000Z

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  14. Thermal and chemical remediation of mixed waste

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Swift, William M. (Downers Grove, IL)

    1994-01-01T23:59:59.000Z

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  15. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  16. March 1980 / Vol. 5, No. 3 / OPTICS LETTERS 117 Disk-shaped heat-pipe oven used for lithium excited-state

    E-Print Network [OSTI]

    Stroud, Carlos R.

    March 1980 / Vol. 5, No. 3 / OPTICS LETTERS 117 Disk-shaped heat-pipe oven used for lithium excited success- fully operated using both sodium and lithium as the working fluid. The lithium 4s 2 S 112 and 5s whosepressure is easily measured externally, the heat-pipe oven isolates the often corrosive vapor from windows

  17. Particle entanglement in rotating gases

    SciTech Connect (OSTI)

    Liu Zhao; Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-06-15T23:59:59.000Z

    In this paper, we investigate the particle entanglement in two-dimensional (2D) weakly interacting rotating Bose and Fermi gases. We find that both particle localization and vortex localization can be indicated by particle entanglement. We also use particle entanglement to show the occurrence of edge reconstruction of rotating fermions. The different properties of condensate phase and vortex liquid phase of bosons can be reflected by particle entanglement and in vortex liquid phase we construct the same trial wave function with that in [Phys. Rev. Lett. 87, 120405 (2001)] from the viewpoint of entanglement to relate the ground state with quantum Hall state. Finally, the relation between particle entanglement and interaction strength is studied.

  18. Granular gases under extreme driving

    E-Print Network [OSTI]

    W. Kang; J. Machta; E. Ben-Naim

    2010-08-06T23:59:59.000Z

    We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

  19. Abstract--The paper reviews solutions being explored to face the supply problems faced in the Chilean electricity market oven

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    and transportation of natural gas. Private investors were strongly behind the process, and invested heavily in the Chilean electricity market oven recent years, given unexpected restrictions in natural gas transfers from Argentina. Investment in generation came to a stall, given uncertainties in natural gas supply and the risk

  20. Zero Waste Program 2011 Recycling Benefits

    E-Print Network [OSTI]

    Delgado, Mauricio

    Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

  1. Summing up of discussion on improvement trends in coke-oven gas purification flowsheets

    SciTech Connect (OSTI)

    Zemblevskii, K.K.

    1983-01-01T23:59:59.000Z

    Reference is made to a previously published article that included flowsheets for purification of coke-oven gas. It is concluded that the flowsheets for a process using arsenic-soda and vacuum-carbonate methods of sulfur removal in which the gas is cooled to 303-308/sup 0/K are seriously in error. Schemes involving minor refrigeration, sulfur removal by the circulating ammonia method and ammonia recovery as ammonia liquor are seen as promising but in need of further improvement. One scheme discussed (the VUKhIN scheme) involves ammonia recovery by the circulating phosphate method and sulfur removal by the circulating ammonia method is seen as a replacement for the minor refrigeration method. Since liquid ammonia consumption in agriculture is continually increasing, schemes that result in production of liquid ammonia rather than ammonia liquor should be seriously considered.

  2. The waste water free coke plant

    SciTech Connect (OSTI)

    Schuepphaus, K.; Brink, N. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany)

    1995-12-01T23:59:59.000Z

    Apart from coke which is the actual valuable material a coke oven plant also produces a substantial volume of waste water. These effluent water streams are burdened with organic components (e.g. phenols) and inorganic salts (e.g. NH{sub 4}Cl); due to the concentration of the constituents contained therein these effluent waters must be subjected to a specific treatment before they can be introduced into public waters. For some years a lot of separation tasks have been solved successfully by applying the membrane technology. It was especially the growing number of membrane facilities for cleaning of landfill leakage water whose composition can in fact be compared with that of coking plant waste waters (organic constituents, high salt fright, ammonium compounds) which gave Thyssen Still Otto Anlagentechnik the idea for developing a process for coke plant effluent treatment which contains the membrane technology as an essential component.

  3. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C.J.; Mackenzie, P.D.

    1982-09-03T23:59:59.000Z

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  4. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); MacKenzie, Patricia D. (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  5. An Infrared Spectral Database for Detection of Gases Emitted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database for Detection of Gases Emitted by Biomass Burning. An Infrared Spectral Database for Detection of Gases Emitted by Biomass Burning. Abstract: We report the construction of...

  6. atmospheric greenhouse gases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GASES BACKGROUND CiteSeer Summary: The Earths climate depends on the amount of solar radiation received and the atmospheric abundance of clouds and greenhouse gases. The...

  7. aerosol precursor gases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sunlight 11 GREENHOUSE GASES GREENHOUSE GASES BACKGROUND CiteSeer Summary: The Earths climate depends on the amount of solar radiation received and the atmospheric abundance of...

  8. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as deemed appropriate for LM operations...

  9. Thermal and Radiolytic Gas Generation in Hanford High-Level Waste

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

    2000-01-31T23:59:59.000Z

    The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

  10. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29T23:59:59.000Z

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  11. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Broader source: Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  12. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  13. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOE Patents [OSTI]

    Flannery, Philip A. (Ramsey, MT); Kujawa, Stephan T. (Butte, MT)

    2000-01-01T23:59:59.000Z

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  14. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect (OSTI)

    Stuart, L.M.

    1994-05-27T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  15. Experience and results of new heating control system of coke oven batteries at Rautaruukki Oy Raahe Steel

    SciTech Connect (OSTI)

    Swanljung, J.; Palmu, P. [Rautaruukki Oy Raahe Steel (Finland)

    1997-12-31T23:59:59.000Z

    The latest development and results of the heating control system at Raahe Steel are presented in this paper. From the beginning of coke production in Rautaruukki Oy Raahe Steel (October 1987) the heating control systems have been developed. During the first stage of development work at the coking plant (from year 1987 to 1992), when only the first coke oven battery consisting of 35 ovens was in production, the main progress was in the field of process monitoring. After commissioning of the second stage of the coking plant (November 1992), the development of the new heating control model was started. Target of the project was to develop a dynamic control system which guides the heating of batteries through the various process conditions. Development work took three years and the heating control system was commissioned in the year 1995. Principle of the second generation system is an energy balance calculation, coke end temperature determination and dynamic oven scheduling system. The control is based on simultaneous feedforward and feedback control. The fuzzy logic components were added after about one year experience.

  16. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Greenhouse gases andGreenhouse gases and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    in gas turbinecombustion in gas turbine HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Effect of COEffect-depleting gases ·· COCO22 removal for gas purificationremoval for gas purification ·· COCO22 removal for greenhouse gas emissions reductionremoval for greenhouse gas emissions reduction ·· Other greenhouse gases

  17. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29T23:59:59.000Z

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  18. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  19. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  20. Stationary light in cold atomic gases

    E-Print Network [OSTI]

    Gor Nikoghosyan; Michael Fleischhauer

    2009-09-16T23:59:59.000Z

    We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

  1. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  2. Zevenhoven & Kilpinen FLUE GASES and FUEL GASES 19.6.2001 2-1 Chapter 2 Flue gases and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .1 Introduction Combustion processes for heat and power generation and the incineration of household waste are actually unwanted by-products from a power plant or a waste incinerator, since the first has the objective to convert hydrocarbon fuels (CxHy) into CO2, H2O plus heat and power, whilst the second aims at reducing

  3. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20T23:59:59.000Z

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  4. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  5. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  6. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  7. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  8. Development and introduction of methods for extracting hydrogen sulfide and hydrogen cyanide from coke-oven gas

    SciTech Connect (OSTI)

    Litvinenko, M.S.; Zaichenko, V.M.

    1980-01-01T23:59:59.000Z

    The progress between 1933 and the present in desulfurizing coal gas from coke ovens and making use of the by-products to produce sulfuric acid, thioyanates, etc. is described. The vacuum carbonate process and the monoethanolamine method are apparently now preferred, but some plants are still using modified arsenic-soda processes. More recently additional by-products have been thiocyanates (for producing acrylonitrile fiber) and hydrogen xanthanates. The production of other organic sulfur and cyanide compounds has been investigated for use as herbicides, corrosion inhibitors, etc. (LTN)

  9. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  10. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  11. Biodegradation and flushing of MBT wastes

    SciTech Connect (OSTI)

    Siddiqui, A.A., E-mail: aasiddiqui.cv@amu.ac.in [Department of Civil Engineering, Aligarh Muslim University, Aligarh 202002 (India); Richards, D.J.; Powrie, W. [Waste Management Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2013-11-15T23:59:59.000Z

    Highlights: • Stabilization was achieved for MBT wastes of different degrees of pretreatment. • About 92% reduction in the gas generation compared with raw MSW. • Pretreatment resulted in reduced TOC, nitrogen and heavy metals in leachate. • A large proportion of carbon and nitrogen remained in the waste material. - Abstract: Mechanical–biological treatment (MBT) processes are increasingly being adopted as a means of diverting biodegradable municipal waste (BMW) from landfill, for example to comply with the EU Landfill Directive. However, there is considerable uncertainty concerning the residual pollution potential of such wastes. This paper presents the results of laboratory experiments on two different MBT waste residues, carried out to investigate the remaining potential for the generation of greenhouse gases and the flushing of contaminants from these materials when landfilled. The potential for gas generation was found to be between 8% and 20% of that for raw MSW. Pretreatment of the waste reduced the potential for the release of organic carbon, ammoniacal nitrogen, and heavy metal contents into the leachate; and reduced the residual carbon remaining in the waste after final degradation from ?320 g/kg dry matter for raw MSW to between 183 and 195 g/kg dry matter for the MBT wastes.

  12. Gas generation from Tank 241-SY-103 waste

    SciTech Connect (OSTI)

    Bryan, S.A.; King, C.M.; Pederson, L.R.; Forbes, S.V.; Sell, R.L.

    1996-04-01T23:59:59.000Z

    This report summarizes progress made in evaluating mechanisms by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using actual waste from Tank 241-SY-103. The objective of this work is to establish the identity and stoichiometry of degradation products formed in actual tank wastes by thermal and radiolytic processes as a function of temperature. The focus of the gas generation tests on Tank 241-SY-103 samples is first the effect of temperature on gas generation (volume and composition). Secondly, gas generation from irradiation of Tank 241-SY-103 samples at the corresponding temperatures as the thermal-only treatments will be measured in the presence of an external radiation source (using a {sup 137}Cs capsule). The organic content will be measured on a representative sample prior to gas generation experiments and again at the termination of heating and irradiation. The gas generation will be related to the extent of organic species consumption during heating. Described in this report are experimental methods used for producing and measuring gases generated at various temperatures from highly radioactive actual tank waste, and results of gas generation from Tank 241-SY-103 waste taken from its convective layer. The accurate measurement of gas generation rates from actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from the convective layer of Tank 241-SY-103, a waste tank listed on the Flammable Gas Watch List due to its potential for flammable gas accumulation above the flammability limit.

  13. The safe use of low temperature liquefied gases 1. Introduction

    E-Print Network [OSTI]

    Martin, Ralph R.

    dioxide TABLE 1 Property Oxygen (O2) Nitrogen (N2) Argon (Ar) Helium (He) Carbon dioxide (CO2) Molecular.1 Objective 1.2 Gases considered and typical uses 2. Properties of low temperature liquefied atmospheric gases of BOC low temperature liquefied gases information on their properties, the hazards associated

  14. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  15. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  16. Waste Energy Analysis Recovery for a Typical Food Processing Plant

    E-Print Network [OSTI]

    Miller, P. H.; Mann, L., Jr.

    1980-01-01T23:59:59.000Z

    An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

  17. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  18. New fluorescence techniques for detecting noble gases

    SciTech Connect (OSTI)

    Whitaker, T.J.; Cannon, B.D.; Bushaw, B.A.

    1986-10-01T23:59:59.000Z

    Two new concepts for detecting noble gases are reported. Both techniques involve formation of the long-lived 1s/sup 5/ metastable state of noble gases. The first technique utilizes the photon-burst method and should be capable of isotopically selective detection at extremely small relative abundances. The second concept incorporates a shelving technique that stores noble gas atoms in the metastable state and then pumps these atoms to a higher excited state that radiatively cascades to the ground state, emitting vacuum ultraviolet (vuv) photons. A significant advantage is that AlGaAs diode lasers can be used for the techniques rather than continuous wave cw dye lasers. 5 refs., 1 fig.

  19. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15T23:59:59.000Z

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  20. Scanning electron microscopy of cold gases

    E-Print Network [OSTI]

    Santra, Bodhaditya

    2015-01-01T23:59:59.000Z

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  1. Method for introduction of gases into microspheres

    DOE Patents [OSTI]

    Hendricks, Charles D. (Livermore, CA); Koo, Jackson C. (San Ramon, CA); Rosencwaig, Allan (Danville, CA)

    1981-01-01T23:59:59.000Z

    A method for producing small hollow glass spheres filled with a gas by introduction of the gas during formation of the hollow glass spheres. Hollow glass microspheres having a diameter up to about 500.mu. with both thin walls (0.5 to 4.mu.) and thick walls (5 to 20.mu.) that contain various fill gases, such as Ar, Kr, Xe, Br, DT, H.sub.2, D.sub.2, He, N.sub.2, Ne, CO.sub.2, etc. in the interior thereof, can be produced by the diffusion of the fill gas or gases into the microsphere during the formation thereof from a liquid droplet of glass-forming solution. This is accomplished by filling at least a portion of the multiple-zone drop-furnace used in producing hollow microspheres with the gas or gases of interest, and then taking advantage of the high rate of gaseous diffusion of the fill gas through the wall of the gel membrane before it transforms into a glass microsphere as it is processed in the multiple-zone furnace. Almost any gas can be introduced into the inner cavity of a glass microsphere by this method during the formation of the microsphere provided that the gas is diffused into the gel membrane or microsphere prior to its transformation into glass. The process of this invention provides a significant savings of time and related expense of filling glass microspheres with various gases. For example, the time for filling a glass microballoon with 1 atmosphere of DT is reduced from about two hours to a few seconds.

  2. Seeded optical breakdown of molecular and noble gases

    SciTech Connect (OSTI)

    Polynkin, Pavel; Scheller, Maik; Moloney, Jerome V. [College of Optical Sciences, University of Arizona 1630 E. University Blvd., Tucson, Arizona 85721 (United States)

    2012-07-30T23:59:59.000Z

    We report experimental results on the dual laser-pulse plasma excitation in various gases at atmospheric pressure. Dilute plasma channels generated through filamentation of ultraintense femtosecond laser pulses in air, argon, and helium are densified through the application of multi-Joule nanosecond heater pulses. Optical breakdown in atomic gases can be achieved for considerably longer delays between femtosecond and nanosecond pulses compared to that in molecular gases. The densification of the seed channel in molecular gases is always accompanied by its fragmentation into discrete bubbles, while in atomic gases the densified channel remains smooth and continuous.

  3. Deflagration studies on waste Tank 101-SY: Test plan

    SciTech Connect (OSTI)

    Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

    1991-07-01T23:59:59.000Z

    Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

  4. "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.

    E-Print Network [OSTI]

    Noble, William Stafford

    "Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

  5. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, and Storage of Gases Print ALS users

  6. Influence of technological factors on statics of hydrogen sulfide absorption from coke-oven gas by the ammonia process

    SciTech Connect (OSTI)

    Nazarov, V.G.; Kamennykh, B.M.; Rus'yanov, N.D.

    1983-01-01T23:59:59.000Z

    The basic technological factors that determine the effectiveness of hydrogen sulfide absorption from coke-oven gas by the cyclic ammonia process are the initial H/sub 2/S content of the gas, the degree of purification, the absorption temperature and the NH/sub 3/ and CO/sub 2/ contents of the absorbent solution. The effects of these factors on the statics of hydrogen sulfide absorption are studied. The investigation is based on the phase-equilibrium distributions of components in the absorption-desorption gas-cleaning cycle. The mathematical model is presented which includes the solution of a system of chemical equilibrium equations for reactions in the solution, material balances, and electrical neutrality. 4 references, 5 figures, 1 table.

  7. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  8. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  9. Theory of ultracold atomic Fermi gases

    SciTech Connect (OSTI)

    Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro [Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento, Italy and Kapitza Institute for Physical Problems, ul. Kosygina 2, 117334 Moscow (Russian Federation); Dipartimento di Fisica, Universita di Trento and CNR-INFM BEC Center, I-38050 Povo, Trento (Italy)

    2008-10-15T23:59:59.000Z

    The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

  10. New Materials for Capturing Carbon Dioxide from Combustion Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to APS Science Highlights rss feed New Materials for Capturing Carbon Dioxide from Combustion Gases April 9, 2014 Bookmark and Share The SIFSIX materials in order of increasing...

  11. adjacente dos gases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nature Le Roy, Robert J. 437 Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials Chemistry Websites Summary: Classical disordered...

  12. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

  13. Many types of electronic products such as computers, cathode ray tubes (CRT), fax machines, printers, LCD monitors, microwave ovens, VCRs, stereos, and cell phones contain hazardous

    E-Print Network [OSTI]

    George, Steven C.

    lead and mercury. Recycling electronic waste (eWaste) protects our environment from heavy metal" or "Universal Waste ­ Electronic Waste" and include the date when the waste was first generated. eWaste mustMany types of electronic products such as computers, cathode ray tubes (CRT), fax machines

  14. HYDROGEN AND VOC RETENTION IN WASTE BOXES

    SciTech Connect (OSTI)

    PACE ME; MARUSICH RM

    2008-11-21T23:59:59.000Z

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741, 2003) identifies derived safety controls to prevent or mitigate the risks of a single-container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes. The study evaluates the accumulation of hydrogen and VOCs within the waste box and the transport of these gases and vapors out of the waste box. To perform the analysis, there were numerous and major assumptions made regarding the generation rate and the transport pathway dimensions and their number. Since there is little actual data with regards to these assumptions, analyses of three potential configurations were performed to obtain some indication of the bounds of the issue (the concentration of hydrogen or flammable VOCs within a waste box). A brief description of each of the three cases along with the results of the analysis is summarized.

  15. Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine

    SciTech Connect (OSTI)

    Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

    2007-03-15T23:59:59.000Z

    The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

  16. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  17. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  18. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  19. Finite Temperature Gases of Fermionic Strings

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-09-12T23:59:59.000Z

    We show that in the absence of a Ramond-Ramond sector both the type IIA and type IIB free string gases have a thermal instability due to low temperature tachyon modes. The gas of free IIA strings undergoes a thermal duality transition into a gas of free IIB strings at the self-dual temperature. The free heterotic string gas is a tachyon-free ensemble with gauge symmetry SO(16)$\\times$SO(16) in the presence of a timelike Wilson line background. It exhibits a holographic duality relation undergoing a self-dual phase transition with positive free energy and positive specific heat. The type IB open and closed string ensemble is related by thermal duality to the type I' string ensemble. We identify the order parameter for the Kosterlitz-Thouless phase transition from a low temperature gas of short open strings to a high temperature long string phase at or below T_C. Note Added (Sep 2005).

  20. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  1. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05T23:59:59.000Z

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  2. AMIII Termodinamica dos Gases Ideais 17 de Janeiro de 2002

    E-Print Network [OSTI]

    Natário, José

    AMIII ­ Termodinâ??amica dos Gases Ideais 17 de Janeiro de 2002 N moles de um gâ??as ideal em equil dos gases ideais). A Primeira Lei da Termodinâ??amica afirma que existe uma funâ?şcâ?ťao E : M # R, dita pela Segunda Lei da Termodinâ??amica. 2 #12;

  3. Measurement of transient nonlinear refractive index in gases using xenon

    E-Print Network [OSTI]

    Milchberg, Howard

    Measurement of transient nonlinear refractive index in gases using xenon supercontinuum single measurement of ultrafast high field processes using modest energy lasers, with pump and probe pulses totaling) and instrument resolution. The ultrafast nonlinear Kerr effect in glass, and in Ar, N2, and N2O gases is measured

  4. Greenhouse gases and agriculture. Book chapter

    SciTech Connect (OSTI)

    Jackson, R.B.

    1993-01-01T23:59:59.000Z

    Agriculture ranks third in its contribution to Earth's anthropogenically enhanced greenhouse effect. (Energy use and production and chlorofluorocarbons are ranked first and second, respectively.) Specifically, greenhouse gas sources and sinks are increased, and sinks are decreased, by conversion of land to agricultural use, using fertilizers, cultivating paddy rice, producing other plant and animal crops, and by creating and managing animal and plant wastes. However, some of these same activities increase greenhouse gas sinks and decrease greenhouse gas sources so the net effects are not obvious. The paper identifies the agricultural inputs, outputs, and wastes that alter atmospheric concentrations of carbon dioxide, methane, and nitrous oxides, and discusses agriculture's net impact on greenhouse gas fluxes.

  5. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

    1993-01-01T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

  6. Aerosol can waste disposal device

    DOE Patents [OSTI]

    O'Brien, M.D.; Klapperick, R.L.; Bell, C.

    1993-12-21T23:59:59.000Z

    Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

  7. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  8. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  9. Coke oven air and water pollution. 1970-June, 1981 (citations from the Engineering Index Data Base). Report for 1970-Jun 81

    SciTech Connect (OSTI)

    Not Available

    1981-07-01T23:59:59.000Z

    Monitoring, sampling, analyzing, transport properties, and control of emissions and effluents are cited in this compilation from worldwide journals. Pollutants described are sulfur dioxide, hydrogen sulfide, ammonia, phenols, benzopyrene, particulates and other trace elements and compounds. Process and equipment modifications, such as pipeline charging, wet and dry quenching, retrofitting, and oven leakage preventives are included. (This updated bibliography contains 210 citations, 9 of which are new entries to the previous edition.)

  10. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  11. Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking

    SciTech Connect (OSTI)

    Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

    2007-09-15T23:59:59.000Z

    1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

  12. Innovative coke oven gas cleaning system for retrofit applications. Quarterly technical progress report No. 4, October 1, 1990 to December 31, 1990

    SciTech Connect (OSTI)

    Kwasnoski, D.

    1993-10-22T23:59:59.000Z

    Work on this coke oven gas cleaning demonstration project (CCT-II) this quarter has been focused on Phase IIB tasks, and include engineering, procurement, construction, and training. Additionally, plans for changes in the operating schedule of the coke plant that affect the demonstration project are described. Engineering efforts are nearly complete. Remaining to be finalized is an assessment of electrical heat tracing/insulation needs for pipe lines, assessment of fire protection requirements, and instrument modifications. Procurement of all major equipment items is complete, except for possible additions to fire fighting capabilities. Major focus is on expediting pipe and structural steel to the project site. Civil construction is complete except for minor pads and bases as required for pipe supports, etc. Erection of the hydrogen sulfide and ammonia scrubber vessels is complete. Installation of scrubber vessel internals is underway. A subcontractor has been retained to develop a computerized program for operations and maintenance training for the coke oven gas treatment plant. Recent developments in the coke plant operating plans will result in reductions in the rate of production of coke oven gas to be processed in the demonstration project.

  13. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15T23:59:59.000Z

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  14. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  15. Cryogenic method for measuring nuclides and fission gases

    DOE Patents [OSTI]

    Perdue, P.T.; Haywood, F.F.

    1980-05-02T23:59:59.000Z

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  16. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  17. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  18. Viscosities of natural gases at high pressures and high temperatures

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17T23:59:59.000Z

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  19. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01T23:59:59.000Z

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  20. The Release of Trapped Gases from Amorphous Solid Water Films...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Top-Down" Crystallization-Induced Crack Propagation Probed The Release of Trapped Gases from Amorphous Solid Water Films: I. Top-Down" Crystallization-Induced Crack Propagation...

  1. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03T23:59:59.000Z

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  2. Helium Isotopes in Geothermal and Volcanic Gases of the Western...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium Isotopes in Geothermal and Volcanic Gases of the Western United States, II. Long...

  3. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search OpenEI Reference LibraryAdd...

  4. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  5. Radio-frequency spectroscopy of ultracold atomic Fermi gases

    E-Print Network [OSTI]

    Schirotzek, Andre

    2010-01-01T23:59:59.000Z

    This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle ...

  6. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  7. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

    1988-01-01T23:59:59.000Z

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  8. active trace gases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF GEOPHYSICAL RESEARCH, VOL. 94, NO. D13, PAGES 16,417-16,421,NOVEMBER 20, 1989 Greenhouse Effect of Chlorofluorocarbons and Other Trace Gases Environmental Sciences and Ecology...

  9. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  10. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01T23:59:59.000Z

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  11. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.; Liu, D.K.

    1992-11-17T23:59:59.000Z

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  12. Chapter 4 The Gaseous State Chemistry of Gases

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    .15 V = V0[1+(t/273.15oC)] Kelvin T = 273.15 + t(Celsius) #12;Boyle's Law · The stirling engine, a heatChapter 4 The Gaseous State NO2 #12;AIR #12;Chemistry of Gases SO3 .. corrosive gas SO2...burning) ~1760 Charle The definition of the Temperature All gases expand with increasing temperature by the same

  13. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  14. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

  15. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  16. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  17. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  18. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  19. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  20. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  1. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  2. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  3. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  4. Multiple use of waste catalysts with and without regeneration for waste polymer cracking

    SciTech Connect (OSTI)

    Salmiaton, A., E-mail: mie@eng.upm.edu.my [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Garforth, A.A. [School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2011-06-15T23:59:59.000Z

    Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C{sub 2}-C{sub 7}) remained fairly constant. For the first time, these results indicate that 'waste' FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.

  5. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  6. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  7. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

    1998-01-01T23:59:59.000Z

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  8. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28T23:59:59.000Z

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  9. Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases

    SciTech Connect (OSTI)

    Chen Shu; Yin Xiangguo; Guan Liming [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

    2010-03-15T23:59:59.000Z

    A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.

  10. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01T23:59:59.000Z

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  11. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  12. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  13. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  14. Thermal and radiolytic gas generation from Tank 241-S-102 waste

    SciTech Connect (OSTI)

    King, C.M.; Pederson, L.R.; Bryan, S.A.

    1997-07-01T23:59:59.000Z

    This report summarizes progress in evaluating thermal and radiolytic rate parameters for flammable gas generation in Hanford single-shell tank wastes based on the results of laboratory tests using actual waste from Tank 241-S-102 (S-102). Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, whose purpose is to develop information to support Fluor Daniel Hanford (FDH) and its Project Management Hanford Contract (PHMC) subcontractors in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT) under subcontract to PNNL, using simulated wastes, and to studies being performed at Numatec Hanford Corporation (formerly Westinghouse Hanford Company) using actual wastes. The results of gas generation from Tank S-102 waste under thermal and radiolytic conditions are described in this report. The accurate measurement of gas generation rates in actual waste from highly radioactive waste tanks is needed to assess the potential for producing and storing flammable gases within the waste tanks. This report addresses the gas generation capacity of the waste from Tank S-102, a waste tank listed as high priority by the Flammable Gas Safety Program due to its potential for flammable gas accumulation above the flammability limit.

  15. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16T23:59:59.000Z

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  16. Evaluation of exposures of hospital employees to anesthetic gases

    SciTech Connect (OSTI)

    Lambeth, J.D.

    1988-01-01T23:59:59.000Z

    Hospital employees who work in hospital operating and recovery rooms are often exposed to a number of anesthetic gases. There is evidence to support the belief that such exposures have led to higher rates of miscarriages and spontaneous abortions of pregnancies among women directly exposed to these gases than among women not exposed. Most of the studies assessing exposure levels were conducted prior to the widespread use of scavenging systems. Air sampling was conducted in hospital operatories and recovery rooms of three large hospitals to assess the current exposure levels in these areas and determine the effectiveness of these systems in reducing exposures to fluoride-containing anesthetic gases. It was determined that recovery-room personnel are exposed to levels of anesthesia gases that often approach and exceed the recommended Threshold Limit Value-Time Weighted Average (TLV-TWA) of 2.0 ppm. Recovery-room personnel do not have the protection from exposure provided by scavenging systems in operating rooms. Operating-room personnel were exposed to anesthesia gas levels above the TLV-TWA only when patients were masked, or connected and disconnected from the scavenging systems. Recovery-room personnel also need to be protected from exposure to anesthesia gases by a scavenging system.

  17. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  18. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  19. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    WEBER RA

    2009-01-16T23:59:59.000Z

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

  20. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    SciTech Connect (OSTI)

    FOWLER KD

    2007-12-27T23:59:59.000Z

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

  1. Lesson 9 - Solar Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16 -

  2. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  3. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  4. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    trickled through the bed (one-pass) at a fixed velocity ofTCE EC of 16.3 g m bed-3 h -1 in a fixed-film biofilterbed (one-pass) at different liquid velocities (0.09-0.59 m h -1 ). A fixed

  5. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    in a foamed emulsion bioreactor. Environ. Sci. Technol.in a foamed emulsion bioreactor. Environ. Sci. Technol.of a trickle-bed bioreactor: Carbon disulfide removal.

  6. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    methyl tert-butyl ether (MTBE) vapors into water was used.MTBE is highly soluble in water (dimensionless Henry’sgas stream was laden with MTBE vapors (200-300 mg m -3 )

  7. Steam Production from Waste Stack Gases in a Carbon Black Plant 

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01T23:59:59.000Z

    the boilers down in an orderly manner that would not upset the refinery operations. Cylinders of compressed air were connected to the new plant air dryer system to allow normal opera tion of the ignition interlock system and boiler control valves during... the emergency shutdown of the boi 1ers. The ignition interlock system has been used many times other than for Douer fa il ures. SVlitches \\~ere installed in the control room to allow the boiler control operator to shut dOl'in 42" YJaste gas dampers on each...

  8. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    existing chemical scrubbers to biotrickling filters for H2Sexisting chemical scrubbers to biotrickling filters for H2San industrial chemical scrubber into a biotrickling filter:

  9. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    phase liquid source zone bioremediation. Water Environ. Res.In Situ and On-Site Bioremediation Symposium, Baltimore, MD,In Situ and On-Site Bioremediation Symposium, Baltimore, MD,

  10. Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination

    E-Print Network [OSTI]

    Popat, Sudeep Chandrakant

    2010-01-01T23:59:59.000Z

    this has been done using incineration or adsorption ontoIn the case of TCE, incineration or adsorption ontoonto activated carbon, incineration etc. The principle of

  11. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA); Zielke, Clyde W. (McMurray, PA)

    1981-01-01T23:59:59.000Z

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  12. Separating hydrogen from coal gasification gases with alumina membranes

    SciTech Connect (OSTI)

    Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

    1991-01-01T23:59:59.000Z

    Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

  13. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  14. “Hard probes” of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  15. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)] [Benchmark Environmental Corp. (United States)

    1998-06-01T23:59:59.000Z

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  16. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp., Albuquerque, NM (United States)

    1995-08-01T23:59:59.000Z

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  17. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  18. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  19. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  20. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  1. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  2. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

    1994-01-01T23:59:59.000Z

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  3. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

    2012-04-17T23:59:59.000Z

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  4. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01T23:59:59.000Z

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  5. Innovative coke oven gas cleaning system for retrofit applications. Quarterly environmental monitoring report No. 3, January 1, 1991--December 31, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-10-16T23:59:59.000Z

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This project combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE is providing cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct an Environmental Monitoring Plan (EMP) for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. This report is the third quarterly status report of the EMP. It covers the Environmental Monitoring Plan activities for the full year of 1991 from January 1, 1991 through December 31, 1991, including the forth quarter. See Sections 2, 3 and 4 for status reports of the Project Installation and Commissioning, the Environmental Monitoring activities and the Compliance Monitoring results for the period. Section 5 contains a list of Compliance Reports submitted to regulatory agencies during the period. The EMP describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) document the extent of compliance of monitoring activities, i.e. those monitoring required to meet permit requirements, (2) confirm the specific impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base for the assessment of the environmental performance of the technology demonstrated by the project.

  6. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  7. AISI waste oxide recycling program. Final technical report

    SciTech Connect (OSTI)

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01T23:59:59.000Z

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  8. Pyrolysis of waste tyres: A review

    SciTech Connect (OSTI)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. • Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. • Product yields are influenced by reactor type, temperature and heating rate. • Pyrolysis oils are complex and can be used as chemical feedstock or fuel. • Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}–C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  10. AER1301: KINETIC THEORY OF GASES Assignment #1

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #1 1. A hypersonic wind tunnel is contructed so such that the mean free path, , is given by the expression = 16µ 5 1 2RT , where R is the ideal gas constant and p space and the length of each side of the cube is 4v. (a) Obtain an expression for the normalized

  11. AER1301: KINETIC THEORY OF GASES Assignment #1

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #1 1. A hypersonic wind tunnel is contructed so spheres during collisions such that the mean free path, #21;, is given by the expression #21; = 16#22; 5 of the cube is 4v Ć . (a) Obtain an expression for the normalized velocity distribution function, f(v). (b

  12. AER1301: KINETIC THEORY OF GASES Assignment #4

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    - equilibrium cases, up to second order. (b) Derive an expression for the non-conservative form of the kineticAER1301: KINETIC THEORY OF GASES Assignment #4 1. Consider a monatomic gas with one translational by the relaxation time approx- imation. Neglecting external forces, the conserved form of the kinetic equation

  13. AER1301: KINETIC THEORY OF GASES Assignment #4

    E-Print Network [OSTI]

    Groth, Clinton P. T.

    AER1301: KINETIC THEORY OF GASES Assignment #4 1. Consider a monatomic gas with one translational by the relaxation time approx- imation. Neglecting external forces, the conserved form of the kinetic equation function, in both the equilibrium and non- equilibrium cases, up to second order. (b) Derive an expression

  14. Ozone-depleting substances and the greenhouse gases HFCs, PFCs

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 19 3.1 IMPORTS AND EXPORTS 19 3.1.1 CFCs 19 3.1.2 Tetrachloromethane 19 3

  15. Nature of superfluidity in ultracold Fermi gases near Feshbach resonances

    SciTech Connect (OSTI)

    Stajic, Jelena; Levin, K. [James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637 (United States); Milstein, J.N.; Holland, M.J. [JILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309 (United States); Chen Qijin [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Chiofalo, M.L. [Classe di Scienze and INFM, Scuola Normale Superiore, Piazza dei Cavelieri 7, I-56126 Pisa (Italy)

    2004-06-01T23:59:59.000Z

    We study the superfluid state of atomic Fermi gases using a BCS-Bose-Einstein-condensation crossover theory. Our approach emphasizes noncondensed fermion pairs which strongly hybridize with their (Feshbach-induced) molecular boson counterparts. These pairs lead to pseudogap effects above T{sub c} and non-BCS characteristics below. We discuss how these effects influence the experimental signatures of superfluidity.

  16. INTRODUCTION Insects exchange respiratory gases through a complex network of

    E-Print Network [OSTI]

    Socha, Jake

    3409 INTRODUCTION Insects exchange respiratory gases through a complex network of tracheal tubes through the tracheal system using diffusion alone (Krogh, 1920a; Weis-Fogh, 1964), many species are known to augment gas exchange using convection (Buck, 1962; Miller, 1966a). Two general mechanisms are recognized

  17. Higher Dimensional Coulomb Gases and Renormalized Energy Functionals

    E-Print Network [OSTI]

    -Louis Lions, Paris, F-75005 France & Courant Institute, New York University, 251 Mercer st, NY NY 10012, USAHigher Dimensional Coulomb Gases and Renormalized Energy Functionals N. Rougerie and S. Serfaty extract the next to leading order term in the ground state energy, beyond the mean-field limit. We show

  18. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19T23:59:59.000Z

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  19. Noble gases and radiocarbon in natural gas hydrates Gisela Winckler

    E-Print Network [OSTI]

    Aeschbach-Hertig, Werner

    Noble gases and radiocarbon in natural gas hydrates Gisela Winckler Lamont-Doherty Earth 2001; published 24 May 2002. [1] In samples of pure natural gas hydrates from Hydrate Ridge, Cascadia ones preferentially incorporated into the gas hydrate structure. The hydrate methane is devoid of 14 C

  20. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  1. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    SciTech Connect (OSTI)

    Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

    1996-05-01T23:59:59.000Z

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

  2. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  3. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  4. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  5. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  6. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01T23:59:59.000Z

    primarily focused on agricultural waste [Jenkins et al. ,emissions from these agricultural wastes have attractedpectinata). Two agricultural waste products that are burned

  7. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  8. Strongly interacting Fermi gases : non-equilibrium dynamics and dimensional crossover

    E-Print Network [OSTI]

    Sommer, Ariel T. (Ariel Tjodolv)

    2013-01-01T23:59:59.000Z

    Experiments using ultracold atomic gases address fundamental problems in many-body physics. This thesis describes experiments on strongly-interacting gases of fermionic atoms, with a focus on non-equilibrium physics and ...

  9. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  10. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  11. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  12. System for trapping and storing gases for subsequent chemical reduction to solids

    DOE Patents [OSTI]

    Vogel, John S. (San Jose, CA); Ognibene, Ted J. (Oakland, CA); Bench, Graham S. (Livermore, CA); Peaslee, Graham F. (Holland, MI)

    2009-11-03T23:59:59.000Z

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  13. Evaluation of Gas Retention in Waste Simulants: Tall Column Experiments

    SciTech Connect (OSTI)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Shimskey, Rick W.; Denslow, Kayte M.; Powell, Michael R.; Boeringa, Gregory K.; Bontha, Jagannadha R.; Karri, Naveen K.; Fifield, Leonard S.; Tran, Diana N.; Sande, Susan; Heldebrant, David J.; Meacham, Joseph E.; Smet, Dave; Bryan, Wesley E.; Calmus, Ronald B.

    2014-05-16T23:59:59.000Z

    Gas generation in Hanford’s underground waste storage tanks can lead to gas accumulation within the layer of settled solids (sludge) at the tank bottom. The gas, which typically has hydrogen as the major component together with other flammable species, is formed principally by radiation-driven chemical reactions. Accumulation of these gases within the sludge in a waste tank is undesirable and limits the amount of tank volume for waste storage. Further, accumulation of large amounts of gas in the sludge may potentially result in an unacceptable release of the accumulated gas if the sludge-layer density is reduced to less than that of the overlying sludge or that of the supernatant liquid. Rapid release of large amounts of flammable gases could endanger personnel and equipment near the tank. For this reason, a thorough understanding of the circumstances that can lead to a potentially problematic gas accumulation in sludge layers is needed. To respond to this need, the Deep Sludge Gas Release Event Program (DSGREP) was commissioned to examine gas release behavior in sludges.

  14. Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE-cluster interaction. #12;INTERACTION OF INTENSE SHORT LASER PULSES WITH GASES OF NANOSCALE ATOMIC AND MOLECULAR., Department of Electrical and Computer Engineering We study the interaction of intense laser pulses with gases

  15. Process for separation of CO/sub 2/ from CO/sub 2/-containing gases

    SciTech Connect (OSTI)

    Linde, G.

    1985-07-09T23:59:59.000Z

    For separating CO/sub 2/ from CO/sub 2/-containing gases, especially stack gases and/or blast furnace gases, dimethylformamide is employed as a physical scrubbing medium to ensure high CO/sub 2/ purity. After absorption of CO/sub 2/, the DMF is regenerated and returned into the scrubbing stage. Dimethylformamide is utilized as the scrubbing medium.

  16. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  17. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30T23:59:59.000Z

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  18. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  19. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  20. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  1. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect (OSTI)

    Mazer, J.J.; No, Hyo J.

    1995-08-01T23:59:59.000Z

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  2. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    E-Print Network [OSTI]

    Delucchi, Mark

    1997-01-01T23:59:59.000Z

    CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYCO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

  3. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  4. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  5. The extreme nonlinear optics of gases and femtosecond optical filamentation

    SciTech Connect (OSTI)

    Milchberg, H. M.; Chen, Y.-H.; Cheng, Y.-H.; Jhajj, N.; Palastro, J. P.; Rosenthal, E. W.; Varma, S.; Wahlstrand, J. K.; Zahedpour, S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2014-10-15T23:59:59.000Z

    Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high power laser propagation in the atmosphere. Understanding in detail the microscopic processes leading to filamentation requires ultrafast measurements of the strong field nonlinear response of gas phase atoms and molecules, including absolute measurements of nonlinear laser-induced polarization and high field ionization. Such measurements enable the assessment of filamentation models and make possible the design of experiments pursuing applications. In this paper, we review filamentation in gases and some applications, and discuss results from diagnostics developed at Maryland for ultrafast measurements of laser-gas interactions.

  6. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, Michael (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

  7. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, M.

    1995-02-07T23:59:59.000Z

    A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

  8. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M. (Mamaroneck, NY)

    1982-01-01T23:59:59.000Z

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  9. Wave Speed in the Macroscopic Extended Model for Ultrarelativistic Gases

    E-Print Network [OSTI]

    F. Borghero; F. Demontis; S. Pennisi

    2010-12-07T23:59:59.000Z

    An exact macroscopic extended model for ultrarelativistic gases, with an arbitrary number of moments, is present in the literature. Here we exploit equations determining wave speeds for that model. We find interesting results; for example, the whole system for their determination can be divided into independent subsystems and some, but not all, wave speeds are expressed by rational numbers. Moreover, the extraordinary property that these wave speeds for the macroscopic model are the same of those in the kinetic model, is proved.

  10. Pulse Radiolysis of Gases H atom yields, OH reactions,

    E-Print Network [OSTI]

    PULSE RADIOLYSIS OP GASES H atom yields, OH reactions, and kinetics of H2S systems Ole John Nielsen, M, in the reaction OH + OH + M · H2O2 + M. 3) In the H2S systems the HS extinction coefficient determined: k(H + H2S · H2 + HS) = 4-6 x 108 M ^ s " 1 k(HS + HS · products) = (1.9 ± 0.1) x io1 0 M ^ s " 1

  11. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01T23:59:59.000Z

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  12. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  13. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  14. Processing of solid mixed waste containing radioactive and hazardous materials

    DOE Patents [OSTI]

    Gotovchikov, Vitaly T. (Moscow, RU); Ivanov, Alexander V. (Moscow, RU); Filippov, Eugene A. (Moscow, RU)

    1998-05-12T23:59:59.000Z

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  15. Disposal of liquid radioactive wastes through wells or shafts

    SciTech Connect (OSTI)

    Perkins, B.L.

    1982-01-01T23:59:59.000Z

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  16. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  17. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  18. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  19. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  20. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  1. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  2. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  3. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  4. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  5. Thermodynamics of sustaining gases in the roughness of submerged superhydrophobic surfaces

    E-Print Network [OSTI]

    Neelesh A. Patankar

    2015-05-22T23:59:59.000Z

    Rough surfaces submerged in a liquid can remain almost dry if the liquid does not fully wet the roughness and gases are sustained in roughness grooves. Such partially dry surfaces can help reduce drag or enhance boiling. Gases sustained in roughness grooves would be composed of air and the vapor phase of the liquid itself. The thermodynamics of sustaining vapor was considered in a prior work [Patankar, Soft Matter, 2010, 6:1613]. Here, the thermodynamics of sustaining gases (e.g. air) is considered. Governing equations are presented along with a solution methodology to determine a critical condition to sustain gases. The critical roughness scale to sustain gases is estimated for different degrees of saturation of gases dissolved in the liquid. It is shown that roughness spacings of less than a micron are essential to sustain gases on surfaces submerged in water at atmospheric pressure. This is consistent with prior empirical data.

  6. Applications of life cycle assessment and cost analysis in health care waste management

    SciTech Connect (OSTI)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); EPAGRI, Rod. Admar Gonzaga 1347, Itacorubi, Florianopolis, Santa Catarina 88034-901 (Brazil); Alvarenga, Rodrigo A.F., E-mail: alvarenga.raf@gmail.com [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Ghent University, Department of Sustainable Organic Chemistry and Technology, Coupure Links 653/9000 Gent (Belgium)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg{sup -1} for the waste treated with microwaves, US$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.

  7. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  8. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  9. Air pollution control systems and technologies for waste-to-energy facilities

    SciTech Connect (OSTI)

    Getz, N.P.; Amos, C.K. Jr.; Siebert, P.C. (Roy F. Weston, Inc., Burlington, MA (US))

    1991-01-01T23:59:59.000Z

    One of the primary topics of concern to those planning, developing, and operating waste-to-energy (W-T-E) (also known as municipal waste combustors (MWCs)) facilities is air emissions. This paper presents a description of the state-of-the-art air pollution control (APC) systems and technology for particulate, heavy metals, organics, and acid gases control for W-T-E facilities. Items covered include regulations, guidelines, and control techniques as applied in the W-T-E industry. Available APC technologies are viewed in detail on the basis of their potential removal efficiencies, design considerations, operations, and maintenance costs.

  10. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  11. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  12. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  13. Ridge station eases Florida's waste-disposal problems

    SciTech Connect (OSTI)

    Swanekamp, R.

    1994-10-01T23:59:59.000Z

    Two results of Florida's continuing population growth are (1) a critical need for electricity, and (2) a solid-waste disposal crisis. During a recent winter cold snap, electric demand in one service territory surged 25% over generating capacity and 10% over net system capability. Rolling blackouts ensued. At the same time, Florida's fragile wetlands environment is suffering from years of unfettered development. Groundwater sources are contaminated, landfill space is scarce, and illegal tire dumps blight the landscape. The recently constructed Ridge generating station in Polk County, Fla. is addressing both the state's electrical and environmental needs. Ridge, which entered commercial operation in May, burns a unique mix of urban woodwaste and scrap tires to provide 45 MW of critically needed electricity while keeping large quantities of solid waste out of landfills. When pipeline construction at an adjacent landfill is completed, the facility also will burn the methane gases produced when garbage decomposes.

  14. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  15. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  16. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  17. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  18. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  19. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  20. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  1. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  2. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  3. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  4. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  5. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  6. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  7. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  8. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  9. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  10. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  11. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  12. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect (OSTI)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16T23:59:59.000Z

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  13. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01T23:59:59.000Z

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  14. Two-phase compressibility factors for retrograde gases 

    E-Print Network [OSTI]

    Rayes, Daniel George

    1989-01-01T23:59:59.000Z

    . K. , M Cain, W. D. , Jr. and Jennings, J. W. : "An Improved Method for the Determination of the Reservoir Specific Gravity for Retrograde Gases, " JPT (July 1989) 747-752. 7. Craft, B. C. and Hawkins, M. F. : A li P 1 m R rv ir En ine rin...). Variable Mean Standard Deviation Minimum Maximum H2S CO2 N2 CI C2 C3 IC4 NC4 IC5 NC5 C6 C7+ M. W. C7+ S. G. C7+ 1, 01840 0. 00997 0. 02545 0. 01840 0. 73233 0. 07584 0. 03948 0. 00859 0. 01482 0. 00611 0. 00637 0. 00857 0. 05404...

  15. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19T23:59:59.000Z

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  16. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J. (Mt. Prospect, IL); Kurek, Paul R. (Schaumburg, IL)

    1988-01-01T23:59:59.000Z

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  17. EIA-Voluntary Reporting of Greenhouse Gases Program

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7,of Greenhouse Gases

  18. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  19. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  20. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  1. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  2. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  3. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  4. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  5. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  6. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  7. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  8. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  9. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  10. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  11. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOE Patents [OSTI]

    Levy, Donald J. (Berkeley, CA); Berman, Samuel M. (San Francisco, CA)

    1988-01-01T23:59:59.000Z

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  12. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  13. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  14. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01T23:59:59.000Z

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  15. Self-pulsing of hollow cathode discharge in various gases

    SciTech Connect (OSTI)

    Qin, Y.; He, F., E-mail: hefeng@bit.edu.cn; Jiang, X. X.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Xie, K. [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2014-07-15T23:59:59.000Z

    In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

  16. Dark resonances for ground state transfer of molecular quantum gases

    E-Print Network [OSTI]

    Manfred J. Mark; Johann G. Danzl; Elmar Haller; Mattias Gustavsson; Nadia Bouloufa; Olivier Dulieu; Houssam Salami; Tom Bergeman; Helmut Ritsch; Russell Hart; Hanns-Christoph Nägerl

    2008-11-05T23:59:59.000Z

    One possible way to produce ultracold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2> with the rovibrational ground state |v=0,J=0> of the singlet $X^1\\Sigma_g^+$ ground state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2> by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.

  17. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  18. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  19. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    ) and the definition of HLW from the Nuclear Waste Policy Act of 1982, as amended (NWPA). The WIPP Land Withdrawal Act by the disposal regulations; or #12;Hanford Tank Waste Information Enclosure 1 2 (C) waste that the Nuclear 10, Code of Federal Regulations. The Nuclear Waste Policy Act of 1982 (42 U.S.C. 10101

  20. Characterization of lagoon gases by an electronic nose

    E-Print Network [OSTI]

    Woodcock, Jane Catherine

    1997-01-01T23:59:59.000Z

    in the decomposition of livestock wastes, the need for accurate and reliable devices for field monitoring of emissions exists. Studies were undertaken into the use of an array of chemical gas sensors for the detection and characterization of lagoon biogas. The sensors...

  1. Progress in resolving Hanford Site high-level waste tank safety issues

    SciTech Connect (OSTI)

    Babad, H.; Eberlein, S.J.; Johnson, G.D.; Meacham, J.E.; Osborne, J.W.; Payne, M.A.; Turner, D.A.

    1995-02-01T23:59:59.000Z

    Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.

  2. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  3. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  4. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  5. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  6. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  7. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  8. Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

  9. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  10. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: • Select and deploy Hanford tank waste supplemental treatment technology • Provide treatment capability for secondary waste streams from tank waste treatment • Develop consensus on secondary waste form acceptance. Technology needs include: • Define secondary waste composition ranges and uncertainties • Identify and develop waste forms for secondary waste immobilization and disposal • Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  11. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect (OSTI)

    Lelas, K.; Seva, T.; Buljan, H. [Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture, University of Split, Rudjera Boskovica BB, 21000 Split (Croatia); Department of Physics, University of Zagreb, Bijenicka c. 32, 10000 Zagreb (Croatia)

    2011-12-15T23:59:59.000Z

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  12. Photolysis of water for production of fuel gases

    SciTech Connect (OSTI)

    Eror, N.G.; Blakemore, J.S.

    1981-12-01T23:59:59.000Z

    To better understand the role of the semiconductor electrode in the photocatalytic decomposition of water to form hydrogen and other fuel gases, researchers characterized the defect structure of a number of large-band-gap semiconductor electrode materials. The defect structure of SrTiO/sub 3/ samples has been related to photoelectrochemical cell response, leading to a signficant improvement in the understanding of how electrode properties influence cell performance. Although the large band gap of these materials severely restricts their ability to use the solar spectrum, they are more resistant to photocorrosion than lower-band-gap materials. This band gap has been reduced somewhat in lanthanum-doped SrTiO/sub 3/ samples without compromising photostability or requiring a bias voltage for water decomposition.

  13. Finite-size energy of non-interacting Fermi gases

    E-Print Network [OSTI]

    Martin Gebert

    2014-06-14T23:59:59.000Z

    We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

  14. Free Energies of Dilute Bose gases: upper bound

    E-Print Network [OSTI]

    Jun Yin

    2010-12-19T23:59:59.000Z

    We derive a upper bound on the free energy of a Bose gas system at density $\\rho$ and temperature $T$. In combination with the lower bound derived previously by Seiringer \\cite{RS1}, our result proves that in the low density limit, i.e., when $a^3\\rho\\ll 1$, where $a$ denotes the scattering length of the pair-interaction potential, the leading term of $\\Delta f$ the free energy difference per volume between interacting and ideal Bose gases is equal to $4\\pi a (2\\rho^2-[\\rho-\\rhoc]^2_+)$. Here, $\\rhoc(T)$ denotes the critical density for Bose-Einstein condensation (for the ideal gas), and $[\\cdot ]_+$ $=$ $\\max\\{\\cdot, 0\\}$ denotes the positive part.

  15. Elliptic flow and nearly perfect fluidity in dilute Fermi gases

    E-Print Network [OSTI]

    Thomas Schaefer

    2010-12-16T23:59:59.000Z

    In this contribution we summarize recent progress in understanding the shear viscosity of strongly correlated dilute Fermi gases. We discuss predictions from kinetic theory, and show how these predictions can be tested using recent experimental data on elliptic flow. We find agreement between theory and experiments in the high temperature regime $T\\gg T_F$, where $T_F$ is the the temperature where quantum degeneracy effects become important. In the low temperature regime, $T\\sim T_F$, the strongest constraints on the shear viscosity come from experimental studies of the damping of collective modes. These experiments indicate that $\\eta/s\\lsim 0.5\\hbar/k_B$, where $\\eta$ is the shear viscosity and $s$ is the entropy density.

  16. Light pulse in {Lambda}-type cold-atom gases

    SciTech Connect (OSTI)

    Wei Ran; Deng Youjin; Chen Shuai; Chen Zengbing; Pan Jianwei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhao Bo [Institute for Theoretical physics, University of Innsbruck, A-6020 Innsbruck (Austria); Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science, A-6020 Innsbruck (Austria)

    2010-04-15T23:59:59.000Z

    We investigate the behavior of the light pulse in {Lambda}-type cold-atom gases with two counter-propagating control lights with equal strength by directly simulating the dynamic equations and exploring the dispersion relation. Our analysis shows that, depending on the length L{sub 0} of the stored wave packet and the decay rate {gamma} of ground-spin coherence, the recreated light can behave differently. For long L{sub 0} and/or large {gamma}, a stationary light pulse is produced, while two propagating light pulses appear for short L{sub 0} and/or small {gamma}. In the {gamma}{yields}0 limit, the light always splits into two propagating pulses for a sufficiently long time. This scenario agrees with a recent experiment [Y.-W. Lin et al., Phys. Rev. Lett. 102, 213601 (2009)] where two propagating light pulses are generated in laser-cooled cold-atom ensembles.

  17. Fuel cell stack with internal manifolds for reactant gases

    DOE Patents [OSTI]

    Schnacke, Arthur W. (Schenectady, NY)

    1985-01-01T23:59:59.000Z

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  18. Fuel cell stack with internal manifolds for reactant gases

    DOE Patents [OSTI]

    Schnacke, A.W.

    1983-10-12T23:59:59.000Z

    A fuel cell stack includes a plurality of plate-like fuel cells arranged along an axis generally parallel to cell thickness with electrically conductive separator plates between each pair of cells. A plurality of axial manifolds are provided at opposite sides of the stack in outer marginal portions beyond the edges of electrodes and electrolyte tiles. Sealing rings prevent cross-leakage of oxidant fuel gases through use of pairs of outwardly extending lips from opposite tile surfaces bonded to first and second electrode frames respectively. The frames provide transition between electrode edges and manifold perimeters. The pairs of extension lips are sealingly bonded together through an electrically insulative sealing ring with wedge shaped fastening members.

  19. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  20. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  1. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  2. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    labeled chemicals Waste Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $3,795 $2,168 VialWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste

  3. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  4. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  5. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30T23:59:59.000Z

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  6. Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES AND PLASMA CHANNELS Jianzhou Wu, Doctor of Philosophy, 2005 Dissertation Directed By: Professor Thomas M PROPAGATION OF LASER PULSES IN TENUOUS GASES AND PLASMA CHANNELS By Jianzhou Wu Dissertation submitted

  7. Monte Carlo Simulation of Radiation in Gases with a NarrowBand Model

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    , France (\\Phi) now at the Institute of Energy and Power Plant Technology, TH Darmstadt, 64287 DarmstadtMonte Carlo Simulation of Radiation in Gases with a Narrow­Band Model and a Net is used for simulation of radiative heat transfers in non­gray gases. The proposed procedure is based

  8. Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high

    E-Print Network [OSTI]

    Mason, Andrew

    Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

  9. Permeation of Gases in Polymers: Parameter Identification and Nonlinear Regression Analysis

    E-Print Network [OSTI]

    Scheichl, Robert

    Permeation of Gases in Polymers: Parameter Identification and Nonlinear Regression Analysis Robert at PARAOPE, Heidelberg, June 30th, 2004 #12;Overview · Permeation of gases in polymers ­ Application areas for diffusion in polymers ­ Description of the experimental device ­ Mathematical model · Parameter

  10. Heavy noble gases in solar wind delivered by Genesis mission Alex Meshik a,

    E-Print Network [OSTI]

    measured in the Genesis solar wind collectors generally agree with the less precise values obtained fromHeavy noble gases in solar wind delivered by Genesis mission Alex Meshik a, , Charles Hohenberg knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun

  11. Preserving noble gases in a convecting mantle Helge M. Gonnermann1

    E-Print Network [OSTI]

    Mukhopadhyay, Sujoy

    of a processed and out- gassed lower-mantle source, residues of mantle melting10,11 , depleted in uranium and mixing of noble-gas-depleted slabs dilutes the concentrations of noble gases in the mantle, thereby melt, which forms the ocean crust and leaves the residual mantle severely depleted of noble gases

  12. Bose-Einstein condensates in 85 Rb gases at higher densities

    E-Print Network [OSTI]

    Glyde, Henry R.

    Bose-Einstein condensates in 85 Rb gases at higher densities A. R. Sakhel, J. L. DuBois, and H. R August 2002; published 31 December 2002 The Bose-Einstein condensation in trapped gases of 85 Rb find that there is a significant depletion of the condensate at T 0 K, for example, 25% at na3 10 2

  13. Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder P. Lugan1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    ) in a weakly interacting Bose gas of chemical potential µ subjected to a disordered potential V . We introduce-Einstein condensates [40­48], interacting Bose gases at equilibrium [26, 49­72], strongly interacting Fermi gases [73 behaviors can be found in various situa- tions. For instance, weak repulsive interactions in a Bose gas

  14. Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

    2011-07-15T23:59:59.000Z

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

  15. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    SciTech Connect (OSTI)

    Kruger, Albert A.; Chun, Jaehun; Hrma, Pavel R.; Rodriguez, Carmen P.; Schweiger, Michael J.

    2014-04-30T23:59:59.000Z

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass-forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform evolved gas analysis (EGA). Apart from identifying the gases evolved, we performed quantitative analysis relating the weighed sum of intensities of individual gases linearly proportional with the differential themogravimetry. The proportionality coefficients were obtained by three methods based on the stoichiometry, least squares, and calibration. The linearity was shown to be a good first-order approximation, in spite of the complicated overlapping reactions.

  16. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification

    SciTech Connect (OSTI)

    Rodriguez, Carmen P.; Chun, Jaehun; Schweiger, Michael J.; Kruger, Albert A.; Hrma, Pavel R.

    2014-09-01T23:59:59.000Z

    In the vitrification of nuclear wastes, the melter feed (a mixture of nuclear waste and glass forming and modifying additives) experiences multiple gas-evolving reactions in an electrical glass-melting furnace. Foams from the residual gases can significantly alter the melting rate through mass and heat transfers. We employed the thermogravimetry-gas chromatography-mass spectrometry (TGA-GC-MS) combination to perform quantitative evolved gas analysis (EGA) and developed a simple calibration model which correlates the overall mass loss rate with the evolution rates for individual gases. The model parameters are obtained from the least squares analysis, assuming that the gas-evolving reactions are independent. Thus, the EGA adds the ‘chemical identity’ to the reactions indicated by the ‘phenomenological’ kinetic model.

  17. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  18. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  19. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  20. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01T23:59:59.000Z

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  1. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  2. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  3. Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores

    E-Print Network [OSTI]

    Aydin, M.; Williams, M. B; Saltzman, E. S

    2007-01-01T23:59:59.000Z

    firn and ice at Summit, Greenland, J. Geophys. Res. , 98,AL. : TRACE GASES IN GREENLAND ICE CORE ¨ . Andreae Kettle,and sulfur gases from Greenland ice cores M. Aydin, 1 M. B.

  4. Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity

    E-Print Network [OSTI]

    Delucchi, Mark

    1997-01-01T23:59:59.000Z

    EMISSIONS OF NON-CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYEMISSIONS OF NON-CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

  5. Waste segregation procedures and benefits

    SciTech Connect (OSTI)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01T23:59:59.000Z

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

  6. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  7. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  8. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  9. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    (laboratories should follow hazardous waste procedures) or thorough central battery recycling receptaclesPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  10. Oxygen buffering of Kilauea volcanic gases and the oxygen fugacity of Kilauea basalt

    SciTech Connect (OSTI)

    Gerlach, T.M. (Geological Survey, Vancouver, WA (United States))

    1993-02-01T23:59:59.000Z

    Volcanic gases collected during episode 1 of the Puu Oo eruption along the east rift zone of Kilauea Volcano, Hawaii, have uniform C-O-H-S-Cl-F compositions that are sharply depleted in CO[sub 2]. The CO[sub 2]-poor gases are typical of Type II volcanic gases (GERLACH and GRAEBER, 1985) and were emitted from evolved magma stored for a prolonged period of time in the east rift zone after releasing CO[sub 2]-rich gases during an earlier period of temporary residence in the summit magma chamber. The samples are remarkably free of contamination by atmospheric gases and meteoric water. Thermodynamic evaluation of the analytical data shows that the episode 1 gases have equilibrium compositions appropriate for temperatures between 935 and 1032[degrees]C. Open- and closed-system equilibrium models of species distributions for the episode 1 gases show unequivocally that coexisting lavas buffered the gas oxygen fugacities during cooling. These models indicate that the F[sub o[sub 2

  11. FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN

    E-Print Network [OSTI]

    Columbia University

    ;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

  12. L/O/G/OL/O/G/O Waste Waste

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one Electronic Call 3. #12;Poka-Yoke ?Poka-Yoke ? · Poka-Yoke yokeru = to avoid poka = inadvertent errors 1

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  14. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  15. 2D Coulomb Gases and the Renormalized Energy

    E-Print Network [OSTI]

    Sandier, Etienne

    2012-01-01T23:59:59.000Z

    We study the statistical mechanics of classical two-dimensional "Coulomb gases" with general potential and arbitrary \\beta, the inverse of the temperature. Such ensembles also correspond to random matrix models in some particular cases. The formal limit case \\beta=\\infty corresponds to "weighted Fekete sets" and also falls within our analysis. It is known that in such a system points should be asymptotically distributed according to a macroscopic "equilibrium measure," and that a large deviations principle holds for this, as proven by Ben Arous and Zeitouni. By a suitable splitting of the Hamiltonian, we connect the problem to the "renormalized energy" W, a Coulombian interaction for points in the plane introduced in our prior work, which is expected to be a good way of measuring the disorder of an infinite configuration of points in the plane. By so doing, we are able to examine the situation at the microscopic scale, and obtain several new results: a next order asymptotic expansion of the partition function...

  16. Noble gases in the howardites Bholghati and Kapoeta

    SciTech Connect (OSTI)

    Swindle, T.D. (Univ. of Arizona, Tucson (USA)); Garrison, D.H.; Hohenberg, C.M.; Nichols, R.H.; Olinger, C.T. (Washington Univ., St. Louis, MO (USA)); Goswami, J.N. (Physical Research Laboratory, Ahmedabad (India))

    1990-08-01T23:59:59.000Z

    Analyses of noble gases in whole rock samples of the howardites Bholghati and Kapoeta and grain-size separates of Kapoeta yield evidence for excesses of the Xe isotopes {sup 129}Xe, {sup 131}Xe, {sup 132}Xe, {sup 134}Xe, and {sup 136}Xe in a low-temperature component, similar to lunar excess fission Xe. Such a component may be able to provide chronometric information if the relative abundances of radioactive progenitors ({sup 129}I, {sup 244}Pu, and {sup 238}U) can be determined, but the isotopic spectra we obtain are not sufficiently precise to do so. Eucritic clast BH-5 in Bholghati contains Xe produced in situ by the decay of {sup 244}Pu. Calculated fission Xe retention ages are 30-70 Ma after the formation of the solar system, consistent with the apparent presence of {sup 146}Sm decay products. Both the clast and the matrix of Bholghati have K-Ar ages of about 2 Ga, suggesting a common thermal event at least that recently.

  17. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06T23:59:59.000Z

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  18. Waste Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleanup Waste Management Waste Management July 15, 2014 Energy Expos Students work in groups to create hands-on exhibits about the energy sources that power the nation, ways to...

  19. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  20. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  1. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities · Incineration plants · Land fill · Disposal of hazardous waste · Source waste prevention · Focus areas · Changes in behaviour among consumers and producers · City schemes almost fully developed · Collection of hazardous substances, paper, cardboard, gardening and bulky

  2. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  3. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  4. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  5. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  6. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  7. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  8. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  9. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  10. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  11. Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type. Hazardous Chemical Chemotherapy Waste: A number of chemotherapy drugs are regulated as a hazardous chemical waste. These include

  12. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  13. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  14. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  15. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

  16. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  17. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  18. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  19. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

  20. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  1. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  2. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  3. Quantifying emissions of greenhouse gases from South Asia through a targeted measurement campaign

    E-Print Network [OSTI]

    Ganesan, Anita Lakshmi

    2013-01-01T23:59:59.000Z

    Methane (CH 4 ), nitrous oxide (N20) and sulfur hexafluoride (SF6) are powerful greenhouse gases with global budgets that are well-known but regional distributions that are not adequately constrained for the purposes of ...

  4. Spatio-temporal theory of lasing action in optically-pumped rotationally excited molecular gases

    E-Print Network [OSTI]

    Chua, Song-Liang

    We investigate laser emission from optically-pumped rotationally excited molecular gases confined in a metallic cavity. To this end, we have developed a theoretical framework able to accurately describe, both in the spatial ...

  5. Field-driven dynamics of dilute gases, viscous liquids and polymer chains

    E-Print Network [OSTI]

    Mohan, Aruna, 1981-

    2007-01-01T23:59:59.000Z

    This thesis is concerned with the exploration of field-induced dynamical phenomena arising in dilute gases, viscous liquids and polymer chains. The problems considered herein pertain to the slip-induced motion of a rigid, ...

  6. Eddy covariance flux measurements of pollutant gases in urban Mexico City

    E-Print Network [OSTI]

    Velasco, Erik

    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric ...

  7. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Broader source: Energy.gov (indexed) [DOE]

    organic gases (NMOG) and nitrogen oxides (NOx) that new light vehicles with gasoline engines are allowed to produce for model years 2017 to 2025. These standards apply to a...

  8. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions

    E-Print Network [OSTI]

    Sirmas, Nick

    2015-01-01T23:59:59.000Z

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases, and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic with constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density non-uniformities forming in the relaxation region. The wavelength of these fingers is found comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtaine...

  9. Biological sweetening of energy gases mimics in biotrickling filters Marc Fortuny a,c

    E-Print Network [OSTI]

    in energy-rich gases such as biogas from anaerobic digesters which may contain H2S concentrations exceeding: Hydrogen sulfide; Gas sweetening; Biotrickling filter; Desulfurization; Fuel gas; Biogas 1. Introduction

  10. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOE Patents [OSTI]

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11T23:59:59.000Z

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  11. What are greenhouse gases? Many chemical compounds in the atmosphere act as

    E-Print Network [OSTI]

    , Michigan State University, 2 Michigan State University Extension Climate Change and Agriculture Fact Sheet greenhouse gases carbon dioxide, methane, and nitrous oxide over the past 2000 years. Data are from ice core

  12. Quantum Cattaneo wave equation for ultra-short laser pulses interaction with electron and nucleon gases

    E-Print Network [OSTI]

    Marciak-Kozlowska, J

    2011-01-01T23:59:59.000Z

    In this paper the quantum Cattaneo wave equation for ultra-short laser pulses interaction with medium is obtained . The explicit formulae for electron and nucleon gases are presented

  13. Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms

    E-Print Network [OSTI]

    Jo, Gyu-Boong

    2010-01-01T23:59:59.000Z

    In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. ...

  14. Quantum Cattaneo wave equation for ultra-short laser pulses interaction with electron and nucleon gases

    E-Print Network [OSTI]

    J Marciak-Kozlowska; Miroslaw Kozlowski

    2011-10-21T23:59:59.000Z

    In this paper the quantum Cattaneo wave equation for ultra-short laser pulses interaction with medium is obtained . The explicit formulae for electron and nucleon gases are presented

  15. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01T23:59:59.000Z

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  16. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect (OSTI)

    Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

    2013-01-01T23:59:59.000Z

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  17. Radiative precursors driven by converging blast waves in noble gases

    SciTech Connect (OSTI)

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L. [Blackett Laboratory, Imperial College London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College London SW7 2BW (United Kingdom); Williams, R. J. R. [Atomic Weapons Establishment, Aldermaston RG7 4PR (United Kingdom)] [Atomic Weapons Establishment, Aldermaston RG7 4PR (United Kingdom); Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States)] [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); and others

    2014-03-15T23:59:59.000Z

    A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20?km s{sup ?1} blast waves through gases of densities of the order 10{sup ?5} g cm{sup ?3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.

  18. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  19. Coolside waste management research. Quarterly report, October 1 - December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The objective of this research is to produce sufficient information on the physical and chemical nature of Coolside waste to design and construct physically stable and environmentally safe landfills. This quarterly report consists of three monthly progress reports. The first is on an ongoing field test where additional data obtained during this reporting period support earlier results indicating that mineralogical transformations continue in the field lysimeters as a function of available moisture, aging and static loading of the Coolside materials. The second report presents results from an ongoing laboratory testing which support earlier data that mineralogical transformations cause swell in the FBC ash samples. The objectives of this part of study focuses on long-term changes in permeability of clay liners caused by water leaching through FGD- materials into compacted clay liners. The third report summarizes results from an ongoing investigation of the capacity of dry FGD wastes to absorb acidic gases. This work is part of a continuing effort to identify and evaluate potential commercial applications for FGD waste materials. Results from an investigation of CO{sub 2} absorption in which waste samples were evaluated in both hydrated- solid and aqueous-slurry forms were previously reported. In that study, emphasis was placed on the removal of CO{sub 2} from multi- component gas streams, particularly, natural-gas streams. The current probe is an expansion of the CO{sub 2} absorption study and includes results from testing of H{sub 2}S, SO{sub 2}, NO, CH{sub 4}, and NO{sub 2} absorption. The relative affinity of the dry FGD wastes for the gases examined thus far was found to be SO{sub 2} > CO{sub 2} > H{sub 2}S. CH{sub 4} and NO are not absorbed and NO{sub 2} apparently decomposes on contact with surface water to NO and HNO{sub 3}.

  20. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.