National Library of Energy BETA

Sample records for outstanding mechanical properties

  1. recognition for outstanding lifetime achievement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recognition for outstanding lifetime achievement - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  2. Mechanical properties and tribological behavior of contaminate...

    Office of Scientific and Technical Information (OSTI)

    behavior of contaminate nanoparticles on micromachined surfaces. Citation Details In-Document Search Title: Mechanical properties and tribological behavior of ...

  3. Microstructure and Thermoelectric Properties of Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties similar to PbTe itself but with improved mechanical properties. Doping optimization was performed using PbI2 as an n-type dopant giving precise control of the...

  4. Enhancement of mechanical properties of 123 superconductors

    DOE Patents [OSTI]

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  5. Enhancement of mechanical properties of 123 superconductors

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL)

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  6. Formation mechanical properties and the sonic log

    SciTech Connect (OSTI)

    Elphick, R.Y.

    1988-11-01

    A program is presented that calculates the mechanical properties of reservoir rocks from sonic logs. The program was written in Microsoft BASIC and the source code for MS-DOS, Apple Macintosh, and Amiga personal computers is given.

  7. Mechanical properties and tribological behavior of contaminate

    Office of Scientific and Technical Information (OSTI)

    nanoparticles on micromachined surfaces. (Conference) | SciTech Connect Mechanical properties and tribological behavior of contaminate nanoparticles on micromachined surfaces. Citation Details In-Document Search Title: Mechanical properties and tribological behavior of contaminate nanoparticles on micromachined surfaces. No abstract prepared. Authors: DelRio, Frank W. [1] ; Dunn, Martin L. [1] ; de Boer, Maarten Pieter ; Boyce, Brad Lee + Show Author Affiliations (University of Colorado,

  8. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect (OSTI)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  9. Awards recognize outstanding LANL Tech Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outstanding Tech Transfer awards Awards recognize outstanding LANL Tech Transfer Awards were given for distinguished accomplishments in patenting, copyright, licensing, programmatic impact, and regional impact during fiscal year 2009. August 23, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  10. Breakthrough Time and Mechanical Properties of Edge Sealing in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough Time and Mechanical Properties of Edge Sealing in Different Environmental Conditions Breakthrough Time and Mechanical Properties of Edge Sealing in Different...

  11. Property:FluidMechanicsMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Property Name FluidMechanicsMeasurement Property Type String Description MHK Fluid Mechanics Measurement Categories Used in FormTemplate MHKSensor Allows Values Differential...

  12. Influence of Mechanical Properties Relevant to Standoff Deflection...

    Office of Scientific and Technical Information (OSTI)

    Influence of Mechanical Properties Relevant to Standoff Deflection of Hazardous Asteroids Citation Details In-Document Search Title: Influence of Mechanical Properties Relevant to...

  13. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Radiation-induced mechanical property changes in filled rubber Citation Details In-Document Search Title: Radiation-induced mechanical property changes in filled rubber Authors:...

  14. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  15. Christine Anderson-Cook: An outstanding New Mexico woman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Christine Anderson-Cook: An outstanding New Mexico woman Christine Anderson-Cook: an outstanding New Mexico woman Cook recognized for her technical leadership in statistics,...

  16. Mechanical Properties of Aerogels. Final Report

    SciTech Connect (OSTI)

    Parmenter, K.E.; Milstein, F.

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels` mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels` mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests.

  17. Production of Ni-Cr-Ti-natural fibres composite and investigation of mechanical properties

    SciTech Connect (OSTI)

    Pesmen, G.; Erol, A.

    2015-03-30

    Intermetallic materials such as Ni{sub 2}Ti, Cr{sub 2}Ti are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of (%50Ni-%48Cr-%2Ti)-%10Naturel Fibres and (%64Ni-%32Cr-%4Ti)-%10Naturel Fibres powders were investigated using specimens produced by tube furnace sintering at 1000-1200-1400C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and Ni have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition (%64Ni-%32Cr-%4Ti)-%10Naturel at 1400C suggest that the best properties as 112.09HV and 5,422g/cm{sup 3} density were obtained at 1400C.

  18. Facility Representative Program Outstanding at ID

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 19, 2007 Facility Representative Program Outstanding at ID Idaho's three DOE Complex-wide Facility Representative of the Year (FROTY) recipients at this year's conference pose for a photo shoot with Elvis. L to R: Dary Newbry 2005 FROTY, Bob Seal 2006 FROTY, Bob Knighten 2004 FROTY Facility representatives (FRs) are the eyes and ears of the federal government at the Idaho National Laboratory. They oversee the people, processes, facilities and systems that ensure safety at INL facilities.

  19. Properties of a solar alumina-borosilicate sheet glass

    SciTech Connect (OSTI)

    Coyle, R.T.; Lind, M.A.; Shelby, J.E.; Vitko, J.; Shoemaker, A.F.

    1980-01-01

    Solar energy applications place unique requirements on sheet glass including very low solar absorption, outstanding stability of absorption in the outdoor environment, low cost, and elastic formability for making concentrating mirrors. The Solar Energy Research Institute and Corning Glass Works have developed a new solar sheet glass. In evaluations reported the new glass has shown outstanding chemical durability and optical and mechanical properties.

  20. OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED...

    Office of Scientific and Technical Information (OSTI)

    POLISHED AND AIR-EQUILIBRATED 111 UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY Citation Details In-Document Search Title: OPTICAL PROPERTIES OF A MECHANICALLY...

  1. Crystallization and Mechanical Properties of Poly(l-lactide)...

    Office of Scientific and Technical Information (OSTI)

    Crystallization and Mechanical Properties of Poly(l-lactide)-Based RubberySemicrystalline Multiblock Copolymers Citation Details In-Document Search Title: Crystallization and...

  2. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    SciTech Connect (OSTI)

    Adibi, Sara [Institute of High Performance Computing, A*STAR, 138632 Singapore (Singapore); Mechanical Engineering Department, National University of Singapore, 117576 Singapore (Singapore); Branicio, Paulo S., E-mail: branicio@ihpc.a-star.edu.sg; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 Singapore (Singapore); Joshi, Shailendra P., E-mail: Shailendra@nus.edu.sg [Mechanical Engineering Department, National University of Singapore, 117576 Singapore (Singapore)

    2014-07-28

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15?nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5?nm for Cu{sub 36}Zr{sub 64} and 3?nm for Cu{sub 64}Zr{sub 36}. The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu{sub 36}Zr{sub 64} yield/flow stress: 2.54?GPa/1.29?GPa and Cu{sub 64}Zr{sub 36} yield/flow stress: 3.57?GPa /1.58?GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  3. Vehicle Technologies Office Recognizes Outstanding Researchers and Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Recognizes Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am Addthis At its Annual Merit Review in Arlington, VA, the Department of Energy's (DOE) Vehicle Technologies Office recently recognized some of its most outstanding performers involved in research, development, and deployment of efficient and sustainable highway transportation technologies. The Vehicle Technologies Office

  4. Energy Department Lab Researcher Wins HENAAC Award for Outstanding

    Office of Environmental Management (EM)

    Achievement | Department of Energy Lab Researcher Wins HENAAC Award for Outstanding Achievement Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement September 8, 2015 - 9:17am Addthis Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement The National Energy Technology Laboratory's (NETL's) Nicolas Huerta has been honored as a Great Minds in STEM(tm) Luminary Honoree by the Hispanic Engineer National Achievement Awards Corporation (HENAAC).

  5. Two locals named among Virginia's outstanding scientists (The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginian-Pilot) | Jefferson Lab hamptonroads.com/2011/01/two-locals-named-among-virginias-outstanding-scientists Submitted: Wednesday, January 26

  6. NREL Staff Recognized by DOE for Outstanding Achievements | Awards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    areas. This year, the Hydrogen and Fuel Cells Program honored four National Renewable Energy Laboratory (NREL) staff for their outstanding achievements. See the full list of...

  7. Nevada Field Office recognized for its outstanding aviation program...

    National Nuclear Security Administration (NNSA)

    Award. His outstanding management and leadership skills created a safe and efficient work environment, as well as ensured all maintenance technicians were well trained and...

  8. New Mexico Small Business Assistance Program to recognize outstanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation celebration New Mexico Small Business Assistance Program to recognize outstanding companies at Innovation Celebration Nine companies that participated in the program in...

  9. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect (OSTI)

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  10. Influence of Mechanical Properties Relevant to Standoff Deflection of

    Office of Scientific and Technical Information (OSTI)

    Hazardous Asteroids (Conference) | SciTech Connect Influence of Mechanical Properties Relevant to Standoff Deflection of Hazardous Asteroids Citation Details In-Document Search Title: Influence of Mechanical Properties Relevant to Standoff Deflection of Hazardous Asteroids Authors: Lomov, I ; Herbold, E B ; Antoun, T H ; Miller, P Publication Date: 2012-06-04 OSTI Identifier: 1077193 Report Number(s): LLNL-PROC-559642 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource

  11. Stainless steel 304 cladding mechanical properties and limitations during

    Office of Scientific and Technical Information (OSTI)

    steady state operation of U-ZrH TRIGA type fuel. (Conference) | SciTech Connect Stainless steel 304 cladding mechanical properties and limitations during steady state operation of U-ZrH TRIGA type fuel. Citation Details In-Document Search Title: Stainless steel 304 cladding mechanical properties and limitations during steady state operation of U-ZrH TRIGA type fuel. No abstract prepared. Authors: Coats, Richard Lee ; Dohner, Jeffrey Lynn ; Dahl, James J. ; Walker, Sharon Ann ; Greutman,

  12. Mechanical properties and energy absorption characteristics of a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    polyurethane foam (Technical Report) | SciTech Connect Mechanical properties and energy absorption characteristics of a polyurethane foam Citation Details In-Document Search Title: Mechanical properties and energy absorption characteristics of a polyurethane foam × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  13. Breakthrough Time and Mechanical Properties of Edge Sealing in Different

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Conditions | Department of Energy Breakthrough Time and Mechanical Properties of Edge Sealing in Different Environmental Conditions Breakthrough Time and Mechanical Properties of Edge Sealing in Different Environmental Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_saes_bonucci.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado A

  14. Hydrogen and Fuel Cell Mentors Honored as Outstanding | Awards...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Mentors Honored as Outstanding June 5, 2015 Photo of two women and one man posing for a photo in front of a scientific poster. (Left to Right) Huyen Dinh,...

  15. Sandia Energy - Sandian Selected for Outstanding Young Engineer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award The Albuquerque Section of the Institute of Electrical and Electronics Engineers (IEEE) has selected Dr. Jose Luis Cruz-Campa as the recipient of the 2014 Outstanding Young...

  16. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For more information contact: e:mail: Public Affairs Golden, Colo., May 2, 1997 -- Tracy Swedlund, biology teacher at Centauri High School in LaJara, was selected as Colorado's 1997 Outstanding Biology Teacher and will be recognized by the National Association of Biology Teachers (NABT). NABT honors exemplary biology and life science middle and high school educators nationwide. Criteria include teaching

  17. Jefferson Lab recognizes its Outstanding Small Business Contractor for FY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 | Jefferson Lab Sharon Harrah (center), owner of Triad Machine Shop located in Newport News, Va., receives the award plaque from JLab Director Christoph Leemann (right). Harrah is accompanied by her husband, Ed. Jefferson Lab recognizes its Outstanding Small Business Contractor for FY 2003 April 15, 2004 The Department of Energy's Jefferson Lab recognized a local, woman-owned machine shop recently as its Outstanding Small Business Contractor for fiscal year 2003. Triad Machine Shop was

  18. President Obama Named 13 Energy Department Scientists for Outstanding Early

    Energy Savers [EERE]

    Career Award | Department of Energy Named 13 Energy Department Scientists for Outstanding Early Career Award President Obama Named 13 Energy Department Scientists for Outstanding Early Career Award July 26, 2012 - 11:12am Addthis President Obama today named 96 researchers as recipients of the Presidential Early Career Awards for Scientists and Engineers, the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their

  19. Method of predicting mechanical properties of decayed wood

    DOE Patents [OSTI]

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  20. Radiation-induced mechanical property changes in filled rubber (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Radiation-induced mechanical property changes in filled rubber Citation Details In-Document Search Title: Radiation-induced mechanical property changes in filled rubber Authors: Maiti, A ; Weisgraber, T H ; Gee, R H ; Small, W ; Alviso, C T ; Chinn, S C ; Maxwell, R S Publication Date: 2011-04-15 OSTI Identifier: 1227007 Report Number(s): LLNL-JRNL-481283 DOE Contract Number: AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Physical

  1. Mechanical and Elastic Property Evaluation of n- and p-type Skutterudi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical and Elastic Property Evaluation of n- and p-type Skutterudites This talk discusses the mechanical and elastic properties of skutterudites and the steps used to...

  2. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect (OSTI)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  3. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect (OSTI)

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: The adoption of the SDMT for the measurements of MSW properties is proposed. A comparison between SDMT results and laboratory tests was carried out. A good reliability has been found in deriving waste properties by SDMT. Results seems to be promising for the friction angle and Youngs modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the Cozzo Vuturo landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for fresh and degraded waste have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  4. Energy Department Lab Researcher Wins HENAAC Award for Outstanding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achievement | Department of Energy Lab Researcher Wins HENAAC Award for Outstanding Achievement Energy Department Lab Researcher Wins HENAAC Award for Outstanding Achievement August 15, 2012 - 2:54pm Addthis AlexÂ-andra “Ale” Hakala is an award-winning geoscientist at DOE’s National Energy Technology Laboratory. | Photo from the National Energy Technology Laboratory. Alex-andra "Ale" Hakala is an award-winning geoscientist at DOE's National Energy Technology

  5. WIPP Security Force Recognized for Outstanding Safety | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy WIPP Security Force Recognized for Outstanding Safety WIPP Security Force Recognized for Outstanding Safety May 9, 2013 - 12:00pm Addthis U.S. Department of Energy Carlsbad Field Office Manager Joe Franco (right) presents the Star of Excellence Award to Security Walls, LLC Manager Richard De Los Santos. U.S. Department of Energy Carlsbad Field Office Manager Joe Franco (right) presents the Star of Excellence Award to Security Walls, LLC Manager Richard De Los Santos. Media Contact Deb

  6. Energy Secretary Honors EM Employee for Outstanding Safety Oversight |

    Office of Environmental Management (EM)

    Department of Energy Honors EM Employee for Outstanding Safety Oversight Energy Secretary Honors EM Employee for Outstanding Safety Oversight September 30, 2014 - 12:00pm Addthis Energy Secretary Ernest Moniz, center, recently honored EM employee Robert (Dennis) Yates from the Savannah River Operations Office, right, as DOE’s Facility Representative of the Year for 2013. Also pictured is Yates’ wife, Deanna, who works in the Office of Human Capital Management at the Savannah River

  7. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect (OSTI)

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  8. NSC nears move completion with outstanding safety record | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration nears move completion with outstanding safety record | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  9. Y-12 recognized for outstanding procurement stewardship | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration recognized for outstanding procurement stewardship | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases

  10. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect (OSTI)

    Reed, R. P. [Cryogenic Materials, Inc., Boulder, CO 80305 (United States); Madhukar, M.; Thaicharoenporn, B. [Magnet Development Laboratory, Knoxville, TN 37996 (United States); Martovetsky, N. N. [US-ITER Project, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  11. Electronic, mechanical and dielectric properties of silicane under tensile strain

    SciTech Connect (OSTI)

    Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  12. Y-12 National Security Complex recognized for outstanding procurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stewardship | Y-12 National Security Complex National Security ... Y-12 National Security Complex recognized for outstanding procurement stewardship Posted: June 19, 2014 - 4:24pm The Y-12 National Security Complex recently was recognized by the National Nuclear Security Administration for achieving the highest savings rate for fiscal year 2013 in the NNSA complex. At the Supply Chain Management Center biannual operational meeting in April, NNSA presented Y-12 Procurement Operations with the

  13. NREL Researcher Recognized for Outstanding Achievement by Hispanic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Organization - News Releases | NREL Researcher Recognized for Outstanding Achievement by Hispanic Engineers Organization July 26, 2005 Golden, Colo. - Dr. Maria Ghirardi, a researcher at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), was named one of the nation's best and brightest engineers and scientists by the Hispanic Engineers National Achievement Awards Corporation (HENAAC) today. Ghirardi's research has helped position NREL as the world's

  14. DOE Science Showcase - "PECASE: Outstanding early career research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    honored" | OSTI, US Dept of Energy, Office of Scientific and Technical Information "PECASE: Outstanding early career research honored" Energy Department Scientists & Engineers Honored with Presidential Early Career Awards PECASE award ceremony DOE recently recognized the following scientists and engineers at the outset of their independent research careers: Dillon Fong and Elena V. Shevchenko of Argonne National Laboratory Find Dillon Fong's research in the Energy

  15. Mechanical properties of niobium radio-frequency cavities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  16. Mechanical properties of niobium radio-frequency cavities

    SciTech Connect (OSTI)

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao; Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W.

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.

  17. Thermo-Mechanical Processing and Properties of a Ductile Iron

    SciTech Connect (OSTI)

    Syn, C.K.; Lesuer, R.R.; Sherby, O.D.

    1997-07-14

    Thermo-mechanical processing of ductile irons is a potential method for enhancing their mechanical properties. A ductile cast iron containing 3.6% C, 2.6% Si and 0.045% Mg was continuously hot-and-warm rolled or one-step press-forged from a temperature in the austenite range (900{degrees}C-1100{degrees}C) to a temperature below the A, temperature. Various amounts of reduction were used (from 60% to more than 90%) followed by a short heat ent at 600`C. The heat ent lead to a structure of fine graphite in a matrix of ferrite and carbides. The hot-and- warm worked materials developed a pearlitic microstructure while the press-forged material developed a spheroidite-like carbide microstructure in the matrix. Cementite-denuded ferrite zones were developed around graphite stringers in the hot-and-warm worked materials, but such zones were absent in the press-forged material. Tensile properties including tensile strength and total elongation were measured along the direction parallel and transverse to the rolling direction and along the direction transverse to the press-forging direction. The tensile ductility and strength both increased with a decrease in the amount of hot-and-warm working. The press- forged materials showed higher strength (645 MPa) than the hot-and-warrn worked materials (575 MPa) when compared at the same ductility level (22% elongation).

  18. Mechanical Properties of Gels; Stress from Confined Fluids

    SciTech Connect (OSTI)

    George W. Scherer

    2009-12-01

    Abstract for Grant DE-FG02-97ER45642 Period: 1997-2002 Mechanical Properties of Gels 2002-2008 Stress from Confined Fluids Principal investigator: Prof. George W. Scherer Dept. Civil & Env. Eng./PRISM Eng. Quad. E-319 Princeton, NJ 08544 USA Recipient organization: Trustees of Princeton University 4 New South Princeton, NJ 08544 USA Abstract: The initial stage of this project, entitled Mechanical Properties of Gels, was dedicated to characterizing and explaining the properties of inorganic gels. Such materials, made by sol-gel processing, are of interest for fabrication of films, fibers, optical devices, advanced insulation and other uses. However, their poor mechanical properties are an impediment in some applications, so understanding the origin of these properties could lead to enhanced performance. Novel experimental methods were developed and applied to measure the stiffness and permeability of gels and aerogels. Numerical simulations were developed to reproduce the growth process of the gels, resulting in structures whose mechanical properties matched the measurements. The models showed that the gels are formed by the growth of relatively robust clusters of molecules that are joined by tenuous links whose compliance compromises the stiffness of the structure. Therefore, synthetic methods that enhance the links could significantly increase the rigidity of such gels. The next stage of the project focused on Stress from Confined Fluids. The first problem of interest was the enhanced thermal expansion coefficient of water that we measured in the nanometric pores of cement paste. This could have a deleterious effect on the resistance of concrete to rapid heating in fires, because the excessive thermal expansion of water in the pores of the concrete could lead to spalling and collapse. A series of experiments demonstrated that the expansion of water increases as the pore size decreases. To explain this behavior, we undertook a collaboration with Prof. Stephen Garofalini (Rutgers), who has developed the best simulations of water ever reported by use of molecular dynamics. Simulated heating of water in small pores provided quantitative agreement with experiments, and showed that the origin of the high expansion is the altered structure of water in the first two molecular layers adjacent to the pore wall. The final focus of the project was to understand the damage done by crystals growing in small pores. For example, the primary cause of damage to ancient monuments in the Mediterranean Basin is growth of salt crystals in the pores of the stone. Salt may enter stone as a result of capillary rise of groundwater, by leaching of mortar joints, deposition of marine spray, or reactions with atmospheric pollutants (such as oxides of nitrogen or sulfur). As the water evaporates, the salt solution becomes supersaturated and crystals precipitate. Stress results, because the salt usually repels the minerals in the pore walls. Our goal was to identify the factors contributing to the repulsion, so that we could develop a chemical treatment to reduce the repulsion and hence the stress. (We have recently demonstrated an effective treatment as part of a separately funded study.) In collaboration with Prof. Garofalini, molecular dynamics simulations have been done that correctly reproduce the structure of water around dissolved ions of sodium and chloride. We simulated the interaction between crystals of sodium chloride and quartz, and found that this particular system exhibits attractive forces, in agreement with experiment. The origin of the attraction is the orientation of dipolar water molecules near the surfaces of the crystals. Similar calculations now must be done in systems, such as potassium chloride and quartz, where the interaction is repulsive. This grant supported the education of two doctoral students, Hang-Shing Ma (Ph.D., 2002) and Melanie Webb (Ph.D. expected 2010), three post-doctoral researchers, Joachim Gross, Gudrun Reichenauer, and Shuangyan (Sonia) Xu, and five undergraduates (for senior theses or independent projects

  19. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  20. Mechanical properties and modeling of seal-forming lithologies

    SciTech Connect (OSTI)

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Mazariegos, R.; Ibanez, W.

    1993-01-01

    Specific goals and accomplishments of this research include: (1) The evaluation of models of salt diaper ascent that involve either power law, dislocation creep as determined experimentally by Horseman et al. (1993) or linear, fluid-assisted creep as reported by Spiers et al. (1988, 1990, 1992). We have compared models assuming these two, experimentally evaluated flow laws and examined the predictions they make regarding diaper incubation periods, ascent velocities, deviatoric stresses and strain rates. (2) The evaluation of the effects of differential loading on the initiation an of salt structures. (3) Examination of the role of basement faults on the initiation and morphologic evolution of salt structures. (4) Evaluation of the mechanical properties of shale as a function of pressure and determination of the nature of its brittle-ductile transition. (5) Evaluation of the mechanical anisotropies of shales with varying concentrations, distributions and preferred orientations of clay. (6) The determination of temperature and ratedependencies of strength for a shale constitutive model that can be used in numerical models that depend on viscous formulations. (7) Determination of the mechanisms of deformation for argillaceous rocks over awide range of conditions. (8) Evaluation of the effects of H[sub 2]O within clay interlayers, as adsorbed surface layers.

  1. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    SciTech Connect (OSTI)

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. The glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.

  2. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect (OSTI)

    Sayuti, M. [Faculty of Engineering, Malikussaleh University of Lhokseumawe, 24300 Aceh (Indonesia); Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A. [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  3. Mechanical properties and energy absorption characteristics of a polyurethane foam

    SciTech Connect (OSTI)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  4. JLab Nuclear Theorist earns Virginia Outstanding Scientist of 2004 Award |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Nucleons are composed of a collection of quarks and gluons. Here is an artist's conception of a nucleon illustrated as its three basic quarks surrounded by a sea of quarks and gluons. GPDs will allow physicists to form a much clearer picture of the internal structure of a fast-moving nucleon - a snapshot of this structure at one instant in time. JLab Nuclear Theorist earns Virginia Outstanding Scientist of 2004 Award February 24, 2004 Anatoly Radyushkin, a jointly appointed

  5. Mechanical Properties of Unreinforced Brick Masonry, Section1

    SciTech Connect (OSTI)

    Mosalam, K; Glascoe, L; Bernier, J

    2009-10-02

    Before the advent of concrete and steel, masonry helped build civilizations. From Egypt in Africa, Rome in Europe, Maya in the America to China in Asia, masonry was exploited to construct the most significant, magnificent and long lasting structures on the Earth. Looking at the Egyptian pyramids, Mayan temples, Roman coliseum and Chinese Great Wall, one cannot stop wondering about the significance and popularity that masonry has had through out history. Lourenco et al (1989) summed up the reasons for the popularity of masonry in the following, 'The most important characteristic of masonry construction is its simplicity. Laying pieces of stone or bricks on top of each other, either with or without cohesion via mortar, is a simple, though adequate, technique that has been successful ever since remote ages. Other important characteristics are the aesthetics, solidity, durability, low maintenance, versatility, sound absorption and fire protection' Despite these advantages, masonry is no longer preferred structural material in many parts of the developed world, especially in seismically active parts of the world. Partly, masonry and especially unreinforced masonry (URM) has mechanical properties such as strength and ductility inferior to those of reinforced concrete and steel. Moreover, masonry structures were traditionally built based on rules of thumb acquired over many years of practice and/or empirical data from testing. Accordingly, we do not have a rigorous and uniform method of analysis and design for masonry. Nevertheless, the world still possesses numerous historic and ordinary masonry structures, which require maintenance and strengthening to combat the assault of time and nature. Hence, it is important to study fundamental properties of masonry so that new masonry structures can be effectively designed and built, and the cost for servicing old structures and for building new ones will be less expensive.

  6. MECHANICAL PROPERTY CHARACTERIZATIONS AND PERFORMANCE MODELING OF SOFC SEALS

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Vetrano, John S.; Nguyen, Ba Nghiep; Sun, Xin; Khaleel, Mohammad A.

    2008-03-26

    This study provides modeling tools for the design of reliable seals for SOFC stacks. The work consists of 1) experimental testing to determine fundamental properties of SOFC sealing materials, and 2) numerical modeling of stacks and sealing systems. The material tests capture relevant temperature-dependent physical and mechanical data needed by the analytical models such as thermal expansion, strength, fracture toughness, and relaxation behavior for glass-ceramic seals and other materials. Testing has been performed on both homogenous specimens and multiple material assemblies to investigate the effect of interfacial reactions. A viscoelastic continuum damage model for a glass-ceramic seal was developed to capture the nonlinear behavior of this material at high temperatures. This model was implemented in the MSC MARC finite element code and was used for a detailed analysis of a planar SOFC stack under thermal cycling conditions. Realistic thermal loads for the stack were obtained using PNNLs in-house multiphysics solver. The accumulated seal damage and component stresses were evaluated for multiple thermal loading cycles, and regions of high seal damage susceptible to cracking were identified. Selected test results, numerical model development, and analysis results will be presented.

  7. Mechanical and Elastic Property Evaluation of n- and p-type Skutterudites |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Elastic Property Evaluation of n- and p-type Skutterudites Mechanical and Elastic Property Evaluation of n- and p-type Skutterudites This talk discusses the mechanical and elastic properties of skutterudites and the steps used to obtain them - discussing results in terms of module design and durability under operation. PDF icon salvador.pdf More Documents & Publications Thermoelectric Mechanical Reliability Evaluation of Thermal to Electrical Energy Conversion of

  8. Role of Microstructure and Doping on the Mechanical Properties...

    Office of Scientific and Technical Information (OSTI)

    Properties of Polysilicon Thin Films. Abstract not provided. Authors: Boyce, Brad Lee ; Sivakumar, Yangamurthy ; Chasiotis, Ioannis Publication Date: 2013-08-01 OSTI...

  9. Stainless steel 304 cladding mechanical properties and limitations...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 36 MATERIALS SCIENCE; MECHANICAL ...

  10. Outstanding Conference Paper Award: 2015 IEEE Nuclear and Space Radiation Effects Conference

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, Nathaniel Anson; Martinez, Marino; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Black, Jeffrey D.; Lee, David S.; Swanson, Scot E.; Bhuva, Bharat L.; Warren, Kevin M.; et al

    2015-12-01

    This conference presents the recipients of the Outstanding Conference Paper Award from the 2015 IEEE Nuclear and Space Radiation Effects Conference.

  11. NREL: Awards and Honors - NREL Staff Recognized by DOE for Outstanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NREL) staff for their outstanding achievements. See the full list of award winners. Hydrogen Production - Pin-Ching Maness This award recognizes NREL's Pin-Ching Maness for...

  12. Optical method for determining the mechanical properties of a material

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI); Stoner, Robert J. (Duxbury, MA)

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  13. Optical method for determining the mechanical properties of a material

    DOE Patents [OSTI]

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  14. Biogeochemical Mechanisms Controlling Reduced Radionuclide Particle Properties and Stability

    SciTech Connect (OSTI)

    Jim K. Fredrickson; John M. Zachara; Matthew J. Marshall; Alex S. Beliaev

    2006-06-01

    Uranium and Technetium are the major risk-driving contaminants at Hanford and other DOE sites. These radionuclides have been shown to be reduced by dissimilatory metal reducing bacteria (DMRB) under anoxic conditions. Laboratory studies have demonstrated that reduction results in the formation of poorly soluble hydrous oxides, UO2(s) and TcO2n?H2O(s), that are believed to limit mobility in the environment. The mechanisms of microbial reduction of U and Tc have been the focus of considerable research in the Environmental Remediation Sciences Program (ERSP). In spite of equal or greater importance in terms of controlling the environmental fate of the contaminants relatively little is known regarding the precipitation mechanism(s), reactivity, persistence, and transport of biogenic UO2(s) and TcO2(s).

  15. Radiation-induced mechanical property changes in filled rubber (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins

  16. Physical and mechanical properties of bituminous mixtures containing oil shales

    SciTech Connect (OSTI)

    Katamine, N.M.

    2000-04-01

    Rutting of bituminous surfaces on the Jordanian highways is a recurring problem. Highway authorities are exploring the use of extracted shale oil and oil shale fillers, which are abundant in Jordan. The main objectives of this research are to investigate the rheological properties of shale oil binders (conventional binder with various percentages of shale oil), in comparison with a conventional binder, and to investigate the ability of mixes to resist deformation. The latter is done by considering three wearing course mixes containing three different samples of oil shale fillers--which contained three different oil percentages--together with a standard mixture containing limestone filler. The Marshall design method and the immersion wheel tracking machine were adopted. It was concluded that the shale oil binders displayed inconsistent physical properties and therefore should be treated before being used. The oil shale fillers have provided mixes with higher ability to resist deformation than the standard mix, as measured by the Marshall quotients and the wheel tracking machine. The higher the percentages of oil in the oil shale fillers, the lower the ability of the mixes to resist deformation.

  17. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOE Patents [OSTI]

    Adler, Thomas A. (Corvallis, OR)

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  18. Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eutectic Composites | Energy Frontier Research Centers Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C. Uher, M. G. Kanatzidis Year: 2010 Abstract: The microstructure and thermoelectric properties of the PbTe-Si eutectic system are presented in detail. When rapidly quenched from the melt this system yields materials with thermoelectric properties similar to PbTe

  19. Corrosion resistance and mechanical properties of alloy 803 for heat resisting applications

    SciTech Connect (OSTI)

    Ganesan, P.; Tassen, C.S.

    1997-08-01

    Alloy 803 was developed for applications as straight and twisted ID finned tubing in the petrochemical and chemical process industries, such as ethylene pyrolysis, that require enhanced resistance to oxidation and carburization in addition to adequate stress rupture strength. This paper presents the mechanical properties characterized for the alloy produced in other forms, such as plate, sheet and bar products, for applications in the heat treatment, chemical and petrochemical industries. The mechanical properties covered include room and high temperature tensile test results, impact strength, creep and stress rupture data for temperatures up to 2,000 F (1,093 C) at various stress levels. The preliminary results of the room and high temperature tensile and impact properties after long term exposures at intermediate temperatures are also presented. In addition to mechanical properties, the corrosion performance of alloy 803 in oxidation, sulfidation and carburization environments are presented.

  20. The Effect of Scale on the Mechanical Properties of Jointed Rock Masses

    SciTech Connect (OSTI)

    Heuze, F E

    2004-05-24

    These notes were prepared for presentation at the Defense Threat Reduction Agency's (DTRA) Hard Target Research and Analysis Center (HTRAC), at the occasion of a short course held on June 14-15, 2004. The material is intended for analysts who must evaluate the geo-mechanical characteristics of sites of interest, in order to provide appropriate input to calculations of ground shock effects on underground facilities in rock masses. These analysts are associated with the Interagency Geotechnical Assessment Team (IGAT). Because geological discontinuities introduce scale effects on the mechanical properties of rock formations, these large-scale properties cannot be estimated on the basis of tests on small cores.

  1. OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED [111]

    Office of Scientific and Technical Information (OSTI)

    UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY (Conference) | SciTech Connect Conference: OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED [111] UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY Citation Details In-Document Search Title: OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED [111] UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY Optical constants of a [111] UO{sub 2} surface, aged in air, were measured in the range from .8 and 5 eV

  2. Mechanical properties of dissimilar metal joints composed of DP 980 Steel

    Office of Scientific and Technical Information (OSTI)

    and AA 7075-T6 (Journal Article) | SciTech Connect Journal Article: Mechanical properties of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6 Citation Details In-Document Search Title: Mechanical properties of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6 A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged about

  3. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    SciTech Connect (OSTI)

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; Kim, Jin -Young; Eckert, Jrgen; Lee, Min -Ha

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grained tungsten matrix and reinforcement phase distribution.

  4. Mechanical properties of vapor-deposited thin metallic films: a status report

    SciTech Connect (OSTI)

    Adler, P.H.

    1982-12-17

    The mechanical properties of vapor-deposited thin metallic films are being studied in conjunction with the target fabrication group associated with the laser-fusion energy program. The purpose of the work is to gain an understanding as to which metals are structurally best suited to contain a glass microsphere filled with deuterium-tritium (D-T) gas at large internal pressures.

  5. Studying some mechanical properties of MgO with used neon bulb glass

    SciTech Connect (OSTI)

    Issa, Tarik Talib; Khaleel, Saba Mahdi; Abdul Kareem, Noura Ammar

    2013-12-16

    Ceramic compact of MgO +WT% of UNBG were sintered at different sintering temperature (700, 900, 1100, 1300)c, under static air for 3 hours. X-ray diffraction and some mechanical properties were conducted. The maximum sintered density, compression; fracture strength and hardness were indicated for the compilation of MgO ?20 WT % UNBG, sintered at 1300 c.

  6. Influence of oriented topological defects on the mechanical properties of carbon nanotube heterojunctions

    SciTech Connect (OSTI)

    Lee, We-Jay [National Center for High-Performance Computing; Chang, Jee-Gong [National Center for High-Performance Computing; Yang, An-Cheng [National Center for High-Performance Computing; Wang, Yeng-Tseng [National Center for High-Performance Computing; Su, Wan-Sheng [National Center for High-Performance Computing; Wang, Cai-Zhuang [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory

    2013-10-10

    The mechanical properties of finite-length (5,0)/(8,0) single-walled carbon nanotube (SWCNT) heterojunctions with manipulated topological defects are investigated using molecular dynamics simulation calculations. The results show that the mechanical properties and deformation behavior of SWCNT heterojunctions are mainly affected not only by the diameter of the thinner segment of the SWCNT heterojunction but also by the orientation of the heptagon-heptagon (7-7) pair in the junction region. Moreover, the orientation of the 7-7 pair strongly affects those properties in the compression loading than those in tensile loading. Finally, it is found that the location of buckling deformation in the heterojunctions is dependent on the orientation of the 7-7 pair in the compression.

  7. Recent advances in small-scale mechanical property measurement by nanoindentation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pharr, George Mathews

    2015-08-25

    Since its initial development in the early 1980’s [1], nanoindentation has matured into one of the premier testing techniques for measuring mechanical properties at the micrometer and sub-micrometer scales and has emerged as a critical tool that has helped to shape the nanotechnology revolution. At the heart of the technique are testing systems with simple but precise force actuators and displacement measuring devices that record the force–displacement record as a diamond indenter, usually the form of a pyramid or a sphere, is pressed into and withdrawn from a small region in the surface of a material of interest. The nano-scalemore » force–displacement data, which can be obtained with a spatial resolution as small as a few nanometers, contains a wealth of information about the local mechanical properties [2], [3] and [4]. This enables the mechanical characterization of very thin films, like those used in the semiconductor, magnetic storage, and hard coatings industries, as well as very small precipitates, particles and second phases, many of which may not exist in bulk form and cannot be characterized by traditional mechanical testing methods. Here, computer automation of nanoindentation testing systems now routinely provides for complete two-dimensional mapping of properties over regions stretching from sub-micron to millimeters in scale.« less

  8. Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salerno, Kenneth Michael; Grest, Gary S.

    2015-04-30

    In this study, the properties of mechanically stable single-nanoparticle (NP)-thick membranes have largely been studied at room temperature. How these membranes soften as nanoparticle ligands disorder with increasing temperature is unknown. Molecular dynamics simulations are used to probe the temperature dependence of the mechanical and nanostructural properties of nanoparticle membranes made of 6 nm diameter Au nanoparticles coated with dodecanethiol ligands and terminated with either methyl (CH3) or carboxyl (COOH) terminal groups. For methyl-terminated ligands, interactions along the alkane chain provide mechanical stiffness, with a Young's modulus of 1.7 GPa at 300 K. For carboxyl-terminated chains, end-group interactions are significant,more » producing stiffer membranes at all temperatures, with a Young's modulus of 3.8 GPa at 300 K. For both end-group types, membrane stiffness is reduced to zero at about 400 K. Ligand structure and mechanical properties of membranes at 300 K that have been annealed at 400 K are comparable to samples that do not undergo thermal annealing.« less

  9. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); Takeyama, Masao (Tokyo, JP)

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  10. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOE Patents [OSTI]

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  11. Method for improving the mechanical properties of uranium-1 to 3 wt % zirconium alloy

    DOE Patents [OSTI]

    Anderson, R.C.

    1983-11-22

    A uranium-1 to 3 wt % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750 to 850/sup 0/C and then quenched in water, is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenchd plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325 to 375/sup 0/C for five to six hours and then aging the plate at a higher temperature ranging from 480 to 500/sup 0/C for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  12. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    SciTech Connect (OSTI)

    Marray, Tarek [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France); Jaccquet, Philippe; Moinard-Checot, Delphine [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, LaBoMaP, Rue Porte de Paris, 71250 CLUNY (France); Fabre, Agnes; Barrallier, Laurent [Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France)

    2011-01-17

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  13. Influence of granule character and compaction on the mechanical properties of sintered silicon nitride

    SciTech Connect (OSTI)

    Takahashi, Hideo; Shinohara, Nobuhiro; Uematsu, Keizo; JunIchiro, Tsubaki

    1996-04-01

    The influence of granule character and compaction on the mechanical properties of sintered silicon nitride was studied as a function of the pH of the spray-dry slurry. The character and the compaction behavior of the spray-dried silicon nitride granules considerably affect the mechanical properties of the sintered body. Dense and hard granules resulting from a well-dispersed slurry retained their shape in green compacts and caused numerous pore defects in sintered body. Decreasing the slurry pH to a certain value (e.g., 7.9) caused slurry flocculation and reduced the granule density as well as the diametral compression strength of the granules. Sintered bodies fabricated with these weak granules contained fewer defects and showed remarkable strength increase.

  14. Formation mechanism and properties of CdS-Ag2S nanorod superlattices

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Demchenko, Denis O.; Robinson, Richard D.; Sadtler, Bryce; Erdonmez, Can K.; Alivisatos, A. Paul; Wang, Lin-Wang

    2008-08-11

    The mechanism of formation of recently fabricated CdS-Ag{sub 2}S nanorod superlattices is considered and their elastic properties are predicted theoretically based on experimental structural data. We consider different possible mechanisms for the spontaneous ordering observed in these 1D nanostructures, such as diffusion-limited growth and ordering due to epitaxial strain. A simplified model suggests that diffusion-limited growth partially contributes to the observed ordering, but cannot account for the full extent of the ordering alone. The elastic properties of bulk Ag{sub 2}S are predicted using a first principles method and are fed into a classical valence force field (VFF) model of the nanostructure. The VFF results show significant repulsion between Ag{sub 2}S segments, strongly suggesting that the interplay between the chemical interface energy and strain due to the lattice mismatch between the two materials drives the spontaneous pattern formation.

  15. Composition, morphology and mechanical properties of sputtered TiAlN coating

    SciTech Connect (OSTI)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2014-03-24

    TiAlN coating was deposited on the tungsten carbide cutting tool by using DC magnetron sputtering system to study the influence of substrate bias and nitrogen flow rate on the composition, morphology and mechanical properties. The negatively substrate bias and nitrogen flow rate was varied from about ?79 to ?221 V and 30 sccm to 72 sccm, respectively. The coating composition and roughness were characterized by using SEM/EDX and Atomic Force Microscopy (AFM), respectively. The dynamic ultra micro hardness tester was used to measure the mechanical properties. The coating hardness increases to about 10-12 GPa with an increase of the negatively substrate bias up to ? 200 V and it tend to decrease with an increase in nitrogen flow rate up to 70 sccm. The increase of hardness follows the increase of Ti and N content and rms coating roughness.

  16. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOE Patents [OSTI]

    Giannakopoulos, Antonios E. (Somerville, MA); Suresh, Subra (Wellesley, MA)

    1999-01-01

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  17. Irradiation imposed degradation of the mechanical and electrical properties of electrical insulation for future accelerator magnets

    SciTech Connect (OSTI)

    Polinski, J.; Chorowski, M.; Bogdan, P.; Strychalski, M.; Rijk, G. de

    2014-01-27

    Future accelerators will make extensive use of superconductors made of Nb{sub 3}Sn, which allows higher magnetic fields than NbTi. However, the wind-and-react technology of Nb{sub 3}Sn superconducting magnet production makes polyimide Kapton non applicable for the coils' electrical insulation. A Nb{sub 3}Sn technology compatible insulation material should be characterized by high radiation resistivity, good thermal conductivity, and excellent mechanical properties. Candidate materials for the electrical insulation of future accelerator's magnet coils have to be radiation certified with respect to potential degradation of their electrical, thermal, and mechanical properties. This contribution presents procedures and results of tests of the electrical and mechanical properties of DGEBA epoxy + D400 hardener, which is one of the candidates for the electrical insulation of future magnets. Two test sample types have been used to determine the material degradation due to irradiation: a untreated one (unirradiated) and irradiated at 77 K with 11 kGy/min intense, 4MeV energy electrons beam to a total dose of 50 MGy.

  18. Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials

    SciTech Connect (OSTI)

    Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

    2013-02-01

    Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

  19. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect (OSTI)

    Lam, P; Robert Sindelar, R; Thad Adams, T

    2007-04-18

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  20. LITERATURE SURVEY OF GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS

    SciTech Connect (OSTI)

    Lam, P; Andrew Duncan, A; Robert Sindelar, R; Thad Adams, T

    2009-04-27

    Literature survey has been performed for a compendium of mechanical properties of carbon and low alloy steels following hydrogen exposure. The property sets include yield strength, ultimate tensile strength, uniform elongation, reduction of area, threshold stress intensity factor, fracture toughness, and fatigue crack growth. These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  1. Effect of reinforcement phase on the mechanical property of tungsten nanocomposite synthesized by spark plasma sintering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Jin -Kyu; Kim, Song -Yi; Ott, Ryan T.; Kim, Jin -Young; Eckert, Jürgen; TU Dresden, Dresden; Lee, Min -Ha

    2015-07-15

    Nanostructured tungsten composites were fabricated by spark plasma sintering of nanostructured composite powders. The composite powders, which were synthesized by mechanical milling of tungsten and Ni-based alloy powders, are comprised of alternating layers of tungsten and metallic glass several hundred nanometers in size. The mechanical behavior of the nanostructured W composite is similar to pure tungsten, however, in contrast to monolithic pure tungsten, some macroscopic compressive plasticity accompanies the enhanced maximum strength up to 2.4 GPa by introducing reinforcement. As a result, we have found that the mechanical properties of the composites strongly depend on the uniformity of the nano-grainedmore » tungsten matrix and reinforcement phase distribution.« less

  2. MICROSTRUCTURE AND MECHANICAL PROPERTY PERFORMANCE OF COMMERCIAL GRADE API PIPELINE STEELS IN HIGH PRESSURE GASEOUS HYDROGEN

    SciTech Connect (OSTI)

    Stalheim, Mr. Douglas; Boggess, Todd; San Marchi, Chris; Jansto, Steven; Somerday, Dr. B; Muralidharan, Govindarajan; Sofronis, Prof. Petros

    2010-01-01

    The continued growth of the world s developing countries has placed an ever increasing demand on traditional fossil fuel energy sources. This development has lead to increasing research and development of alternative energy sources. Hydrogen gas is one of the potential alternative energy sources under development. Currently the most economical method of transporting large quantities of hydrogen gas is through steel pipelines. It is well known that hydrogen embrittlement has the potential to degrade steel s mechanical properties when hydrogen migrates into the steel matrix. Consequently, the current pipeline infrastructure used in hydrogen transport is typically operated in a conservative fashion. This operational practice is not conducive to economical movement of significant volumes of hydrogen gas as an alternative to fossil fuels. The degradation of the mechanical properties of steels in hydrogen service is known to depend on the microstructure of the steel. Understanding the levels of mechanical property degradation of a given microstructure when exposed to hydrogen gas under pressure can be used to evaluate the suitability of the existing pipeline infrastructure for hydrogen service and guide alloy and microstructure design for new hydrogen pipeline infrastructure. To this end, the 2 Copyright 2010 by ASME microstructures of relevant steels and their mechanical properties in relevant gaseous hydrogen environments must be fully characterized to establish suitability for transporting hydrogen. A project to evaluate four commercially available pipeline steels alloy/microstructure performance in the presences of gaseous hydrogen has been funded by the US Department of Energy along with the private sector. The microstructures of four pipeline steels were characterized and then tensile testing was conducted in gaseous hydrogen and helium at pressures of 800, 1600 and 3000 psi. Based on measurements of reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 800 and 3000 psi. This paper will describe the work performed on four commercially available pipeline steels in the presence of gaseous hydrogen at pressures relevant for transport in pipelines. Microstructures and mechanical property performances will be compared. In addition, recommendations for future work related to gaining a better understanding of steel pipeline performance in hydrogen service will be discussed.

  3. A few nascent methods for measuring mechanical properties of the biological cell.

    SciTech Connect (OSTI)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a substrate actually modified the mechanical properties of the cell membrane. Thus, the use of the method for measuring the mechanical properties of the cell may not be completely appropriate without significant modifications. The latest of the studies discussed in this report is intended to overcome the drawback of the AFM as a means of measuring mechanical and rheological properties. The squeezing-flow AFM technique utilizes two parallel plates, one stationary and the other attached to an AFM probe. Instead of using static force-displacement curves, the technique takes advantage of frequency response functions from force to velocity. The technique appears to be quite promising for obtaining dynamic properties. More research is required to develop this technique.

  4. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect (OSTI)

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  5. Ligand structure and mechanical properties of single-nanoparticle thick membranes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salerno, Kenneth Michael; Bolintineanu, Dan; Lane, J. Matthew; Grest, Gary S.

    2015-06-16

    We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with amore » nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less

  6. Improved mechanical properties of A 508 class 3 steel for nuclear pressure vessel through steelmaking

    SciTech Connect (OSTI)

    Kim, J.T.; Kwon, H.K.; Kim, K.C.; Kim, J.M.

    1997-12-31

    The present work is concerned with the steelmaking practices which improve the mechanical properties of the A 508 class 3 steel for reactor pressure vessel. Three kinds of steelmaking practices were applied to manufacture the forged heavy wall shell for reactor pressure vessel, that is, the vacuum carbon deoxidation (VCD), modified VCD containing aluminum and silicon-killing. The segregation of the chemical elements through the thickness was quite small so that the variations of the tensile properties at room temperature were small and the anisotropy of the impact properties was hardly observed regardless of the steelmaking practices. The Charpy V-notch impact properties and the reference nil-ductile transition temperature by drop weight test were significantly improved by the modified VCD and silicon-killing as compared with those of the steel by VCD. Moreover, the plane strain fracture toughness values of the materials by modified VCD and silicon-killing practices was much higher than those of the steel by VCD. These were resulted from the fining of austenite grain size. It was observed that the grain size was below 20 {micro}m (ASTM No. 8.5) when using the modified VCD and silicon-killing, compared to 50 {micro}m (ASTM No. 7.0) when using VCD.

  7. DOE Nominees Among Outstanding Early-Career Scientists Honored by President

    Office of Science (SC) Website

    Obama | U.S. DOE Office of Science (SC) DOE Nominees Among Outstanding Early-Career Scientists Honored by President Obama News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.23.13 DOE Nominees Among

  8. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    SciTech Connect (OSTI)

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements for nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.

  9. Microstructure and Mechanical Properties of Titanium Components Fabricated by a New Powder Injection Molding Technique

    SciTech Connect (OSTI)

    Nyberg, Eric A.; Miller, Megan R.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a powder injection molding (PIM) binder system for titanium that employs naphthalene as the primary constituent to facilitate easy binder removal and mitigate problems with carbon contamination. In the study presented here, we examined densification behavior, microstructure, and mechanical properties in specimens formed by this process. In general, we found that we could achieve tensile strengths comparable to wrought titanium in the PIM-formed specimens, but that maximum elongation was less than expected. Chemical and microstructural analyses suggest that use of higher purity powder and further process optimization will lead to significant improvements in ductility.

  10. Correlation of Chemical and Mechanical Property Changes During Oxidative Degradation of Neoprene

    SciTech Connect (OSTI)

    Celina, M.; Wise, J.; Ottesen, D.K.; Gillen, K.T.; Clough, R.L.

    1999-07-01

    The thermal degradation of a commercial, stabilized, unfilled neoprene (chloroprene) rubber was investigated at temperatures up to 140 C. The degradation of this material is dominated by oxidation rather than dehydrochlorination. Important heterogeneous oxidation effects were observed at the various temperatures investigated using infrared micro-spectroscopy and modulus profiling. Intensive degradation-related spectral changes in the IR occurred in the conjugated carbonyl and hydroxyl regions. Quantitative analysis revealed some differences in the development of the IR oxidation profiles, particularly towards the sample surface. These chemical degradation profiles were compared with modulus profiles (mechanical properties). It is concluded that the profile development is fundamentally described by a diffusion-limited autoxidation mechanism. Oxygen consumption measurements showed that the oxidation rates display non-Arrhenius behavior (curvature) at low temperatures. The current results, when compared to those of a previously studied, clay-filled commercial neoprene formulation, indicate that the clay filler acts as an antioxidant, but only at low temperatures.

  11. Influence of processing on the microstructure and mechanical properties of 14YWT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoelzer, David T.; Unocic, Kinga A.; Sokolov, Mikhail A.; Byun, Thak Sang

    2015-12-15

    In this study, the investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 °C (SM170 heat), 1000 °C (SM185) and 1150 °C (SM200). Themore » microstructural studies of the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 °C and significantly higher fracture toughness values between 25 °C and 700 °C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less

  12. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    SciTech Connect (OSTI)

    Vega, O.E.; Hallen, J.M.; Villagomez, A.

    2008-10-15

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases.

  13. Role of different compatibilizing approaches on the microstructure and mechanical properties of polypropylene/talc composites

    SciTech Connect (OSTI)

    Homayounfar, S. Z. E-mail: rezabagh@sharif.ir; Bagheri, R. E-mail: rezabagh@sharif.ir

    2014-05-15

    Since in a highly filled polymer, a major problem arises from non-uniformity of properties due to the poor dispersion of filler, the application of coupling agents have been directed to overcome this problem and also to enhance the mechanical performance of the composites by improving the adhesion at the interface. In this study, a comparison between two major coupling approaches is conducted: 1) Using PPgMA as a kind of compatibilizer which changes the nature of the matrix, 2) Using titanate coupling agent which takes action at the interface and reacts with hydroxyl groups at the inorganic filler surface, resulting in the formation of monomolecular layer on the inorganic surface to increase compatibility of filler/matrix interface. The comparison is made based on the mechanical properties of the composites by means of elastic modulus, yield stress, impact strength and percentage of strain-to-fracture and evaluation of their effects on both the dispersion and adhesion of talc plates in the matrix through the microscopy. Transmission optical microscopy (TOM) and scanning electron microscopy (SEM) are used to observe the deformation micromechanism and the fracture surface of the composites, respectively.

  14. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  15. GASEOUS HYDROGEN EFFECTS ON THE MECHANICAL PROPERTIES OF CARBON AND LOW ALLOY STEELS (U)

    SciTech Connect (OSTI)

    Lam, P

    2006-06-08

    This report is a compendium of sets of mechanical properties of carbon and low alloy steels following the short-term effects of hydrogen exposure. The property sets include the following: Yield Strength; Ultimate Tensile Strength; Uniform Elongation; Reduction of Area; Threshold Cracking, K{sub H} or K{sub th}; Fracture Toughness (K{sub IC}, J{sub IC}, and/or J-R Curve); and Fatigue Crack Growth (da/dN). These properties are drawn from literature sources under a variety of test methods and conditions. However, the collection of literature data is by no means complete, but the diversity of data and dependency of results in test method is sufficient to warrant a design and implementation of a thorough test program. The program would be needed to enable a defensible demonstration of structural integrity of a pressurized hydrogen system. It is essential that the environmental variables be well-defined (e.g., the applicable hydrogen gas pressure range and the test strain rate) and the specimen preparation be realistically consistent (such as the techniques to charge hydrogen and to maintain the hydrogen concentration in the specimens).

  16. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    SciTech Connect (OSTI)

    Green, Peter F.

    2015-01-13

    Executive Summary Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties. Accomplishments: We developed: (1) fundamental principles that enabled the creation of thin film PNCs possessing more complex morphologies of homopolymers and block copolymer micellar systems [1-6]; (2) a new understanding of physical phenomena associated with the structure of PNC systems and the glass transition and dynamics [7-11], including surface dynamics [12, 13]; designed PNCs to understand the connection between structure and specific optical responses of the material [14, 15]; electrorheological phenomena [16-18]; coarsening/aggregation phenomena [19, 20]; directed assembly [21] and elastic mechanical properties of thin supported films [22]. We established procedures to design and control the spatial distribution of gold nanoparticles (Au-NP), onto which polystyrene (PS) chains were end-grafted, within thin film PS hosts.[1-3] We explained how enthalpic and entropic interactions between the grafted layers and the polymer host chains, the nanoparticle (NP) sizes and shapes determine the spatial distribution of NPs within the host (i.e.: the morphology). In brief, the chemistries of the grafted chains and the polymer hosts, the degrees of polymerization of grafted and host chains (N and P, respectively), and the surface grafting densities ? influence the thermodynamic interactions. Thin films are unique: the external interfaces (substrate and free surface) profoundly influence the spatial distribution of NPs within the PNC. For example, thin films are thermodynamically less stable than their bulk analogs due to the preferential attraction between the brush-coated nanoparticles and the external interfaces (i.e.: the free surface/polymer interface and the polymer/substrate interface). We investigated the organization of the brush-coated nanoparticles within a host composed on block copolymer micelles in a homopolymer [4, 5]. Block copolymers, composed of a polymer of type A that is bonded covalently to another polymer of type B (A-b-B) are known to form micelles within homopolymers A or B. A micelle is composed of an inner core of the A component of the copolymer and an outer corona of the B-component, that resides within homopolymer B, which serves as the host. If the host is the A homopolymer then the core of the micelle is composed of the B component of the co

  17. ORISE: ORAU-managed beryllium lab marks outstanding year in 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORAU-managed beryllium lab marks outstanding year in 2013 Lab managed for DOE achieves zero error rate in beryllium lymphocyte proliferation test FOR IMMEDIATE RELEASE April 3, 2014 FY14-16 OAK RIDGE, Tenn.-For the second time in recent years, the Beryllium Testing Laboratory, managed by ORAU for the Department of Energy, performed flawlessly by processing nearly 4,100 beryllium lymphocyte proliferation tests (BeLPTs) in 2013, without a single error. The laboratory is one of only three

  18. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    SciTech Connect (OSTI)

    Shi, Dongyong; Liu, Wenquan [Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, P.R. (China); Ying, Liang, E-mail: pinghu@dlut.edu.cn; Hu, Ping, E-mail: pinghu@dlut.edu.cn; Shen, Guozhe [Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian, 116024, P.R. (China)

    2013-12-16

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part.

  19. Mechanical properties of granular materials: A variational approach to grain-scale simulations

    SciTech Connect (OSTI)

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-01-15

    The mechanical properties of cohesionless granular materials are evaluated from grain-scale simulations. A three-dimensional pack of spherical grains is loaded by incremental displacements of its boundaries. The deformation is described as a sequence of equilibrium configurations. Each configuration is characterized by a minimum of the total potential energy. This minimum is computed using a modification of the conjugate gradient algorithm. Our simulations capture the nonlinear, path-dependent behavior of granular materials observed in experiments. Micromechanical analysis provides valuable insight into phenomena such as hysteresis, strain hardening and stress-induced anisotropy. Estimates of the effective bulk modulus, obtained with no adjustment of material parameters, are in agreement with published experimental data. The model is applied to evaluate the effects of hydrate dissociation in marine sediments. Weakening of the sediment is quantified as a reduction in the effective elastic moduli.

  20. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  1. Thermal-mechanical Properties of Epoxy-impregnated Bi-2212/Ag Composite

    SciTech Connect (OSTI)

    Li, Pei [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wang, Yang [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Godeke, Arno [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Ye, Liyang [North Carolina State Univ., Raleigh, NC (United States); Flanagan, Gene [Muons Inc., Batavia, IL (United States); Shen, Tengming [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-26

    Knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poissons ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramic sleeve.

  2. Mechanical properties of a structural polyurethane foam and the effect of particulate loading

    SciTech Connect (OSTI)

    Goods, S.H.; Neuschwanger, C.L.; Whinnery, L.L.

    1998-04-01

    The room temperature mechanical properties of a closed-cell, polyurethane encapsulant foam have been measured as a function of foam density. Tests were performed on both unfilled and filler reinforced specimens. Over the range of densities examined, the modulus of the unloaded foam could be described by a power-law relationship with respect to density. This power-law relationship could be explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model found in the literature. The collapse stress of the foam was also found to exhibit a power-law relationship with respect to density. Additions of an aluminum powder filler increased the modulus relative to the unfilled foam.

  3. Mechanical Properties of Thin GDP Shells Used as Cryogenic Direct Drive Targets at OMEGA

    SciTech Connect (OSTI)

    Nikroo, A.; Czechowicz, D.G.; Chen, K.C.; Dicken, M.; Morris, C.; Andrews, R.; Greenwood, A.; Castillo, E.

    2004-03-15

    Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D{sub 2} and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D{sub 2}. In this paper, we present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters ('standard GDP') using a high deposition pressure and using modified parameters ('strong GDP') of low deposition pressure that leads to more robust shells.

  4. MECHANICAL PROPERTIES OF THIN GDP SHELLS USED AS CRYOGENIC DIRECT DRIVE TARGETS AT OMEGA

    SciTech Connect (OSTI)

    NIKROO,A; CZECHOWICZ,D; CHEN,K.C; DICKEN,M; MORRIS,C; ANDREWS,R; GREENWOOD,A.L; CASTILLO,E

    2003-06-01

    OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D{sub 2} and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D{sub 2}. In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells.

  5. High-pressure mechanical and sonic properties of a Devonian shale from West Virginia

    SciTech Connect (OSTI)

    Heard, H.C.; Lin, W.

    1986-01-01

    Static mechanical properties and sonic velocities were determined on each of four members of the Devonian shale from Columbia Gas Transmission's well 20403, Huntington, West Virginia. They were: Pressure - volume data to 4.0 GPa; Compressive strength at confining pressures up to 300 MPa, both parallel and perpendicular to bedding. Extensile strength at 100 to 700 MPa confining pressure, both parallel and perpendicular to bedding. Loading and unloading path in uniaxial strain at 20 to 500 MPa confining pressure, both parallel and perpendicular to bedding. Tensile strength at ambient pressure, parallel and perpendicular to bedding. Shear and compressional wave velocities at confining pressures up to 1000 MPa parallel, at 45/sup 0/, and perpendicular to bedding. Results are presented and discussed. 32 refs., 10 figs., 10 tabs.

  6. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; Godeke, Arno; National High Magnetic Field Lab., Tallahassee, FL; Ye, Liyang; Fermi National Accelerator Lab.; Flanagan, Gene; Shen, Tengming

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi2Sr2CaCu2Ox round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO2 insulation coating and the Rutherford cable insulated with a braided ceramicmore » sleeve.« less

  7. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    SciTech Connect (OSTI)

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a LangmuirBlodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (1025 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of such behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.

  8. Mechanical properties of water-assembled graphene oxide Langmuir monolayers: Guiding controlled transfer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harrison, Katharine L.; Biedermann, Laura B.; Zavadil, Kevin R.

    2015-08-24

    Liquid-phase transfer of graphene oxide (GO) and reduced graphene oxide (RGO) monolayers is investigated from the perspective of the mechanical properties of these films. Monolayers are assembled in a Langmuir–Blodgett trough, and oscillatory barrier measurements are used to characterize the resulting compressive and shear moduli as a function of surface pressure. GO monolayers are shown to develop a significant shear modulus (10–25 mN/m) at relevant surface pressures while RGO monolayers do not. The existence of a shear modulus indicates that GO is acting as a two-dimensional solid driven by strong interaction between the individual GO sheets. The absence of suchmore » behavior in RGO is attributed to the decrease in oxygen moieties on the sheet basal plane, permitting RGO sheets to slide across one another with minimum energy dissipation. Knowledge of this two-dimensional solid behavior is exploited to successfully transfer large-area, continuous GO films to hydrophobic Au substrates. The key to successful transfer is the use of shallow-angle dipping designed to minimize tensile stress present during the insertion or extraction of the substrate. A shallow dip angle on hydrophobic Au does not impart a beneficial effect for RGO monolayers, as these monolayers do not behave as two-dimensional solids and do not remain coherent during the transfer process. As a result, we hypothesize that this observed correlation between monolayer mechanical properties and continuous film transfer success is more universally applicable across substrate hydrophobicities and could be exploited to control the transfer of films composed of two-dimensional materials.« less

  9. Effect of mechanical strain on electronic properties of bulk MoS{sub 2}

    SciTech Connect (OSTI)

    Kumar, Sandeep Kumar, Jagdish Sastri, O. S. K. S.

    2015-05-15

    Ab-initio density functional theory based calculations of electronic properties of bulk and monolayer Molybdenum di-Sulfide (MoS{sub 2}) have been performed using all electron Full Potential Linearised Augmentad Plane Wave (FPLAPW) method using Elk code. We have used Generalised Gradient Approximation (GGA) for exchange and correlation functionals and performed calculaitons of Lattice parameters, Density Of States (DOS) and Band Structure (BS). Band structure calculations revealed that bulk MoS{sub 2} has indirect band gap of 0.97 eV and mono-layer MoS{sub 2} has direct band gap which has increased to 1.71 eV. These are in better agreement with experimental values as compared with the other calculations using pseudo-potential code. The effect of mechanical strain on the electronic properties of bulk MoS{sub 2} has also been studied. For the different values of compressive strain (varying from 2% to 8% in steps of 2%) along the c-axis, the corresponding DOS and BS are obtained. We observed that the band gap decreases by about 15% for every 2% increase in strain along the c-axis.

  10. Methodology for Mechanical Property Testing of Fuel Cladding Using a Expanded Plug Wedge Test

    SciTech Connect (OSTI)

    Jiang, Hao; Wang, Jy-An John

    2014-01-01

    An expanded plug method was developed earlier for determining the tensile properties of irradiated fuel cladding. This method tests fuel rod cladding ductility by utilizing an expandable plug to radially stretch a small ring of irradiated cladding material. The circumferential or hoop strain is determined from the measured diametrical expansion of the ring. A developed procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves, from which material properties of the cladding can be extracted. However, several deficiencies existed in this expanded-plug test that can impact the accuracy of test results, such as that the large axial compressive stress resulted from the expansion plug test can potentially induce the shear failure mode of the tested specimen. Moreover, highly nonuniform stress and strain distribution in the deformed clad gage section and significant compressive stresses, induced by bending deformation due to clad bulging effect, will further result in highly nonconservative estimates of the mechanical properties for both strength and ductility of the tested clad. To overcome the aforementioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. By optimizing the specific geometry designs, selecting the appropriate material for the expansion plug, and adding new components into the testing system, a modified expansion plug testing protocol has been developed. A general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor, -factor, was used to convert the ring load Fring into hoop stress , and is written as _ = F_ring/tl , where t is the clad thickness and l is the clad length. The generated stress-strain curve agrees well with the associated tensile test data in both elastic and plastic deformation regions.

  11. Buckling behavior of stiffened panels under static and dynamic loading with particular emphasis on the response of the stiffener outstands

    SciTech Connect (OSTI)

    Louca, L.A.; Harding, J.E.

    1995-12-31

    This paper presents results on the buckling behavior of stiffened panels loaded axially under static loading and dynamically under transverse blast pressures. Particular emphasis is placed on the torsional behavior of the outstands. The study has been carried out using non-linear finite element (FE) packages and plastic mechanism techniques. For the static analysis, an FE package (LUSAS) has been used to obtain load deflection curves, including both the peak load and the unloading characteristic for a range of geometries. The responses of stiffened panels subjected to blast loading have also been investigated using various pressure time curves. Both a simple model, consisting of a flat-panel and an individual stiffener and a more complex model of a complete blast wall have been analyzed. The analysis package (DYNA3D) accounts for material and geometric non-linearities and strain rate effects which can significantly influence the capacity of the panel. As for the static results, the dynamic analyses have been correlated with previous experimental results. The effect of tripping is shown to have a significant influence on the response, and earlier yield of the panel, when the stiffeners are in compression, is highlighted. It is also shown that provided there is adequate in-plane support to allow the panels to develop membrane action, blast pressures exceeding one bar can be resisted.

  12. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    SciTech Connect (OSTI)

    Kubsek, J., E-mail: Jiri.Kubasek@vscht.cz; Vojt?ch, D.; Martnek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg6Al2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg9Al1Zn) and WE43 (Mg4Y3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary ?-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 ?m and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: Small effect of cooling rate on the compressive strength and hardness of AJ 62 A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature Higher resistance of the AJ 62 alloy to the creep process in compression compared to AZ91 Excellent thermal stability and creep resistance of the alloy WE 43 Improved thermal stability and creep resistance in order WE43 > AJ62 >> AZ91.

  13. INITIAL COMPARISON OF BASELINE PHYSICAL AND MECHANICAL PROPERTIES FOR THE VHTR CANDIDATE GRAPHITE GRADES

    SciTech Connect (OSTI)

    Carroll, Mark C

    2014-09-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration that is capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered candidate grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear-grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  14. Statistical Comparison of the Baseline Mechanical Properties of NBG-18 and PCEA Graphite

    SciTech Connect (OSTI)

    Mark C. Carroll; David T. Rohrbaugh

    2013-08-01

    High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR), a graphite-moderated, helium-cooled design that is capable of producing process heat for power generation and for industrial process that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is endeavoring to minimize the conservative estimates of as-manufactured mechanical and physical properties by providing comprehensive data that captures the level of variation in measured values. In addition to providing a comprehensive comparison between these values in different nuclear grades, the program is also carefully tracking individual specimen source, position, and orientation information in order to provide comparisons and variations between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between the two grades of graphite that were initially favored in the two main VHTR designs. NBG-18, a medium-grain pitch coke graphite from SGL formed via vibration molding, was the favored structural material in the pebble-bed configuration, while PCEA, a smaller grain, petroleum coke, extruded graphite from GrafTech was favored for the prismatic configuration. An analysis of the comparison between these two grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in variability in properties within each of the grades that will ultimately provide the basis for the prediction of in-service performance. The comparative performance of the different types of nuclear grade graphites will continue to evolve as thousands more specimens are fully characterized from the numerous grades of graphite being evaluated.

  15. The electrical and mechanical properties of Au-V and Au-V{sub 2}O{sub 5}

    Office of Scientific and Technical Information (OSTI)

    thin films for wear-resistant RF MEMS switches (Journal Article) | SciTech Connect Journal Article: The electrical and mechanical properties of Au-V and Au-V{sub 2}O{sub 5} thin films for wear-resistant RF MEMS switches Citation Details In-Document Search Title: The electrical and mechanical properties of Au-V and Au-V{sub 2}O{sub 5} thin films for wear-resistant RF MEMS switches To explore alternatives to the use of pure Au in Ohmic contact RF microelectromechanical switches, we have

  16. Outstanding conference paper award 2014 IEEE nuclear and space radiation effects conference

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, Michael; Blackmore, Ewart W.; Rodbell, Kenneth P.; Reed, Robert A.; Pellish, Jonathan A.; et al

    2014-12-01

    The recipients of the 2014 NSREC Outstanding Conference Paper Award are Nathaniel A. Dodds, James R. Schwank, Marty R. Shaneyfelt, Paul E. Dodd, Barney L. Doyle, Michael Trinczek, Ewart W. Blackmore, Kenneth P. Rodbell, Michael S. Gordon, Robert A. Reed, Jonathan A. Pellish, Kenneth A. LaBel, Paul W. Marshall, Scot E. Swanson, Gyorgy Vizkelethy, Stuart Van Deusen, Frederick W. Sexton, and M. John Martinez, for their paper entitled "Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam." For older CMOS technologies, protons could only cause single-event effects (SEEs) through nuclear interactions. Numerous recent studies on 90 nmmore » and newer CMOS technologies have shown that protons can also cause SEEs through direct ionization. Furthermore, this paper develops and demonstrates an accurate and practical method for predicting the error rate caused by proton direct ionization (PDI).« less

  17. Outstanding conference paper award 2014 IEEE nuclear and space radiation effects conference

    SciTech Connect (OSTI)

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, Michael; Blackmore, Ewart W.; Rodbell, Kenneth P.; Reed, Robert A.; Pellish, Jonathan A.; LaBel, Kenneth A.; Marshall, Paul W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino John

    2014-12-01

    The recipients of the 2014 NSREC Outstanding Conference Paper Award are Nathaniel A. Dodds, James R. Schwank, Marty R. Shaneyfelt, Paul E. Dodd, Barney L. Doyle, Michael Trinczek, Ewart W. Blackmore, Kenneth P. Rodbell, Michael S. Gordon, Robert A. Reed, Jonathan A. Pellish, Kenneth A. LaBel, Paul W. Marshall, Scot E. Swanson, Gyorgy Vizkelethy, Stuart Van Deusen, Frederick W. Sexton, and M. John Martinez, for their paper entitled "Hardness Assurance for Proton Direct Ionization-Induced SEEs Using a High-Energy Proton Beam." For older CMOS technologies, protons could only cause single-event effects (SEEs) through nuclear interactions. Numerous recent studies on 90 nm and newer CMOS technologies have shown that protons can also cause SEEs through direct ionization. Furthermore, this paper develops and demonstrates an accurate and practical method for predicting the error rate caused by proton direct ionization (PDI).

  18. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect (OSTI)

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  19. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    SciTech Connect (OSTI)

    Jamasri; Wildan, M. W.; Sulardjaka; Kusnanto

    2011-01-17

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 {mu}m was performed prior to produce MMC ALFA.The process was carried out in a furnace at 1300 deg. C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-K{sub {alpha}} radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600 deg. C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm{sup 2} and 107.5 MPa, respectively.

  20. Expanded plug method for developing circumferential mechanical properties of tubular materials

    DOE Patents [OSTI]

    Hendrich, William Ray; McAfee, Wallace Jefferson; Luttrell, Claire Roberta

    2006-11-28

    A method for determining the circumferential properties of a tubular product, especially nuclear fuel cladding, utilizes compression of a polymeric plug within the tubular product to determine strain stress, yield stress and other properties. The process is especially useful in the determination of aging properties such as fuel rod embrittlement after long burn-down.

  1. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Musharraf Zaman, Ph.D.; Younane Abousleiman, Ph.D.

    2001-04-01

    The oil and gas industry has encountered significant problems in the production of oil and gas from weak rocks (such as chalks and limestones) and from unconsolidated sand formations. Problems include subsidence, compaction, sand production, and catastrophic shallow water sand flows during deep water drilling. Together these cost the petroleum industry hundreds of millions of dollars annually. The goals of this first quarterly report is to document the progress on the project to provide data on the acoustic imaging and mechanical properties of soft rock and marine sediments. The project is intended to determine the geophysical (acoustic velocities) rock properties of weak, poorly cemented rocks and unconsolidated sands. In some cases these weak formations can create problems for reservoir engineers. For example, it cost Phillips Petroleum 1 billion dollars to repair of offshore production facilities damaged during the unexpected subsidence and compaction of the Ekofisk Field in the North Sea (Sulak 1991). Another example is the problem of shallow water flows (SWF) occurring in sands just below the seafloor encountered during deep water drilling operations. In these cases the unconsolidated sands uncontrollably flow up around the annulus of the borehole resulting in loss of the drill casing. The $150 million dollar loss of the Ursa development project in the U.S. Gulf Coast resulted from an uncontrolled SWF (Furlow 1998a,b; 1999a,b). The first three tasks outlined in the work plan are: (1) obtain rock samples, (2) construct new acoustic platens, (3) calibrate and test the equipment. These have been completed as scheduled. Rock Mechanics Institute researchers at the University of Oklahoma have obtained eight different types of samples for the experimental program. These include: (a) Danian Chalk, (b) Cordoba Cream Limestone, (c) Indiana Limestone, (d) Ekofisk Chalk, (e) Oil Creek Sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. These weak rocks and sands are intended to represent analogs to the formations that present oil and gas engineers with problems during oil and gas production and drilling operations. A series of new axial acoustic sensors have been constructed (and tested) to allow measurement of compressional and shear wave velocities during high pressure triaxial tests on these weak rock and sand samples. In addition, equipment to be utilized over the next 18 months of the project have tested and calibrated. These include the load frames, triaxial pressure cells, pressure sensors, load cells, extensometers, and oscilloscopes have been calibrated and tested. The multichannel acoustic emission and acoustic pulse transmission systems have also been tested. Graduate research assistant, research faculty, and the laboratory technician have begun Tasks 4 and 5 which involve preparing the sand samples and rock samples for testing. The construction of the lateral acoustic sensors has also been started during this quarter as outlined in the project timeline. With the equipment having been tested and calibrated, and the samples now being prepared, the experiments are on schedule to be started in April, 2001.

  2. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  3. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initial efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.

  4. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  5. Correlations between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels

    SciTech Connect (OSTI)

    Taylor, Mark D.; Choi, Kyoo Sil; Sun, Xin; Matlock, David K.; Packard, Corrine; Xu, Le; Barlat, Frederic

    2014-03-01

    Multiphase advanced high strength steels (AHSS) are being increasingly used in the automotive industry due to their low cost, good availability and excellent combination of strength and ductility. There is a keen interest from the automotive and steel industry for more fundamental understandings on the key microstructure features influencing the macroscopic properties, i.e., tensile properties, hole-expansion ratio and localized formability of AHSS. In this study, the micro- and macro-level properties for eight commercial DP980 steels are first characterized and quantified with various experimental methods. Correlations between macroscopic-level properties and relationships between various micro- and macro- properties for these steels are then established based on the experimental measurements. It is found that, despite their differences in their chemistry, processing parameters and sheet thickness, the eight DP980 steels do have common microstructural level properties governing their specific macroscopic properties in terms of strength, elongation and hole expansion performance.

  6. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-04-30

    Three major goals were accomplished during this phase. First, a study was completed of the effects of stress-induced changes in anisotropic elastic moduli in sandstone. Second, a new method for measuring the anisotropic poroelastic moduli from acoustic data was developed. Third, a series of triaxial experiments were conducted on unconsolidated sands to identify pressure/stress conditions where liquefaction occurs under high confining pressures. Stress-induced changes in anisotropic Young's moduli and shear moduli were observed during deformational pathway experiments. A new method was made for the acquisition of compressional and shear wave velocities along a series of 3-dimensional raypaths through a core sample as it is subjected to deformation. Three different deformational pathway experiments were conducted. During the hydrostatic deformation experiment, little or no anisotropy was observed in either the Young's moduli or shear moduli. Significant deformational anisotropies were observed in both moduli during the uniaxial strain test and the triaxial compression experiment but each had a different nature. During the triaxial experiment the axial and lateral Young's moduli and shear moduli continued to diverge as load was applied. During the uniaxial strain experiment the anisotropy was ''locked in'' early in the loading phase but then remained steady as both the confining pressure and axial stress were applied. A new method for measuring anisotropic Biot's effective stress parameters has also been developed. The method involves measuring the compressional and shear wave velocities in the aforementioned acoustic velocity experiments while varying stress paths. For a stress-induced transversely isotropic medium the acoustic velocity data are utilized to calculate the five independent elastic stiffness components. Once the elastic stiffness components are determined these can be used to calculate the anisotropic Biot's effective stress parameters, {alpha}{sub v} and {alpha}{sub h}, using the equations of Abousleiman et al. (1996). A series of experiments have been conducted, on an initially inherently isotropic Berea sandstone rock sample, to dynamically determine these anisotropic Biot's parameters during deformational pathway experiments. Data acquired during hydrostatic, triaxial, and uniaxial strain pathway experiments indicates that Biot's effective stress parameter changes significantly if the applied stresses are not hydrostatic. Variations, as large as 20% between the axial (vertical) and lateral (horizontal) Biot's effective stress parameters, were observed in some experiments. A series of triaxial compression experiments have been conducted on unconsolidated sand (Oil Creek sand) to determine the pressure/stress conditions which would be favorable for liquefaction. Liquefaction of geopressured sands is thought to be one of the major causative mechanisms of damaging shallow water flows. The experiments were developed to determine if: (1) liquefaction could be made to occur in this particular sand at high confining pressures, and (2) the state of liquefication had the same nature at high pressure conditions typical of shallow water flows as it does in low confining pressure soil mechanics tests. A series of undrained triaxial experiments were successfully used to document that the Oil Creek sand could undergo liquefaction. The nature (i.e., the shape of the deformational pathway in mean pressure/shear stress space) was very similar to those observed in soil mechanics experiments. The undrained triaxial experiments also indicated that this sand would strain soften at relatively high confining pressures--a necessary precursor to liquefaction. These experiments serve as a starting point for a series of acoustic experiments to determine the signature of compressional and shear wave properties as the sand packs approach the state of liquefaction (and shallow water flows).

  7. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect (OSTI)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores Microsistemas e Nanotecnologias (INESC-MN) and IN Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Tcnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  8. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Noel, J.S.; Martin, R.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    Experimental results are presented for bulk and mechanical properties measurements on specimens of the Paintbrush tuff recovered from boreholes UE25 NRG-4 and -5, at Yucca Mountain, Nevada. Measurements have been performed on three thermal/mechanical units, PTn, TSwl, and TSw2. On each specimen the following bulk properties have been reported: dry bulk density, saturated bulk density, average grain density, and porosity. Unconfined compression to failure, confined compression to failure, and indirect tensile strength tests were performed on selected specimens recovered from the boreholes. In addition, compressional and shear wave velocities were measured on specimens designated for unconfined compression and confined compression experiments. Measurements were conducted at room temperature on nominally water-saturated specimens. The nominal rate for the fracture experiments was 10{sup -5}s{sup -1}.

  9. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    SciTech Connect (OSTI)

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  10. Microstructure chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, C.; Kirk, M.; Li, M.; Hattar, Khalid Mikhiel; Wang, Y.; Anderoglu, O.; Valdez, J.; Uberuaga, B. P.; Dickerson, R.; Maloy, S. A.

    2015-06-14

    Nickel superalloys with cubic L12 structured γ' (Ni3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical properties ofmore » the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less

  11. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    SciTech Connect (OSTI)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  12. Method for predicting dry mechanical properties from wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R.; Kelley, Stephen S.

    2003-08-12

    A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.

  13. Energy-transformation properties and mechanisms in transverse-flow-discharged CO2 lasers

    SciTech Connect (OSTI)

    Zhongxiang, W.

    1991-12-10

    We simulated, calculated, and analyzed the effects on the various energy state transformation properties of dielectric media of such factors as dielectric media gas pressures, flow speeds, light cavity position, strength of radiation in the cavity, degree of output coupling, and other similar factors in transverse flow discharged CO2 laser devices. This article did concrete calculations of the corresponding energy transformation properties for the apparatus and the conditions in reference (transverse flow, discharge, CO2 laser device, dielectric medium constituent ratio of CO2:N2:H = 5:17:78, an initial temperature of 293K, a discharge current of 2A, E/N: 2.15X10-16 V/cm2, light cavity 160 cm2 long, height 1.8cm, as well as other parameters).

  14. Microstructure and Mechanical Properties of n-irradiated Fe-Cr Model Alloys

    SciTech Connect (OSTI)

    Matijasevic, Milena; Al Mazouzi, Abderrahim

    2008-07-01

    High chromium ( 9-12 wt %) ferritic/martensitic steels are candidate structural materials for future fusion reactors and other advanced systems such as accelerator driven systems (ADS). Their use for these applications requires a careful assessment of their mechanical stability under high energy neutron irradiation and in aggressive environments. In particular, the Cr concentration has been shown to be a key parameter to be optimized in order to guarantee the best corrosion and swelling resistance, together with the least embrittlement. In this work, the characterization of the neutron irradiated Fe-Cr model alloys with different Cr % with respect to microstructure and mechanical tests will be presented. The behavior of Fe-Cr alloys have been studied using tensile tests at different temperature range ( from -160 deg. C to 300 deg. C). Irradiation-induced microstructure changes have been studied by TEM for two different irradiation doses at 300 deg. C. The density and the size distribution of the defects induced have been determined. The tensile test results indicate that Cr content affects the hardening behavior of Fe-Cr binary alloys. Hardening mechanisms are discussed in terms of Orowan type of approach by correlating TEM data to the measured irradiation hardening. (authors)

  15. An experimental investigation on the mechanical properties of the interface between large-sized graphene and a flexible substrate

    SciTech Connect (OSTI)

    Xu, Chaochen; Guo, Jiangang Song, Haibin; Xie, Haimei; Xue, Tao; Qin, Qinghua; Wu, Sen

    2015-04-28

    In this paper, the interfacial mechanical properties of large-sized monolayer graphene attached to a flexible polyethylene terephthalate (PET) substrate are investigated. Using a micro-tensile test and Raman spectroscopy, in situ measurements are taken to obtain the full-field deformation of graphene subjected to a uniaxial tensile loading and unloading cycle. The results of the full-field deformation are subsequently used to identify the status of the interface between the graphene and the substrate as one of perfect adhesion, one showing slide or partial debonding, and one that is fully debonded. The interfacial stress/strain transfer and the evolution of the interface from one status to another during the loading and unloading processes are discussed and the mechanical parameters, such as interfacial strength and interfacial shear strength, are obtained quantitatively demonstrating a relatively weak interface between large-sized graphene and PET.

  16. The Correlation of Stress-State and Nano-Mechanical Properties in Au

    SciTech Connect (OSTI)

    HOUSTON,JACK E.; JARAUSCH,K.F.; KIELY,J.D.; RUSSELL,P.E.

    1999-10-07

    A dependence of elastic response on the stress-state of a thin film has been demonstrated using the interfacial force microscope (IFM). Indentation response was measured as a function of the applied biaxial stress-state for 100 nm thick Au films. An increase in measured elastic modulus with applied compressive stress, and a decrease with applied tensile stress was observed. Measurements of elastic modulus before and after applying stress were identical indicating that the observed change in response is not due to a permanent change in film properties.

  17. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  18. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi; Tucker III, Charles L.; Costa, Franco

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk Simulation Moldflow Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predicted stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.

  19. Apparatus and method for measurement of the mechanical properties and electromigration of thin films

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2000-01-01

    A method for characterizing a sample comprising the steps of depositing the sample on a substrate, measuring a first change in optical response of the sample, changing the lateral strain of the sample, measuring a second change in optical response of the sample, comparing the second change in optical response of with the first change in optical response and associating a difference between the second change and the first change in optical response with a property of interest in the sample. The measurement of the first change in optical response is made with the sample having an initial lateral strain. The measurement of the second change in optical response is made after the lateral strain in the sample is changed from the initial lateral strain to a different lateral strain. The second change in optical response is compared to the first change in optical response to find the difference between the second change and the first change.

  20. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    SciTech Connect (OSTI)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90?m. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  1. Thermomechanical process optimization of U-10wt% Mo Part 2: The effect of homogenization on the mechanical properties and microstructure

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean M.; Burkes, Douglas E.

    2015-07-09

    Low-enriched uranium alloyed with 10 wt% molybdenum (U-10Mo) is currently being investigated as an alternative fuel for the highly enriched uranium used in several of the United States high performance research reactors. Development of the methods to fabricate the U-10Mo fuel plates is currently underway and requires fundamental understanding of the mechanical properties at the expected processing temperatures. In the first part of this series, it was determined that the as-cast U-10Mo had a dendritic microstructure with chemical inhomogeneity and underwent eutectoid transformation during hot compression testing. In the present (second) part of the work, the as-cast samples were heat treated at several temperatures and times to homogenize the Mo content. Like the previous as-cast material, the homogenized materials were then tested under compression between 500 and 800C. The as-cast samples and those treated at 800C for 24 hours had grain sizes of 25-30 ?m, whereas those treated at 1000C for 16 hours had grain sizes around 250 ?m before testing. Upon compression testing, it was determined that the heat treatment had effects on the mechanical properties and the precipitation of the lamellar phase at sub-eutectoid temperatures.

  2. High Dose Neutron Irradiation of Hi-Nicalon Type S Silicon Carbide Composites, Part 2. Mechanical and Physical Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katoh, Yutai; Nozawa, Takashi; Shih, Chunghao Phillip; Ozawa, Kazumi; Koyanagi, Takaaki; Porter, Wallace D; Snead, Lance Lewis

    2015-01-07

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. Likewise, the material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating themore » irradiation temperature, but only to a limited extent. Moreover, the observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.« less

  3. EFFECTS OF TRITIUM GAS EXPOSURE ON THE DYNAMIC MECHANICAL PROPERTIES OF EPDM ELASTOMER

    SciTech Connect (OSTI)

    Clark, E; Gregory Staack, G

    2007-08-13

    Samples of ethylene propylene diene monomer (EPDM) elastomer were exposed to tritium gas in closed containers initially at 101 kPa (1 atmosphere) pressure and ambient temperature for about one week. Tritium exposure effects on the samples were characterized by dynamic mechanical analysis (DMA) and radiolysis products were characterized by measuring the total final pressure and composition in the exposure containers at the end of exposure period. There was no effect of one week tritium exposure on the glass transition temperature, Tg, of the samples tested. Impurity gases produced in the closed containers included HT and lesser amounts of H{sub 2}, DTO, and CT{sub 4}. The total pressure remained the same during exposure.

  4. Effect of CNTs dispersion on the thermal and mechanical properties of Cu/CNTs nanocomposites

    SciTech Connect (OSTI)

    Muhsan, Ali Samer E-mail: faizahmad@petronas.com.my; Ahmad, Faiz E-mail: faizahmad@petronas.com.my; Yusoff, Puteri Sri Melor Megat Bt; Mohamed, Norani M.; Raza, M. Rafi

    2014-10-24

    Modified technique of metal injection molding (MIM) was used to fabricate multiwalled carbon nanotube (CNT) reinforced Cu nanocomposites. The effect of adding different amount of CNTs (0-10 vol.%) on the thermal and mechanical behaviour of the fabricated nanocomposites is presented. Scanning electron microscope analysis revealed homogenous dispersion of CNTs in Cu matrices at different CNTs contents. The experimentally measured thermal conductivities of Cu/CNTs nanocomposites showed extraordinary increase (76% higher than pure sintered Cu) with addition of 10 vol.% CNTs. As compared to the pure sintered Cu, increase in modulus of elasticity (Young's modulus) of Cu/CNTs nanocomposites sintered at 1050C for 2.5 h was measured to be 48%. However, in case of 7.5 vol.% CNTs, Young's modulus was increased significantly about 51% compared to that of pure sintered Cu.

  5. On-machine sensors to measure paper mechanical properties. Final report

    SciTech Connect (OSTI)

    Hall, M.S.; Brodeur, P.H.; Jackson, T.G.

    1993-10-01

    The measurement of the velocity of ultrasound provides a nondestructive means to characterize the elastic stiffness properties of paper. The objective of this project is to develop sensors capable of measuring the velocity of ultrasound in the thickness and in-plane directions of moving paper webs. On-machine measurements would allow continuous monitoring of product quality as well as provide data for controlling the papermaking process. This final report first reviews the background and various technical approaches explored. Then the preferred configurations and examples of measurements on moving paper webs in the laboratory are presented and discussed. The report concludes with a summary of project results and recommendations for further developments. Transducers mounted in fluid-filled wheels are used to make thickness direction, ZD, ultrasound velocity measurements on paper webs moving in the nip between two such wheels. Comparisons of the arrival times of echo and transmitted pulses with and without the paper web in the nip provide a measure of the transit time and caliper. Bimorph transducers mounted in an aluminum cylinder are used for machine direction (MD) and cross direction (CD) in-plane measurements. These ZD and in-plane sensors are mounted on a web handler in the IPST laboratory.

  6. On-machine sensors to measure paper mechanical properties, Report No. 1

    SciTech Connect (OSTI)

    Hall, M.S.; Habeger, C.C. Jr.

    1988-10-01

    This project is a four-year program which began October 1, 1986. The work may be separated into two distinct parts and four phases. Part I (Phases 1 and 2) is being emphasized to date, and Part II (Phases 3 and 4) will be initiated upon successful completion of Part I. Part I of this project is specifically concerned with the development of a sensor to make on-machine measurements of elastic stiffness in the thickness direction of the paper and the integration of this sensor with an appropriate in-plane sensor. Upon completion of Part I (Phases 1 and 2), we expect to be able to independently monitor the effects of refining, jet-to-wire speed ratios, and draws (and the related drying restraints) on paper properties. This means that we should be able to control these three machine variables continuously and independently during the manufacturing process. Part II of the project will then be concerned with the development of algorithms, hardware, and software necessary to control these variables on the paper machine in the machine direction (Phase 3) and the cross-machine direction (Phase 4). Project objectives call for a successful demonstration of the sensor and control scheme on a laboratory scale paper machine. Success would lead to further work on a pilot scale and eventual scale-up to a full size paper machine. 22 refs., 19 figs., 5 tabs.

  7. Mechanical properties and modeling of seal-forming lithologies. Technical progress report No. 3, March 15, 1992--June 14, 1993

    SciTech Connect (OSTI)

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Mazariegos, R.; Ibanez, W.

    1993-06-01

    Specific goals and accomplishments of this research include: (1) The evaluation of models of salt diaper ascent that involve either power law, dislocation creep as determined experimentally by Horseman et al. (1993) or linear, fluid-assisted creep as reported by Spiers et al. (1988, 1990, 1992). We have compared models assuming these two, experimentally evaluated flow laws and examined the predictions they make regarding diaper incubation periods, ascent velocities, deviatoric stresses and strain rates. (2) The evaluation of the effects of differential loading on the initiation an of salt structures. (3) Examination of the role of basement faults on the initiation and morphologic evolution of salt structures. (4) Evaluation of the mechanical properties of shale as a function of pressure and determination of the nature of its brittle-ductile transition. (5) Evaluation of the mechanical anisotropies of shales with varying concentrations, distributions and preferred orientations of clay. (6) The determination of temperature and ratedependencies of strength for a shale constitutive model that can be used in numerical models that depend on viscous formulations. (7) Determination of the mechanisms of deformation for argillaceous rocks over awide range of conditions. (8) Evaluation of the effects of H{sub 2}O within clay interlayers, as adsorbed surface layers.

  8. Mechanical properties of interacting lipopolysaccharide membranes from bacteria mutants studied by specular and off-specular neutron scattering

    SciTech Connect (OSTI)

    Schneck, Emanuel; Tanaka, Motomu; Oliveira, Rafael G.; Rehfeldt, Florian; Deme, Bruno; Brandenburg, Klaus; Seydel, Ulrich

    2009-10-15

    Specular and off-specular neutron scattering are used to study the influence of molecular chemistry (mutation) on the intermembrane interactions and mechanical properties of the outer membrane of Gram-negative bacteria consisting of lipopolysaccharides (LPSs). For this purpose, solid-supported multilayers of mutant LPS membranes are deposited on silicon wafers and hydrated either at defined humidity or in bulk buffers. The planar sample geometry allows to identify out-of-plane and in-plane scattering vector components. The measured two-dimensional reciprocal space maps are simulated with membrane displacement correlation functions determined by two mechanical parameters (vertical compression modulus and bending rigidity) and an effective cutoff radius for the membrane fluctuation wavelength. Experiments at controlled humidity enable one to examine the influence of the disjoining pressure on the saccharide-mediated intermembrane interactions, while experiments in bulk buffers (i.e., in the absence of an external osmotic stress) reveal the effect of divalent cations on LPS membranes, highlighting the role of divalent cations in the survival mechanism of bacteria in the presence of antimicrobial molecules.

  9. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect (OSTI)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords

  10. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  11. Surface and mechanical properties of transparent polycrystalline YAG fabricated by SPS

    SciTech Connect (OSTI)

    Palmero, P.; Bonelli, B.; Fantozzi, G.; Spina, G.; Bonnefont, G.; Montanaro, L.; Chevalier, J.

    2013-07-15

    Graphical abstract: - Highlights: • Ultrasonication as effective, un-polluting dispersion route for YAG powders. • Annealing in the 700–900 °C range to increase the transparency. • Oxygen vacancies more crucial on the transmittance than C contamination. • SPS reliable method for transparent and ultra-fine polycrystalline YAG. • Very high hardness (16.5–17 GPa) for the fully dense, fine materials. - Abstract: YAG powder was synthesised by reverse-strike co-precipitation, calcined at 1000 °C and dispersed by either ball-milling with α-alumina (BM{sub A}) or zirconia (BMz) spheres or by ultrasonication (US). All the dispersed powders were consolidated by SPS to nearly theoretical density, but only the US powder gave rise to a transparent material (transmittance of about 60% at 600 nm, 1 mm thickness), characterised by an ultra-fine microstructure (average size of 330 nm). In the BM materials, Raman spectroscopy allowed to evidence some phonon vibrational shifts due to secondary phases deriving from pollution by the milling media, not detectable by XRD because present in small amounts. The transmittance of the as-sintered US sample was further increased by annealing in air at 900 °C; this was assigned to the restoration of some oxygen vacancies created in the reducing environment of the SPS chamber, as evidenced by XPS (X-ray photoelectron spectroscopy). Finally, US samples sintered in the 1250–1400 °C were submitted to a basic mechanical characterisation, showing a very good hardness, in spite of a moderate fracture toughness, especially for the fully dense and fine-grained materials sintered at 1300–1350 °C.

  12. Facile synthesis, spectral properties and formation mechanism of sulfur nanorods in PEG-200

    SciTech Connect (OSTI)

    Xie, Xin-yuan; Li, Li-yun; Zheng, Pu-sheng; Zheng, Wen-jie; Bai, Yan; Cheng, Tian-feng; Liu, Jie

    2012-11-15

    Graphical abstract: Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 68 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods. Highlights: ? A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported. ? S{sup 0} nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm. ? The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process. ? PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. -- Abstract: The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 68 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UVvis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.

  13. Influence of strontium addition on the mechanical properties of gravity cast Mg-3Al-3Sn alloy

    SciTech Connect (OSTI)

    Germen, Gl?ah ?evik, Hseyin; Kurnaz, S. Can

    2013-12-16

    In this study, the effect of strontium (0.01, 0.1, 0.5, 1 wt%) addition on the microstructure and mechanical properties of the gravity cast Mg-3Al-3Sn alloy were investigated. X-ray diffractometry revealed that the main phases are ??Mg, ??Mg{sub 17}Al{sub 12} and Mg{sub 2}Sn in the Mg-3Al-3Sn alloy. With addition The tensile testing results showed that the yield and ultimate tensile strength and elongation of Mg-3Al-3Sn alloy increased by adding Sr up to 0.1 wt.% and then is gradually decreased with the addition of more alloying element.

  14. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: Beyond standard density functional theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.

    2015-03-04

    In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al2Si2O5(OH)4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and Birch–Murnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.7–3.0% from room temperature up to its thermal stability limit.

  15. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect (OSTI)

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  16. Relationship between crystal structure and thermo-mechanical properties of kaolinite clay: Beyond standard density functional theory

    SciTech Connect (OSTI)

    Weck, Philippe F.; Kim, Eunja; Jove-Colon, Carlos F.

    2015-03-04

    In this study, the structural, mechanical and thermodynamic properties of 1 : 1 layered dioctahedral kaolinite clay, with ideal Al2Si2O5(OH)4 stoichiometry, were investigated using density functional theory corrected for dispersion interactions (DFT-D2). The bulk moduli of 56.2 and 56.0 GPa predicted at 298 K using the Vinet and BirchMurnaghan equations of state, respectively, are in good agreement with the recent experimental value of 59.7 GPa reported for well-crystallized samples. The isobaric heat capacity computed for uniaxial deformation of kaolinite along the stacking direction reproduces calorimetric data within 0.73.0% from room temperature up to its thermal stability limit.

  17. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop and refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.

  18. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect (OSTI)

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or ?¢????electron tweezers?¢??? - of a solid metal nanoparticle inside a liquid metal. This phenomenon is analogous to that of optical trapping of solid microparticles in solution known as "optical tweezers", which is currently being used to manipulate molecules and inorganic materials in a variety of nanotechnology applications.

  19. Mechanical properties of dissimilar...

    Office of Scientific and Technical Information (OSTI)

    ... electron microscope (FE-SEM) (Hitachi S4800) were used to characterize microstructures. ... SEM images of the cross section view of the FBJ specimen are given in Figure 10. Figure 10 ...

  20. Property

    Energy Savers [EERE]

    ER-B-98-07 AUDIT REPORT PERSONAL PROPERTY AT THE OAK RIDGE OPERATIONS OFFICE AND THE OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES APRIL 1998 Page 10 DEPARTMENT OF ENERGY Washington, DC 20585 April 6, 1998 MEMORANDUM FOR THE MANAGER, OAK RIDGE OPERATIONS OFFICE AND THE DIRECTOR, OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION FROM: Terry L. Brendlinger Eastern Regional Audit Office Office of Inspector General SUBJECT:

  1. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect (OSTI)

    Zhang, Z.D.; Liu, L.M. Shen, Y.; Wang, L.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  2. Rapidly solidified alloys and their mechanical and magnetic properties; Proceedings of the Symposium, Boston, MA, December 2-4, 1985. Volume 58

    SciTech Connect (OSTI)

    Giessen, B.C.; Polk, D.E.; Taub, A.I.

    1986-01-01

    Papers are presented on methods for processing rapidly solidified alloys, the effects of bombardment of high energy ions onto the growing surface on the structure and properties of sputtered magnetic films, and the transition from a planar interface to cellular and dendritic structures during rapid solidification processing (RSP). Consideration is given to the formation, structural relaxation and phase transformation, and chemical, magnetic, and mechanical properties of amorphous alloys. Topics discussed include crystalline magnetic materials, quasi-crystals, and the microstructures and properties of RSP Al, Ti, Mg, Ni, Fe, Co, and Cu-based alloys.

  3. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    SciTech Connect (OSTI)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.

  4. Structural, microstructural and thermal properties of lead-free bismuthsodiumbariumtitanate piezoceramics synthesized by mechanical alloying

    SciTech Connect (OSTI)

    Amini, Rasool; Ghazanfari, Mohammad Reza; Alizadeh, Morteza; Ardakani, Hamed Ahmadi; Ghaffari, Mohammad

    2013-02-15

    Graphical abstract: Mechano-synthesis of lead-free (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} piezoceramics with nanocrystalline/amorphous structure and homogeneous composition: partial transformation of constituents to BNBT, BNT and pyrochlore, amorphous phase formation, mechano-crystallization of the amorphous, pyrochlore-to-perovskite BNBT phase transformation during the process. Display Omitted Highlights: ? Perovskite BNBT powders with homogeneous composition were synthesized by MA. ? Partial transformation of constituents to BNBT, BNT and pyrochlore occurred by MA. ? Formation of an amorphous phase and afterwards its crystallization occurred by MA. ? Pyrochlore-to-perovskite BNBT phase transformation occurred after prolong milling. ? Polymorphic transformations of TiO{sub 2} act as the main alloying impediment during MA. -- Abstract: Bismuthsodiumbariumtitanate piezoceramics with a composition of (Bi{sub 0.5}Na{sub 0.5}){sub 0.94}Ba{sub 0.06}TiO{sub 3} (BNBT) were prepared by mechanical alloying (MA). Structural analysis and phase identification were performed by X-ray diffraction (XRD). Microstructural studies and chemical composition homogeneity were performed by scanning electron microscope (SEM) coupled with energy dispersive X-ray analysis (EDX). Furthermore, thermal properties of the as-milled powders were evaluated by thermogravimetry/differential thermal analysis (TG/DTA). During the initial milling, the constituents were transformed to the perovskite, pyrochlore, and BNT phases; in addition, partial amorphization of the structure appeared during the milling cycle. As MA progressed, transformation of pyrochlore-to-perovskite and crystallization of the amorphous phase occurred and also, the BNBT phase was significantly developed. It was found that the MA process has the ability to synthesize the BNBT powders with a submicron particle size, regular morphology, and uniform elemental distribution.

  5. The Role of Friction Stir Welding on the Microstructure and Mechanical Properties of AZ31B-H24 Mg alloy

    SciTech Connect (OSTI)

    Darzi, Kh.; Saeid, T. [Advanced Materials Research Center - Faculty of Materials Engineering, Sahand University of Technology - Tabriz (Iran, Islamic Republic of)

    2011-12-26

    In this study, an attempt was made to join AZ31B magnesium alloy by friction stir welding (FSW) process. A single tool with cylindrical screw threaded pin was used to investigate the effect of welding parameters on microstructure and mechanical properties of stir zone (SZ). Several welds were made at different rotational ({omega}) and traverse ({upsilon}) speeds, while the {omega}/{upsilon} ratios were kept constant. The optical and scanning electron microscopy were used to study the variation of microstructure across the welds. Moreover, micro-hardness and tensile tests were carried out to evaluate the mechanical properties of joints. It was found that {omega} plays more significant role on the resulted grain structure than {upsilon}, and at a constant {omega}/{upsilon} ratio, decreasing rotational speed decreased the size of grains, and hence, improved the hardness value and the tensile strength of the SZ.

  6. Bulk and mechanical properties of the Paintbrush tuff recovered from boreholes UE25 NRG-2, 2A, 2B, and 3: Data report

    SciTech Connect (OSTI)

    Boyd, P.J.; Martin, R.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves characterization of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from boreholes UE25 NRG-2, 2A, 2B, and 3 drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. The holes penetrated the Timber Mountain tuff and two thermal/mechanical units of the Paintbrush tuff. The thermal/mechanical stratigraphy was defined by Ortiz to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy for each borehole is presented. The tuff samples in this study have a wide range of welding characteristics (usually reflected in sample porosity), and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  7. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Martin, R.J.; Boyd, P.J.; Noel, J.S. [New England Research, Inc. White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties.

  8. Determination of Interfacial Mechanical Properties of Ceramic Composites by the Compression of Micro-pillar Test Specimens

    SciTech Connect (OSTI)

    Shih, Chunghao; Katoh, Yutai; Leonard, Keith J; Bei, Hongbin; Lara-Curzio, Edgar

    2013-01-01

    A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro- pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber reinforced SiC matrix composites then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single filament push-out method for the determination of interfacial properties. Based on the test results using samples with different interface orientations , the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods.

  9. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect (OSTI)

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500?nm in thickness were single crystalline in the ?-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent ??=?0.72??0.02 and a dynamic growth roughness exponent ??=?0.22??0.02 were determined. The value of ? and ? are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 3001100?nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  10. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  11. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  12. Manipulation of electronic and magnetic properties of M{sub 2}C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains

    SciTech Connect (OSTI)

    Zhao, Shijun; Kang, Wei; Xue, Jianming

    2014-03-31

    Tuning the electronic and magnetic properties of a material through strain engineering is an effective strategy to enhance the performance of electronic and spintronic devices. In this paper, first-principles calculations based on density functional theory are carried out to investigate the electronic and magnetic properties of M{sub 2}C(M = Hf, Nb, Sc, Ta, Ti, V, Zr, known as MXenes) subjected to biaxial symmetric mechanical strains. At the strain-free state, all these MXenes exhibit no spontaneous magnetism except for Ti{sub 2}C and Zr{sub 2}C which show a magnetic moment of 1.92 and 1.25 μ{sub B}/unit, respectively. As the tensile strain increases, the magnetic moments of MXenes are greatly enhanced and a transition from nonmagnetism to ferromagnetism is observed for those nonmagnetic MXenes at zero strains. The most distinct transition is found in Hf{sub 2}C, in which the magnetic moment is elevated to 1.5 μ{sub B}/unit at a strain of 1.80%. We further show that the magnetic properties of Hf{sub 2}C are attributed to the band shift mainly composed of Hf(5d) states.

  13. An investigation on microstructure evolution and mechanical properties during liquid state diffusion bonding of Al2024 to Ti6Al4V

    SciTech Connect (OSTI)

    Samavatian, Majid; Halvaee, Ayoub; Amadeh, Ahmad Ali; Khodabandeh, Alireza

    2014-12-15

    Joining mechanism of Ti/Al dissimilar alloys was studied during liquid state diffusion bonding process using Cu/Sn/Cu interlayer at 510 C under vacuum of 7.5 10{sup ?5} Torr for various bonding times. The microstructure and compositional changes in the joint zone were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction. Microhardness and shear strength tests were also applied to study the mechanical properties of the joints. It was found that with an increase in bonding time, the elements of interlayer diffused into the parent metals and formed various intermetallic compounds at the interface. Diffusion process led to the isothermal solidification and the bonding evolution in the joint zone. The results from mechanical tests showed that microhardness and shear strength values have a straight relation with bonding time so that the maximum shear strength of joint was obtained for a bond made with 60 min bonding time. - Highlights: Liquid state diffusion bonding of Al2024 to Ti6Al4V was performed successfully. Diffusion of the elements caused the formation of various intermetallics at the interface. Microhardness and shear strength values have a straight relation with bonding time. The maximum shear strength reached to 36 MPa in 60 min bonding time.

  14. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    SciTech Connect (OSTI)

    Prilliman, Gerald Stephen

    2003-09-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe{sub 2}O{sub 3}) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the {gamma} to the {alpha} structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the {alpha} structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced {alpha} phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the {alpha} phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure. The anomalous intensities in the x-ray diffraction patterns were interpreted as being the result of stacking faults, indicating that the mechanism of transition proceeds by the sliding of {gamma}(111) planes to form {alpha}(001) planes. The increasing transition pressure for more aggregated samples may be due to a positive activation volume, retarding the transition for nanocrystals with less excess (organic) volume available to them. The lack of a reverse transition upon decompression makes this interpretation more difficult because of the lack of an observable hysteresis, and it is therefore difficult to ascertain kinetic effects for certain. In the case TiN/BN nanocomposite systems, it was found that the bulk modulus (B{sub 0}) of the TiN nanoparticles was not correlated to the observed hardness or Young's modulus of the macroscopic thin film. This indicates that the origin of the observed super-hard nature of these materials is not due to any change in the Ti-N interatomic potential. Rather, the enhanced hardness must be due to nano-structural effects. It was also found that during pressurization the TiN nanoparticles developed a great deal of strain. This strain can be related to defects induced in individual nanoparticles which generates strain in adjacent particles due to the highly coupled nature of the system.

  15. Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting

    SciTech Connect (OSTI)

    Meng, Yi, E-mail: yimonmy@sina.com; Cui, Jianzhong; Zhao, Zhihao; He, Lizi

    2014-06-01

    The Al-1.6Mg-1.2Si-1.1Cu-0.15Cr (all in wt. %) alloys with and without Zr addition prepared by low frequency electromagnetic casting process were investigated by using the optical microscope, scanning electron microscope and transmission electron microscope equipped with energy dispersive analytical X-ray. The effects of Al{sub 3}Zr phases on the microstructures and mechanical properties during solidification, homogenization, hot extrusion and solid solution were studied. The results show that Al{sub 3}Zr phases reduce the grain size by ? 29% and promote the formation of an equiaxed grain structure during solidification. Numerous spherical Al{sub 3}Zr dispersoids with 3560 nm in diameters precipitate during homogenization, and these fine dispersoids change little during subsequent hot extrusion and solid solution. Adding 0.15 wt. % Zr results in no recrystallization after hot extrusion and partial recrystallization after solid solution, while the recrystallized grain size is 400550 ?m in extrusion direction in the Zr-free alloy. In addition, adding 0.15 wt. % Zr can obviously promote Q? phase precipitation, while the ?? phases are predominant in the alloy without Zr. Adding 0.15 wt. % Zr, the ultimate tensile strength of the T6 treated alloy increases by 45 MPa, while the elongation remains about 16.7%. - Highlights: Minor Zr can refine as-cast grains of the LFEC Al-Mg-Si-Cu-Cr alloy. L1{sub 2} Al{sub 3}Zr phases with 3560 nm in diameter precipitate during homogenization. L1{sub 2} and DO{sub 22} Al{sub 3}Zr phases result in partial recrystallization after solid solution. Minor Zr can promote the precipitation of Q? phases. Mechanical properties of Al-Mg-Si-Cu-Cr-Zr alloy are higher than those of AA7005.

  16. Synthesis and mechanical properties of CrMoC{sub x}N{sub 1-x} coatings deposited by a hybrid coating system

    SciTech Connect (OSTI)

    Yun, Ji Hwan; Heo, Su Jeong; Kim, Kwang Ryul; Kim, Kwang Ho

    2008-01-15

    Quaternary CrMoC{sub x}N{sub 1-x} coatings were deposited on steel substrates (AISI D2) and Si wafers by a hybrid coating system combining an arc-ion plating technique and a dc reactive magnetron sputtering technique using Cr and Mo targets in an Ar/N{sub 2}/CH{sub 4} gaseous mixture. The carbon content of CrMoC{sub x}N{sub 1-x} coatings was linearly increased with increasing CH{sub 4}/(CH{sub 4}+N{sub 2}) gas flow rate ratio. The maximum hardness of 44 GPa was obtained from the CrMoC{sub x}N{sub 1-x} coatings containing a carbon content of x=0.33 with a residual stress of -4.4 GPa. The average friction coefficient of Cr-Mo-N coatings was 0.42, and it is decreased to 0.31 after applying CrMoC{sub x}N{sub 1-x} coatings. This result was caused by the formation of a carbon-rich transfer layer that acted as a solid lubricant to reduce contact between the coating surface and steel ball. The microstructure of the coatings was investigated by x-ray diffraction, scanning electron microscopy, and x-ray photoelectron spectroscopy. In this work, the microstructure and mechanical properties of the CrMoC{sub x}N{sub 1-x} coatings were systematically investigated with the instrumental analyses.

  17. Outstanding Long-Term Liabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  18. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOE Patents [OSTI]

    Finot, Marc (Somerville, MA); Kesler, Olivera (Cambridge, MA); Suresh, Subra (Wellesley, MA)

    1998-01-01

    A technique for determining properties such as Young's modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined.

  19. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOE Patents [OSTI]

    Finot, M.; Kesler, O.; Suresh, S.

    1998-12-08

    A technique for determining properties such as Young`s modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined. 11 figs.

  20. Use of a region of the visible and near infrared spectrum to predict mechanical properties of wet wood and standing trees

    DOE Patents [OSTI]

    Meglen, Robert R. (Boulder, CO); Kelley, Stephen S. (Evergreen, CO)

    2003-01-01

    In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.

  1. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

  2. Low-temperature Mechanical Properties of Fe-0.06C-18Cr-10Ni-0.4Ti Austenitic Steel Determined Using Ring-Pull Tensile Tests and Microhardness Measurements

    SciTech Connect (OSTI)

    Neustroev, V. S.; Boev, E. V.; Garner, Francis A.

    2007-08-01

    Irradiated austenitic stainless steels removed from Russian water-cooled VVERs experience irradiation temperatures and He/dpa conditions that are very similar to steels to be used in ITER. Data are presented on the radiation hardening of the Russian analog of AISI 321 at 0.2 to 15 dpa in the range of 285 to 320??. The Russian variant of the ring-pull tensile test was used to obtain mechanical prop-erty data. Microhardness tests on the ring specimens provide useful information throughout the deformed regions, but at high hardening levels caution must be exercised before application of a widely accepted hardness-yield stress correla-tion to prediction of tensile properties. Low-nickel austenitic steels are very prone to form deformation martensite, a phase that increases strongly with the larger deformation levels characteristic of microhardness tests, especially when compared to the 0.2% deformation used to define yield stress.

  3. Low-Temperature Mechanical Properties Of Fe-0.06c-18cr-10ni-0.4ti Austenitic Steel Determined Using Ring-Pull Tensile Tests And Microhardness Measurements

    SciTech Connect (OSTI)

    Neustroev, V. S.; Boev, E. V.; Garner, Francis A.

    2007-03-01

    Irradiated austenitic stainless steels removed from Russian water-cooled VVERs experience irradia-tion temperatures and He/dpa conditions that are very similar to steels to be used in ITER. Data are presented on the radiation hardening of the Russian analog of AISI 321 at 0.2 to 15 dpa in the range of 285 to 320??. The Russian variant of the ring-pull tensile test was used to obtain mechanical prop-erty data. Microhardness tests on the ring specimens provide useful information throughout the de-formed regions, but at high hardening levels caution must be exercised before application of a widely accepted hardness-yield stress correlation to prediction of tensile properties. Low-nickel austenitic steels are very prone to form deformation martensite, a phase that increases strongly with the larger deformation levels characteristic of microhardness tests, especially when compared to the 0.2% de-formation used to define yield stress.

  4. Influence of boron on the microstructural and mechanical properties of Ni{sub 53.5}Mn{sub 26.0}Ga{sub 20.5} shape memory alloy

    SciTech Connect (OSTI)

    Ramudu, M. Kumar, A. Satish Seshubai, V.; Rajasekharan, T.

    2014-04-24

    Boron addition to Ni{sub 53.5}Mn{sub 26.0}Ga{sub 20.5} alloy is found to modify the microstructure and mechanical properties substantially. Studies on (Ni{sub 53.5}Mn{sub 26.0}Ga{sub 20.5})B{sub x} alloys reveal that boron addition causes grain refinement which led to an increase in compressive strength in x=0.5 alloy which also retained multimode twinning. Substantial second phase segregation rich in Ni was seen at grain boundaries, the extent of which increased with boron content. This led to a compositional shift in the matrix phase which resulted in a reduction in the martensitic transformation temperature and which in turn caused an easy deformation at low stresses and suppression of multimode twinning in x=1.0 alloy.

  5. Phase stability, mechanical properties, hardness, and possible...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Journal of Chemical ... Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHROMIUM; CHROMIUM BORIDES; ...

  6. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  7. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  8. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  9. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  10. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  11. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  12. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of

  13. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect (OSTI)

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  14. Mechanical memory

    DOE Patents [OSTI]

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  15. Mechanical memory

    DOE Patents [OSTI]

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  16. Addressing mechanical reliability issues in Sandia MEMS devices...

    Office of Scientific and Technical Information (OSTI)

    Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 42 ENGINEERING; RELIABILITY; MECHANICAL PROPERTIES; MEMBRANES; MICROELECTRONICS

  17. Outstanding Issues For New Geothermal Resource Assessments |...

    Open Energy Info (EERE)

    : GRC; p. () Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At General Us Region (Williams & Reed, 2005) Areas (1) General Us Region...

  18. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle weight savings. Chuck Peden of Pacific Northwest National Laboratory for his ground-breaking success in enabling modern internal combustion engines to meet near-zero...

  19. Pantex recognized for outstanding community service | National...

    National Nuclear Security Administration (NNSA)

    this site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  20. Pantex recognized for outstanding community service | National...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  1. Awards recognize outstanding innovation in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to oil and gas exploration. Sinha's dedication to this field of research has resulted in six commercial license agreements, 11 collaborative projects, three sponsored ...

  2. ALS Postdoc Recognized for Outstanding Thesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (in Danish) can be found at the Aarhus University Research Foundation site. In translation, it says, in part: Laser Pulses Reveal Huge Potential in 2D Fabric With his studies...

  3. Agreement Mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Mechanisms Agreement Mechanisms World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. CRADA: Cooperative Research and Development Agreement What is it? Work performed in collaboration with a sponsor. What does it do? Enables Los Alamos staff to participate with industry, academia, and nonprofit entities on collaborative R&D activities of mutual benefit. When is it used? An organization's

  4. Computational mechanics

    SciTech Connect (OSTI)

    Goudreau, G.L.

    1993-03-01

    The Computational Mechanics thrust area sponsors research into the underlying solid, structural and fluid mechanics and heat transfer necessary for the development of state-of-the-art general purpose computational software. The scale of computational capability spans office workstations, departmental computer servers, and Cray-class supercomputers. The DYNA, NIKE, and TOPAZ codes have achieved world fame through our broad collaborators program, in addition to their strong support of on-going Lawrence Livermore National Laboratory (LLNL) programs. Several technology transfer initiatives have been based on these established codes, teaming LLNL analysts and researchers with counterparts in industry, extending code capability to specific industrial interests of casting, metalforming, and automobile crash dynamics. The next-generation solid/structural mechanics code, ParaDyn, is targeted toward massively parallel computers, which will extend performance from gigaflop to teraflop power. Our work for FY-92 is described in the following eight articles: (1) Solution Strategies: New Approaches for Strongly Nonlinear Quasistatic Problems Using DYNA3D; (2) Enhanced Enforcement of Mechanical Contact: The Method of Augmented Lagrangians; (3) ParaDyn: New Generation Solid/Structural Mechanics Codes for Massively Parallel Processors; (4) Composite Damage Modeling; (5) HYDRA: A Parallel/Vector Flow Solver for Three-Dimensional, Transient, Incompressible Viscous How; (6) Development and Testing of the TRIM3D Radiation Heat Transfer Code; (7) A Methodology for Calculating the Seismic Response of Critical Structures; and (8) Reinforced Concrete Damage Modeling.

  5. Computational mechanics

    SciTech Connect (OSTI)

    Raboin, P J

    1998-01-01

    The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D. Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.

  6. Historic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of its historic properties. The National Park Service would provide interpretation, education, and technical preservation assistance for properties at LANL. Potential Los...

  7. Fractofusion mechanism

    SciTech Connect (OSTI)

    Yasui, K. . Dept. of Physics)

    1992-11-01

    In this paper, the fractofusion mechanism of cold fusion is investigated theoretically. The conditions necessary for fractofusion during the absorption of deuterium atoms by palladium specimens (the condition of so-called cold fusion experiments) is clarified, including crack generation at grain boundaries, the high orientation angle of grains, rapid crack formation, the increase of electrical resistance around a crack, the large width of cracks, and the generation of many cracks. The origin and quantity of the electrical field inside cracks in the conductor are also clarified. By the fractofusion mechanism, the experimental facts that neutron emissions are observed in bursts, that sometimes they coincide with the deformation of a palladium specimen, and that in many experiments excess neutrons were not observed are qualitatively explained. The upper limit of the total fractofusion yields during the absorption of deuterium atoms by palladium specimens are estimated.

  8. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale

  9. Mechanical Response of Thermoelectric Materials

    SciTech Connect (OSTI)

    Wereszczak, Andrew A.; Case, Eldon D.

    2015-05-01

    A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.

  10. Intellectual Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Property Intellectual Property The innovation assets we make available to our industry partners include the ideas, knowledge, skills and experience of our people. Contact thumbnail of Kathleen McDonald Head of Intellectual Property, Business Development Executive Kathleen McDonald Richard P. Feynman Center for Innovation (505) 667-5844 Email The primary mission of Los Alamos National Laboratory is to develop and deploy the technology required to protect and preserve our national security.

  11. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  12. Summary of mechanical properties data and correlations for Li/sub 2/O, Li/sub 4/SiO/sub 4/, LiAlO/sub 2/, and Be

    SciTech Connect (OSTI)

    Billone, M.C.; Grayhack, W.T.

    1988-04-01

    The data base for thermal expansion, elastic constants, compressive and tensile failure strengths and secondary thermal creep of leading solid-breeder (Li/sub 2/O, Li/sub 4/SiO/sub 4/, and LiAlO/sub 2/) and multiplier (Be) materials is reviewed, porosity, grain size, and stress (for thermal creep). Because the data base is rather sparse in some areas, general properties of ceramics and metals are used to help guide the formulation of the correlations. The primary purpose of the data base summary and correlation development is to pave the way for stress analysis sensitivity studies. These studies will help determine which properties are important enough to structural lifetime and deformation assessments to require more data. 18 refs., 5 figs., 20 tabs.

  13. Personal Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16

    This Guide provides non-regulatory guidance and information to assist DOE organizations and contractors in implementing the DOE-wide and site-specific personal property management programs. It supplements the policy, requirements, and responsibilities information contained in the DOE Order cited above and clarifies the regulatory requirements contained in the Federal Property Management Regulation (FMR) and specific contracts.

  14. Enhanced superconducting properties in Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub y} by thermal and mechanical processing

    SciTech Connect (OSTI)

    Miller, D.J.; Holesinger, T.G.; Hettinger, J.D.; Goretta, K.C.; Gray, K.E.

    1992-08-01

    The practical application of high temperature superconductors has been limited by low transport currents in bulk samples. The effect of processing on transition temperature, grain boundary coupling, and flux pinning has been examined for Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub y}. Enhancement of {Tc} based on composition can be achieved by control of crystallization and subsequent annealing processes while thermo-mechanical processing may be used to modify weak link and flux pinning behavior. The microstructural basis for these changes are related to the composition of the superconducting phase and the presence of defects associated with deformation processing. The implications of these results on conductor development are related to the selection of alloy composition for optimum transition temperature and controlled thermo-mechanical processing which yields a uniform defect structure.

  15. Thermoelectric Mechanical Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon pm012_wereszczak_2012_o.pdf More Documents & Publications International Round-Robin on Transport Properties of Bismuth Telluride Reliability of Transport Properties for Bulk Thermoelectrics Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for Automotive Waste Heat Recov

  16. Personal Property

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-06-09

    This Guide provides non-regulatory guidance and information to assist DOE organizations and contractors in implementing the DOE-wide and site-specific personal property management programs. Supersedes DOE G 580.1-1.

  17. Historic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historic Properties Historic Properties Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 TA-18-0001, site of the 1946 Louis Slotin criticality accident TA-18-0001, site of the 1946 Louis Slotin criticality accident, which significantly influenced future criticality safety programs. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos,

  18. Intellectual Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property Intellectual Property Los Alamos protects the innovations of its scientists and engineers by filing patent applications and copyrights. Patents and Patent Applications Publication Number Title US20120001631A1 Ultra-Low Field Nuclear Magnetic Resonance Method to Discriminate and Identify Materials US20120055264A1 Apparatus and Method for Noninvasive Particle Detection Using Doppler Spectroscopy US20120227473A1 Apparatus and Method for Visualization of Particles Suspended in

  19. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  20. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  1. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  2. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  3. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Bioactive Glass Scaffolds for Bone Regeneration Print Wednesday, 28 September 2011 00:00 Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their

  4. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  5. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  6. Bioactive Glass Scaffolds for Bone Regeneration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density

  7. Mechanics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanics Mechanics A deeper look at the mechanics and gameplay A deeper look at the mechanics and gameplay Mechanics Breakdown In Brief Players must connect buildings together by allocating resources in a resource chain across the map. They must reach and resolve their Objective within a given number of turns to succeed. To accomplish this, they have the following tools at their disposal: Linking Connect buildings together by allocating resources from buildings that produce them to buildings

  8. Synthesis, characterization, and gas-sensing properties of monodispersed SnO{sub 2} nanocubes

    SciTech Connect (OSTI)

    Runa, A; Bala, Hari E-mail: fuwy56@163.com; Wang, Yan; Chen, Jingkuo; Zhang, Bowen; Li, Huayang; Fu, Wuyou E-mail: fuwy56@163.com; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2014-08-04

    Monodispersed single-crystalline SnO{sub 2} nanocubes with exposed a large percentage of high-energy surfaces have been synthesized by a simple solvothermal process at low temperature without any templates and catalysts. The as-prepared samples have been characterized by X-ray diffraction and transmission electron microscopy. Many outstanding characters of the final products have been shown, such as uniform particle size, high purity, and monodispersity. In property, superior gas-sensing properties such as high response, rapid response-recovery time, and good selectivity have also been shown to ethanol at an optimal working temperature of as low as 280?C. It indicates that the as-prepared SnO{sub 2} nanocubes are promising for gas sensors.

  9. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, Richard M. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Henning, Carl D. (Livermore, CA); Lennon, Joseph P. (Livermore, CA); Pastrnak, John W. (Livermore, CA); Smith, Joseph A. (Livermore, CA)

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  10. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  11. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Authors: Maiti, A ; Weisgraber, T H ; Gee, R H ; Small, W ; Alviso, C T ; Chinn, S C ; Maxwell, R S Publication Date: 2011-04-15 OSTI Identifier: 1227007 Report Number(s):...

  12. OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED...

    Office of Scientific and Technical Information (OSTI)

    by point method to higher energies and shown to be Kramers-Kronig consistent, (2) by a Gauss-Lorentz and a Tauc Lorentz Oscillator. Both techniques lead to dielectric constants...

  13. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    SciTech Connect (OSTI)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  14. Mechanical properties of materials with nanometer scale dimensions and microstructures

    SciTech Connect (OSTI)

    Nix, William D.

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  15. Effect of pressure on elastic, mechanical and electronic properties...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Materials Research Bulletin; Journal Volume: 50; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All ...

  16. Influence of Mechanical Properties Relevant to Standoff Deflection...

    Office of Scientific and Technical Information (OSTI)

    Springfield, VA at www.ntis.gov. Authors: Lomov, I ; Herbold, E B ; Antoun, T H ; Miller, P Publication Date: 2012-06-04 OSTI Identifier: 1077193 Report Number(s):...

  17. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect (OSTI)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  18. Mechanical properties of dissimilar metal joints composed of...

    Office of Scientific and Technical Information (OSTI)

    of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6 A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6...

  19. Fission properties and production mechanisms for the heaviest known elements

    SciTech Connect (OSTI)

    Hoffman, D.C.

    1981-01-01

    Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)

  20. Mechanical Properties of Structural Steels in Hydrogen | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Hydrogen-Assisted Fracture: Materials Testing and Variables Governing Fracture...

  1. Radiation-induced mechanical property changes in filled rubber...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2011-06-15 OSTI Identifier: 21554517 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review. E, Statistical, Nonlinear, and Soft Matter ...

  2. Property-Assessed Clean Energy Programs | Department of Energy

    Energy Savers [EERE]

    Property-Assessed Clean Energy Programs Property-Assessed Clean Energy Programs The property-assessed clean energy (PACE) model is an innovative mechanism for financing energy efficiency and renewable energy improvements on private property. PACE programs allow local governments, state governments, or other inter-jurisdictional authorities, when authorized by state law, to fund the up-front cost of energy improvements on commercial and residential properties, which are paid back over time by the

  3. Thermoelectric Mechanical Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm012_wereszczak_2011_o.pdf More Documents & Publications Thermoelectrics Theory and Structure Transport Properties, Thermal Response, and Mechanical Reliability of Thermoelectric Materials and Devices for Automotive Waste Heat Recovery

  4. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2002-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transfering it to the mechanical diode.

  5. Mechanical seal assembly

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Salt Lake City, UT)

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  6. Computational Structural Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load-2 TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Structural Mechanics Overview of CSM Computational structural mechanics is a well-established methodology for the design and analysis of many components and structures found in the transportation field. Modern finite-element models (FEMs) play a major role in these evaluations, and sophisticated software, such as the commercially available LS-DYNA® code, is

  7. Monroe Thomas, Mechanical Technician

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and endstation moves. Though he's training another mechanical technician to operate the crane, it's Monroe who is called upon for critical moves. He plays a key role in...

  8. Category:Articles with outstanding TODO tasks | Open Energy Informatio...

    Open Energy Info (EERE)

    D Data Center Equipment Daylighting Dehumidifiers Dishwasher DOE Doors DuctAir sealing E Efficiency Electric Power Board of Chattanooga Electric vehicles Emerging Energy...

  9. Jefferson Lab recognizes its Outstanding Small Business Contractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharon Harrah (center), owner of Triad Machine Shop located in Newport News, Va., receives the award plaque from JLab Director Christoph Leemann (right). Harrah is accompanied by...

  10. Energy Department Lab Researcher Wins HENAAC Award for Outstanding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an individualized, hands-on approach with each research fellow, assisting them in experimental design, numerical simulations, laboratory work, data analysis, and interpretation. ...

  11. Sandia Energy - Sandian Selected for Outstanding Engineer Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy and materials science activities in local middle schools, summer science camps, bilingual engineering workshops for kids, and at career days for K-12 students. In 2013,...

  12. Ames Lab named FLC Outstanding Laboratory | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powder Atomization Technologies, winner of the DOE's America's Next Top Energy Innovator award, was purchased by a multi-billion dollar U.S. corporation; We are scaling- up a new...

  13. President Obama Named 13 Energy Department Scientists for Outstanding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Agriculture, Department of Commerce, Department of Defense, Department of Education, Department of Energy, Department of Health and Human Services, Department of...

  14. Sandia Energy - Sandia Researchers Score MRS "Outstanding" Rating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the best-to represent the MRS in Cancun, Mexico, from August 11-15 at the 22nd annual International Materials Research Congress. The other two winning posters were from...

  15. Pantex once again awarded Star of Excellence for outstanding...

    National Nuclear Security Administration (NNSA)

    its remarkable safety record in 2013, once again receiving honors from the Department of Energy Voluntary Protection Program (DOE VPP). For the second year in a row, DOE awarded...

  16. ORISE: Supporting DOE's mission to recognize outstanding scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arlington, Virginia, facility. Fifty-one investigators from the top proposals in the 2011 Office of Science Early Career Research Programs competition were considered for...

  17. Scientist Honored by DOE for Outstanding Research Accomplishments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The American Society of Heating, Refrigeration and Air Conditioning Engineer's design manual, Passive Solar Heating Analysis, is an outgrowth of this method. Dr. Balcomb's ...

  18. Two Department Employees Recognized for Outstanding Public Service

    Broader source: Energy.gov [DOE]

    Two Department of Energy employees have been nominated for the Samuel J. Heyman Service to America Medal for their work to improve medical treatment and reduce greenhouse gases.

  19. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  20. Cracked-fuel mechanics. [PWR; BWR

    SciTech Connect (OSTI)

    Williford, R.E.; Lanning, D.D.

    1982-01-01

    This paper presents a modelling concept and a set of measurable parameters that have been shown to improve the prediction of the mechanical behavior of cracked fuel/cladding systems without added computational expense. The transition from classical annular gap/cylindrical pellet models to modified bulk properties and further to local behavior for cracked fuel systems is discussed. The results of laboratory experiments to verify these modelling parameters are shown. Data are also presented from laboratory experiments on unirradiated and irradiated rods which show that fuel rod mechanical response depends on fuel fragment size. The impact of these data on cracked fuel behavior and failure modelling is also discussed.

  1. Reliability of Transport Properties for Bulk Thermoelectrics | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy of Transport Properties for Bulk Thermoelectrics Reliability of Transport Properties for Bulk Thermoelectrics Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials PDF icon deer12_wang_2.pdf More Documents & Publications International Round-Robin on Transport Properties of Bismuth Telluride Thermoelectric Mechanical Reliability Standardization of Transport Properties Measurements: Internal Energy Agency

  2. Commercial Property Assessed Clean Energy Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property Assessed Clean Energy Primer Commercial Property Assessed Clean Energy Primer An overview of Commercial Property Assessed Clean Energy (PACE) programs, featuring an explanation of the mechanism, advantages and disadvantages of using this sort of program, different financing pathways, properties and measures that are eligible for this sort of financing, existing commercial pilots of PACE programs, using Recovery Act funds to support commercial PACE, and DOE resources about PACE programs

  3. Rotary mechanical latch

    DOE Patents [OSTI]

    Spletzer, Barry L.; Martinez, Michael A.; Marron, Lisa C.

    2012-11-13

    A rotary mechanical latch for positive latching and unlatching of a rotary device with a latchable rotating assembly having a latching gear that can be driven to latched and unlatched states by a drive mechanism such as an electric motor. A cam arm affixed to the latching gear interfaces with leading and trailing latch cams affixed to a flange within the drive mechanism. The interaction of the cam arm with leading and trailing latch cams prevents rotation of the rotating assembly by external forces such as those due to vibration or tampering.

  4. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, G.L.; Kirby, P.G.

    1997-10-21

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch. 6 figs.

  5. Electronic door locking mechanism

    DOE Patents [OSTI]

    Williams, Gary Lin; Kirby, Patrick Gerald

    1997-01-01

    The invention is a motorized linkage for engaging a thumb piece in a door mechanism. The device has an exterior lock assembly with a small battery cell and combination lock. Proper entry by a user of a security code allows the battery to operate a small motor within the exterior lock assembly. The small motor manipulates a cam-plunger which moves an actuator pin into a thumb piece. The user applies a force on to the thumb piece. This force is transmitted by the thumb piece to a latch engagement mechanism by the actuator pin. The latch engagement mechanism operates the door latch.

  6. Aging induced property changes in metal tritides

    SciTech Connect (OSTI)

    Schober, T.

    1988-09-01

    Recent aging studies performed on dilute and concentrated metal tritides are reviewed. Also, new results concerning property changes in metal tritides as a function of aging time are included. The authors mainly report on TEM studies of aged tritides, the swelling behavior, hardness measurements, selected mechanical properties, acoustic emission and tritium diffusion experiments. Models of the microstructure of aged tritides are also reported. Density measurements on tritides are discussed.

  7. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Bush, P.V.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ask properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  8. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  9. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  10. Structural, negative thermal expansion and photocatalytic properties of ZrV{sub 2}O{sub 7}: a comparative study between fibers and powders

    SciTech Connect (OSTI)

    Liu, Qinqin; Yang, Juan; Rong, Xiaoqing; Sun, Xiujuan; Cheng, Xiaonong; Tang, Hua; Li, Haohua

    2014-10-15

    Novel ZrV{sub 2}O{sub 7} microfibers with diameters about 13 ?m were synthesized using a solgel technique. For comparison, ZrV{sub 2}O{sub 7} powders were prepared by the same method. The resultant structures were studied by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The results indicated that both the pure ZrV{sub 2}O{sub 7} microfibers and powders could be synthesized by the solgel technique. The thermal expansion property of the as-prepared ZrV{sub 2}O{sub 7} microfibers and powders was characterized by a thermal mechanical analyzer, both the fibers with cylindrical morphology and irregular powders with average size between 100 and 200 nm showed negative thermal expansion between 150 C and 600 C. The photocatalytic activity of the microfibers was compared to that of powders under UV radiations. The band gap of ZrV{sub 2}O{sub 7} microfibers decreased and its absorption edge exhibited red shift. The microfibers also had a higher surface area compared with the powders, resulting in considerably higher photocatalytic characteristics. The large surface area and the enhanced photocatalytic activity of the ZrV{sub 2}O{sub 7} microfibers also offer potential applications in sensors and inorganic ion exchangers. - Graphical abstract: (a and c) SEM photos of ZrV{sub 2}O{sub 7} powders and fibers. (b and d) TEM images of ZrV{sub 2}O{sub 7} powders and fibers. (e) Thermal expansion curves of ZrV{sub 2}O{sub 7} powders and fibers. (f) Degradation curves of ZrV{sub 2}O{sub 7} powders and ZrV{sub 2}O{sub 7} fibers. - Highlights: Novel ZrV{sub 2}O{sub 7} fibers could be synthesized using solgel technique. ZrV{sub 2}O{sub 7} powders with irregular shape are also prepared for comparison. Both ZrV{sub 2}O{sub 7} microfibers and powders exhibit negative thermal expansion property. ZrV{sub 2}O{sub 7} microfibers show outstanding photocatalytic activity under UV irradiation. This synthesis technique can be easily extended to many other functional fibers.

  11. NETL: Available Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Available Property Buying Property from NETL NETL offers surplus equipment for sale to the public and provides opportunities for colleges and universities to acquire laboratory equipment. It also provides gifts of math and science equipment to eligible recipients in the field of education. Personal Property Sales Program The following surplus personal property is available for sale to the public. Property Sales Laboratory Equipment Donation Grant Program (LEDP) (formerly known as EnergyRelated

  12. Intellectual Property Provisions

    Office of Environmental Management (EM)

    GNP-115 1 Intellectual Property Provisions (GNP-115) Grant and Cooperative Agreement Research, Development, or Demonstration Non-Federal Entity (State, Local government, Indian tribe, Institution of higher education, or Nonprofit organization) A Non-Federal Entity is subject to the intellectual property requirements at 2 CFR 200.315. 2 CFR 200.315 Intangible Property (a) Title to intangible property (see §200.59 Intangible property) acquired under a Federal award vests upon acquisition in the

  13. Residential Mechanical Precooling

    SciTech Connect (OSTI)

    German, a.; Hoeschele, M.

    2014-12-01

    This research conducted by the Alliance for Residential Building Innovation team evaluated mechanical air conditioner pre-cooling strategies in homes throughout the United States. EnergyPlus modeling evaluated two homes with different performance characteristics in seven climates. Results are applicable to new construction homes and most existing homes built in the last 10 years, as well as fairly efficient retrofitted homes.

  14. Intellectual Property Provisions - Assistance

    Office of Environmental Management (EM)

    NRD-115) Nonresearch and Development Intellectual property rights are subject to 2 CFR 200.315 or 910.362.

  15. Sierra Mechanics suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanics suite - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  16. Property Postings - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Property Postings The Department of Energy has provided the following lists of Excess Property currently available from the Savannah River Site. How to Acquire DOE Property BMG Contact Information If you need more information on the listed items, please call BMG at 803-496-0100 Available Property Postings Note: If using the Internet Explorer, version 9 or later is needed to view the lists properly. Property lists posted at 1:55 p.m. on February 11, 2016: SRCRO16019 SRCRO16065 SRCRO16068

  17. Testing Subgroup Workshop on Critical Property Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Subgroup Workshop on Critical Property Needs Testing Subgroup Workshop on Critical Property Needs Objectives: Develop an action plan that details the necessary tests to measure and compare the physical properties of metallic materials relevant to high pressure hydrogen service PDF icon pipeline_group_armstrong_ms.pdf More Documents & Publications American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen

  18. Property Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Property Management Personal Property Management and Accountability for Headquarters Management Personal property management includes all functions necessary for the proper determination of need, source, acquisition, receipt, accountability, utilization, maintenance, rehabilitation, storage, distribution and disposal of property. Authorized Property Representatives Effective December 2, 2015: Authorized Property Pass Signers List and Accountable Property Representatives List Personal

  19. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms:

    Office of Scientific and Technical Information (OSTI)

    Tools for Physics-Based Model Development. (Technical Report) | SciTech Connect Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties during shock

  20. Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms:

    Office of Scientific and Technical Information (OSTI)

    Tools for Physics-Based Model Development. (Technical Report) | SciTech Connect Technical Report: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. Citation Details In-Document Search Title: Ultrafast Laser Diagnostics for Energetic-Material Ignition Mechanisms: Tools for Physics-Based Model Development. We present the results of an LDRD project to develop diagnostics to perform fundamental measurements of material properties

  1. Fracture mechanics: 26. volume

    SciTech Connect (OSTI)

    Reuter, W.G.; Underwood, J.H.; Newman, J.C. Jr.

    1995-12-31

    The original objective of these symposia was to promote technical interchange between researchers from the US and worldwide in the field of fracture. This objective was recently expanded to promote technical interchange between researchers in the field of fatigue and fracture. The symposium began with the Swedlow Memorial Lecture entitled ``Patterns and Perspectives in Applied Fracture Mechanics.`` The remaining 42 papers are divided into the following topical sections: Constraint crack initiation; Constraint crack growth; Weldments; Engineered materials; Subcritical crack growth; Dynamic loading; and Applications. Papers within the scope of the Energy Data Base have been processed separately.

  2. Mechanical Systems Qualification Standard

    Office of Environmental Management (EM)

    61-2008 June 2008 DOE STANDARD MECHANICAL SYSTEMS QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1161-2008 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1161-2008 iv INTENTIONALLY BLANK DOE-STD-1161-2008 v TABLE OF

  3. Fundamental mechanisms of micromachine reliability

    SciTech Connect (OSTI)

    DE BOER,MAARTEN P.; SNIEGOWSKI,JEFFRY J.; KNAPP,JAMES A.; REDMOND,JAMES M.; MICHALSKE,TERRY A.; MAYER,THOMAS K.

    2000-01-01

    Due to extreme surface to volume ratios, adhesion and friction are critical properties for reliability of Microelectromechanical Systems (MEMS), but are not well understood. In this LDRD the authors established test structures, metrology and numerical modeling to conduct studies on adhesion and friction in MEMS. They then concentrated on measuring the effect of environment on MEMS adhesion. Polycrystalline silicon (polysilicon) is the primary material of interest in MEMS because of its integrated circuit process compatibility, low stress, high strength and conformal deposition nature. A plethora of useful micromachined device concepts have been demonstrated using Sandia National Laboratories' sophisticated in-house capabilities. One drawback to polysilicon is that in air the surface oxidizes, is high energy and is hydrophilic (i.e., it wets easily). This can lead to catastrophic failure because surface forces can cause MEMS parts that are brought into contact to adhere rather than perform their intended function. A fundamental concern is how environmental constituents such as water will affect adhesion energies in MEMS. The authors first demonstrated an accurate method to measure adhesion as reported in Chapter 1. In Chapter 2 through 5, they then studied the effect of water on adhesion depending on the surface condition (hydrophilic or hydrophobic). As described in Chapter 2, they find that adhesion energy of hydrophilic MEMS surfaces is high and increases exponentially with relative humidity (RH). Surface roughness is the controlling mechanism for this relationship. Adhesion can be reduced by several orders of magnitude by silane coupling agents applied via solution processing. They decrease the surface energy and render the surface hydrophobic (i.e. does not wet easily). However, only a molecular monolayer coats the surface. In Chapters 3-5 the authors map out the extent to which the monolayer reduces adhesion versus RH. They find that adhesion is independent of RH up to a threshold value, depending on the coating chemistry. The mechanism for the adhesion increase beyond this threshold value is that the coupling agent reconfigures from a surface to a bulk phase (Chapter 3). To investigate the details of how the adhesion increase occurs, the authors developed the mechanics for adhesion hysteresis measurements. These revealed that near-crack tip compression is the underlying cause of the adhesion increase (Chapter 4). A vacuum deposition chamber for silane coupling agent deposition was constructed. Results indicate that vapor deposited coatings are less susceptible to degradation at high RH (Chapter 5). To address issues relating to surfaces in relative motion, a new test structure to measure friction was developed. In contrast to other surface micromachined friction test structures, uniform apparent pressure is applied in the frictional contact zone (Chapter 6). The test structure will enable friction studies over a large pressure and dynamic range. In this LDRD project, the authors established an infrastructure for MEMS adhesion and friction metrology. They then characterized in detail the performance of hydrophilic and hydrophobic films under humid conditions, and determined mechanisms which limit this performance. These studies contribute to a fundamental understanding for MEMS reliability design rules. They also provide valuable data for MEMS packaging requirements.

  4. Eight plane IPND mechanical testing.

    SciTech Connect (OSTI)

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL

    2008-03-18

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND prototypes, have been correlated to the FEA analysis very well. The authors believe they have quite good understanding of response of the NOvA structures subjected to the internal pressure, while the understanding of buckling stability is far behind. Therefore, more effect should be laid to improve the buckling considering that the FEA analysis usually is not able accurately modeling the stability as good as the stress analysis. The IPND structure was mostly built using 'scrape' piece extrusions (whatever available in shop). Therefore, a future test should be more focus on by using a actual real extrusions, for example like Nova -27 (if a final choice is made) and extrusion from a tuned die (very important). The authors should/will repeat 11 layers test with an actual thicker piece for the vertical to verify the adhesive joint and similar large scale prototype with a symmetry case, either 9 or 11 layers with the dial indicator on the both side.

  5. Mechanical Characterization of Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  6. Available DOE Property - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    property Available DOE Property As the Department of Energy's designated Community Reuse Organization, SRSCRO is responsible for working with DOE to identify surplus property and equipment from the Savannah River Site and determining how this material may be used for economic development and job creation. This material is first made available at very reasonable prices to organizations which are creating jobs and/or supporting economic development in our region. Recipients can be local

  7. TJNAF Property Manual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The following 7 procedures for receipt and inspection, marking, protection, accountability, physical inventory and disposal of property accomplish this goal at JLab. 3.1 Shipping ...

  8. Properties | Open Energy Information

    Open Energy Info (EERE)

    View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Special page Properties Jump to:...

  9. PEBBLES Mechanics Simulation Speedup

    SciTech Connect (OSTI)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2010-05-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. These simulations involve hundreds of thousands of pebbles and involve determining the entire core motion as pebbles are recirculated. Single processor algorithms for this are insufficient since they would take decades to centuries of wall-clock time. This paper describes the process of parallelizing and speeding up the PEBBLES pebble mechanics simulation code. Both shared memory programming with the Open Multi-Processing API and distributed memory programming with the Message Passing Interface API are used in simultaneously in this process. A new shared memory lock-less linear time collision detection algorithm is described. This method allows faster detection of pebbles in contact than generic methods. These combine to make full recirculations on AVR sized reactors possible in months of wall clock time.

  10. Rotary drive mechanism

    SciTech Connect (OSTI)

    Kenderdine, E.W.

    1991-10-08

    This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  11. Mechanically expandable annular seal

    DOE Patents [OSTI]

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  12. Mechanically expandable annular seal

    DOE Patents [OSTI]

    Gilmore, Richard F. (Kennewick, WA)

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  13. Rotary drive mechanism

    DOE Patents [OSTI]

    Kenderdine, Eugene W. (Albuquerque, NM)

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  14. Microfabricated therapeutic actuator mechanisms

    DOE Patents [OSTI]

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  15. Microfabricated therapeutic actuator mechanisms

    DOE Patents [OSTI]

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  16. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Solid Mechanics Basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical...

  17. Mechanical stabilization of BSCCO-2223 superconducting tapes

    SciTech Connect (OSTI)

    King, C.G.; Grey, D.A.; Mantone, A.

    1996-12-31

    A system to provide mechanical stabilization to high temperature BSCCO-2223 superconducting tape by laminating 0.081 mm thick, spring hard, copper foil to both sides with lead-tin eutectic solder has been successfully optimized. This system has been applied as a method to create a strong, windable composite from pure silver BSCCO tapes with a minimum of critical current (I{sub c}) degradation. The {open_quotes}as received{close_quotes} conductor is evaluated for physical consistency of width and thickness over the 3000 meters that were later strengthened, insulated and wound into a demonstration coil. Electrical degradation in the strengthened tape as a result of lamination was found to average 24 percent with a range from 4 to 51 percent. This was less than the degradation that would have occurred in an unstrengthened tape during subsequent insulation and coil winding processes. Additional work was performed to evaluate the mechanical properties of the strengthened tapes. The copper can double the ultimate tensile strength of the pure silver tapes. Additionally, pure silver and dispersion strengthened silver matrix tapes are laminated with 0.025 mm thick copper and 304 stainless steel foil to investigate minimization of the cross sectional area of the strengthening component. The stainless steel can increase the UTS of the pure silver tapes sixfold. Metallography is used to examine the laminate and the conductor. Mechanical properties and critical currents of these tapes are also reported both before and after strengthening. The I{sub c} is also measured as a function of strain on the laminated tapes.

  18. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  19. Headquarters Personal Property Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-25

    To establish procedures for managing Government personal property owned or leased by the Department of Energy and in the custody of DOE Headquarters employees, including those in the National Nuclear Security Administration. Cancels DOE HQ O 580.1A

  20. Solar Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In Missouri, solar energy systems not held for resale are exempt from state, local, and county property taxes. As enacted in July 2013, the law does not define solar energy systems.

  1. Real Property Asset Management

    Broader source: Energy.gov [DOE]

    The Real Property Asset Management (RPAM) portion of Deactivation & Decommissioning/Facility Engineering (D&D/FE) presents a driving programmatic challenge within the EM-D&D Clean-up...

  2. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ViewersAOS Aerosol Properties Plots XDC Data Viewers Aerosol Properties Plots SGP AMF NSA (BRW) AOS Aerosol Properties Plots These plots are designed to provide a quick look at the measured aerosol properties or review current station operations. Be aware that they are raw unedited data. Do not quote and cite. Aerosol Properties Plots SGP AMF NSA (BRW)

  3. ARM - Oceanic Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Properties Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oceanic Properties There are some other aspects that need to be examined regarding the imbalances in the current carbon cycle. First let's look at the effects of the ocean gaining 2 gigatonnes (1 gigatonne = 1x1012 kilograms)

  4. Acquiring Property - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How To Acquire Available DOE Property The excess property listed on this SRSCRO web page is available during a 30-day period to local businesses, municipalities, or non-profits creating/retaining jobs in the five-county SRSCRO region or for non-profit organizations providing services to residents affected by SRS downsizing. The client will be responsible for all transportation, storage, or other related costs for the requested items. Fill out the appropriate form (Non-profit or Local business).

  5. MBL Drizzle Properties and Their Impact on Cloud Property Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer drizzle properties and their impact on cloud property retrieval." Atmospheric Measurement Techniques, 8, doi:10.5194amt-8-3555-2015. Contributors Xiquan Dong,...

  6. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (SXRD) studies revealed that the indium microstructure is typical...

  8. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit...

  9. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auxin Regulation Mechanism Discovered Print Wednesday, 29 August 2007 00:00 The plant hormone auxin regulates many plant growth and development processes, including shoot growth,...

  10. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. Atomic-scale mechanisms of helium bubble hardening in iron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less

  12. Safeguarding wetland on Laboratory property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wetland on Laboratory property Protecting our environment August 1, 2013 The wetlands in Sandia Canyon on Lab property provide a home to a large amount of wildlife. Work...

  13. ARM - Measurement - Aerosol optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter...

  14. QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES

    SciTech Connect (OSTI)

    G. GEIGER; ET AL

    2000-11-01

    The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.

  15. Mechanics and tribology of MEMS materials.

    SciTech Connect (OSTI)

    Prasad, Somuri V.; Dugger, Michael Thomas; Boyce, Brad Lee; Buchheit, Thomas Edward

    2004-04-01

    Micromachines have the potential to significantly impact future weapon component designs as well as other defense, industrial, and consumer product applications. For both electroplated (LIGA) and surface micromachined (SMM) structural elements, the influence of processing on structure, and the resultant effects on material properties are not well understood. The behavior of dynamic interfaces in present as-fabricated microsystem materials is inadequate for most applications and the fundamental relationships between processing conditions and tribological behavior in these systems are not clearly defined. We intend to develop a basic understanding of deformation, fracture, and surface interactions responsible for friction and wear of microelectromechanical system (MEMS) materials. This will enable needed design flexibility for these devices, as well as strengthen our understanding of material behavior at the nanoscale. The goal of this project is to develop new capabilities for sub-microscale mechanical and tribological measurements, and to exercise these capabilities to investigate material behavior at this size scale.

  16. Frictional granular mechanics: A variational approach

    SciTech Connect (OSTI)

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-10-16

    The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.

  17. Mechanical Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Mechanical Solutions Inc Jump to: navigation, search Name: Mechanical Solutions Inc Place: New York Product: New York-based contractor. References: Mechanical Solutions Inc1 This...

  18. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales are important and provide additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  19. Category:NEPA Properties | Open Energy Information

    Open Energy Info (EERE)

    Decision Property:NEPA Decision Url Property:NEPA DecisionDocumentDate Property:NEPA DNA Worksheet Property:NEPA Document Property:NEPA EA EIS Report Property:NEPA EA EIS...

  20. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 May 2010 00:00 Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical...

  1. Real Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-09-24

    The directive establishes an integrated corporate-level, performance based approach to the life-cycle management of our real property assets. It links real property asset planning, programming, budgeting and evaluation to the Department's multi-faceted missions. Successful implementation of this order will enable the Department to carry out our stewardship responsibilities, and will ensure that our facilities and infrastructure are properly sized and in a condition to meet our mission requirements today and in the future. Chg 1, dated 2-8-08. Chg 2, dated 4-25-11

  2. Real Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-09-24

    The directive establishes an integrated corporate-level, performance based approach to the life-cycle management of our real property assets. It links real property asset planning, programming, budgeting and evaluation to the Department's multi-faceted missions. Successful implementation of this order will enable the Department to carry out our stewardship responsibilities, and will ensure that our facilities and infrastructure are properly sized and in a condition to meet our mission requirements today and in the future. Cancels: DOE O 430.1A. Chg 1, dated 2-8-08. Chg 2, dated 4-25-11

  3. Random paths and current fluctuations in nonequilibrium statistical mechanics

    SciTech Connect (OSTI)

    Gaspard, Pierre

    2014-07-15

    An overview is given of recent advances in nonequilibrium statistical mechanics about the statistics of random paths and current fluctuations. Although statistics is carried out in space for equilibrium statistical mechanics, statistics is considered in time or spacetime for nonequilibrium systems. In this approach, relationships have been established between nonequilibrium properties such as the transport coefficients, the thermodynamic entropy production, or the affinities, and quantities characterizing the microscopic Hamiltonian dynamics and the chaos or fluctuations it may generate. This overview presents results for classical systems in the escape-rate formalism, stochastic processes, and open quantum systems.

  4. Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Application | Department of Energy Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in Diesel Application Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts in Diesel Application To understand the durability of Cu/Zeolite urea-SCR catalysts in diesel applications, the effects of engine and lab aging on catalyst reactivity and material properties were investigated. PDF icon deer08_cheng.pdf More Documents & Publications Deactivation Mechanisms of Base

  5. Property:Collaborators | Open Energy Information

    Open Energy Info (EERE)

    Collaborators Jump to: navigation, search Property Name Collaborators Property Type Page Company Pages using the property "Collaborators" Showing 6 pages using this property. M MHK...

  6. Property:CXReference | Open Energy Information

    Open Energy Info (EERE)

    CXReference Jump to: navigation, search Property Name CXReference Property Type Page Pages using the property "CXReference" Showing 25 pages using this property. (previous 25)...

  7. Property:Test Services | Open Energy Information

    Open Energy Info (EERE)

    Test Services Jump to: navigation, search Property Name Test Services Property Type String Pages using the property "Test Services" Showing 25 pages using this property. (previous...

  8. Phase space quantum mechanics - Direct

    SciTech Connect (OSTI)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of the formalism are demonstrated throughout the text.

  9. The Vainshtein mechanism in the cosmic web

    SciTech Connect (OSTI)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk E-mail: baojiu.li@durham.ac.uk

    2014-07-01

    We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particles are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.

  10. Durability Improvements Through Degradation Mechanism Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Mechanism Studies Durability Improvements Through Degradation Mechanism Studies Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting,...

  11. Sandia Energy - Statistical Mechanics with Density Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Mechanics with Density Functional Theory Accuracy Home Highlights - HPC Statistical Mechanics with Density Functional Theory Accuracy Previous Next Statistical...

  12. Real Property | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real Property Real Property DOE has the unique authority under the Atomic Energy Act to dispose or transfer property under certain conditions or to access the services of the General Services Administration to dispose excess real property. During the last 10 years, DOE has transferred more than 30 sites, facilities or property rights (e.g., easements) to other federal agencies, tribal nations, local governments, and private companies. LM is responsible for nearly 13,000 acres of the DOE's land

  13. Intellectual Property | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property Intellectual Property is defined as property that derives from the work of an individual's mind or intellect. It can be transferred to others through a license. While ideas, per se, are not intellectual property and not protectable from use by others, once reduced to practice or tangibly expressed, they become intellectual property, protectable by patents, copyrights trademarks, and trade secret laws. To be patentable, an invention is limited to the discovery or creation of

  14. Mechanically balanced tapered plug valve

    DOE Patents [OSTI]

    Anaya, Jose R. (Coacalco, MX)

    1985-01-01

    The invention is a novel hermetic tapered plug valve having a spring-like resilient mechanism for providing axial balance to the plug and thereby prevent valve lock up.

  15. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication about this research: G. Lee, J.Y. Kim, A.S. Budiman, N. Tamura, M. Kunz, K. Chen, M.J. Burek, J.R. Greer, and T.Y. Tsui, "Fabrication, structure and mechanical...

  16. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Unique Auxin Regulation Mechanism Discovered Print Wednesday, 29 August 2007 00:00 The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms, and flowering. But how such a simple molecule elicits such a variety of cellular responses has been a mystery. An important breakthrough came in 2005, wh en a conserved plant protein known as TIR1 (part of a protein destruction

  17. Tailoring the properties of organic aerogels

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    We have recently succeeded in producing a new class of organic (or carbon) aerogels whose electrical, mechanical, and other properties are superior to those of the metal alkoxides. By tailoring properties to specific applications, we hope to achieve aerogels with even better performance. We have already tested carbon aerogels for use in inertial-confinement fusion targets and are currently studying applications to other technologies, such as battery electrodes, catalyst supports, and gas filters. In several of these applications, the permeability of the carbon aerogels-that is, their resistance to fluid flow-is crucial to their performance. Here, we describe briefly the synthesis of organic aerogels and present the results of our permeability studies.

  18. Structure, chemistry, and properties of mineral nanoparticles

    SciTech Connect (OSTI)

    Waychunas, G.A.; Zhang, H.; Gilbert, B.

    2008-12-02

    Nanoparticle properties can depart markedly from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nm and below, where surface effects are expected to dominate bonding, shape and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain, and reactivity. Certain phases may exist only as nanoparticles, requiring transformations in chemistry, stoichiometry and structure with evolution to larger sizes. In general, mineralogical nanoparticles have been little studied.

  19. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  20. Property Information System

    Energy Science and Technology Software Center (OSTI)

    1998-01-28

    Provides cradle to grave tracking of DOE property (capital, accountable, etc.). Major functional areas include Acquisitions, Management, Inventory, Accounting, Agreements, Excessing, Dispositions, and Reporting. The Accounting module is not used at this time and may not be operational. A major enhancement added here at Lockheed Martin Energy Systems is the Web-based portion of the system, which allows custodians of property to record location and custodial changes, and to provide inventory confirmations. PLEASE NOTE: Customer mustmore » contact Ben McMurry, (865) 576-5906, Lockheed Martin Energy Ssytems, for help with installation of package. The fee for this installation help will be coordinated by customer and Lockheed Martin and is in addition to the cost of the package from ESTSC. Customer should contact Cheri Cross, (865) 574-6046, for user help.« less

  1. Intellectual Property Provisions

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (CDLB-115) Cooperative Agreement - Special Data Statute Research, Development, or Demonstration Large Business and Foreign Entity 01. FAR 52.227-1 Authorization and Consent (DEC 2007) Alternate I (APR 1984) 02. FAR 52.227-2 Notice and Assistance Regarding Patent and Copyright Infringement (DEC 2007) 03. 2 CFR 910 Appendix A of Subpart D Rights in Data - Programs Covered under Special Data Statutes 04. 2 CFR 910 Appendix A of Subpart D Patent Rights (Large

  2. Intellectual Property Provisions

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (CLB-115) Cooperative Agreement Research, Development, or Demonstration Large Business and Foreign Entity 01. FAR 52.227-1 Authorization and Consent (DEC 2007) Alternate I (APR 1984) 02. FAR 52.227-2 Notice and Assistance Regarding Patent and Copyright Infringement (DEC 2007) 03. 2 CFR 910 Appendix A of Subpart D Rights in Data - General 04. 2 CFR 910 Appendix A of Subpart D Patent Rights (Large Business Firms - No Waiver) NOTE: In reading these provisions,

  3. Intellectual Property Provisions

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (GDLB-115) Grant - Special Data Statute Research, Development, or Demonstration Large Business and Foreign Entity 01. 2 CFR 910 Appendix A of Subpart D Rights in Data - Programs Covered under Special Data Statutes 02. 2 CFR 910 Appendix A of Subpart D Patent Rights (Large Business Firms - No Waiver) GDLB-115 1 01. 2 CFR 910, Appendix A of Subpart D, Rights in Data - Programs Covered Under Special Data Statutes (a) Definitions Computer Data Bases, as used in

  4. Intellectual Property Provisions - Assistance

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (CDSB-115) Cooperative Agreement - Special Data Statute Research, Development, or Demonstration Domestic Small Business 01. FAR 52.227-1 Authorization and Consent (DEC 2007) Alternate I (APR 1984) 02. FAR 52.227-2 Notice and Assistance Regarding Patent and Copyright Infringement (DEC 2007) 03. 2 CFR 910 Appendix A of Subpart D Rights in Data - Programs Covered under Special Data Statutes 04. 2 CFR 910 Appendix A of Subpart D Patent Rights (Small Business Firms

  5. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  6. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect (OSTI)

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  7. Unique properties of CuZrAl bulk metallic glasses induced by microalloying

    SciTech Connect (OSTI)

    Huang, B.; Bai, H. Y.; Wang, W. H.

    2011-12-15

    We studied the glass forming abilities (GFA), mechanical, and physical properties of (CuZr){sub 92.5}Al{sub 7}X{sub 0.5} (X = La, Sm, Ce, Gd, Ho, Y, and Co) bulk metallic glasses (BMGs). We find that the GFA, mechanical, and physical properties can be markedly changed and modulated by the minor rare earth addition. The Kondo screening effect is found to exist in (CuZr){sub 92.5}Al{sub 7}Ce{sub 0.5} BMG at low temperatures and the Schottky effect exists in all the rare earth element doped BMGs. Our results indicate that the minor addition is an effective way for modulating and getting desirable properties of the BMGs. The mechanisms of the effects of the addition are discussed. The results have implications for the exploration of metallic glasses and for improving the mechanical and low temperature physical properties of BMGs.

  8. Category:Imported Properties | Open Energy Information

    Open Energy Info (EERE)

    D Property:Depiction F Property:FoafHomepage Property:FoafName Property:FoafPage K Property:Knows Retrieved from "http:en.openei.orgwindex.php?titleCategory:Imported...

  9. Majorana Electroformed Copper Mechanical Analysis

    SciTech Connect (OSTI)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  10. Negative hydrogen ion production mechanisms

    SciTech Connect (OSTI)

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  11. Recent Progress in the Development of N-type Skutterudites | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy N-type Skutterudites Recent Progress in the Development of N-type Skutterudites Coupled with their outstanding mechanical properties, filled skutterudites show great promise for waste heat recovery applications. PDF icon uher.pdf More Documents & Publications Overview of Research on Thermoelectric Materials and Devices in China Proactive Strategies for Designing Thermoelectric Materials for Power Generation Nanostructures in Skutterudites

  12. Property Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Property Services Ames Laboratory shall manage Government personal property in an economical and efficient manner consistent with the DOE Contract and DOE Order CRD 580.1A Chg 1....

  13. Property Assessed Clean Energy Financing

    Broader source: Energy.gov [DOE]

    The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. PACE financing allows commercial and mulitfamily property owners in the district to borrow money to pay...

  14. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    For most eligible renewable energy systems, the assessed value of the system is exempt from property tax. One exception is solar energy heating or cooling systems which are exempt from property tax...

  15. A fast grain-growth mechanism revealed in nanocrystalline ceramic-oxides

    SciTech Connect (OSTI)

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2014-01-01

    Grain growth problem in nanocrystalline ceramic-oxides renders their highly attractive properties practically unusable due to limited understanding on the underlying grain growth mechanisms. Two conventional 'slow' grain-growth mechanisms, i.e., curvature-driven and grainrotation driven, are shown to be thermally active, and the discovery of a 'fast' disorder-driven mechanism is revealed using molecular dynamics simulation on nanocrystalline ceria, in conjunction with experimental observations. We elucidate that this disorder mechanism drives the unexpected fast grain growth observed experimentally during synthesis and irradiation conditions.

  16. Intellectual Property Provisions

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (GLB-115) Grant Research, Development, or Demonstration Large Business and Foreign Entity 01. 2 CFR 910 Appendix A of Subpart D Rights in Data - General 02. 2 CFR 910 Appendix A of Subpart D Patent Rights (Large Business Firms - No Waiver) GLB-115 1 01. 2 CFR Part 910, Appendix A of Subpart D, Rights in Data - General (a) Definitions Computer Data Bases, as used in this clause, means a collection of data in a form capable of, and for the purpose of, being

  17. Intellectual Property Provisions

    Office of Environmental Management (EM)

    15 Intellectual Property Provisions (GSB-115) Grant Research, Development, or Demonstration Domestic Small Business 01. 2 CFR 910 Appendix A of Subpart D Rights in Data - General 02. 2 CFR 910 Appendix A of Subpart D Patent Rights (Small Business Firms and Nonprofit Organizations) GSB-115 1 01. 2 CFR Part 910, Appendix A of Subpart D, Rights in Data - General (a) Definitions Computer Data Bases, as used in this clause, means a collection of data in a form capable of, and for the purpose of,

  18. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  19. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect (OSTI)

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  20. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  1. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  2. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T. (East Brunswick, NJ)

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  3. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  4. Mechanical effects in cookoff modeling

    SciTech Connect (OSTI)

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1994-07-01

    Complete cookoff modeling of energetic material in confined geometries must couple thermal, chemical and mechanical effects. In the past, modeling has focused on the prediction of the onset of combustion behavior based only on thermal-chemistry effects with little or no regard to the mechanical behavior of the energetic material. In this paper, an analysis tool is outlined which couples thermal, chemical, and mechanical behavior for one-dimensional Geometries comprised of multi-materials. A reactive heat flow code, XCHEM, and a quasistatic mechanics code, SANTOS, have been completely coupled using, a reactive, elastic-plastic constitutive model describing pressurization of the energetic material. This new Thermally Reactive Elastic-plastic explosive code, TREX, was developed to assess the coupling, of mechanics with thermal chemistry making multidimensional cookoff analysis possible. In this study, TREX is applied to confined and unconfined systems. The confined systems simulate One-Dimensional Time to explosion (ODTX) experiments in both spherical and cylindrical configurations. The spherical ODTX system is a 1.27 cm diameter sphere of TATB confined by aluminum exposed to a constant external temperature. The cylindrical ODTX system is an aluminum tube filled with HMX, NC, and inert exposed to a constant temperature bath. Finally. an unconfined system consisting of a hollow steel cylinder filled with a propellant composed of Al, RMX, and NC, representative of a rocket motor, is considered. This model system is subjected to transient internal and external radiative/convective boundary conditions representative of 5 minutes exposure to a fire. The confined systems show significant pressure prior to ignition, and the unconfined system shows extrusion of the propellent suggesting that the energetic material becomes more shock sensitive.

  5. Career Map: Mechanical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Engineer Career Map: Mechanical Engineer A mechanical engineer works with a large yellow robotic arm. Mechanical Engineer Position Title Mechanical Engineer Alternate Title(s) Project Engineer, Quality Engineer, Research Engineer, Design Engineer, Sales Engineer Education & Training Level Advanced, Bachelor's degree required, prefer graduate degree Education & Training Level Description Mechanical engineers need a bachelor's degree. A graduate degree is typically needed for

  6. Properties of Alloy 617 for Heat Exchanger Design

    SciTech Connect (OSTI)

    Wright, Richard Neil; Carroll, Laura Jill; Benz, Julian Karl; Wright, Julie Knibloe; Lillo, Thomas Martin; Lybeck, Nancy Jean

    2014-10-01

    Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.

  7. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    SciTech Connect (OSTI)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  8. NREL: Technology Transfer - Popular Mechanics: Scientists Break...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Popular Mechanics: Scientists Break This Virtual Power Grid to Save the Real One July 27, 2015 Popular Mechanics describes how NREL's Energy Systems Integration Facility (ESIF)...

  9. Shaoxing Jinggong Mechanical and Electrical Research Institute...

    Open Energy Info (EERE)

    Shaoxing Jinggong Mechanical and Electrical Research Institute Company SJMERI Jump to: navigation, search Name: Shaoxing Jinggong Mechanical and Electrical Research Institute...

  10. Multiple Mechanisms of Uranium Immobilization by Cellulomonas...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6 Citation Details In-Document Search Title: Multiple Mechanisms of Uranium ...

  11. Excitation Energy Sorting Mechanisms in Fission (Conference)...

    Office of Scientific and Technical Information (OSTI)

    Excitation Energy Sorting Mechanisms in Fission Citation Details In-Document Search Title: Excitation Energy Sorting Mechanisms in Fission You are accessing a document from the...

  12. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Article: CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Citation Details In-Document Search Title: CONTROL OF MECHANICALLY ACTIVATED...

  13. Mechanism and Substrate Recognition of 2-Hydroxyethylphosphonate...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Mechanism and Substrate Recognition of 2-Hydroxyethylphosphonate Dioxygenase Citation Details In-Document Search Title: Mechanism ...

  14. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia Applied mechanics Modeling and simulation Conceptual and mechanical design definition Material selection and fabrication oversight Stress, dynamic, and thermal analysis...

  15. Properties of Bulk Sintered Silver As a Function of Porosity

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Vuono, Daniel J; Wang, Hsin; Ferber, Mattison K; Liang, Zhenxian

    2012-06-01

    This report summarizes a study where various properties of bulk-sintered silver were investigated over a range of porosity. This work was conducted within the National Transportation Research Center's Power Device Packaging project that is part of the DOE Vehicle Technologies Advanced Power Electronics and Electric Motors Program. Sintered silver, as an interconnect material in power electronics, inherently has porosity in its produced structure because of the way it is made. Therefore, interest existed in this study to examine if that porosity affected electrical properties, thermal properties, and mechanical properties because any dependencies could affect the intended function (e.g., thermal transfer, mechanical stress relief, etc.) or reliability of that interconnect layer and alter how its performance is modeled. Disks of bulk-sintered silver were fabricated using different starting silver pastes and different sintering conditions to promote different amounts of porosity. Test coupons were harvested out of the disks to measure electrical resistivity and electrical conductivity, thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and yield stress. The authors fully recognize that the microstructure of processed bulk silver coupons may indeed not be identical to the microstructure produced in thin (20-50 microns) layers of sintered silver. However, measuring these same properties with such a thin actual structure is very difficult, requires very specialized specimen preparation and unique testing instrumentation, is expensive, and has experimental shortfalls of its own, so the authors concluded that the herein measured responses using processed bulk sintered silver coupons would be sufficient to determine acceptable values of those properties. Almost all the investigated properties of bulk sintered silver changed with porosity content within a range of 3-38% porosity. Electrical resistivity, electrical conductivity, thermal conductivity, elastic modulus, Poisson's ratio, and yield stress all depended on the porosity content in bulk-sintered silver. The only investigated property that was independent of porosity in that range was coefficient of thermal expansion.

  16. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  17. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  18. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  19. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  20. Locking mechanism for indexing device

    DOE Patents [OSTI]

    Lindemeyer, Carl W. (Aurora, IL)

    1984-01-01

    Disclosed is a locking mechanism for an indexing spindle. A conventional r gear having outwardly extending teeth is affixed to the spindle. Also included is a rotatably mounted camshaft whose axis is arranged in skewed relationship with the axis of the spindle. A disk-like wedge having opposing camming surfaces is eccentrically mounted on the camshaft. As the camshaft is rotated, the camming surfaces of the disc-like member are interposed between adjacent gear teeth with a wiping action that wedges the disc-like member between the gear teeth. A zero backlash engagement between disc-like member and gear results, with the engagement having a high mechanical advantage so as to effectively lock the spindle against bidirectional rotation.

  1. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M.

    1981-07-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  2. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms, and flowering. But how such a simple molecule elicits such a variety of cellular responses has been a mystery. An important breakthrough came in 2005, wh en a conserved plant protein known as TIR1 (part of a protein destruction machinery system) was identified as a receptor for auxin. Now, an

  3. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect (OSTI)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  4. Mechanical Engineering Department technical abstracts

    SciTech Connect (OSTI)

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  5. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms, and flowering. But how such a simple molecule elicits such a variety of cellular responses has been a mystery. An important breakthrough came in 2005, wh en a conserved plant protein known as TIR1 (part of a protein destruction machinery system) was identified as a receptor for auxin. Now, an

  6. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms, and flowering. But how such a simple molecule elicits such a variety of cellular responses has been a mystery. An important breakthrough came in 2005, wh en a conserved plant protein known as TIR1 (part of a protein destruction machinery system) was identified as a receptor for auxin. Now, an

  7. Unique Auxin Regulation Mechanism Discovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Auxin Regulation Mechanism Discovered Print The plant hormone auxin regulates many plant growth and development processes, including shoot growth, root branching, fruit ripening, tropisms, and flowering. But how such a simple molecule elicits such a variety of cellular responses has been a mystery. An important breakthrough came in 2005, wh en a conserved plant protein known as TIR1 (part of a protein destruction machinery system) was identified as a receptor for auxin. Now, an

  8. GUI for Structural Mechanics Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of GUI for Structural Mechanics Codes The TRACC Cluster gives its users a lot of flexibility when it comes to requesting software version of LS-DYNA and computational resources for submitted jobs. To fully utilize that flexibility, users need to get familiar with on-line documentation of all the installed releases of different software and modules on the cluster. As on other LINUX based HPC systems, the submission and controlling of LS-DYNA is done through text commands. Especially

  9. Mechanical engineering department technical review

    SciTech Connect (OSTI)

    Carr, R.B. Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work.

  10. Property:Deployment Date | Open Energy Information

    Open Energy Info (EERE)

    Deployment Date Jump to: navigation, search Property Name Deployment Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DeploymentDate&oldid...

  11. Property:Achievement Date | Open Energy Information

    Open Energy Info (EERE)

    Achievement Date Jump to: navigation, search Property Name Achievement Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:AchievementDate&ol...

  12. Category:Properties | Open Energy Information

    Open Energy Info (EERE)

    from Shore(m) Property:Distributed Generation Function Property:Distributed Generation Prime Mover Property:Do Records of Operation of System Prove Reliable Performance?...

  13. Property:LeadAgency | Open Energy Information

    Open Energy Info (EERE)

    Subproperties This property has the following 1 subproperty: R RAPIDRoadmap9-FD-k Pages using the property "LeadAgency" Showing 25 pages using this property. (previous...

  14. intellectual property license | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intellectual property license Intellectual Property License Agreements transfer NETL-owned intellectual property (IP) from the government to the private sector both exclusively and...

  15. Property:NEPA Decision | Open Energy Information

    Open Energy Info (EERE)

    Decision Jump to: navigation, search Property Name NEPA Decision Property Type Page Description Files documenting decisions on NEPA Docs This is a property of type Page. Pages...

  16. Property:FERC License | Open Energy Information

    Open Energy Info (EERE)

    FERC License Jump to: navigation, search Property Name FERC License Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:FERCLicense&oldid610683...

  17. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  18. Property:DOEInvolve | Open Energy Information

    Open Energy Info (EERE)

    Property Name DOEInvolve Property Type Text Retrieved from "http:en.openei.orgwindex.php?titleProperty:DOEInvolve&oldid400537" Feedback Contact needs updating Image needs...

  19. Property:Other Characteristics | Open Energy Information

    Open Energy Info (EERE)

    Characteristics Jump to: navigation, search Property Name Other Characteristics Property Type String Pages using the property "Other Characteristics" Showing 8 pages using this...

  20. Property:Depiction | Open Energy Information

    Open Energy Info (EERE)

    Subproperties This property has the following 1 subproperty: C California Independent System Operator Pages using the property "Depiction" Showing 25 pages using this property....

  1. Property:TwitterHandle | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name TwitterHandle Property Type Text Description A Twitter handle in @Whatever format (not the full url) Pages using the property...

  2. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  3. Mechanism of instantaneous coal outbursts

    SciTech Connect (OSTI)

    Guan, P.; Wang, H.Y.; Zhang, Y.X.

    2009-10-15

    Thousands of mine workers die every year from mining accidents, and instantaneous coal outbursts in underground coal mines are one of the major killers. Various models for these outbursts have been proposed, but the precise mechanism is still unknown. We hypothesize that the mechanism of coal outbursts is similar to magma fragmentation during explosive volcanic eruptions; i.e., it is caused by high gas pressure inside coal but low ambient pressure on it, breaking coal into pieces and releasing the high-pressure gas in a shock wave. Hence, coal outbursts may be regarded as another type of gas-driven eruption, in addition to explosive volcanic, lake, and possible ocean eruptions. We verify the hypothesis by experiments using a shock-tube apparatus. Knowing the mechanism of coal outbursts is the first step in developing prediction and mitigation measures. The new concept of gas-driven solid eruption is also important to a better understanding of salt-gas outbursts, rock-gas outbursts, and mud volcano eruptions.

  4. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms

    Office of Environmental Management (EM)

    for Engineering New Thermochemical Storage | Department of Energy Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New

  5. Effective Interaction Potentials and Physical Properties of Complex Plasmas

    SciTech Connect (OSTI)

    Ramazanov, T. S.; Dzhumagulova, K. N.; Gabdullin, M. T.; Omarbakiyeva, Y. A.

    2009-11-10

    Microscopic, thermodynamic and transport properties of complex plasmas are investigated on the basis of effective potentials of interparticle interaction. These potentials take into account correlation effects and quantum-mechanical diffraction. Plasma composition, thermodynamic functions of hydrogen and helium plasmas are obtained for a wide region of coupling parameter. Collision processes in partially ionized plasma are considered; some kinetic characteristics such as phase shift, scattering cross section, bremsstrahlung cross section and absorption coefficient are investigated. Dynamic and transport properties of dusty plasma are studied by computer simulation method of the Langevin dynamics.

  6. A thermo-mechanical correlation with driving forces for hcp martensite and

    Office of Scientific and Technical Information (OSTI)

    twin formations in the Fe-Mn-C system exhibiting multicomposition sets (Journal Article) | DOE PAGES Accepted Manuscript: A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe-Mn-C system exhibiting multicomposition sets « Prev Next » Title: A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe-Mn-C system exhibiting multicomposition sets Thermodynamic properties of the Fe-Mn-C system were

  7. Property:Building/Oid | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingOid Jump to: navigation, search This is a property of type Number. OID, m2 Pages using the property "BuildingOid" Showing 25...

  8. Property:MineralManager | Open Energy Information

    Open Energy Info (EERE)

    MineralManager Jump to: navigation, search Property Name MineralManager Property Type Page Pages using the property "MineralManager" Showing 25 pages using this property. (previous...

  9. Property:NEPA FONSI | Open Energy Information

    Open Energy Info (EERE)

    FONSI Jump to: navigation, search Property Name NEPA FONSI Property Type Page Description FONSI files for NEPA Docs This is a property of type Page. Pages using the property "NEPA...

  10. Property:Water Type | Open Energy Information

    Open Energy Info (EERE)

    Type Jump to: navigation, search Property Name Water Type Property Type String Pages using the property "Water Type" Showing 25 pages using this property. (previous 25) (next 25) 1...

  11. Thermal and Mechanical Design Aspects of the LIFE Engine

    SciTech Connect (OSTI)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  12. Thermodynamic Properties of Supported Catalysts

    SciTech Connect (OSTI)

    Gorte, Raymond J.

    2014-03-26

    The goals of this work were to develop Coulometric Titration as a method for characterizing the thermodynamic redox properties of oxides and to apply this technique to the characterization of ceria- and vanadia-based catalysts. The redox properties of ceria and vanadia are a major part of what makes these materials catalytically active but their properties are also dependent on their structure and the presence of other oxides. Quantifying these properties through the measurement of oxidation energetics was the goal of this work.

  13. Residential Rental Property Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates for the installation of energy efficient equipment in existing multifamily buildings in Vermont for rental property owners. Managers of multifamily buildings may...

  14. ARM - Measurement - Hydrometeor optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scattering and absorption cross-sections, and backscatter fraction. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  15. Government Personal Property Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-11

    Establishes procedures for managing Government personal property owned or leased by and in the custody of Department of Energy (DOE) Headquarters employees. Cancels HQ 1400.1.

  16. DOE fundamentals handbook: Mechanical science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  17. Controlled Thermo-Mechanical Processing

    SciTech Connect (OSTI)

    None

    2005-09-01

    The CTMP technology has the potential for widespread application in all major sectors of the domestic tube and pipe industry; two of the largest sectors are seamless mechanical tubing and seamless oil country tubular goods. It has been proven for the spheroidized annealing heat cycle for through-hardened steels and has led to the development of a recipe for automotive gear steels. Potential applications also exist in the smaller sectors of seamless line pipe, pressure tubing, and stainless tubing. The technology could also apply to non-ferrous metal industries, such as titanium.

  18. How reclamation tests mechanical governors

    SciTech Connect (OSTI)

    Agee, J.C.; Girgis, G.K.; Cline, R.

    1996-08-01

    The Bureau of Reclamation has developed its own equipment for testing mechanical-hydraulic governors for hydroelectric generators. The device, called a Permanent Magnet Generator (PMG) Simulator, generates a three-phase voltage that will drive the governor ballhead motor at variable speed. Utilizing this equipment, most traditional governor tests can be completed with the generating unit dewatered. In addition, frequency response testing and other detailed analytical tests can be performed to validate governor models. This article describes the development and design of the equipment, and it also discusses its usage in a case study of events at Glen Canyon Dam.

  19. Mechanical accessories for mobile teleoperators

    SciTech Connect (OSTI)

    Feldman, M.J.; Herndon, J.N.

    1985-01-01

    The choice of optimum mechanical accessories for mobile teleoperators involves matching the criteria for emergency response with the available technology. This paper presents a general background to teleoperations, a potpourri of the manipulator systems available, and an argument for force reflecting manipulation. The theme presented is that the accomplishment of humanlike endeavors in hostile environments will be most successful when man model capabilities are utilized. The application of recent electronic technology to manipulator development has made new tools available to be applied to emergency response activities. The development activities described are products of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 13 refs., 7 figs.

  20. Properties of Liquid Plutonium

    SciTech Connect (OSTI)

    Freibert, Franz J.; Mitchell, Jeremy N.; Schwartz, Daniel S.; Saleh, Tarik A.; Migliori, Albert

    2012-08-02

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  1. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  2. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  3. Property:NEPA Extraordinary | Open Energy Information

    Open Energy Info (EERE)

    Extraordinary Jump to: navigation, search Property Name NEPA Extraordinary Property Type Page Description Files documenting extraordinary circumstances checklist or documentation...

  4. Personal Property Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Personal Property Policy Personal Property Policy Personal Property Policy The DOE Personal Property Policy Division is responsible for development and oversight of the Department's personal property management program; establishes policies, standards, and guidance in accordance with applicable laws, regulations and sound personal property management practices and standards. Additionally MA-653: Advises and provides staff assistance to headquarters and field organizations that perform personal

  5. Bellcrank mechanisms for Stirling engines

    SciTech Connect (OSTI)

    Senft, J.R.; Senft, V.J.

    1996-12-31

    This paper describes a family of linkage drive systems for Stirling engines containing several new members. These mechanisms are adaptable to all three configurations of Stirling engine, impose minimal side loads on pistons and displacer rods, and include compact forms suitable for pressurized high performance engines. This group of drive systems is generated by a simple common scheme. Near sinusoidal motion is taken from a crankshaft carrying a single crankpin by two connecting rods each driving a bellcrank. The stationary pivots of the bellcranks are located so that their oscillatory motion has the phase angle separation required between the piston and displacer. The bellcranks are further configured to bring the third pin motion to a location suitable for coupling with the piston or displacer of the engine in a way which minimizes side loading. The paper presents a number of new linkage drives from the dual bellcrank family and indicates how they are embodied in beta and alpha type Stirling engines. The paper includes a design for a small multipurpose engine incorporating one of the subject mechanisms.

  6. Mechanical properties of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Squires, Lile; Lim, Yong Chae; Miles, Michael; Feng, Zhili

    2015-01-01

    A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged about 10kN, while cross tension specimens averaged 2.8kN. Addition of adhesive with a thickness up to 500 m provided a gain of about 50% to lap shear failure loads, while a much thinner layer of adhesive caused a rise of about 20% to cross tension failure loads. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater, owing to its higher alloy content.more »Softening in the heat affected zone (HAZ) of a welded joint appeared to be relatively small, though enough to cause some nugget pullout failures in lap shear tension. Other failures in lap shear tension were interfacial, while all of the failures in cross tension were interfacial.A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged about 10kN, while cross tension specimens averaged 2.8kN. Addition of adhesive with a thickness up to 500 m provided a gain of about 50% to lap shear failure loads, while a much thinner layer of adhesive increased cross tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its higher alloy content. Softening in the heat affected zone (HAZ) of a welded joint appeared to be relatively small, though enough to cause nugget pullout failures in some lap shear tension specimens. Other failures in lap shear tension were interfacial, while all of the failures in cross tension were interfacial.« less

  7. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  8. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN); McKamey, Claudette G. (Knoxville, TN); Tortorelli, Peter F. (Knoxville, TN); David, Stan A. (Knoxville, TN)

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  9. INTRINSIC DOSIMETRY: PROPERTIES AND MECHANISMS OF THERMOLUMINESCENCE IN COMMERCIAL BOROSILICATE GLASS

    SciTech Connect (OSTI)

    Clark, Richard A.

    2012-10-24

    Intrinsic dosimetry is the method of measuring total absorbed dose received by the walls of a container holding radioactive material. By considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container, this method has the potential to provide enhanced pathway information regarding the history of the container and its radioactive contents. The latest in a series of experiments designed to validate and demonstrate this newly developed tool are reported. Thermoluminescence (TL) dosimetry was used to measure dose effects on raw stock borosilicate container glass up to 70 days after gamma ray, x-ray, beta particle or ultraviolet irradiations at doses from 0.15 to 20 Gy. The TL glow curve when irradiated with 60Co was separated into five peaks: two relatively unstable peaks centered near 120 and 165°C, and three relatively stable peaks centered near 225, 285, and 360°C. Depending on the borosilicate glass source, the minimum measurable dose using this technique is 0.15-0.5 Gy, which is roughly equivalent to a 24 hr irradiation at 1 cm from a 50-165 ng source of 60Co. Differences in TL glow curve shape and intensity were observed for the glasses from different geographical origins. These differences can be explained by changes in the intensities of the five peaks. Electron paramagnetic resonance (EPR) and multivariate statistical methods were used to relate the TL intensity and peaks to electron/hole traps and compositional variations.

  10. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-01-31

    During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.

  11. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cao, G. H.; Jian, G. Y.; Liu, N.; Zhang, W. H.; Russell, A. M.; Gerthsen, D.

    2015-08-19

    Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3more » phases caused by the Nb addition. Furthermore, the crystallographic orientation relationship of Ti5Si3 with α-Ti is (11¯00)[1¯1¯26]Ti5Si3 ∥ (011¯1)[51¯4¯3¯] α–Τi.« less

  12. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craciun, D.; Socol, G.; Lambers, E.; McCumiskey, E. J.; Taylor, C. R.; Martin, C.; Argibay, Nicolas; Craciun, V.; Tanner, D. B.

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH4 pressures exhibited slightly higher nanohardness and Young modulus values than films deposited undermore » higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  13. Mechanical properties of dissimilar metal joints composed of DP 980 Steel and AA 7075-T6

    SciTech Connect (OSTI)

    Squires, Lile [Brigham Young University, Provo; Lim, Yong Chae [ORNL; Miles, Michael [Brigham Young University, Provo; Feng, Zhili [ORNL

    2015-01-01

    A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged about 10kN, while cross tension specimens averaged 2.8kN. Addition of adhesive with a thickness up to 500 m provided a gain of about 50% to lap shear failure loads, while a much thinner layer of adhesive caused a rise of about 20% to cross tension failure loads. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater, owing to its higher alloy content. Softening in the heat affected zone (HAZ) of a welded joint appeared to be relatively small, though enough to cause some nugget pullout failures in lap shear tension. Other failures in lap shear tension were interfacial, while all of the failures in cross tension were interfacial.A solid-state joining process, called friction bit joining (FBJ), was used to spot weld aluminum alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged about 10kN, while cross tension specimens averaged 2.8kN. Addition of adhesive with a thickness up to 500 m provided a gain of about 50% to lap shear failure loads, while a much thinner layer of adhesive increased cross tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its higher alloy content. Softening in the heat affected zone (HAZ) of a welded joint appeared to be relatively small, though enough to cause nugget pullout failures in some lap shear tension specimens. Other failures in lap shear tension were interfacial, while all of the failures in cross tension were interfacial.

  14. A comparison of mechanical properties and scaling law relationships for silica aerogels and their organic counterparts

    SciTech Connect (OSTI)

    Pekala, R.W.; Hrubesh, L.W.; Tillotson, T.M.; Alviso, C.T.; Poco, J.F.; LeMay, J.D.

    1990-08-01

    Aerogels are a special class of open-cell foams derived from the supercritical extraction of highly crosslinked, inorganic or organic gels. The resultant materials have ultrafine cell/pore sizes (< 100 nm), high surface areas (350--1000m{sup 2}/g), and a microstructure composed of interconnected colloidal-like particles or polymeric chains with characteristic diameters of 10 nm. TEM and SAXS show that this microstructure is sensitive to variations in processing conditions that influence crosslinking chemistry and growth processes prior to gelation. Traditional silica aerogels are prepared via the hydrolysis and condensation of tetramethoxy silane (TMOS) or tetraethoxy silane (TEOS). Factors such as pH and the (H{sub 2}O)/(TMOS) ratio affect the microstructure of the dried aerogel. It is generally accepted that polymeric' silica aerogels result from acid catalysis while colloidal'silica aerogels result from base catalysis. Recently, Hrubesh and Tillotson developed a new condensed silica' procedure for obtaining silica aerogels with densities as low as 0.004g/cc, i.e. only 3{times} the density of air. Organic aerogels are formed from the aqueous, polycondensation of (1) resorcinol/formaldehyde or (2) melamine/formaldehyde. The microstructure of the resorcinol-formaldehyde (RF) aerogels is dictated by the amount of base catalyst used in the sol-gel polymerization. In addition, these materials can be pyrolyzed in an inert atmosphere to form vitreous carbon aerogels. Melamine- formaldehyde (MF) aerogels that are both colorless and transparent are only formed under acidic conditions (i.e. pH = 1--2). In this paper, the microstructural dependence and scaling law relationships for the compressive modulus of silica, carbon, RF, and MF aerogels will be discussed in detail. 17 refs., 1 fig.

  15. Mechanical Properties of a Graded Alumina-Zirconia Composite Prepared by Centrifugal Slip Casting

    SciTech Connect (OSTI)

    Hara, Yasuyuki; Onda, Tetsuhiko; Hayakawa, Motozo

    2008-02-15

    Compositionally graded composite of alumina-20 vol%zirconia was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thicknesss.

  16. The electrical and mechanical properties of Au-V and Au-V{sub...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; BINARY ALLOY SYSTEMS; DISLOCATIONS; DISPERSION HARDENING; ELECTRIC CONDUCTIVITY; ELECTROMECHANICS; GOLD ALLOYS; HARDNESS; MICROSTRUCTURE; PARTICLES; ...

  17. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Grinds

    SciTech Connect (OSTI)

    Mani, Sudhagar; Tabil, Lope Jr.; Sokhansanj, Shahabaddine

    2006-03-01

    Chemical composition, moisture content, bulk and particle densities, and geometric mean particle size were determined to characterize grinds from wheat and barley straws, corn stover and switchgrass. The biomass grinds were compressed for five levels of compressive forces (1000, 2000, 3000, 4000, 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wb) to establish the compression and relaxation data. Corn stover grind produced the highest compact density at low pressure during compression. Compressive force, particle size and moisture content of grinds significantly affected the compact density of barley straw, corn stover and switchgrass grinds. However, different particle sizes of wheat straw grind did not produce any significant difference on compact density. Barley straw grind had the highest asymptotic modulus among all other biomass grinds indicating that compact from barley straw grind were more rigid than those of other compacts. Asymptotic modulus increased with an increase in maximum compressive pressure. The trend of increase in asymptotic modulus (EA) with the maximum compressive pressure ( 0) was fitted to a second order polynomial equation. Keywords: Biomass grinds, chemical composition, compact density and asymptotic modulus

  18. Mechanical deformations of boron nitride nanotubes in crossed junctions

    SciTech Connect (OSTI)

    Zhao, Yadong; Chen, Xiaoming; Ke, Changhong; Park, Cheol; Fay, Catharine C.; Stupkiewicz, Stanislaw

    2014-04-28

    We present a study of the mechanical deformations of boron nitride nanotubes (BNNTs) in crossed junctions. The structure and deformation of the crossed tubes in the junction are characterized by using atomic force microscopy. Our results show that the total tube heights are reduced by 20%33% at the crossed junctions formed by double-walled BNNTs with outer diameters in the range of 2.214.67?nm. The measured tube height reduction is found to be in a nearly linear relationship with the summation of the outer diameters of the two tubes forming the junction. The contact force between the two tubes in the junction is estimated based on contact mechanics theories and found to be within the range of 4.27.6 nN. The Young's modulus of BNNTs and their binding strengths with the substrate are quantified, based on the deformation profile of the upper tube in the junction, and are found to be 1.07??0.11 TPa and 0.180.29 nJ/m, respectively. Finally, we perform finite element simulations on the mechanical deformations of the crossed BNNT junctions. The numerical simulation results are consistent with both the experimental measurements and the analytical analysis. The results reported in this paper contribute to a better understanding of the structural and mechanical properties of BNNTs and to the pursuit of their applications.

  19. Federal Real Property Council Guidance

    Office of Environmental Management (EM)

    Federal Real Property Council Guidance for Improved Asset Management December 22, 2004 Federal Real Property Council Guidance for Improved Asset Management Table of Contents I. Overview............................................................................. 1 II. Guiding Principles .................................................................... 3 III. Asset Management Plan - Required Components............................... 4 IV. Asset Management Plan - "Shelf

  20. Miniature mechanical transfer optical coupler

    DOE Patents [OSTI]

    Abel, Philip (Overland Park, KS); Watterson, Carl (Kansas City, MO)

    2011-02-15

    A miniature mechanical transfer (MT) optical coupler ("MMTOC") for optically connecting a first plurality of optical fibers with at least one other plurality of optical fibers. The MMTOC may comprise a beam splitting element, a plurality of collimating lenses, and a plurality of alignment elements. The MMTOC may optically couple a first plurality of fibers disposed in a plurality of ferrules of a first MT connector with a second plurality of fibers disposed in a plurality of ferrules of a second MT connector and a third plurality of fibers disposed in a plurality of ferrules of a third MT connector. The beam splitting element may allow a portion of each beam of light from the first plurality of fibers to pass through to the second plurality of fibers and simultaneously reflect another portion of each beam of light from the first plurality of fibers to the third plurality of fibers.

  1. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect (OSTI)

    Broesius, J.Y.

    1991-03-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  2. Creep damage mechanisms in composites

    SciTech Connect (OSTI)

    Nutt, S.R.

    1994-10-17

    During the past year, research has focused on processing and characterization of intermetallic composites synthesized by plasma spray deposition. This versatile process allows rapid synthesis of a variety of different composite systems with potential applications for coatings, functionally gradient materials, rapid proto-typing and 3d printing, as well as near-net-shape processing of complex shapes. We have been pursuing an experimental program of research aimed at a fundamental understanding of the microstructural processes involved in the synthesis of intermetallic composites, including diffusion, heat transfer, grain boundary migration, and the dependence of these phenomena on deposition parameters. The work has been motivated by issues arising from composite materials manufacturing technologies. Recent progress is described in section B on the following topics: (1) Reactive atomization and deposition of intermetallic composites (Ni3Al); (2) Reactive synthesis of MoSi2-SiC composites; (3) Mechanical alloying of nanocrystalline alloys; (4) Tensile creep deformation of BMAS glass-ceramic composites.

  3. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  4. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  5. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU)

    SciTech Connect (OSTI)

    Frick, Achim, E-mail: achim.frick@htw-aalen.de; Borm, Michael, E-mail: achim.frick@htw-aalen.de; Kaoud, Nouran, E-mail: achim.frick@htw-aalen.de; Kolodziej, Jan, E-mail: achim.frick@htw-aalen.de; Neudeck, Jens, E-mail: achim.frick@htw-aalen.de [Institute of Polymer Science and Processing (iPSP), HTW Aalen (Germany)

    2014-05-15

    Thermoplastic polyurethanes (TPU) are important polymeric materials for seals. In competition with Acrylonitrile butadiene rubbers (NBR), TPU exhibits higher strength and a considerable better abrasion resistance. The advantage of NBR over TPU is a smaller compression set but however TPU excels in its much shorter processing cycle times. Generally a TPU is a block copolymer composed of hard and soft segments, which plays an important role in determining the material properties. TPU can be processed either to ready moulded parts or can be incorporated by multi component moulding, in both cases it shows decent mechanical properties. In the present work, the relationship between melt-process induced TPU morphology and resultant thermo mechanical properties were examined and determined by means of quasi-static tensile test, creep experiment, tension test and dynamical mechanical analysis (DMA). Scanning electron beam microscope (SEM) and differential scanning calorimeter (DSC) were used to study the morphology of the samples. A significant mathematical description of the stress-strain behaviour of TPU was found using a 3 term approach. Moreover it became evident that processing conditions such as processing temperature have crucial influence on morphology as well as short and long-term performance. To be more precise, samples processed at higher temperatures showed a lack of large hard segment agglomerates, a smaller strength for strains up to 250% and higher creep compliance.

  6. Microstructure and properties of AA 2090 weldments

    SciTech Connect (OSTI)

    Sunwoo, A.J.; Morris, J.W. Jr.

    1988-06-01

    The effects of welding on AA 2090 are examined along with the metallurgical changes associated with welding and aging. The results of the study show that the GTA and EB weldment properties are controlled by the precipitate size and distribution. There is a trade-off between strength and elongation. In the as-welded condition, solid solution strengthening is the primary strengthening mechanism present. As a result, the weldment strengths are less than 200 MPa, but the elongations are greater than 4%. In the post-weld aged condition, an inhomogeneous distribution of solutes results in an inhomogeneous distribution of precipitates, causing strain localization. Although the weldment strengths increase, the weldment elongations decrease precipitously. The peak strengths of EB and GTA weldments are obtained aging at 160{degree}C for 32 hours with 75% joint efficiency and at 190{degree}C for 16 hours with 65% joint efficiency, respectively. Aging at 230{degree}C leads to coarsening of precipitates as well as the intermetallic constituents; the weldment strengths deteriorate rapidly, but the elongations improve. The best overall weldment properties are obtained in the solution heat treated and aged conditions, and are associated with a homogeneous distribution of strengthening precipitates. 13 refs.

  7. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect (OSTI)

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  8. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  9. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, Dwight L. (Albuquerque, NM); Chen, Peter J. (Albuquerque, NM)

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  10. Analysis of Hydrologic Properties Data

    SciTech Connect (OSTI)

    L. Pan

    2004-10-04

    This analysis report describes the methods used to determine hydrologic properties based on the available field data from the unsaturated zone (UZ) at Yucca Mountain, Nevada. The technical scope, content, and management of this analysis report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Sections 2, 4, and 8). Fracture and matrix properties are developed by analyzing available survey data from the Exploratory Studies Facility (ESF), the Enhanced Characterization of Repository Block (ECRB) Cross-Drift, and/or boreholes; air-injection testing data from surface boreholes and from boreholes in the ESF; and data from laboratory testing of core samples. In addition, the report ''Geologic Framework Model'' (GFM2000) (BSC 2004 [DIRS 170029]) also serves as a source report by providing the geological framework model of the site. This report is a revision of the model report under the same title (BSC 2003 [DIRS 161773]), which in turn superceded the analysis report under the same title. The principal purpose of this work is to provide representative uncalibrated estimates of fracture and matrix properties for use in the model report Calibrated Properties Model. The term ''uncalibrated'' is used to distinguish the properties or parameters estimated in this report from those obtained from the inversion modeling used in ''Calibrated Properties Model''. The present work also provides fracture geometry properties for generating dual-permeability grids as documented in the scientific analyses report, ''Development of Numerical Grids for UZ Flow and Transport Modeling''.

  11. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    SciTech Connect (OSTI)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; Andr, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (20012010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  12. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; Spence, H. E.; Lin, R. -L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  13. Training: Mechanical Insulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Insulation Training: Mechanical Insulation April 16, 2014 - 6:34pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional plant-wide resources. Mechanical Insulation Education and Awareness E-Learning Series Availability: Online self-paced workshop. The Mechanical Insulation Education & Awareness Campaign, or MIC, is an eLearning series offered by the U.S. Department of

  14. Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Department: Engineering Supervisor(s): Bill Blanchard Staff: EM 3 Requisition Number: 1500 The Mechanical Design Engineer will develop, design, manufacture, and test mechanical components and auxiliary systems required for support of the experimental devices. The engineer will also design, specify, fabricate, and erect various mechanical structures to provide support against gravitational and electromagnetic forces. The position requires knowledge of stress analysis, magnetic

  15. Device for absorbing mechanical shock

    DOE Patents [OSTI]

    Newlon, Charles E. (Knoxville, TN)

    1980-01-01

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  16. Experimental characterization of glass-ceramic seal properties and their constitutive implementation in solid oxide fuel cell stack models

    SciTech Connect (OSTI)

    Stephens, Elizabeth V.; Vetrano, John S.; Koeppel, Brian J.; Chou, Y. S.; Sun, Xin; Khaleel, Mohammad A.

    2009-09-05

    This paper discusses experimental determination of solid oxide fuel cell (SOFC) glass-ceramic seal material properties and seal/interconnect interfacial properties to support development and optimization of SOFC designs through modeling. Material property experiments such as dynamic resonance, dilatometry, flexure, creep, tensile, and shear tests were performed on PNNLs glass-ceramic sealant material, designated as G18, to obtain property data essential to constitutive and numerical model development. Characterization methods for the physical, mechanical, and interfacial properties of the sealing material, results, and their application to the constitutive implementation in SOFC stack modeling are described.

  17. Understanding Mechanisms of Radiological Contamination

    SciTech Connect (OSTI)

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible loose contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  18. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Note: In May 2015, S.B. 91 was enacted, which limits the property tax exemption for applications received after December 31, 2016, to a period of 10 years.

  19. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  20. Division 1137 property control system

    SciTech Connect (OSTI)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  1. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the exemption described above.

  2. Renewable Energy Property Tax Assessment

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) and wind energy facilities with a capacity of 2 megawatts (MW) AC or less are assessed locally for property taxes. Additionally, low impact hydro, geothermal, and biomass...

  3. Commercial Solar Property Tax Exemption

    Broader source: Energy.gov [DOE]

    NOTE: House Bill 1305 enacted in March 2016 modifies the property tax exemption or solar facilities by creating a sunset provision for tax exemption for certain facilities, and increasing the...

  4. Local Option- Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Note: Solar photovoltaic systems of 50 kW or less are already currently exempt from municipal property taxes under 32 V.S.A. § 8701 (see Uniform Capacity Tax and Exemption for Solar).

  5. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    This incentive applies only to the value added to a property by an eligible system, according to the Massachusetts Department of Energy Resources (DOER). It does not constitute an exemption for...

  6. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br???????¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  7. PROPERTY DISPOSAL RECORDS | Department of Energy

    Energy Savers [EERE]

    PROPERTY DISPOSAL RECORDS PROPERTY DISPOSAL RECORDS These records pertain to the sales by agencies of real and personal property surplus to the needs of the Government PDF icon PROPERTY DISPOSAL RECORDS More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS: PROCUREMENT, SUPPLY, AND GRANT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS RECORDS

  8. ORISE: ORAU-managed beryllium lab marks outstanding year in 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher risk of developing Chronic Beryllium Disease, a chronic disease that scars the lungs making it more difficult for oxygen to transfer into the bloodstream. The test...

  9. In-Vessel Retention of Molten Corium: Lessons Learned and Outstanding Issues

    SciTech Connect (OSTI)

    J.L. Rempe; K.Y. Suh; F. B. Cheung; S. B. Kim

    2008-03-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Advanced 600 MWe Pressurized Water Reactor (PWR) designed by Westinghouse (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing Light Water Reactors (LWRs). However, it is not clear that the ERVC proposed for the AP600 could provide sufficient heat removal for higher-power reactors (up to 1500 MWe) without additional enhancements. This paper reviews efforts made and results reported regarding the enhancement of IVR in LWRs. Where appropriate, the paper identifies what additional data or analyses are needed to demonstrate that there is sufficient margin for successful IVR in high power thermal reactors.

  10. LOS ALAMOS, New Mexico, August 8, 2011-The 13th Annual Outstanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    address by Michael Roach, president of CleanAIR Systems, Inc., a leader in air pollution control. The company executed an exclusive license with the Lab for the ENDURE(tm)...

  11. State-of-the-art report on piping fracture mechanics

    SciTech Connect (OSTI)

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M.

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  12. Property:StartDate | Open Energy Information

    Open Energy Info (EERE)

    StartDate Jump to: navigation, search This is a property of type Date. Pages using the property "StartDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County...

  13. Property:EndDate | Open Energy Information

    Open Energy Info (EERE)

    EndDate Jump to: navigation, search This is a property of type Date. Pages using the property "EndDate" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County...

  14. Property:Geothermal/Type | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type String. Pages using the property "GeothermalType" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest...

  15. Property:Geothermal/Contact | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type String. Pages using the property "GeothermalContact" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest...

  16. Property:EditCount | Open Energy Information

    Open Energy Info (EERE)

    EditCount Jump to: navigation, search Property Name EditCount Property Type Number Description Number of user edits. Pages using the property "EditCount" Showing 25 pages using...

  17. Property:Website | Open Energy Information

    Open Energy Info (EERE)

    Website Jump to: navigation, search This is a property of type URL. Pages using the property "Website" Showing 25 pages using this property. (previous 25) (next 25) 1 1 Soltech +...

  18. Property:FundingAgency | Open Energy Information

    Open Energy Info (EERE)

    FundingAgency Jump to: navigation, search This is a property of type Page. Pages using the property "FundingAgency" Showing 23 pages using this property. A Antelope Valley Neset +...

  19. Local Option- Property Assessed Clean Energy Financing

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via property taxes, with...

  20. Property:DeviceType | Open Energy Information

    Open Energy Info (EERE)

    DeviceType Property Type String Description Used for MHK ISDB Allows Values Instrument;Sensor Pages using the property "DeviceType" Showing 25 pages using this property. (previous...