Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report  

SciTech Connect (OSTI)

Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

Stuart, L.M.

1994-05-27T23:59:59.000Z

2

Coke oven gas injection to blast furnaces  

SciTech Connect (OSTI)

U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

1995-12-01T23:59:59.000Z

3

New packing in absorption systems for trapping benzene from coke-oven gas  

SciTech Connect (OSTI)

The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

4

Development of advanced technology of coke oven gas drainage treatment  

SciTech Connect (OSTI)

In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

1996-12-31T23:59:59.000Z

5

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network [OSTI]

for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost...

Kosanovic, D.; Ambs, L.

6

Gas cleaning system and method  

SciTech Connect (OSTI)

A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

Newby, Richard Allen

2006-06-06T23:59:59.000Z

7

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS  

E-Print Network [OSTI]

PROCESS PARAMETERS AND ENERGY USE OF GAS AND ELECTRIC OVENS IN INDUSTRIAL APPLICATIONS Dr for Energy Efficiency and Renewable Energy Department of Mechanical and Industrial Engineering University of Massachusetts, Amherst, Massachusetts ABSTRACT The study was conducted to evaluate the energy use of natural gas

Massachusetts at Amherst, University of

8

Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast  

E-Print Network [OSTI]

of coal and coke are consumed for heating and reducing iron oxides [2,3]. As a result, BFs have becomeHydrogen production from steam reforming of coke oven gas and its utility for indirect reduction 2012 Available online 18 June 2012 Keywords: Steam reforming Hydrogen and syngas production Coke oven

Leu, Tzong-Shyng "Jeremy"

9

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

Walker, R.J.

1988-06-16T23:59:59.000Z

10

Exhaust gas clean up process  

DOE Patents [OSTI]

A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

Walker, Richard J. (McMurray, PA)

1989-01-01T23:59:59.000Z

11

Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works  

SciTech Connect (OSTI)

Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

1995-12-01T23:59:59.000Z

12

Ultra Clean and Efficient Natural Gas Reciprocating Engine for...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP - Presentation by Dresser Waukesha, June 2011 Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP...

13

Method for cleaning sinter plant gas emissions  

SciTech Connect (OSTI)

A method for cleaning sinter plant gas emissions using a wet electrostatic precipitator system having separate recirculating wash liquor loops for the high voltage precipitator section and the pre-scrubber section. The system is operated with acidic washing liquor to avoid scaling and deposition of solids within the system.

Herman, S.T.; Jassund, S.A.; Mazer, M.R.

1981-03-17T23:59:59.000Z

14

Final Flue Gas Cleaning (FFGC)  

E-Print Network [OSTI]

the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

Stinger, D. H.; Romero, M. H.

2006-01-01T23:59:59.000Z

15

Rapid baking characteristics and energy efficiency of an impingement air oven compared to a reel oven  

E-Print Network [OSTI]

had e i ght set s o f bo t t om j et modul es while oven number 1 had six top jets and oven number 2 had seven. The Conventional Reel Oven A M idd1 eby Marshal 1 Model H-725 gas f ired 36 pan reel oven [Ill ustrat ion 3 ) was used as the control o... heating to 400 'P. Data represents gas consmsptinn for "Jet Sweep" oven heating to a baking temperature of 320/300'P. and control oven to a baking temperature of 400'P. Equal quantities of hamburger buna were baked in both ovens and the gas...

Smith, Lloyd Hobart

1983-01-01T23:59:59.000Z

16

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect (OSTI)

Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating conditions of the gas cleaning stages to conceptually satisfy the gas cleaning requirements; (2) Estimate process material & energy balances for the major plant sections and for each gas cleaning stage; (3) Conceptually size and specify the major gas cleaning process equipment; (4) Determine the resulting overall performance of the application; and (5) Estimate the investment cost and operating cost for each application. Analogous evaluation steps were applied for each application using conventional gas cleaning technology, and comparison was made to extract the potential benefits, issues, and development needs of the Filter-Reactor Novel Gas Cleaning technology. The gas cleaning process and related gas conditioning steps were also required to meet specifications that address plant environmental emissions, the protection of the gas turbine and other Power Island components, and the protection of the methanol synthesis reactor. Detailed material & energy balances for the gas cleaning applications, coupled with preliminary thermodynamic modeling and laboratory testing of candidate sorbents, identified the probable sorbent types that should be used, their needed operating conditions in each stage, and their required levels of performance. The study showed that Filter-Reactor Novel Gas Cleaning technology can be configured to address and conceptually meet all of the gas cleaning requirements for IGCC, and that it can potentially overcome several of the conventional IGCC power plant availability issues, resulting in improved power plant thermal efficiency and cost. For IGCC application, Filter-Reactor Novel Gas Cleaning yields 6% greater generating capacity and 2.3 percentage-points greater efficiency under the Current Standards case, and more than 9% generating capacity increase and 3.6 percentage-points higher efficiency in the Future Standards case. While the conceptual equipment costs are estimated to be only slightly lower for the Filter-Reactor Novel Gas Cleaning processes than for the conventional processes, the improved power plant capacity results in the potentia

Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

2005-12-01T23:59:59.000Z

17

Revamping AK-Ashland gas cleaning system  

SciTech Connect (OSTI)

AK Steel`s (formerly Armco) BOF shop was using a static precipitator for the primary collection. The system was designed for full combustion in the gas collecting hoods. No secondary dust collection was in place. A detailed study on alternative solutions led to a completely different system in 1990, and an order was awarded to Mannesmann Demag Corp. (MDC) in Dec. 1990. The new gas collection system is using suppressed combustion with the capability to collect Co at a later stage. The gas cleaning uses the Mannesmann Demag Baumco scrubber with a venturi throat for gas flow control. All auxiliary components, water treatment plant, electric substations and sludge handling were designed and supplied by MDC. The secondary dust collection covers the hot metal and scrap charging into the BOF`s, reladling, desulfurization and deslagging by a pulse jet baghouse. All emission limits set by the EPA and guaranteed by MDC have been met by the systems installed.

Brandes, H.; Koerbel, R. [Mannesmann Demag Corp., Coraopolis, PA (United States); Haberkamp, K. [Mannesmann Demag Huttentechnik, Duisburg (Germany); Keeton, S. [AK Steel Corp., Ashland, KY (United States)

1995-07-01T23:59:59.000Z

18

NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE  

SciTech Connect (OSTI)

The objective of this program is to develop and evaluate novel sorbents for the Siemens Westinghouse Power Company's (SWPC's) ''Ultra-Clean Gas Cleaning Process'' for reducing to near-zero levels the sulfur- and chlorine-containing gas emissions and fine particulate matter (PM2.5) caused by fuel bound constituents found in carbonaceous materials, which are processed in Integrated Gasification Combined Cycle (IGCC) technologies.

Javad Abbasian

2001-07-01T23:59:59.000Z

19

Engineering analysis of biomass gasifier product gas cleaning technology  

SciTech Connect (OSTI)

For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

1986-08-01T23:59:59.000Z

20

Evaluation of Ultra Clean Fuels from Natural Gas  

SciTech Connect (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Portable oven air circulator  

DOE Patents [OSTI]

A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

Jorgensen, Jorgen A. (Bloomington, MN); Nygren, Donald W. (Minneapolis, MN)

1983-01-01T23:59:59.000Z

22

Wet electroscrubbers for state of the art gas cleaning  

SciTech Connect (OSTI)

The electrostatic scrubber (electroscrubber) discussed combines advantages of electrostatic precipitators and inertial wet scrubbers, and removes many shortcomings inherent to both of these systems operating independently. The electroscrubber is a device in which Coulomb attraction or repulsion forces between electrically charged scrubbing droplets (collector) and dust particles are utilized for the removal of particles from a gas. Unlike wet electrostatic precipitators in which particles are precipitated only on the collection electrode, in electroscrubbers, the collection of dust particles takes place in the entire precipitator chamber. Compared to inertial scrubbers, the electroscrubbers can operate at lower droplet velocities, but the collection efficiency for a single droplet can be larger than 1. The paper reviews the state-of-the-art of wet electrostatic scrubbing (electroscrubbing) technique used for gas cleaning from dust or smoke particles. Three groups of problems are discussed: (1) The fundamental problems concerning the charged dust particle deposition on a charged collector, usually a drop, with a focus on different models describing the process. (2) The experimental works of fundamental importance referring to the scrubbing process, which can be used for validating the theory. (3) The laboratory demonstrations and industrial tests of different constructions of electroscrubbers designed for effective gas cleaning. It was shown in the paper that a higher collection efficiency of an electroscrubber could be obtained for higher values of Coulomb number and for a Stokes number lower than 5. 103 refs., 4 figs.

Anatol Jaworek; Wamadeva Balachandran; Andrzej Krupa; Janusz Kulon; Marcin Lackowski [Polish Academy of Sciences, Gdansk (Poland). Institute of Fluid Flow Machinery

2006-10-15T23:59:59.000Z

23

New process to avoid emissions: Constant pressure in coke ovens  

SciTech Connect (OSTI)

A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)

1995-12-01T23:59:59.000Z

24

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered...  

Broader source: Energy.gov (indexed) [DOE]

Ultra Clean 1.1 MW High Efficiency Natural Gas Engine Powered CHP System Contract: DE-EE0004016 GE Energy, Dresser Inc. 102010 - 92014 Jim Zurlo, Principal Investigator...

25

Madison Gas and Electric- Clean Power Partner Solar Buyback Program  

Broader source: Energy.gov [DOE]

'''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program]....

26

An experience of use of the installation for the cleaning of gas effluents from tritium  

SciTech Connect (OSTI)

The population and environmental protection during the operation of nuclear engineering units is a serious scientific-technical and social problem. Tritium is one of the gaseous effluents from nuclear plants, reactor fuel element processing, and also in connection with perspective thermo-nuclear power engineering development. The authors propose the use of a cleaning system for gas effluent cleaning of tritium using catalysis methods. The process of catalytic gas cleaning involves chemical transformations resulting in the removal of impurities from the reaction mixture. The technological equipment for tritium treatment is intended for production of such items on tritium bases as neutron tubes, targets, sources of initial ionization and characteristic rays, etc.

Voitenko, V.A.; Kolomiets, N.F.; Rogosin, V.N.

1993-12-31T23:59:59.000Z

27

Clean Cities Moving Fleets Forward with Liquefied Natural Gas | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief Medical Officerof Energy Clean Cities Moving

28

Chapter Four Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Many states and localities are exploring or implementing clean energy policies to achieve greenhouse gas (GHG) and criteria air pollutant1 emission reductions. Document map • Chapter one

unknown authors

29

Oven wall panel construction  

DOE Patents [OSTI]

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

30

Cleaning of municipal-waste incinerator flue gas in Europe  

SciTech Connect (OSTI)

This paper gives an overview of a substantial ongoing air-pollution-control program in West Germany, as it relates to emission of acid gases and other pollutants from municipal-refuse incineration. It details emission regulations, control means used, and technical advancements accomplished and foreseen. It gives results and the approximate effectiveness of various controls in reducing acid gas, trace organic, trace heavy metal, and particulate-matter emissions. Available data indicate that lime spray dryer/electrostatic precipitator (ESP) and spray-dryer/fabric-filter systems can attain 70-90% acid-gas removal and 97% or more control of dioxins and furans, while limiting mercury emissions to about 0.01-0.07 mg/N-cu m (dry). In comparison, some wet-scrubber systems can attain 90-plus % acid-gas removal with substantial removal of NOx and comparable control of dioxins and furans, while possibly providing consistently lower mercury emissions.

Brna, T.G.; Ellison, W.; Jorgensen, C.

1988-01-01T23:59:59.000Z

31

Ovenized microelectromechanical system (MEMS) resonator  

DOE Patents [OSTI]

An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

2014-03-11T23:59:59.000Z

32

Publications | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter for GasNewsnuclear APSTechnologies |

33

Experimental Characterization | Center for Gas SeparationsRelevant to Clean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP Submit an ScienceEnergy

34

Behavior-Based Transportation Greenhouse Gas Mitigation Under the Clean Development Mechanism Transport-Efficient Development in Nanchang, China  

E-Print Network [OSTI]

We propose a methodology, consistent with the Kyoto Protocol?s Clean Development Mechanism (CDM), to quantify the greenhouse gas (GHG) emission reduction benefits of transport efficient development (TED). TED aims to reduce ...

Zegras, P. Christopher

35

Innovative coke oven gas cleaning system for retrofit applications: Environmental Monitoring Program. Baseline sampling program report: Volume 2, Appendix sections 1--7  

SciTech Connect (OSTI)

This report contains no text. It consist entirely of results monitoring stack opacity, benzene surveys, chemical effluent in wastewater, etc.

Stuart, L.M.

1994-05-27T23:59:59.000Z

36

Development of the Cooper-Bessemer CleanBurn gas-diesel (dual-fuel) engine  

SciTech Connect (OSTI)

NO[sub x] emission legislation requirements for large-bore internal combustion engines have required engine manufacturers to continue to develop and improve techniques for exhaust emission reduction. This paper describes the development of the Cooper-Bessemer Clean Burn gas-diesel (dual-fuel) engine that results in NO[sub x] reductions of up to 92 percent as compared with an uncontrolled gas-diesel engine. Historically, the gas-diesel and diesel engine combustion systems have not responded to similar techniques of NO[sub x] reduction that have been successful on straight spark-ignited natural gas burning engines. NO[sub x] levels of a nominal 1.0 g/BHP-h, equal to the spark-ignited natural gas fueled engine, have been achieved for the gas-diesel and are described. In addition, the higher opacity exhaust plume characteristic of gas-diesel combustion is significantly reduced or eliminated. This achievement is considered to be a major breakthrough, and the concept can be applied to both new and retrofit applications.

Blizzard, D.T. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Grove City, PA (United States)); Schaub, F.S.; Smith, J.G. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Mount Vernon, OH (United States))

1992-07-01T23:59:59.000Z

37

Environmental trends in Asia are accelerating the introduction of clean coal technologies and natural gas  

SciTech Connect (OSTI)

This paper examines the changing energy mix for Asia to 2020, and impacts of increased coal consumption on Asia`s share of world SO{sub 2} and CO{sub 2} emissions. Stricter SO{sub 2} emissions laws are summarized for eight Asian economies along with implications for fuel and technology choices. The paper compares the economics of different technologies for coal and natural gas in 1997 and in 2007. Trends toward introducing clean coal technologies and the use of natural gas will accelerate in response to tighter environmental standards by 2000. The most important coal conversion technology for Asia, particularly China, in the long term is likely to be integrated gasification combined-cycle (IGCC), but only under the assumption of multiple products.

Johnson, C.J.

1997-09-01T23:59:59.000Z

38

Ovens  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSDPreciousM206 Mechanical Convection

39

Gas stream clean-up filter and method for forming same  

DOE Patents [OSTI]

A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

Mei, Joseph S. (Morgantown, WV); DeVault, James (Fairmont, WV); Halow, John S. (Waynesburg, PA)

1993-01-01T23:59:59.000Z

40

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents [OSTI]

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TREATMENT TANK OFF-GAS TESTING FOR THE ENHANCED CHEMICAL CLEANING PROCESS  

SciTech Connect (OSTI)

The purpose of this activity was to provide a bounding estimate of the volume of hydrogen gas generated during Enhanced Chemical Cleaning (ECC) of residual sludge remaining in a Type I or Type II treatment tank as well as to provide results independent of the sludge volume in the waste tank to be cleaned. Previous testing to support Chemical Cleaning was based on a 20:1 oxalic acid to sludge ratio. Hydrogen gas evolution is the primary safety concern. Sealed vessel coupon tests were performed to estimate the hydrogen generation rate due to corrosion of carbon steel by 2.5 wt.% oxalic acid. These tests determined the maximum instantaneous hydrogen generation rate, the rate at which the generation rate decays, and the total hydrogen generated. These values were quantified based on a small scale methodology similar to the one described in WSRC-STI-2007-00209, Rev. 0. The measured rates support identified Safety Class functions. The tests were performed with ASTM A285 Grade C carbon steel coupons. Bounding conditions were determined for the solution environment. The oxalic acid concentration was 2.5 wt.% and the test temperature was 75 C. The test solution was agitated and contained no sludge simulant. Duplicate tests were performed and showed excellent reproducibility for the hydrogen generation rate and total hydrogen generated. The results showed that the hydrogen generation rate was initially high, but decayed rapidly within a couple of days. A statistical model was developed to predict the instantaneous hydrogen generation rate as a function of exposure time by combining both sets of data. An upper bound on the maximum hydrogen generation rate was determined from the upper 95% confidence limit. The upper bound confidence limit for the hydrogen generation rate is represented by the following equation. ln (G{sub v}) = -8.22-0.0584 t + 0.0002 t{sup 2}. This equation should be utilized to estimate the instantaneous hydrogen generation rate per unit surface area, G{sub v}, at a given time, t. The units for G{sub v} and t are ft{sup 3}/ft{sup 2}/min and hours, respectively. The total volume of hydrogen gas generated during the test was calculated from the model equation. An upper bound on the total gas generated was determined from the upper 95% confidence limit. The upper bound limit on the total hydrogen generated during the 163 hour test was 0.332 ft{sup 3}/ft{sup 2}. The maximum instantaneous hydrogen generation rate for this scenario is greater than that previously measured in the 8 wt.% oxalic acid tests due to both the absence of sludge in the test (i.e., greater than 20:1 ratio of acid to sludge) and the use of polished coupons (vs. mill scale coupons). However, due to passivation of the carbon steel surface, the corrosion rate decays by an order of magnitude within the first three days of exposure such that the instantaneous hydrogen generation rates are less than that previously measure in the 8 wt.% oxalic acid tests. While the results of these tests are bounding, the conditions used in this study may not be representative of the ECC flowsheet, and the applicability of these results to the flowsheet should be evaluated for the following reasons: (1) The absence of sludge results in higher instantaneous hydrogen generation rates than when the sludge is present; and (2) Polished coupons do not represent the condition of the carbon steel interior of the tank, which are covered with mill scale. Based on lower instantaneous corrosion rates measured on mill scale coupons exposed to oxalic acid, lower instantaneous hydrogen generation rates are expected for the tank interior than measured on the polished coupons. Corrosion rates were determined from the coupon tests and also calculated from the measured hydrogen generation rates. Excellent agreement was achieved between the time averaged corrosion rate calculated from the hydrogen generation rates and the corrosion rates determined from the coupon tests. The corrosion rates were on the order of 18 to 28 mpy. Good agreement was also observed between the maximum instantaneo

Wiersma, B.

2011-08-29T23:59:59.000Z

42

A coke oven model including thermal decomposition kinetics of tar  

SciTech Connect (OSTI)

A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

1997-12-31T23:59:59.000Z

43

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect (OSTI)

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

44

Oven Baked Sweet Potato Fries Ingredients  

E-Print Network [OSTI]

Oven Baked Sweet Potato Fries Ingredients: Vegetable cooking spray 1 1/2 pounds sweet potato (about spray a 10 x 14 cookie sheet with non-stick cooking spray. 2. Scrub potatoes under tap water with a vegetable brush. With a knife remove any bad spots or defects on the potato. Do not peel. 3. On a cutting

Liskiewicz, Maciej

45

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

SciTech Connect (OSTI)

This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William; Fisk, William J.

2007-08-01T23:59:59.000Z

46

Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings  

SciTech Connect (OSTI)

This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William J.

2006-05-01T23:59:59.000Z

47

Start up results from a specialized flue gas cleaning facility in a power station using refinery residues  

SciTech Connect (OSTI)

In eastern Germany STEAG--the biggest German IPP--has erected a power plant consisting of three combustion lines burning oil distillation residues from the new Mider refinery to provide the refinery with power, steam, water and compressed air. Each of the three flue gas cleaning lines consists of a high dust SCR-system, quench, wet electrostatic precipitator, scrubber, steam reheater and ID-fan. Common systems are the storage and handling of the absorbent, the gypsum dewatering and the waste water treatment. The installed high dust SCR system attains the expected NO{sub x}-reduction efficiency and an excellent NO{sub x} outlet distribution and low ammonia slip. After commissioning problems occurred with the wet ESP in all three lines due to improper function of the upstream quenches. Modifications of the quench system have been made which assure a temperature of the flue gas after quench near saturation temperature and correct functioning of the quench and wet ESP. To reduce pressure loss of the absorber concurrent spray nozzles were installed. Strong vibrations of the absorber tower, the connected pipes and the steel structure along with an insufficient SO{sub x} removal efficiency at high inlet concentration were observed. After changing the concurrent operation of the spray nozzles to counter current operation the vibrations of the absorber tower became smaller and the removal efficiency achieved the guaranteed value. Problems arose in the waste water treatment plant caused by the high solid concentration of up to 1,000 g/l in the thickener. By diluting the settled sludge with overflow water from the thickener the problems in the waste water treatment plant could be minimized to an acceptable degree. Despite these problems the flue gas cleaning system is in continuous operation and the emission values of flue gas and waste water meet the required standards.

Beiers, H.G.; Gilgen, R.; Weiler, H.

1998-07-01T23:59:59.000Z

48

Factors affecting coking pressures in tall coke ovens  

SciTech Connect (OSTI)

The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

Grimley, J.J.; Radley, C.E. [British Steel plc, Scunthorpe (United Kingdom). Scunthorpe Works

1995-12-01T23:59:59.000Z

49

Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines  

SciTech Connect (OSTI)

This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently to the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.

Barthelemy, N.M.; Lynn, S.

1991-07-01T23:59:59.000Z

50

December 4, 2013 | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL isSeparationsRelevant to Clean2 |3

51

Forrest Abouelnasr | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsClean EnergyTechnologies |

52

Frantisek Svec | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI HomeTours, ProgramsCleanFranklin

53

Coke oven doors: Historical methods of emission control and evaluation of current designs  

SciTech Connect (OSTI)

The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

Pettrey, J.O.; Greene, D.E. (Armco Steel Co., Middletown, OH (United States))

1993-01-01T23:59:59.000Z

54

Multiple delivery cesium oven system for negative ion sources  

SciTech Connect (OSTI)

Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2012-02-15T23:59:59.000Z

55

Prolongation technologies for campaign life of tall oven  

SciTech Connect (OSTI)

In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

1997-12-31T23:59:59.000Z

56

Mathematical modeling of clearance between wall of coke oven and coke cake  

SciTech Connect (OSTI)

A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

1995-12-01T23:59:59.000Z

57

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

NONE

1995-09-01T23:59:59.000Z

58

2010 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0 1 0

59

2010 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0 1 0Blandine

60

2011 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0 1

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2011 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0 1Blandine

62

2012 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0

63

2012 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0 0 0Blandine

64

2013 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0

65

2013 | Center for Gas SeparationsRelevant to Clean Energy Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|PhysicsGas SeparationsRelevant0Blandine

66

Concrete Company Moving to Natural Gas with Clean Cities | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 DocumentationA variety of hybridThisOil, and Gas Sectors

67

Laura Gagliardi | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenter for Gas SeparationsRelevantNews

68

Omar Yaghi | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships, ScholarshipsSpeedingOil & Gas

69

Chen (Beverly) Zhang | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center for GasChemical Speeding

70

Efrem Braun | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the| Center for GasVehicles

71

Eric Bloch | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologies | Blandine

72

Eric Scott | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologies |

73

Eunwoo Choi | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERP isTechnologies |Technologies |

74

Felipe Gándara | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies | Blandine

75

Feng Xue | Center for Gas SeparationsRelevant to Clean Energy Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies| Blandine

76

Renewable Natural Gas Clean-up Challenges and Applications | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy by Brian Weeks, Gas Technology

77

Flue gas cleaning with ammonia reduces SO{sub 2} emission  

SciTech Connect (OSTI)

This paper describes the technical and commercial development and basis for application in North America for wet flue gas desulfurization (FGD) of the AMASOX{reg_sign} (i.e. Ammonia Absorbs Sulfur Oxides) Process of Krupp Uhde (Germany) employing ammonia reagent. This process technology has been emerging slowly and stepwise over a twenty-year period in reaching the present stage of commercial applicability. The discussion herein considers the need for accommodating to and advantageously addressing the increasing number of applications with high and ultra-high flue-gas concentrations of SO{sub 2} at the boiler outlet accompanied by significant levels of other pollutants. Key measures in accomplishing this include use of important process innovations. This, as well, calls for the effective use, when applicable, of wet electrostatic precipitator mist-elimination means to gain low/minimum-opacity stack plume trailoff in wet scrubber use together with reduction of air toxics to low concentrations. With cost-effectiveness in electric utility service, detailed herein, superior to FGD processes commonly used to date in high-sulfur service, utilization of this technology is expanding. Important, potentially trend-setting types of powerplant applications of ammonia FGD are reviewed to identify foreseen market sectors and procurement trends that will at the same time serve to substantially broaden lowest-cost coal utilization.

Emish, G.J. [Krupp Wilputte Corp., Bridgeville, PA (United States); Schulte, W. [Krupp Uhde GmbH, Dortmund (Germany); Ellison, W. [Ellison Consultants, Monrovia, MD (United States)

1997-12-31T23:59:59.000Z

78

Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System  

SciTech Connect (OSTI)

Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

Zurlo, James; Lueck, Steve

2011-08-31T23:59:59.000Z

79

SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report  

SciTech Connect (OSTI)

The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

NONE

1995-09-01T23:59:59.000Z

80

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

Inherently, natural gas combustion produces significantlygas turbines were fuel gas combustion devices and that theyof greenhouse gas emissions released during combustion. 5 0

Hagan, Colin R.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01T23:59:59.000Z

82

Zevenhoven & Kilpinen CROSS EFFECTS, TOTAL SYSTEM LAY-OUT 13.6.2001 10-1 Figure 10.1 Typical pulverised coal combustion and gas clean-up system: dry scrubber +  

E-Print Network [OSTI]

pulverised coal combustion and gas clean-up system: dry scrubber + baghouse filter for SO2 and particulate For a conventional pulverised coal-fired power plant a set-up is shown in Figure 10.1, with a gas clean-up system scrubber (pH ~ 6) 60 - 70 7 Re-heater 350 - 400 8 SCR DeNOx 300 - 400 9 Active coke bed 100 - 150 Figure 10

Zevenhoven, Ron

83

Reducing Energy Consumption on Process Ovens & Oxidation Systems  

E-Print Network [OSTI]

recovery systems are capable of metals in the heat exchangers along with stresses recovering up to 97% of the energy used in the induced by changing process conditions can oxidation process. Most units on the market severely reduce the life...REDUCING ENERGY CONSUMPTION ON PROCESS OVENS & OXIDATION SYSTEMS Chris Worachek Design Engineer MEGTEC Systems De Pere, WI ABSTRACT With the uncertain cost of energy, optimizing the use of air in process dryers, ovens and air pollution...

Worachek, C.

84

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

gas emissions from conven- tional power sources like coal.total emissions from coal- or natural gas-fired power plantsemissions, the lifecycle for natural gas power production is more complicated than that of coal.

Hagan, Colin R.

2012-01-01T23:59:59.000Z

85

Special Delivery for Sustainability: Clean Cities Supports UPS...  

Broader source: Energy.gov (indexed) [DOE]

Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding Natural Gas Operations Special Delivery for Sustainability: Clean Cities Supports UPS in Expanding...

86

Operating and maintenance benefits of automated oven wall temperature measurement  

SciTech Connect (OSTI)

For a very long time and regardless of all shortcomings associated with it, the manual measurement of the heating flue temperature has been the only method of monitoring the temperature prevailing in a coke oven battery and discovering weak points in the heating system. In the course of the last few years a number of automated temperature measuring systems have been developed that are intended to replace or supplement the manual heating flue measurement system. These measuring systems and their advantages/disadvantages are briefly described in this paper. Additionally, operational experience gathered with the oven chamber wall temperature measuring system is discussed in detail.

Leuchtmann, K.P. [Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany); Hinz, D.; Bergbau, D. [Ruhrkohle Bergbau AG, Bottrop (Germany). Prosper Coking Plant; Platts, M. [Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)

1997-12-31T23:59:59.000Z

87

Testing of the Burns-Milwaukee`s Sun Oven  

SciTech Connect (OSTI)

A Burns-Milwaukee Sun Oven was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160{degrees}C (320{degrees}F). It heated two liters of water from room temperatures to 80{degrees}C, (175{degrees}F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted.

Moss, T.A.

1997-03-01T23:59:59.000Z

88

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

89

Polymer Surface Modification Using Microwave-Oven-Generated Plasma  

E-Print Network [OSTI]

, diameter 160 mm) are from Fisher Scientific. Compressed oxygen and ethanol (100%) are from Air Products with plasma is a frequently used technique to accomplish surface modifi- cations that affect chemical products. Our approach relies on an unmodified "kitchen microwave oven" and standard laboratory glassware

Steinbock, Oliver

90

Clean Cities  

Broader source: Energy.gov [DOE]

Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

91

Clean Energy Jobs Plan Introduction  

E-Print Network [OSTI]

times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stayClean Energy Jobs Plan Introduction When I was governor, California was the world leader capacity. That has changed-- China is now the worlds top renewable energy producer, and Texas and Iowa

92

A mathematical model for the estimation of flue temperature in a coke oven  

SciTech Connect (OSTI)

The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

1997-12-31T23:59:59.000Z

93

Closing the Gap: Using the Clean Air Act to Control Lifecycle Greenhouse Gas Emissions from Energy Facilities  

E-Print Network [OSTI]

associated with coal generation occur at the smokestack. Theassociated with coal-fired electricity generation by up toCoal, Domestic Natural Gas, LNG, and SNG for Electricity Generation,

Hagan, Colin R.

2012-01-01T23:59:59.000Z

94

A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions  

SciTech Connect (OSTI)

A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10{sup ?4} Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO{sub 2} powder catalyst.

Morfin, Franck; Piccolo, Laurent [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)] [Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 CNRS and Université Lyon 1, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

2013-09-15T23:59:59.000Z

95

Demonstration of a fuel-saving system for paint-curing ovens  

SciTech Connect (OSTI)

Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

Jensen, W P [comp.

1980-12-01T23:59:59.000Z

96

State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector under the EPA's Clean Power Plan  

E-Print Network [OSTI]

1 State and Regional Comprehensive Carbon Pricing and Greenhouse Gas Regulation in the Power Sector goal of comprehensive carbon pricing along with various other policies (LCFS) · Into this setting drops rate" and the role of renewable energy and energy efficiency in the rate targets and in compliance

California at Davis, University of

97

Economic Impact of the American Clean Energy  

E-Print Network [OSTI]

Economic Impact of the American Clean Energy and Security Act of 2009 on the West Virginia Economy ........................................................................................................................ 1 American Clean Energy and Security Act of 2009 at reducing greenhouse gas emissions. This report examines the impact of the American Clean Energy

Mohaghegh, Shahab

98

MidAmerican Energy (Gas)- Commercial EnergyAdvantage Rebate Program  

Broader source: Energy.gov [DOE]

MidAmerican Energy offers a variety of incentives for commercial customers to improve the energy efficiency of facilities. Qualified natural gas equipment includes ovens, steamers, fryers, furnaces...

99

Glass-coating and cleaning system to prevent carbon deposition on coke oven walls  

SciTech Connect (OSTI)

The new technology for protecting the coking chamber bricks from damage by hard-pushing is described. The technology consists of the glass coating on the wall bricks and a wall cleaner to blow deposited carbon. For the glass coating, a specially developed glaze is sprayed onto the wall bricks by a spraying device developed to completely spray one coking chamber in a few minutes. The wall cleaner is installed on a pusher ram in the facility to automatically blow air at a sonic speed during coke pushing. The life of the glazed layer is estimated to be over two years.

Takahira, Takuya; Ando, Takeshi; Kasaoka, Shizuki; Yamauchi, Yutaka [Kawasaki Steel Corp., Mizushima, Kurashiki (Japan). Mizushima Works

1997-12-31T23:59:59.000Z

100

Factors that affect fracture fluid clean-up and pressure buildup test results in tight gas reservoirs  

E-Print Network [OSTI]

engineering effort with a complete formation evaluation prior to the stimulation treatment can one understand a well containing a vertical hydraulic fracture. If the reservoir produces substantial volumes of either fracture fluid or formation water, along... and Water Permeability . . . 21 Fracture Relative Gas and Water Permeability . . . . . . 24 Created and Propped Fracture Lengths as a Function of Treatment Volume Based on FRACDIM ZI One Quarter of a Square Pattern with Wellbore Centered in Middle...

Montgomery, Kevin Todd

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clean Coal Technology III: 10 MW Demonstration of Gas Suspension Absorption final project performance and economics report  

SciTech Connect (OSTI)

The 10 MW Demonstration of the Gas Suspension Absorption (GSA) program is a government and industry co-funded technology development. The objective of the project is to demonstrate the performance of the GSA system in treating a 10 MW slipstream of flue gas resulting from the combustion of a high sulfur coal. This project involves design, fabrication, construction and testing of the GSA system. The Project Performance and Economics Report provides the nonproprietary information for the ``10 MW Demonstration of the Gas Suspension Absorption (GSA) Project`` installed at Tennessee Valley Authority`s (TVA) Shawnee Power Station, Center for Emissions Research (CER) at Paducah, Kentucky. The program demonstrated that the GSA flue-gas-desulfurization (FGD) technology is capable of achieving high SO{sub 2} removal efficiencies (greater than 90%), while maintaining particulate emissions below the New Source Performance Standards (NSPS), without any negative environmental impact (section 6). A 28-day test demonstrated the reliability and operability of the GSA system during continuous operation. The test results and detailed discussions of the test data can be obtained from TVA`s Final Report (Appendix A). The Air Toxics Report (Appendix B), prepared by Energy and Environmental Research Corporation (EERC) characterizes air toxic emissions of selected hazardous air pollutants (HAP) from the GSA process. The results of this testing show that the GSA system can substantially reduce the emission of these HAP. With its lower capital costs and maintenance costs (section 7), as compared to conventional semi-dry scrubbers, the GSA technology commands a high potential for further commercialization in the United States. For detailed information refer to The Economic Evaluation Report (Appendix C) prepared by Raytheon Engineers and Constructors.

Hsu, F.E.

1995-08-01T23:59:59.000Z

102

Preliminary evaluation of a concept using microwave energy to improve an adsorption-based, natural gas clean-up process  

SciTech Connect (OSTI)

This report describes the results of a preliminary evaluation performed to: (1) determine if microwave energy could be used to regenerate a zeolite adsorbent and (2) to evaluate the feasibility of using microwave energy to improve the desorption phase of a pressure swing adsorption process applied to upgrading natural gas (methane) contaminated with nitrogen. Microwave regeneration was evaluated by comparing the adsorption characteristics of a zeolite preconditioned by heating under vacuum to the characteristics of the same zeolite after various lengths of exposure to microwave energy. The applicability of microwave regeneration to natural gas cleanup was evaluated by measuring the rise in adsorbent temperature resulting from the microwave exposure. Microwave energy consumed by heating the adsorbent is not productive and must therefore be minimal for a process to be economically viable. Exposure of the methane-saturated chabazite for 2 minutes to microwave energy effectively regenerated the adsorbent, but resulted in a 75{degrees}F (42{degrees}C) rise in adsorbent temperature. This temperature rise indicates that the concept is unacceptable for natural gas processing due to excessive energy consumption.

Grimes, R.W.

1992-12-01T23:59:59.000Z

103

lackouts, rising gas prices, changes to the Clean Air Act, proposals to open wilderness and protected offshore areas to gas drilling, and increasing  

E-Print Network [OSTI]

the energy events of the 1970s, in whose wake we are still reeling. Julian Darley has done far more than just, as well as a meticulously researched warning about our next potentially catastrophic energy crisis. Did due to the looming NG crisis? HIGH NOON FOR NATURAL GAS The New Energy Crisis JULIAN DARLEY $18

Keeling, Stephen L.

104

Automatic coke oven heating control system at Burns Harbor for normal and repair operation  

SciTech Connect (OSTI)

An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

Battle, E.T.; Chen, K.L. [Bethlehem Steel Corp., Burns Harbor, IN (United States); [Bethlehem Steel Corp., PA (United States)

1997-12-31T23:59:59.000Z

105

CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...  

Open Energy Info (EERE)

| NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

106

Testing of the Sunstove Organization`s Sunstove Solar Oven  

SciTech Connect (OSTI)

A Sunstove Organization`s Sunstove was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 115{degrees}C (240{degrees}F). It heated two liters of water from room temperature to 80{degrees}C (175{degrees}F) in about two hours. Observations were made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on the operation of the solar oven were also noted.

Moss, T.A.

1997-03-01T23:59:59.000Z

107

The Videofil probe, a novel instrument to extend the coke oven service life  

SciTech Connect (OSTI)

To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

Gaillet, J.P.; Isler, D. [Centre de Pyrolyse de Marienau, Forbach (France)

1997-12-31T23:59:59.000Z

108

Clean Cities Internships  

Broader source: Energy.gov [DOE]

Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

109

Clean Cities Now, Vol. 15, No. 1, April 2011 (Brochure)  

SciTech Connect (OSTI)

Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on electric vehicle deployment, renewable natural gas, and articles on Clean Cities coalition successes across the country.

Not Available

2011-04-01T23:59:59.000Z

110

A compact and efficient strontium oven for laser-cooling experiments  

E-Print Network [OSTI]

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0\\times10^13 s^-1 cm^-2 at the oven temperature of 450 {\\deg}C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

Marco Schioppo; Nicola Poli; Marco Prevedelli; Stephan Falke; Christian Lisdat; Uwe Sterr; Guglielmo Maria Tino

2012-09-25T23:59:59.000Z

111

A compact and efficient strontium oven for laser-cooling experiments  

E-Print Network [OSTI]

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0\\times10^13 s^-1 cm^-2 at the oven temperature of 450 {\\deg}C, reached with an electrical power consumption of 36 W. The oven is based on a stainless-steel reservoir, filled with 6 g of metallic strontium, electrically heated in a vacuum environment by a tantalum wire threaded through an alumina multi-bore tube. The oven can be hosted in a standard DN40CF cube and has an estimated continuous operation lifetime of 10 years. This oven can be used for other alkali and alkaline earth metals with essentially no modifications.

Schioppo, Marco; Prevedelli, Marco; Falke, Stephan; Lisdat, Christian; Sterr, Uwe; Tino, Guglielmo Maria

2012-01-01T23:59:59.000Z

112

EA-0404: Finding of No Significant Impact  

Broader source: Energy.gov [DOE]

Innovative Clean Coal Technology Program - Coke Oven Gas Cleaning Demonstration Project at the Bethlehem Steel Corp. Sparrows Point Plant, Baltimore County, Maryland

113

brwtp-icoke | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Dec 1989) Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Innovative Coke Oven Gas Cleaning System for Retrofit...

114

Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau (CPM)  

E-Print Network [OSTI]

- 1 - Modelling of a coke oven heating wall M. Landreau, D. Isler, Centre de Pyrolyse de Marienau with thermomechanical modelling of a coke oven heating wall. The objective is to define the safe limits of coke oven of walls, roof and larry car, pre-stresses (anchoring system), lateral pressure due to coal pushing A 3D

Boyer, Edmond

115

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

116

International Clean Energy Coalition  

SciTech Connect (OSTI)

In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

Erin Skootsky; Matt Gardner; Bevan Flansburgh

2010-09-28T23:59:59.000Z

117

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities coalition Contact Information Sean Reed (Acting) 734-585-5720 x18 reed@cec-mi.org Coalition Website Clean Cities Coordinator Sean Reed (Acting) Sean Reed (Acting) is...

118

Clean Production of Coke from Carbonaceous Fines  

SciTech Connect (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

119

Clean Cities Fact Sheet  

SciTech Connect (OSTI)

This is a routine revision of a general fact sheet that describes the Clean Cities partnership efforts and includes a list of Clean Cities coordinators.

Not Available

2005-09-01T23:59:59.000Z

120

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CT Clean Energy Communities  

Broader source: Energy.gov [DOE]

The Clean Energy Communities program, offered by the Clean Energy Finance and Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

122

Heating control methodology in coke oven battery at Rourkela Steel Plant  

SciTech Connect (OSTI)

A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

1996-12-31T23:59:59.000Z

123

Acoustic emission feedback control for control of boiling in a microwave oven  

DOE Patents [OSTI]

An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

White, Terry L. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

124

Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation  

SciTech Connect (OSTI)

The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

1995-12-01T23:59:59.000Z

125

Air toxics provisions of the Clean Air Act: Potential impacts on energy  

SciTech Connect (OSTI)

This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

Hootman, H.A.; Vernet, J.E.

1991-11-01T23:59:59.000Z

126

Air toxics provisions of the Clean Air Act: Potential impacts on energy  

SciTech Connect (OSTI)

This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

Hootman, H.A.; Vernet, J.E.

1991-11-01T23:59:59.000Z

127

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

128

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

129

The effect of varying oven temperatures and residence times on thermal desorption of n-hexane and 1-hexene from diffusive organic vapor dosimeters  

E-Print Network [OSTI]

, which caused a pis- ton situated on top of the thermal desorber to be pneuma- tically pulled up, causing nitrogen purge gas from the connected cylinder to be drawn up through the desorbing oven containing an empty flare tube and then into the de...M Monitor into Foil Pouch 5. Sealed Foil Pouch, Ready for Storage 6. Filter Paper in place on Draft Shield 7. Injecting 10pL Liquid Sample onto Filter Paper 8. Rolling Charcoal Wafer into a Cylinder 9, Inserting Charcoal Wafer into Flare Tube...

Steele, Kenneth Garnett

1981-01-01T23:59:59.000Z

130

Development of a high-temperature oven for the 28 GHz electron cyclotron resonance ion source  

SciTech Connect (OSTI)

We have been developing the 28 GHz ECR ion source in order to accelerate high-intensity uranium beams at the RIKEN RI-beam Factory. Although we have generated U{sup 35+} beams by the sputtering method thus far, we began developing a high-temperature oven with the aim of increasing and stabilizing the beams. Because the oven method uses UO{sub 2}, a crucible must be heated to a temperature higher than 2000?°C to supply an appropriate amount of UO{sub 2} vapor to the ECR plasma. Our high-temperature oven uses a tungsten crucible joule-heated with DC current of approximately 450 A. Its inside dimensions are ?11 mm × 13.5 mm. Since the crucible is placed in a magnetic field of approximately 3 T, it is subject to a magnetic force of approximately 40 N. Therefore, we used ANSYS to carefully design the crucible, which was manufactured by machining a tungsten rod. We could raise the oven up to 1900?°C in the first off-line test. Subsequently, UO{sub 2} was loaded into the crucible, and the oven was installed in the 28 GHz ECR ion source and was tested. As a result, a U{sup 35+} beam current of 150 ?A was extracted successfully at a RF power of approximately 3 kW.

Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Kidera, M.; Ozeki, K.; Nakagawa, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)] [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

2014-02-15T23:59:59.000Z

131

CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS  

SciTech Connect (OSTI)

This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

2009-11-30T23:59:59.000Z

132

Clean Energy Portfolio Goal  

Broader source: Energy.gov [DOE]

In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

133

What Is Clean Cities?  

SciTech Connect (OSTI)

This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-08-01T23:59:59.000Z

134

What Is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-04-01T23:59:59.000Z

135

What is Clean Cities?  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2008-09-01T23:59:59.000Z

136

Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)  

SciTech Connect (OSTI)

This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

Weber, G.F.; Swanson, M.L.

1995-06-01T23:59:59.000Z

137

Clean Cities: St. Louis Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean Cities

138

Clean Cities: Tucson Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson Clean Cities

139

Clean Cities: Twin Cities Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson CleanTwin

140

Cleaning on a Shoestring.  

E-Print Network [OSTI]

or copper object is cleaned, a thin coat of tung oil may be applied to give it a soft luster. 4 BUTCHER BLOCK Most butcher blocks are made of solid hard maple and are, therefore, relatively easy to care for. Clean when necessary with warm water..., but fortunately, it can be cleaned with water and a sponge. If a build up of soap scum occurs, add one teaspoon washing soda or packaged water softener to the cleaning solution. Nonabrasive cleaning powders may also be used. Be sure to remove all traces...

McCutcheon, Linda Flowers

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

142

Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology  

SciTech Connect (OSTI)

The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of fiber optic sensors uses sol-gel derived porous silica materials doped with nanometer particles of noble metals in the form of fiber or coating for sensing trace H{sub 2}, NH{sub 3} and HCl in gas samples at for applications ambient temperature. The third classes of fiber optic sensors use sol-gel derived semiconductor metal oxide coating on the surface of silica optical fiber as transducers for selectively sensing H{sub 2}, CH{sub 4} and CO at high temperature. In addition, optical fiber temperature sensors use the fluorescence signal of rare-earth metal ions doped porous silica optical fiber or the optical absorption signal of thermochromic metal oxide materials coated on the surface of silica optical fibers have also been developed for monitoring gas temperature of corrosive gas. Based on the results obtained from this project, the principle of fiber optic sensor techniques for monitoring matrix gas components as well as trace components of coal gasification derived syngas has been established. Prototype sensors for sensing trace ammonia and hydrogen sulfide in gasification derived syngas have been built up in our laboratory and have been tested using gas samples with matrix gas composition similar to that of gasification derived fuel gas. Test results illustrated the feasibility of these sensors for applications in IGCC processes.

Shiquan Tao

2006-12-31T23:59:59.000Z

143

Extra Crispy OvenFried Drumsticks 3 cups cornflake cereal, crushed  

E-Print Network [OSTI]

Extra Crispy OvenFried Drumsticks 3 cups cornflake cereal, crushed 1/3 cup grated Parmesan pepper sauce 8 chicken drumsticks, skinned Vegetable cooking spray 1. Combine buttermilk and hot pepper sauce in an extralarge ziptop freezer bag. Add chicken drumsticks, turning to coat. Place bag

Jawitz, James W.

144

Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler  

SciTech Connect (OSTI)

This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

Not Available

1990-09-01T23:59:59.000Z

145

What is Clean Cities? October 2011 (Brochure)  

SciTech Connect (OSTI)

Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

Not Available

2011-10-01T23:59:59.000Z

146

Clean Cities Overview  

Broader source: Energy.gov (indexed) [DOE]

were funded to increase availability and awareness of alternative fuels and advanced technology vehicles. Clean Cities 11 * Tucson Coalition - moves Christmas tree across US...

147

What is Clean Cities?  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-07-01T23:59:59.000Z

148

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

149

17th DOE nuclear air cleaning conference: proceedings. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

First, M.W. (ed.)

1983-02-01T23:59:59.000Z

150

Clean Cities: Denver Metro Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro Clean

151

Clean Cities: Greater Philadelphia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean

152

Clean Cities: Kentucky Clean Cities Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky Clean Cities

153

Clean Cities: Maine Clean Communities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLosMaine Clean

154

Clean Cities: Northern Colorado Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota CleanNorthern

155

Clean Cities: South Shore Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities Coalition The

156

Clean Cities: Treasure Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. LouisTampa

157

Clean Cities: Utah Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.Tucson

158

Clean Cities: Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt.TucsonValley

159

Clean Cities: Wisconsin Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean

160

Clean Cities: Southern California Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia Clean

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Preemptive Strike: Law in the Campaign for Clean Trucks  

E-Print Network [OSTI]

Gas & Elec. Co. v. State Energy Res. Conservation & Dev.Federal Preemption and Clean Energy Floors, 91 N.C. L. Ra fraction of the effort and energy doing it. ”). 112. B

Cummings, Scott

2015-01-01T23:59:59.000Z

162

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Broader source: Energy.gov [DOE]

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

163

Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens  

SciTech Connect (OSTI)

Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

Ellis, C.E.; Pruitt, C.W.

1995-12-01T23:59:59.000Z

164

Operation of dry-cleaned and agglomerated precompaction system (DAPS)  

SciTech Connect (OSTI)

In order to reduce the manufacturing cost of coke, it is necessary to reduce mainly (1) the material cost and (2) operating cost. Both of these costs can be reduced by lowering the moisture of charging coal. Because dust generation increases with decreasing moisture of charging coal, however, the lower limit of charging coal moisture in the existing coke-oven equipment was about 5%, which yielded good results in coal moisture control (CMC) equipment. Nippon Steel has furthered the development of techniques for lowering the moisture of charging coal as far as possible in the existing coke ovens and has recently succeeded in developing a dry-cleaned and agglomerated precompaction system (DAPS) and incorporating this system in commercial production equipment. In this system, a coal preparation process is undertaken that involves separating coal fines, which cause dust generation, from dried charging coal and agglomerating them. The equipment incorporating this system was installed in the No. 3 and No. 4 coke batteries at Oita Works and brought into full-scale operation in September 1992. The equipment has since been operating smoothly.

Tanaka, Shigemi; Okanishi, Kazuya; Kikuchi, Akio; Yamamura, Yuichi

1997-12-31T23:59:59.000Z

165

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

166

Clean Cities Education & Outreach Activities  

Broader source: Energy.gov (indexed) [DOE]

information. Project ID: TI002 Clean Cities Education & Outreach Activities Kay L. Kelly U.S. Department of Energy Golden Field Office June 8, 2010 Clean Cities Education &...

167

Clean Energy Resource Teams (Minnesota)  

Broader source: Energy.gov [DOE]

Clean Energy Resource Teams (CERTs) are community-based groups stemming from a state, university, and nonprofit partnership to encourage community energy planning and clean energy project...

168

Keeping condensers clean  

SciTech Connect (OSTI)

The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

Wicker, K.

2006-04-15T23:59:59.000Z

169

Cleaning method and apparatus  

DOE Patents [OSTI]

A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

Jackson, D.D.; Hollen, R.M.

1981-02-27T23:59:59.000Z

170

Cleaning on a Shoestring.  

E-Print Network [OSTI]

DOC , TA24S.7 873 0.1293 CLEANING ON A SHOESTRING Extension Home Management Specialists The Texas A&M University System Cleaning on a shoestring can be approached two ways - from the standpoint of time or money. It is possible to create your... own home-care products or to purchase commercial products. Home-created products often are less expensive but require more time to make. Many cleaning products available today are basic ingredients that have been premixed, perfumed and packaged...

Anonymous,

1980-01-01T23:59:59.000Z

171

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities Coalition

172

Clean Cities: Sacramento Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean Cities

173

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean

174

Clean Cities: Southern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia

175

Clean Energy Works (Oregon)  

Broader source: Energy.gov [DOE]

Clean Energy Works began in 2009 as a pilot program run by the City of Portland. In 2010, the US department of Energy awarded $20 million to create a statewide nonprofit to expand the program...

176

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

177

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

178

#CleanTechNow  

SciTech Connect (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2013-09-17T23:59:59.000Z

179

#CleanTechNow  

ScienceCinema (OSTI)

Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

Moniz, Ernest

2014-01-10T23:59:59.000Z

180

What is Clean Cities? (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

182

Clean Energy Research Areas | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonClean EnergyHorse

183

Clean Cities: Arkansas Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean Cities

184

Clean Cities: Central Coast Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol

185

Clean Cities: Clean Cities-Georgia coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansasCentralChicagoClean

186

Clean Cities: Clean Fuels Ohio coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The

187

Clean Cities: Detroit Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver Metro

188

Clean Cities: East Tennessee Clean Fuels coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay

189

Clean Cities: Empire Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBayEmpire

190

Clean Cities: Granite State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite State

191

Clean Cities: Greater Indiana Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGranite

192

Clean Cities: Los Angeles Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentuckyLos Angeles

193

Clean Cities: New Jersey Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater

194

Clean Cities: Norwich Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth Dakota

195

Clean Cities: Ocean State Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOcean State

196

Clean Cities: Pittsburgh Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorth DakotaOceanPittsburgh

197

Clean Cities: Iowa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean Cities

198

Clean Cities: Long Beach Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong Beach

199

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa CleanLong

200

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSan

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Clean Cities: Tampa Bay Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa Bay

202

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

203

Natural Gas Ethanol Flex-Fuel  

E-Print Network [OSTI]

Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

204

Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas...  

Broader source: Energy.gov (indexed) [DOE]

Best Buy, Johnson Controls, Pacific Gas and Electric, and Veolia to Join National Clean Fleets Partnership Secretary Chu Announces Best Buy, Johnson Controls, Pacific Gas and...

205

Clean Cities: Maine Clean Communities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by AFV tab for a breakdown of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 5,110 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based...

206

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

207

Clean the Past  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristina MartosLibraryClaytonCleanClean the

208

Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky  

SciTech Connect (OSTI)

In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

1991-06-01T23:59:59.000Z

209

Assessment and evaluation of ceramic filter cleaning techniques: Task Order 19  

SciTech Connect (OSTI)

The objective of this study was to assess and evaluate the effectiveness, appropriateness and economics of ceramic barrier filter cleaning techniques used for high-temperature and high-pressure particulate filtration. Three potential filter cleaning techniques were evaluated. These techniques include, conventional on-line pulse driven reverse gas filter cleaning, off-line reverse gas filter cleaning and a novel rapid pulse driven filter cleaning. These three ceramic filter cleaning techniques are either presently employed, or being considered for use, in the filtration of coal derived gas streams (combustion or gasification) under high-temperature high-pressure conditions. This study was divided into six subtasks: first principle analysis of ceramic barrier filter cleaning mechanisms; operational values for parameters identified with the filter cleaning mechanisms; evaluation and identification of potential ceramic filter cleaning techniques; development of conceptual designs for ceramic barrier filter systems and ceramic barrier filter cleaning systems for two DOE specified power plants; evaluation of ceramic barrier filter system cleaning techniques; and final report and presentation. Within individual sections of this report critical design and operational issues were evaluated and key findings were identified.

Chen, H.; Zaharchuk, R.; Harbaugh, L.B.; Klett, M.

1994-10-01T23:59:59.000Z

210

What is Clean Cities? Clean Cities, March 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2010-03-01T23:59:59.000Z

211

What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2009-11-01T23:59:59.000Z

212

Transcript: Biomass Clean Cities Webinar - Workforce Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

213

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

214

CLEAN ENERGY WORKFORCE TRAINING PROGRAM  

E-Print Network [OSTI]

installation and product manufacturing Clean transportation #12;CALIFORNIA SOLAR WORKFORCE PARTNERSHIP $3 energy workforce needs Build regional capacity in clean energy sector development Deliver industry and Workforce Development Agency, Economic Strategy Panel, California Workforce Investment Board, Air Resources

215

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

216

What's Possible for Clean Energy  

E-Print Network [OSTI]

recognize a similar economic opportunity in clean energy technology. And this prospect isn't just about and a stable climate, which clean technology can ensure. FoR thE FIRSt tImE, WE hAvE A RoADmAP oF hoW to SCAl for clean energy technologies, and entrepreneurs can starting building the leading clean energy companies

Kammen, Daniel M.

217

Cleaning of Free Machining Brass  

SciTech Connect (OSTI)

We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

Shen, T

2005-12-29T23:59:59.000Z

218

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

219

Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8  

SciTech Connect (OSTI)

Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

220

March 1980 / Vol. 5, No. 3 / OPTICS LETTERS 117 Disk-shaped heat-pipe oven used for lithium excited-state  

E-Print Network [OSTI]

March 1980 / Vol. 5, No. 3 / OPTICS LETTERS 117 Disk-shaped heat-pipe oven used for lithium excited-vapor spectroscopic oven based on the heat-pipe principle has been constructed in which the heated stain- less steel and Cooperl from an evaporative conductive device known as a heat pipe, described first by Grover et al. 2

Stroud, Carlos R.

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

222

Grass roots technology and energy policy: Solar ovens and wind turbines in Kenya  

SciTech Connect (OSTI)

Kenya is said to be an ideal site for projects that promote renewable energy sources since it devotes over forty percent of its GNP to the purchase of imported coal and oil. The author presents a chronology of solar oven projects in Kenya and suggests that success of the program will be measured by the number of people who move on to wind turbine use. He discusses the role of renewable energy technology in reducing greenhouse gases and closes by recommending that industrialized nations that produce large amounts of carbon dioxide provide aid to develop projects that reduce carbon dioxide elsewhere in the world. At the same time they would receive credit towards their carbon dioxide quotas.

Kammen, D.M. [Harvard Univ., Cambridge, MA (United States). Dept. of Physics

1992-12-31T23:59:59.000Z

223

Clean steels for fusion  

SciTech Connect (OSTI)

Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

Gelles, D.S.

1995-03-01T23:59:59.000Z

224

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization...  

Broader source: Energy.gov (indexed) [DOE]

Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and Intergovernmental Program (WIP) Accelerating Clean Energy Adoption (Fact Sheet), Weatherization and...

225

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

Not Available

2011-03-01T23:59:59.000Z

226

CleanFleet. Final report: Volume 1, summary  

SciTech Connect (OSTI)

The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

NONE

1995-12-01T23:59:59.000Z

227

CleanFleet. Volume 2, Project Design and Implementation  

SciTech Connect (OSTI)

The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

NONE

1995-12-01T23:59:59.000Z

228

Northeast Clean Energy Application Center  

SciTech Connect (OSTI)

From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences, webinars, and presentation were hosted or delivered during the contract period. The NE-CEAC also produced publically available educational materials such as CHP project profiles. Finally, the NE-CEAC worked closely with the relevant state agencies involved with CHP development. In New York, the NE-CEAC played an important role in securing and maintaining funding for CHP incentive programs administered by the New York State Energy Research Development Authority. NE-CEAC was also involved in the NYC Mayor's Office DG Collaborative. The NECEAC was also named a strategic resource for the Connecticut Department of Energy and Environmental Protection’s innovative Microgrid Pilot Program.

Bourgeois, Tom

2013-09-30T23:59:59.000Z

229

Clean Energy and the Electric System: Assessing the Many Benefits of State and Local Clean Energy Initiatives Multiple Benefits of Clean Energy Initiatives  

E-Print Network [OSTI]

Reducing energy demand and/ or increasing renewable energy generation from state and local clean energy initiatives—such as goals, standards, codes, funds and programs—can generate many benefits including: • Security, diversity, and overall reliability improvements for the electric system. ••Improved environmental quality, human health, and quality of life. ••Positive economic gains through energy costs saved, avoided medical costs, higher disposable incomes, increased labor productivity, and more jobs. This brochure is part of a series and focuses on electric system benefits. What’s Inside: • Why assess electric system benefits? • How can state and local governments estimate potential electric system benefits? • Quantitative examples of how clean energy initiatives result in direct energy benefits. • How to find more information. What are clean energy initiatives? Clean energy initiatives are policies and programs that state and local governments are using to save energy, improve air quality, reduce carbon emissions, support electric system reliability and security, and improve economic development. Examples include: Energy efficiency policies that reduce demand for energy, such as: Building codes for energy efficiency in both commercial and residential buildings; energy efficiency portfolio standards; public benefit funds for energy efficiency; and appliance efficiency standards. Energy supply policies that increase the use of renewables and clean sources, such as: Clean distributed generation and net metering interconnection standards; output-based environmental regulations; public benefit funds for clean energy supply; combined heat and power; and renewable portfolio standards. Clean energy initiatives reduce demand for fossil-fuel powered electricity and increase electricity generated with clean, renewable energy, contributing to a less polluting, more reliable and affordable electric system. Specifically, energy efficiency and/or renewable energy are resources that can: Avoid costs typically associated with conventional generation, including: Fuel, variable operation, and maintenance costs; emissions allowances; costs of emission Greenhouse gas (GHG) related policies that measure or limit emissions, such as: GHG registries, mandatory GHG reporting; CO offset requirements;

unknown authors

230

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 8/2013 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

.nccleantech.nscu.edu Natural Gas A clean choice for your vehicle Natural gas is widely used in industrial and home applications. Increasingly it is also being employed as a clean burning vehicle fuel. Most natural gas is extracted from gas wells or produced in conjunction with crude oil. Renewable natural gas can also be produced from

231

Enhanced Chemical Cleaning  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -| DepartmentEarnedEnhanced

232

Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...  

Energy Savers [EERE]

Lending and Loan Loss Reserve Funds More Documents & Publications Path to Self-Sustainability Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve...

233

Technology Adoption and Regulatory Regimes: Gas Turbines Electricity Generators from 1980 to 2001  

E-Print Network [OSTI]

Clean Air Amendments helped lower the cost of natural gas turbines vis-a-vis coal based technologies.

Ishii, Jun

2004-01-01T23:59:59.000Z

234

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

235

High Efficiency, Clean Combustion  

SciTech Connect (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

236

Optimization of Heat Exchanger Cleaning  

E-Print Network [OSTI]

decrease models of the heat recovery decay. A mathematical comparison of mechanical and chemical cleaning of heat exchangers has identified the most significant parameters which affect the choice between the two methods. INTRODUCTION In most... can be somewhat mitigated by periodic chemical or mechanical cleaning of the exchanger surface, and by the addition of antifoul ants. The typical decay in heat recovery capabil ity due to fou 1i ng and restoration afte r heat exchanger cleaning...

Siegell, J. H.

237

PFBC presents its clean coal credentials  

SciTech Connect (OSTI)

Pressurized fluidized-bed combustion (PFBC) combined cycle deserves as much consideration as integrated gasification combined cycle as a foundation technology for advanced, clean coal-fired power generation. Although corporate issues and low natural gas prices stalled PFBC development for a time, technology at full scale has proved quite worthy in several respects in Europe and Japan over the past 10 years. The article describes how the PFBC system power cycle works, describes its competitive features and reports progress on development. 4 figs.

Makansi, J. [Pearl Street Inc. (United States)

2005-12-01T23:59:59.000Z

238

Clean Energy Development Fund (CEDF)  

Broader source: Energy.gov [DOE]

NOTE: The Vermont Clean Energy Development Fund has issued its [http://publicservicedept.vermont.gov/sites/psd/files/Topics/Renewable_En... Five Year Strategic Plan]. See the [http:/...

239

Sustainable Electricity | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Analysis Advanced Components and Materials Systems Integration Energy Security Wind Geothermal Solar Energy-Water Resource Systems Systems Biology Transportation Clean Energy...

240

Connecting with Clean Tech CEO's  

Broader source: Energy.gov [DOE]

Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Self-Cleaning CSP Collectors  

Broader source: Energy.gov [DOE]

This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

242

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

243

Limonene and tetrahydrofurfurly alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, George W. (Harrisonville, MO); Carter, Richard D. (Lee's Summit, MO); Hand, Thomas E. (Lee's Summit, MO); Powers, Michael T. (Santa Rosa, CA)

1997-10-21T23:59:59.000Z

244

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1996-05-07T23:59:59.000Z

245

Limonene and tetrahydrofurfuryl alcohol cleaning agent  

DOE Patents [OSTI]

The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

1997-10-21T23:59:59.000Z

246

VACASULF operation at Citizens Gas and Coke Utility  

SciTech Connect (OSTI)

Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

Currey, J.H. [Citizens Gas and Coke Utility, Indianapolis, IN (United States)

1995-12-01T23:59:59.000Z

247

Study of surface kinetics in PECVD chamber cleaning using remote plasma source  

E-Print Network [OSTI]

The scope of this research work is to characterize the Transformer Coupled Toroidal Plasma (TCTP); to understand gas phase reactions and surface reactions of neutrals in the cleaning chamber by analyzing the concentration ...

An, Ju Jin

2008-01-01T23:59:59.000Z

248

The road to the successful clean development mechanism : lessons from the past  

E-Print Network [OSTI]

The Clean Development Mechanism (CDM) has evolved at a surprising speed since 2003 and is considered to have made positive contributions to the development of greenhouse-gas-reducing projects in developing countries. Taking ...

Song, Jaemin

2010-01-01T23:59:59.000Z

249

Center for Gas Separations Relevant to  

E-Print Network [OSTI]

Center for Gas Separations Relevant to Clean Energy Technologies #12;Director Berend Smit Jeffrey, metal-organic framework. © 2013 EFRC Center for Gas Separation Relevant to Clean Energy Technology. All the current separation technology, developed over sixty years ago, requires 25-35% more coal to produce

Cohen, Ronald C.

250

Clean Energy Business Plan Competition  

ScienceCinema (OSTI)

Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

2013-05-29T23:59:59.000Z

251

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

252

Experience and results of new heating control system of coke oven batteries at Rautaruukki Oy Raahe Steel  

SciTech Connect (OSTI)

The latest development and results of the heating control system at Raahe Steel are presented in this paper. From the beginning of coke production in Rautaruukki Oy Raahe Steel (October 1987) the heating control systems have been developed. During the first stage of development work at the coking plant (from year 1987 to 1992), when only the first coke oven battery consisting of 35 ovens was in production, the main progress was in the field of process monitoring. After commissioning of the second stage of the coking plant (November 1992), the development of the new heating control model was started. Target of the project was to develop a dynamic control system which guides the heating of batteries through the various process conditions. Development work took three years and the heating control system was commissioned in the year 1995. Principle of the second generation system is an energy balance calculation, coke end temperature determination and dynamic oven scheduling system. The control is based on simultaneous feedforward and feedback control. The fuzzy logic components were added after about one year experience.

Swanljung, J.; Palmu, P. [Rautaruukki Oy Raahe Steel (Finland)

1997-12-31T23:59:59.000Z

253

New Energy Efficient Method for Cleaning Oilfield Brines with Carbon Dioxide  

E-Print Network [OSTI]

NEW ENERGY EFFICIENT METHOD FOR CLEANING OILFIELD BRINES WITH CARBON DIOXIDE C. T. LITTLE A. F. SEIBERT Research Engineer Technical Manager Amoco Oil Company Separations Research Program Naperville, Illinois The University of Texas Austin... dioxide to clean oilfield brines. The new treatment method, described in this work, is actually an enhancement of existing gas flotation technology. The enhancement results from the use of carbon dioxide as the sweeping gas combined with its ability...

Little, C. T.; Seibert, A. F.; Bravo, J. L.; Fair, J. R.

254

Nondestructive inspection of the condition of oil pipeline cleaning units  

SciTech Connect (OSTI)

One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput.

Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

1989-02-01T23:59:59.000Z

255

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

256

Clean Cities: State of Delaware Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean

257

Clean Cities: State of Maryland Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis CleanState

258

Clean Metal Casting  

SciTech Connect (OSTI)

The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

Makhlouf M. Makhlouf; Diran Apelian

2002-02-05T23:59:59.000Z

259

Characterization of the cleaning process on a transferred graphene  

SciTech Connect (OSTI)

Intrinsic graphene possesses many outstanding physical and chemical properties, but their full explorations are often hindered by the effects of substrate and/or contamination. The authors employ the ultrahigh vacuum transmission electron microscopy equipped with a residual gas analyzer to in-situ characterize an effective decontamination process on a suspended graphene. Raman spectroscopic spectra further verify the cleanness of the resultant graphene membrane. The authors also present two contrasting growth morphologies of copper nanoparticles obtained on both clean and unclean graphene surfaces and show that the intrinsic growth dynamics can only manifest on the surface without contaminations.

Huang, Li-Wei [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Chang, Cheng-Kai [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan and Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chien, Fan-Ching [Department of Optics and Photonics, National Central University, Chung-Li 320, Taiwan (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Chen, Peilin [Research Center of Applied Science, Academia Sinica, Taipei 115, Taiwan (China); Chen, Fu-Rong [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan and Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China)

2014-09-01T23:59:59.000Z

260

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2012o.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti017ebron2011p.pdf More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach...

262

Bioenergy & Clean Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The...

263

Clean Cities Regional Support & Petroleum Displacement Awards...  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Clean Cities Regional Support & Petroleum Displacement Awards 2009 DOE Hydrogen Program and Vehicle Technologies...

264

baepgig-clean | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Kentucky Pioneer IGCC...

265

Dry-cleaning of graphene  

SciTech Connect (OSTI)

Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

2014-04-14T23:59:59.000Z

266

Alternative and Clean Energy Program  

Broader source: Energy.gov [DOE]

It is important to note that some applicants are only eligible to apply under some aspects of the program. Political subdivisions are only permitted to apply for loans or grants for Clean Energy...

267

Connecticut Clean Energy Fund (CCEF)  

Broader source: Energy.gov [DOE]

'''''Note: Connecticut's 2013 Budget Bill, enacted in June 2013, transfers a total of $25.4 million out of the Clean Energy Finance and Investment Authority into the General Fund - $6.2 million in...

268

Clean Energy Tax Credit (Maryland)  

Broader source: Energy.gov [DOE]

The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

269

Foam Cleaning of Steam Turbines  

E-Print Network [OSTI]

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine...

Foster, C.; Curtis, G.; Horvath, J. W.

270

Clean Water Partnership Law (Minnesota)  

Broader source: Energy.gov [DOE]

The main purpose of the Clean Water Partnership Law is to provide financial and technical assistance to local governments for the protection, enhancement, and restoration of surface waters. However...

271

Clean Energy Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

'''''NOTE: Due to a high level of interest, the Clean Energy Tax Credit annual funding of $5 million for years 2012, 2013 and 2014 has been fully allocated to compensate applicants wait listed from...

272

Clean Energy-Environment State  

E-Print Network [OSTI]

As states pursue their clean energy policies and programs, they can obtain assistance from a variety of federal programs, as described below. Cross-Cutting Programs Cross-cutting federal programs support planning, program development, and initiatives for both energy efficiency and clean energy supply measures. The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) offer a variety of crosscutting programs, described below.

unknown authors

273

Clean Energy Solutions Center (Presentation)  

SciTech Connect (OSTI)

The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

Reategui, S.

2012-07-01T23:59:59.000Z

274

cleanenergyfuels.com Natural Gas Solutions  

E-Print Network [OSTI]

1 cleanenergyfuels.com Natural Gas Solutions for Transportation December 7, 2012 #12;2 cleanenergyfuels.com Compressed Natural Gas (CNG) Taxis Airport Vehicles Transit Buses Leading Provider of Natural Gas As a Transportation Fuel About Clean Energy Liquefied Natural Gas (LNG) Port Trucking LNG Station

Minnesota, University of

275

Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center for GasChemicalHanford

276

NJ Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastruct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Program Review Presentation NJ COMPRESSED NATURAL GAS REFUSE TRUCKS, SHUTTLE BUSES AND INFRASTRUCTURE Chuck Feinberg, Principal Investigator New Jersey Clean...

277

Clean Energy Application Center  

SciTech Connect (OSTI)

The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

Freihaut, Jim

2013-09-30T23:59:59.000Z

278

Clean Cities Now, Vol. 10, No. 4  

SciTech Connect (OSTI)

Official Publication of Clean Cities and the Alternative Fuels Data Center (Newsletter) volume 10, number 4

Not Available

2006-10-01T23:59:59.000Z

279

What is Clean Cities? May 2011 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

Not Available

2011-05-01T23:59:59.000Z

280

Plugging Vehicles into Clean Energy October, 2012  

E-Print Network [OSTI]

Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

California at Davis, University of

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Clean Energy and Bond Finance Initiative  

Broader source: Energy.gov [DOE]

Provides information on Clean Energy and Bond Finance Initiative (CE+BFI). CE+BFI brings together public infrastructure finance agencies, clean energy public fund managers and institutional investors across the country to explore how to raise capital at scale for clean energy development through bond financing. Author: Clean Energy and Bond Finance Initiative

282

1. Control moisture. 2. Clean regularly.  

E-Print Network [OSTI]

, water heaters, and fireplaces that burn fuel must vent to the outside. Stoves, ovens, and cook on the things we do to affect how healthy our home is. Step 1. Control Moisture Water and excessive humidity of pesticides. Food and water attract pests. Controlling food and water helps to minimize pests. Sealing

283

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

284

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study  

E-Print Network [OSTI]

Cleaning with Environmentally Responsible Cleaning Solutions at Dalhousie University 1 Case Study: Usage of Environmentally Responsible Cleaning Solutions at Dalhousie University Summary Each year, Dalhousie University uses approximately 950,000 litres of cleaning solutions to clean 4.8 million square

Brownstone, Rob

285

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE?  

E-Print Network [OSTI]

2 WHO'S WINNING THE CLEAN ENERGY RACE? WHO'S WINNING THE CLEAN ENERGY RACE? Growth, Competition and Opportunity in the World's Largest Economies G-20 CLEAN ENERGY FACTBOOK #12;3 WHO'S WINNING THE CLEAN ENERGY the Clean Energy Race? was developed for public informational and educational purposes. It reviews

286

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas CleanCapitol Clean

287

Clean Cities: Clean Communities of Western New York (Buffalo) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition The Clean

288

Clean Cities: East Bay Clean Cities coalition (Oakland)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver MetroBay Clean

289

Clean Cities: Greater New Haven Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven Clean Cities

290

Clean Cities: Greater Washington Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven CleanWashington

291

Clean Cities: Lone Star Clean Fuels Alliance (Central Texas) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater NewKentucky CleanLandLone

292

Clean Cities: San Diego Regional Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramento CleanDiego

293

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore Clean Cities

294

Clean Cities: State of West Virginia Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis

295

Clean Cities: Western Washington Clean Cities (Seattle) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean Cities

296

CleanFleet. Final report: Volume 5, employee attitude assessment  

SciTech Connect (OSTI)

The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

NONE

1995-12-01T23:59:59.000Z

297

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

298

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

1999-08-31T23:59:59.000Z

299

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr. DanMediaClean

300

Clean Markets | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean AirGroupRanchoHomeClean

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Clean Vita | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:CleanCleanVita Jump to:

302

Clean Power at Home  

E-Print Network [OSTI]

this report is to describe and analyze net metering as a mechanism to support the deployment of small-scale, distributed electricity technologies in British Columbia based on renewable energy sources. These are referred to as "distributed renewables" throughout the report. The deployment of distributed renewables offers several environmental, economic, and social benefits that are described in this paper. Net metering enables individual utility customers to connect on-site generation to the utility grid, feeding excess power back to the grid when it is not needed, and utilizing grid power when consumption exceeds local renewable energy supply. In most programs, a single meter measures the customer's net consumption of grid power in a billing period, and they are charged for that consumption under regular retail rates. If production exceeds consumption, the customer's bill is essentially zero. In some instances, utilities may refund customers for excess production in a billing period based on wholesale market prices or avoided production costs. Net metering programs can make self-generation more attractive for customers by eliminating the need to size systems to meet customers' exact power needs or install on-site storage and power conditioning devices. Utilities may, depending upon the type of systems installed, benefit from improvements in local area load factors, and receive credit for various social or environmental benefits of such resources (e.g., greenhouse gas reductions). However, utilities have raised concerns about worker safety (e.g., the possibility that net metering sites may continue to feed electricity into the local distribution grid when the rest of the network is down, putting line workers at risk) and possible financial cross-subsidies from other rate...

May Author Andrew; Andrew E. Pape

303

Alternate cleaning methods for LCCAs. Final report  

SciTech Connect (OSTI)

The purpose of this project was to evaluate DI water followed by isopropyl alcohol (IPA) cleaning and no cleaning of leadless chip carriers (LCCs). Both environmentally safe methods were to be tested against the current chlorofluorocarbon (CFC) material cleaning baseline. Several experiments were run to compare production and electrical yields of LCCs cleaned by all three methods. The critical process steps most affected by cleaning were wire bonding, sealing, particle induced noise detection (PIND), moisture content, and electrical. Yields for the experimental lots cleaned by CFC, DI water plus IPA, and no cleaning were 56%, 72%, and 75%, respectively. The overall results indicated that vapor degreasing/ultrasonic cleaning in CFCs could be replaced by the aqueous method. No cleaning could also be considered if an effective dry method of particle removal could be developed.

Adams, B.E.

1993-04-01T23:59:59.000Z

304

Experimental Characterization and Molecular Study of Natural Gas Mixtures  

E-Print Network [OSTI]

) 5, advanced gas turbine 5 and coal-based zero emissions power plant 6 are some of the technological advances recently reported. It is important to note that these technologies are adaptable to natural gas feedstock. However, until clean coal...

Cristancho Blanco, Diego Edison

2011-08-08T23:59:59.000Z

305

Carbon smackdown: visualizing clean energy  

ScienceCinema (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-09-01T23:59:59.000Z

306

Carbon smackdown: visualizing clean energy  

SciTech Connect (OSTI)

The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

Juan Meza

2010-08-11T23:59:59.000Z

307

Clean Energy Infrastructure Educational Initiative  

SciTech Connect (OSTI)

The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Masterâ??s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Masterâ??s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Masterâ??s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents.

Hallinan, Kevin; Menart, James; Gilbert, Robert

2012-08-31T23:59:59.000Z

308

Meeting today's challenges to supply tomorrow's energy. Clean fossil energy technical and policy seminar  

SciTech Connect (OSTI)

Papers discussed the coal policy of China, Russia, Indonesia and Vietnam; clean coal technology (small-scale coal power plants, carbon capture and sequestration, new coking process SCOPE21, coal gasification (HyPr-RING), CO{sub 2} reduction technology, Supercritical coal-fired units and CFB boilers, EAGLE project, coal liquefaction), the coal consumer's view of clean fossil energy policy, and natural gas policy and technology. Some of the papers only consist of the presentation overheads/viewgraphs.

NONE

2005-07-01T23:59:59.000Z

309

Property-Assessed Clean Energy Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Financing Financing Structures Property-Assessed Clean Energy Programs Property-Assessed Clean Energy Programs The property-assessed clean energy (PACE) model is an...

310

New Clean Renewable Energy Bonds | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Clean Renewable Energy Bonds New Clean Renewable Energy Bonds New clean renewable energy bonds (CREBs) are tax credit bonds, the proceeds of which are used for capital...

311

Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...  

Broader source: Energy.gov (indexed) [DOE]

Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed Clean Energy (PACE) Financing...

312

Clean Energy Lending From the Financial Institution Perspective...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Lending From the Financial Institution Perspective (Chapter 8 of the Clean Energy Finance Guide, 3rd Edition) Clean Energy Lending From the Financial Institution...

313

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

314

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

315

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

Not Available

2012-03-01T23:59:59.000Z

316

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

Not Available

2013-12-01T23:59:59.000Z

317

Clean Tennessee Energy Grant Program (Tennessee)  

Broader source: Energy.gov [DOE]

The purpose of the Clean Tennessee Energy Grant Program is to select and fund projects that best result in a reduction of emissions and pollutants identified below. The Clean Tennessee Energy...

318

Clean Cities Web Sites and Web Tools  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Web Sites and Web Tools Johanna Levene July 28, 2010 Innovation for Our Energy Future Fuel Economy fueleconomy.gov What vehicle? Clean Cities Web Site * Information...

319

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

320

Clean Air Act Amendments of 1990  

E-Print Network [OSTI]

Congress is currently debating amendments to the Clean Air Act which would strengthen and enhance the current Clean Air Act. The bill would guarantee a reduction of 10 million tons of sulfur dioxide from 1980 levels; would sharply reduce pollutants...

Hanneschlager, R. E.

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network [OSTI]

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford

322

Clean Cities: Las Vegas Regional Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean

323

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

324

What is Clean Cities? December 2010 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 87 active coalitions.

Not Available

2010-12-01T23:59:59.000Z

325

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

326

Advanced Clean Cars Zero Emission Vehicle Regulation  

E-Print Network [OSTI]

Advanced Clean Cars Zero Emission Vehicle Regulation ZEV #12;Advanced Clean Cars ZEV Program 2020 2021 2022 2023 2024 2025 Current Regulation -ZEVs Current Regulation -PHEVs Projected: PHEVs 15Net ­ Blueprint Plan ­ Regional clusters, environmental and economic analysis · Clean Fuels Outlet

California at Davis, University of

327

Clean Energy Solutions Center Services (Fact Sheet)  

SciTech Connect (OSTI)

The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

Not Available

2014-04-01T23:59:59.000Z

328

The National Workshop on Clean Energy Education  

E-Print Network [OSTI]

The National Workshop on Clean Energy Education ENERGYLITERACY Recommendations and Strategies Full Report #12;THE NATIONAL WORKSHOP ON CLEAN ENERGY EDUCATION UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN OCTOBER 13, 2011 Full Report #12;#12;FOREWORD Clean energy education is an enabling foundation with far

Gilbert, Matthew

329

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day  

E-Print Network [OSTI]

Green Clean Day Planning Guide A practical guide for creating a successful Green Clean Day A publication of U of M Waste Management Services July 2013 #12;Table of Contents What is a Green Clean Day? 2 Why have a Green Clean Day? 2 How Do We Get Started? 2 How Waste Management Services Can Help 2

Awtar, Shorya

330

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

SciTech Connect (OSTI)

Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

Not Available

2008-04-01T23:59:59.000Z

331

CleanEnergyPatentMapper: Visualization of the sources of clean tech inventions  

E-Print Network [OSTI]

CleanEnergyPatentMapper, a tool that visualizes clean energy patents by technology type, inventing organization, and geography. This tool maps all U.S. clean technology patents by rst inventor location across;Introduction* In#response#to#global#warming,#many#concerned#actors#have#initiated#or# increased#their#efforts#to#discover#better#clean#energy#technologies

Sekhon, Jasjeet S.

332

Clean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 9/17/12  

E-Print Network [OSTI]

in an liquefied petroleum gas (LPG) sub-award with the Iredell Advancing Clean Energy for a Sustainable EconomyClean Transportation | Campus Box 7409, Raleigh, NC 27695 | 919-513-7831 | www.cleantransportation.org 9/17/12 Clean Fuel Advanced Technology (CFAT) Project 2006-20012: Administered by the NC Solar

333

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

MacKenzie, D.; Odell, C.

1994-03-01T23:59:59.000Z

334

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1996-01-01T23:59:59.000Z

335

Ultrasonic cleaning of interior surfaces  

DOE Patents [OSTI]

An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

Odell, D. MacKenzie C. (Aiken, SC)

1994-01-01T23:59:59.000Z

336

Clean Air Act. Revision 5  

SciTech Connect (OSTI)

This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

Not Available

1994-02-15T23:59:59.000Z

337

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

338

Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers  

SciTech Connect (OSTI)

The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

NONE

1998-12-01T23:59:59.000Z

339

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicy Options for the Hawaii Clean

340

Clean Cities: Capital District Clean Communities coalition (Albany)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheckInnovation,ClassroomArkansas Clean

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Clean Cities: Columbia-Willamette Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) Coalition

342

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo) CoalitionConnecticut

343

Clean Cities: Dallas-Fort Worth Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)

344

Clean Cities: Genesee Region Clean Communities (Rochester) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)Denver

345

Clean Cities: Greater Lansing Area Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York (Buffalo)DenverGraniteLansing

346

Clean Cities: Greater Long Island Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New York

347

Clean Cities: San Joaquin Valley Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreaterNorthSacramentoJoaquin

348

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington

349

Clean Cities: Land of Enchantment Clean Cities (New Mexico) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4 VehicleGeneseeIowa Clean CitiesLand

350

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley Clean CitiesSanSilicon

351

Clean Cities: Triangle Clean Cities (Raleigh, Durham, Chapel Hill)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCaliforniaTampa

352

Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue ValleyValley of the Sun Clean

353

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 8/2013 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

-515-3480 | www.cleantransportation.org Natural Gas A clean choice for your vehicle Natural gas is widely used. Most natural gas is extracted from gas wells or produced in conjunction with crude oil. Renewable natural gas can also be produced from decaying organic materials, such as waste from plants, landfills

354

Tax Treatment of Natural Gas The "landowner" referred to in  

E-Print Network [OSTI]

. There are a number of oil and gas regulations and laws such as the Oil and Gas Act, Coal and Gas Resource Coor OGM, including the Clean Streams Law, the Dam Safety and Encroach- ments Act, the Solid Waste Manage advances in drilling technology and rising natural gas prices have attracted new interest

Boyer, Elizabeth W.

355

Gas Turbines Increase the Energy Efficiency of Industrial Processes  

E-Print Network [OSTI]

clean fuel gas for the gas turbine is produced by gasification of coal, are presented. Waste heat from the gasifier and the gas turbine exhaust is converted to high pressure steam for steam turbines. Gas turbines may find application in other industrial...

Banchik, I. N.; Bohannan, W. R.; Stork, K.; McGovern, L. J.

1981-01-01T23:59:59.000Z

356

Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)  

SciTech Connect (OSTI)

Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

Not Available

2007-07-01T23:59:59.000Z

357

IDEA Clean Energy Application Center  

SciTech Connect (OSTI)

The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

Thornton, Robert

2013-09-30T23:59:59.000Z

358

Coke battery with 51-m{sup 3} furnace chambers and lateral supply of mixed gas  

SciTech Connect (OSTI)

The basic approaches employed in the construction of coke battery 11A at OAO Magnitogorskii Metallurgicheskii Kombinat are outlined. This battery includes 51.0-m{sup 3} furnaces and a dust-free coke-supply system designed by Giprokoks with lateral gas supply; it is heated exclusively by low-calorific mixed gas consisting of blast-furnace gas with added coke-oven gas. The 82 furnaces in the coke battery are divided into two blocks of 41. The gross coke output of the battery (6% moisture content) is 1140000 t/yr.

V.I. Rudyka; N.Y. Chebotarev; O.N. Surenskii; V.V. Derevich [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

359

Cleaning Contaminated Water at Fukushima  

SciTech Connect (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2013-11-21T23:59:59.000Z

360

Clean Air Act, Section 309  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartment of EnergyClasses, Kits23CLEAN

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Clean Energy | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.

362

Clean Fractionation - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2 P r o j e

363

Cleaning Contaminated Water at Fukushima  

ScienceCinema (OSTI)

Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

Rende, Dean; Nenoff, Tina

2014-02-26T23:59:59.000Z

364

Clean Cities: East Bay Clean Cities coalition (Oakland)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by AFV tab for a breakdown of AFV-based petroleum savings. Annual greenhouse gas emissions avoided: 30,891 tons of CO2 See the GHG by AFV tab for a breakdown of AFV-based...

365

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

Not Available

2012-01-01T23:59:59.000Z

366

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic Hybrid 1.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

367

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

368

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | www) Green Vehicle Guide provides fuel economy estimates and tailpipe emission levels on user customized

369

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

370

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

371

National Clean Fleets Partnership (Fact Sheet)  

SciTech Connect (OSTI)

Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

Not Available

2014-01-01T23:59:59.000Z

372

Flue gas desulfurization  

DOE Patents [OSTI]

The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

Im, K.H.; Ahluwalia, R.K.

1984-05-01T23:59:59.000Z

373

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

374

International prospects for clean coal technologies (Focus on Asia)  

SciTech Connect (OSTI)

The purpose of this paper is to propose Asia as a focus market for commercialization of CCT`s; describe the principles for successful penetration of CCT`s in the international market; and summarize prospects for CCT`s in Asia and other international markets. The paper outlines the following: Southern Company`s clean coal commitment; acquisition of Consolidated Electric Power Asia (CEPA); the prospects for CCT`s internationally; requirements for CCT`s widespread commercialization; CEPA`s application of CCT`s; and gas turbine power plants as a perfect example of a commercialization driver.

Gallaspy, D.T. [Southern Energy, Inc., Atlanta, GA (United States)

1997-12-31T23:59:59.000Z

375

Clean Cities Regional Support & Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

Clean Cities Regional Support & Petroleum Displacement Awards Mike Scarpino & Kay Kelly National Energy Technology Laboratory 052009 This presentation does not contain any...

376

Clean Energy Manufacturing Initiative: Increasing American Competitive...  

Broader source: Energy.gov (indexed) [DOE]

for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

377

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-10-01T23:59:59.000Z

378

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2013-01-01T23:59:59.000Z

379

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-09-01T23:59:59.000Z

380

Transcript: Biomass Clean Cities Webinar ? Workforce Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

382

Illinois Clean Energy Community Foundation Grants  

Broader source: Energy.gov [DOE]

The Illinois Clean Energy Community Foundation (ICECF) was established in December 1999 as an independent foundation with a $225 million endowment provided by Commonwealth Edison. The ICECF invests...

383

Clean Tech Now | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and...

384

-UNIT NAME C-728 Motor Cleaning Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNIT NUMBER 33 -UNIT NAME C-728 Motor Cleaning Facility -REGULATORY STATUS--3:.:::.0:..04(--u) -LOCATION North of C-720 (Map...

385

Clean Cities & Transportation Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

386

Clean Cities Now, Vol. 10, No. 2  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-05-01T23:59:59.000Z

387

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage… (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

388

What is Clean Cities? 2007 Update  

SciTech Connect (OSTI)

Clean Cities fact sheet describing this DOE program that deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2007-03-01T23:59:59.000Z

389

Clean Cities Fact Sheet: March 2006  

SciTech Connect (OSTI)

Clean Cities fact sheet describe this DOE program, which deploys alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

Not Available

2006-03-01T23:59:59.000Z

390

Exploring the Business Link Opportunity: Transmission & Clean...  

Energy Savers [EERE]

Jennifer Weddle, Greenberg Traurig LLP Rapid Response Team for Transmission: Laura Smith Morton, DOE Energy Storage: Michael Stosser, Day Pitney LLP Centennial West Clean...

391

Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...  

Office of Environmental Management (EM)

Hawaii Clean Energy Initiative Scenario Analysis Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010) R. Braccio, P. Finch, and R. Frazier Booz Allen...

392

MiniCLEAN Dark Matter Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

discrimination of the triplet-to-singlet light ratio. External backgrounds (surface radon progeny and fast neutrons) are rejected by self-shielding and fiducialization. MiniCLEAN...

393

Clean Cities 2009 Petroleum Displacement Awards  

Broader source: Energy.gov (indexed) [DOE]

confidential or otherwise restricted information. Project ID: TI004 Clean Cities 2009 Petroleum Displacement Awards (ARRA & non-ARRA) Mike Scarpino U.S. Department of Energy...

394

Puget Sound Clean Cities Petroleum Reduction Project  

Broader source: Energy.gov (indexed) [DOE]

3 universities, 9 private businesses Overview Puget Sound Clean Cities Coalition Petroleum Reduction Project - DE-EE0002020 Project Objectives: * Reduce petroleum use in the...

395

Clean Cities Now, Vol. 10, No. 3  

SciTech Connect (OSTI)

Newsletter features articles on Clean Cities, such as coalition news, stakeholder success stories, and Technical Assistance projects. Industry news, EPAct updates, and new resources are also covered.

Not Available

2006-07-01T23:59:59.000Z

396

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

397

clean energy manufacturing | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American...

398

National Alternative Fuels Training Consortium (NAFTC) Clean...  

Broader source: Energy.gov (indexed) [DOE]

information. 12 Approach Strategy Clean Cities Coordinators Training - Year 1 Trains coordinators on how to promote first responder training. Presentation Guide provides...

399

Urinary 1-hydroxypyrene concentrations in Chinese coke oven workers relative to job category, respirator usage, and cigarette smoking  

SciTech Connect (OSTI)

1-Hydroxypyrene (1-OHP) is a biomarker of recent exposure to polycyclic aromatic hydrocarbons (PAHs). We investigated whether urinary 1-OHP concentrations in Chinese coke oven workers (COWs) are modulated by job category, respirator usage, and cigarette smoking. The present cross-sectional study measured urinary 1-OHP concentrations in 197 COWs from Coking plant I and 250 COWs from Coking plant II, as well as 220 unexposed referents from Control plant I and 56 referents from Control plant II. Urinary 1-OHP concentrations (geometric mean, {mu}mol/mol creatinine) were 5.18 and 4.21 in workers from Coking plants I and II, respectively. The highest 1-OHP levels in urine were found among topside workers including lidmen, tar chasers, and whistlers. Benchmen had higher 1-OHP levels than other workers at the sideoven. Above 75% of the COWs exceeded the recommended occupational exposure limit of 2.3 {mu}mol/mol creatinine. Respirator usage and increased body mass index (BMI) slightly reduced 1-OHP levels in COWs. Cigarette smoking significantly increased urinary 1-OHP levels in unexposed referents but had no effect in COWs. Chinese COWs, especially topside workers and benchmen, are exposed to high levels of PAHs. Urinary 1-OHP concentrations appear to be modulated by respirator usage and BMI in COWs, as well as by smoking in unexposed referents.

Bo Chen; Yunping Hu; Lixing Zheng; Qiangyi Wang; Yuanfen Zhou; Taiyi Jin [Fudan University, Shanghai (China). School of Public Health

2007-09-15T23:59:59.000Z

400

Renewable Natural Gas Clean-upp Challenges and Applications  

E-Print Network [OSTI]

pproduced from diggesters Animal manure (dairy cows, swine) Waste water treatment facilitiesWaste waterRNG produced from thermal chemical processes like gasification utilizing renewable feed-stocks including forest

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Principal Investigators | Center for Gas SeparationsRelevant to Clean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews &User ServicesRadioPressPrincipalEnergy

402

Researchers | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene OdumTo survey

403

Researchers | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene OdumTo

404

A Hybrid Gas Cleaning Process for Production of Ultraclean Syngas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andA Hollow-Ion

405

Highlights | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal Solar Photovoltaic SolarSwingEducation

406

Leadership | Center for Gas SeparationsRelevant to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenter for Gasheader-leadership Leadership

407

Center for Gas Separations Relevant to Clean Energy Technologies (CGS) |  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S. DOE Office of Science

408

Ultra Clean and Efficient Natural Gas Reciprocating Engine for CHP -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENT ORGANIZATIONS |

409

Alternative Fuels Data Center: Automakers Innovate With Clean Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel

410

What Is Clean Cities? Clean Cities Fact Sheet April 2009 (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

Not Available

2009-04-01T23:59:59.000Z

411

EK131/312: Clean Energy Boston University Fall 2014 College of Engineering  

E-Print Network [OSTI]

. In the process we will learn about different clean energy technologies, learn the physical principles solutions to real world problems. Topics will include batteries, biofuels, biomass, combined heat and power, fuel cells, geothermal, landfill gas, photovoltaics, small hydroelectric, solar cooking, solar thermal

Lin, Xi

412

Apparatus and method for in-situ cleaning of resist outgassing windows  

DOE Patents [OSTI]

An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.

Klebanoff, Leonard E. (San Ramon, CA); Haney, Steven J. (Tracy, CA)

2001-01-01T23:59:59.000Z

413

Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production  

Broader source: Energy.gov [DOE]

A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energy’s National Energy Technology Laboratory

414

New Jersey Clean Energy Resource Network  

E-Print Network [OSTI]

New Jersey Clean Energy Resource Network njcern.rutgers.edu Environment Solid Waste Management (RDF) ·Leachate treatment Brownfield Redevelopment Soil/Water Remediation Technologies Alternative / Clean Energy Technology Development, Demonstration and Verification ·Anaerobic digestion ·Gasification

Garfunkel, Eric

415

The Sixth Power Plan: Toward a Clean  

E-Print Network [OSTI]

The Sixth Power Plan: Toward a Clean Energy Future Council Document 2010-01 February 2010 Apub is eco- nomical and reliable. The Sixth Northwest Power Plan: Toward a Clean Energy Future Improved energy efficiency potential, wind gen- eration is the leading resource in the near term to meet renewable

416

Clean Air Act Requirements: Uranium Mill Tailings  

E-Print Network [OSTI]

EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

417

Inside this Issue Clean Sweep 1  

E-Print Network [OSTI]

(coal, aggregate, ore, etc.) are involved in commercial transactions where current weighing technologyInside this Issue Page Clean Sweep 1 This Month in History 1 Calendar 2 This Month in History on page 4) 1 Volume 2 Issue 5 August 29, 2011 Clean Sweep By John Barton Vast amounts of bulk materials

Perkins, Richard A.

418

Clean Cities 2010 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-10-01T23:59:59.000Z

419

Clean Cities 2011 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-12-01T23:59:59.000Z

420

Converting Waste into Clean Renewable Fuel  

E-Print Network [OSTI]

Converting Waste into Clean Renewable Fuel Presented at TechRealization August 27th, 2008 #12;2 Outline · Introduction to InEnTec · InEnTec's Waste-to-Fuels Technology · Richland Project #12;In conversion options · Conversion of waste into clean transportation fuels (i.e. ethanol, methanol, DME, etc

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Plasma discharge self-cleaning filtration system  

DOE Patents [OSTI]

The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

2014-07-22T23:59:59.000Z

422

CleanFleet. Final report: Volume 7, vehicle emissions  

SciTech Connect (OSTI)

Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

NONE

1995-12-01T23:59:59.000Z

423

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

424

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

425

Natural gas repowering experience  

SciTech Connect (OSTI)

Gas Research Institute has led a variety of projects in the past two years with respect to repowering with natural gas. These activities, including workshops, technology evaluations, and market assessments, have indicated that a significant opportunity for repowering exists. It is obvious that the electric power industry`s restructuring and the actual implementation of environmental regulations from the Clean Air Act Amendments will have significant impact on repowering with respect to timing and ultimate size of the market. This paper summarizes the results and implications of these activities in repowering with natural gas. It first addresses the size of the potential market and discusses some of the significant issues with respect to this market potential. It then provides a perspective on technical options for repowering which are likely to be competitive in the current environment. Finally, it addresses possible actions by the gas industry and GRI to facilitate development of the repowering market.

Bautista, P.J.; Fay, J.M. [Gas Research Institute, Chicago, IL (United States); Gerber, F.B. [BENTEK Energy Research, DeSoto, TX (United States)

1995-12-31T23:59:59.000Z

426

Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels  

Broader source: Energy.gov [DOE]

Gas turbines are commonly used in industry for onsite power and heating needs because of their high efficiency and clean environmental performance. Natural gas is the fuel most frequently used to...

427

E-Print Network 3.0 - allothermal gasification gas- Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the gasifer, could cause... 2002. 13. Hansen, Martin, Gas Cleaning and Gas Engines for Small-Scale Biomass Gasification... , Orlando, Florida, USA NAWTEC18-3521 STATUS OF...

428

Clean and Secure Energy from Coal  

SciTech Connect (OSTI)

The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

2014-08-31T23:59:59.000Z

429

Clean Energy Finance Guide, Chapter 12: Commercial Property-Assessed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Energy Finance Guide 12-1 March 2013 U.S. DEPARTMENT OF ENERGY CLEAN ENERGY FINANCE GUIDE Chapter 12. Commercial Property-Assessed Clean Energy (PACE) Financing Third Edition...

430

Clean-Burning Wood Stove Grant Program (Maryland)  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program...

431

Biomass/Clean Cities State Web Conference - Green Racing | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BiomassClean Cities State Web Conference - Green Racing BiomassClean Cities State Web Conference - Green Racing Transcript of the September 13 BiomassClean Cities Webinar on...

432

Do You Buy Clean Electricity From Your Utility? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean...

433

National Clean Energy Business Plan Competition: Unified Solar...  

Energy Savers [EERE]

Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan Competition: Unified Solar Wins at MIT Clean Energy Prize May 2, 2014 - 11:01am Addthis Unified...

434

Moving to a Clean Energy Economy:Opportunities for Colorado ...  

Broader source: Energy.gov (indexed) [DOE]

Moving to a Clean Energy Economy:Opportunities for Colorado Moving to a Clean Energy Economy:Opportunities for Colorado A report on the ways in which moving towards a clean energy...

435

Direct gas chromatography for the study of substrate removal kinetics in multi-component aqueous systems  

E-Print Network [OSTI]

component analyses of the aqueous solutions were performed by gas chromatography. The instrumentation consisted of' an Aero- graph Hy-Fi Model 550 gas chromatograph oven utilizing a hydrogen flame ionization detector. The detector was con- trolled... BY GAS CHROMATOGRAPHY, CHEMICAL OXYGEN DEMAND AND BIOCHEMICAL OXYGEN DEMAND Time Total Expected Measured R COD BOD Organics COD COD rrMn nEn mg. /1. nE'r mg. /1. nMn mg. /1. mg. /1. mg. /1. Control Hr 280 604- 225. 6 536 633 +29- 278 543 + 7 1...

Langley, William Douglas

1966-01-01T23:59:59.000Z

436

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

437

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

438

U.S. Department of Energy clean cities five-year strategic plan.  

SciTech Connect (OSTI)

Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the national and local levels of Clean Cities over the next five years. The plan recognizes the need for flexibility and sets out a strategic direction that will build on the progress of current technologies and new opportunities presented in emerging fuels and technologies, such as hydrogen and fuel cells, as well as new niche markets such as off-road applications that build additional throughput at existing alternative fuel stations.

Cambridge Concord Associates

2011-02-15T23:59:59.000Z

439

Midwest Clean Energy Application Center  

SciTech Connect (OSTI)

The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: ? Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. ? Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. ? Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

Cuttica, John; Haefke, Cliff

2013-12-31T23:59:59.000Z

440

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

442

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

443

Energy Department Report Finds Major Potential to Increase Clean...  

Energy Savers [EERE]

Department Report Finds Major Potential to Increase Clean Hydroelectric Power Energy Department Report Finds Major Potential to Increase Clean Hydroelectric Power April 17, 2012 -...

444

Commercial Property Assessed Clean Energy (PACE) Primer | Department...  

Broader source: Energy.gov (indexed) [DOE]

Commercial Property Assessed Clean Energy (PACE) Primer Commercial Property Assessed Clean Energy (PACE) Primer An overview of Commercial PACE programs, featuring an explanation of...

445

Introduction to Property-Assessed Clean Energy (PACE) Financing...  

Broader source: Energy.gov (indexed) [DOE]

Introduction to Property-Assessed Clean Energy (PACE) Financing Programs Introduction to Property-Assessed Clean Energy (PACE) Financing Programs Provides information on financing...

446

Making it Easier to Complete Clean Energy Projects with Qualified...  

Broader source: Energy.gov (indexed) [DOE]

Making it Easier to Complete Clean Energy Projects with Qualified Energy Conservation Bonds (QECBs) Making it Easier to Complete Clean Energy Projects with Qualified Energy...

447

Switch on Clean Energy Activity Book | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Switch on Clean Energy Activity Book Switch on Clean Energy Activity Book Games and activity book about energy efficiency and renewable energy technologies for kids....

448

Clean Air Act General Conformity Requirements and the National...  

Broader source: Energy.gov (indexed) [DOE]

Clean Air Act General Conformity Requirements and the National Environmental Policy Act Process Clean Air Act General Conformity Requirements and the National Environmental Policy...

449

Clean Cities Now, Vol. 12, No. 2 - May 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-05-01T23:59:59.000Z

450

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable...  

Energy Savers [EERE]

Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New CREBs) Qualified Energy Conservation Bonds (QECBs) & New Clean Renewable Energy Bonds (New...

451

Clean Cities Now, Vol. 13, No.1 - February 2009 (Brochure)  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2009-02-01T23:59:59.000Z

452

Structuring Credit Enhancements for Clean Energy Finance Programs...  

Broader source: Energy.gov (indexed) [DOE]

Structuring Credit Enhancements for Clean Energy Finance Programs (Text Version) Structuring Credit Enhancements for Clean Energy Finance Programs (Text Version) Below is a text...

453

Application Periods Open for 2014 National Clean Energy Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application Periods Open for 2014 National Clean Energy Business Plan Competition's Regional Contests Application Periods Open for 2014 National Clean Energy Business Plan...

454

National Clean Energy Business Plan Competition - EERE Commercializati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Clean Energy Business Plan Competition Learn more about the Department of Energy's National Clean Energy Business Plan Competition structure, past finalists, and past...

455

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...  

Office of Environmental Management (EM)

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable...

456

State of Washington Clean Energy Opportunity: Technical Market...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

457

ITP Distributed Energy: State of Washington Clean Energy Opportunity...  

Broader source: Energy.gov (indexed) [DOE]

potential including clean heat and power (CHP)cogeneration, waste heat recovery for power and heat, and district energy. This brief white paper by the Northwest Clean Energy...

458

Guide to Federal Financing for Energy Efficiency and Clean Energy...  

Energy Savers [EERE]

Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Guide to Federal Financing for Energy Efficiency and Clean Energy Deployment Editor's note: This guide...

459

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program...

460

EIS-0444: Texas Clean Energy Project (TCEP), Ector County, Texas...  

Office of Environmental Management (EM)

Clean Energy, LLC for the proposed Texas Clean Energy Project. The Project would use coal-based integrated gasification combined-cycle technology to generate electricity and...

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

How This Administration's Clean Energy Tax Policies are Improving...  

Broader source: Energy.gov (indexed) [DOE]

How This Administration's Clean Energy Tax Policies are Improving the Markets How This Administration's Clean Energy Tax Policies are Improving the Markets October 19, 2010 -...

462

Funding: Future Clean Cities Solicitation and EISA Section 244  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding: Funding: Future Clean Cities Solicitation and Future Clean Cities Solicitation and EISA Section 244 EISA Section 244 Linda Bluestein Linda Bluestein Co Co - - Director...

463

States Biomass/Clean Cities Information Exchange: Food and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Cities Information Exchange: Food and Fuel At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Roya Stanley (Iowa Office of...

464

Energy Department Announces $3 Million to Support Clean Energy...  

Energy Savers [EERE]

Energy Department Announces 3 Million to Support Clean Energy Businesses and Entrepreneurs Energy Department Announces 3 Million to Support Clean Energy Businesses and...

465

Challenging Conventional Wisdom: A Clean and Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston Two-Stroke Engine Challenging Conventional Wisdom: A Clean and Highly Efficient Opposed-Piston...

466

Department of Energy Quadrennial Technology Review Clean Electricity...  

Energy Savers [EERE]

Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the...

467

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

468

Clean Cities Now, Vol. 11, No. 2 - April 2007  

SciTech Connect (OSTI)

Clean Cities Now is the official publication of the Clean Cities initiative. Articles include program-specific news, coalition news, industry news, and more.

Not Available

2007-04-01T23:59:59.000Z

469

Clean Cities Now, Vol. 12, No. 3 - July 2008  

SciTech Connect (OSTI)

Clean Cities Now is the official newsletter of DOE's Clean Cities program. It includes articles on coalition activities, fleet and stakeholder success stories, and helpful resources.

Not Available

2008-07-01T23:59:59.000Z

470

Investing in Clean, Safe Nuclear Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Investing in Clean, Safe Nuclear Energy Investing in Clean, Safe Nuclear Energy Addthis Description President Obama announces more than 8 billion in loan guarantees for two new...

471

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

472

Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Clean Diesel (HTCD) Program: 2007 Demonstration Truck Heavy Truck Clean Diesel (HTCD) Program: 2007 Demonstration Truck 2003 DEER Conference Presentation: Caterpillar Incorporated...

473

SEP Success Story: "Green Launching Pad" Supports Clean Energy...  

Office of Environmental Management (EM)

SEP Success Story: "Green Launching Pad" Supports Clean Energy Small Businesses SEP Success Story: "Green Launching Pad" Supports Clean Energy Small Businesses May 24, 2012 -...

474

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

475

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy,...

476

Energy Department Launches Web Tool to Explore Pathways to Clean...  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Launches Web Tool to Explore Pathways to Clean Energy Economy Energy Department Launches Web Tool to Explore Pathways to Clean Energy Economy January 15, 2013 -...

477

Quarterly Biomass Program/Clean Cities State Web Conference:...  

Broader source: Energy.gov (indexed) [DOE]

feraci.pdf More Documents & Publications Quarterly Biomass ProgramClean Cities State Web Conference: May 6, 2010 Quarterly Biomass ProgramClean Cities State Web Conference: May...

478

Quarterly Biomass Program/Clean Cities States Web Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 Presentation from the...

479

Energy Secretary Moniz Dedicates Clean Energy Research Center...  

Office of Environmental Management (EM)

Energy Secretary Moniz Dedicates Clean Energy Research Center, New Supercomputer Energy Secretary Moniz Dedicates Clean Energy Research Center, New Supercomputer September 11, 2013...

480

Energy Department Awards $5 Million to Spur Local Clean Energy...  

Broader source: Energy.gov (indexed) [DOE]

5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014 -...

Note: This page contains sample records for the topic "oven gas cleaning" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Study of Surface Cleaning Methods and Pyrolysis Temperature on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface Cleaning Methods and Pyrolysis Temperature on Nano-Structured Carbon Films using X-ray Photoelectron Study of Surface Cleaning Methods and Pyrolysis Temperature on...

482

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

483

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

484

Computationally Efficient Modeling of High-Efficiency Clean Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

485

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

486

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

information. DOE Vehicle Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Robin Erickson, Executive Director Utah Clean Cities...

487

Fact #663: February 21, 2011 Clean Cities Program Petroleum Displaceme...  

Energy Savers [EERE]

3: February 21, 2011 Clean Cities Program Petroleum Displacement Estimates for 2009 Fact 663: February 21, 2011 Clean Cities Program Petroleum Displacement Estimates for 2009 Each...

488

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

489

Low Temperature Combustion Demonstrator for High Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

490

Low-Temperature Combustion Demonstrator for High-Efficiency Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

491

Energy Department to Help Tribes Advance Clean Energy Projects...  

Office of Environmental Management (EM)

Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency Energy Department to Help Tribes Advance Clean Energy Projects and Increase Resiliency...

492

adopt clean technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

then his personal information must Walden, Eric 10 Energy Systems Engineering 1 Clean Coal Technologies Renewable Energy Websites Summary: Energy Systems Engineering 1 Clean...

493

Secretary of Energy and Rep. Chabot Highlight Clean Coal and...  

Broader source: Energy.gov (indexed) [DOE]

and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research...

494

Clean Coal Technology Demonstration Program. Program update 1995  

SciTech Connect (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

495

abundant efficient clean: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Websites Summary: for India & US) workshop--December 8, 2012. Clean Coal Technology Projects updates on Consortium for Clean4th International Symposium on...

496

FACT SHEET: Clean Coal University Research Awards and Project...  

Energy Savers [EERE]

FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's...

497

High-Efficiency Clean Combustion Engine Designs for Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines High-Efficiency Clean Combustion Engine Designs for Compression Ignition Engines Presentation from...

498

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

499

Technology Development for High Efficiency Clean Diesel Engines...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a...

500

Energy Saver Heroes: Clean Cities Coordinators | Department of...  

Broader source: Energy.gov (indexed) [DOE]

new meaning when considering the coalition coordinators of EERE's Clean Cities program. Clean Cities, the deployment arm of EERE's Vehicle Technology Program, works to support...