Powered by Deep Web Technologies
Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plant Tumor Growth Rates  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

2

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% 4,100 4,400 4,700 5,000 5,300 5,600 5,900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Distillate Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: 2.5% Aug '12 to Aug '13: -1.3% YTD '12 to YTD '13: 1.5% 300 400 500 600 700 800 900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Residual Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: -0.8%

3

Adjusted Growth Rates* Jan.  

U.S. Energy Information Administration (EIA) Indexed Site

Adjusted Adjusted Growth Rates* Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -7.4% Jan '99 to Jan '00: -0.1% YTD '99 to YTD '00: -0.1% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -16.8% Jan '99 to Jan '00: -3.2% YTD '99 to YTD '00: -3.2% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -9.3% Jan '99 to Jan '00: +3.5% YTD '99 to YTD '00: +3.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul

4

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

July '99 to Aug. '99: +4.7% July '99 to Aug. '99: +4.7% Aug. '98 to Aug. '99: +1.3% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -1.9% Aug. '98 to Aug. '99: -0.4% YTD '98 to YTD '99: +0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -0.1% Aug. '98 to Aug. '99: -1.4% YTD '98 to YTD '99: -0.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: +22.3% Aug. '98 to Aug. '99: +21.1%

5

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Aug '99 to Sep '99: +4.9% Aug '99 to Sep '99: +4.9% Sep '98 to Sep '99: +4.7% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.4% Sep '98 to Sep '99: +0.4% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.1% Sep '98 to Sep '99: +4.6% YTD '98 to YTD '99: 0.0% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: +7.3% Sep '98 to Sep '99: +8.4% YTD '98 to YTD '99: +8.3%

6

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

June '99 to July '99: -5.4% June '99 to July '99: -5.4% July '98 to July '99: +3.3% YTD '98 to YTD '99: +6.3% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: -0.5% July '98 to July '99: -0.4% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +0.5% July '98 to July '99: +1.0% YTD '98 to YTD '99: -0.3% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +1.5% July '98 to July '99: +10.2% YTD '98 to YTD '99: +7.2%

7

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Nov '99 to Dec '99: +5.3% Nov '99 to Dec '99: +5.3% Dec '98 to Dec '99: +8.7% YTD '98 to YTD '99: +5.0% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +6.0% Dec '98 to Dec '99: +4.5% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +2.4% Dec '98 to Dec '99: +3.0% YTD '98 to YTD '99: +0.9% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +32.3% Dec '98 to Dec '99: +2.0% YTD '98 to YTD '99: +5.5%

8

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Oct '99 to Nov '99: +0.1% Oct '99 to Nov '99: +0.1% Nov '98 to Nov '99: +5.5% YTD '98 to YTD '99: +4.5% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: -0.7% Nov '98 to Nov '99: +1.7% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +2.5% Nov '98 to Nov '99: +6.0% YTD '98 to YTD '99: +0.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +9.7% Nov '98 to Nov '99: +2.2% YTD '98 to YTD '99: +6.2%

9

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sep '99 to Oct '99: +3.9% Sep '99 to Oct '99: +3.9% Oct '98 to Oct '99: +2.3% YTD '98 to YTD '99: +4.4% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -0.2% Oct '98 to Oct '99: -0.9% YTD '98 to YTD '99: +1.0% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -1.9% Oct '98 to Oct '99: -0.7% YTD '98 to YTD '99: +0.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -2.1% Oct '98 to Oct '99: -6.4% YTD '98 to YTD '99: +6.6%

10

Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network (OSTI)

We study the average asymptotic growth rate of cells in randomly fluctuating environments. Using a game-theoretic perspective, we show that any response strategy has an asymptotic growth rate, which is the sum of: (i) the maximal growth rate at the worst possible distribution of environments, (ii) relative information between the actual distribution of environments to the worst one, and (iii) information utilization rate which is the information rate of the sensory devices minus the "information dissipation rate", the amount of information not utilized by the cell for growth. In non-stationary environments, the optimal strategy is the time average of the instantaneous optimal strategy and the optimal switching times are evenly spaced in the statistical (Fisher) metric.

Pugatch, Rami; Tlusty, Tsvi

2013-01-01T23:59:59.000Z

11

Apparatus for silicon web growth of higher output and improved growth stability  

DOE Patents (OSTI)

This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

Duncan, Charles S. (Penn Hills, PA); Piotrowski, Paul A. (Monroeville, PA)

1989-01-01T23:59:59.000Z

12

Apparatus for silicon web growth of higher output and improved growth stability  

Science Conference Proceedings (OSTI)

This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced. 13 figs.

Duncan, C.S.; Piotrowski, P.A.

1989-05-09T23:59:59.000Z

13

Optimal Growth Rates in the Quasigeostrophic Initial Value Problem  

Science Conference Proceedings (OSTI)

A large class of wave structures in quasigeostrophic flow have instantaneous growth rates significantly larger than normal-mode growth rates. Since energy and potential enstrophy growth rates can be defined as functions of the perturbation ...

Enda O'Brien

1992-09-01T23:59:59.000Z

14

Characterization of Elevated Temperature Fatigue Crack Growth Rates  

Science Conference Proceedings (OSTI)

temperature fatigue and the crack growth rates may be adequately correlated with the ... During creep crack growth the use of rate dependent elastic/plastic frac-.

15

New constraints in absorptive capacity and the optimum rate of petroleum output  

SciTech Connect

Economic policy in four oil-producing countries is analyzed within a framework that combines a qualitative assessment of the policy-making process with an empirical formulation based on historical and current trends in these countries. The concept of absorptive capacity is used to analyze the optimum rates of petroleum production in Iran, Iraq, Saudi Arabia, and Kuwait. A control solution with an econometric model is developed which is then modified for alternative development strategies based on analysis of factors influencing production decisions. The study shows the consistencies and inconsistencies between the goals of economic growth, oil production, and exports, and the constraints on economic development. Simulation experiments incorporated a number of the constraints on absorptive capacity. Impact of other constraints such as income distribution and political stability is considered qualitatively. (DLC)

El Mallakh, R

1980-01-01T23:59:59.000Z

16

On the Transformations between Temporal and Spatial Growth Rates  

Science Conference Proceedings (OSTI)

This note compares the error distributions for three transformation formulae between temporal growth rate and spatial growth rate with the linearized barotropic vorticity equation. The sech2 and the tanh basic-state profiles are used for ...

Melinda S. Peng; R. T. Williams

1987-09-01T23:59:59.000Z

17

Rising U.S. oil output leads world oil supply growth  

U.S. Energy Information Administration (EIA) Indexed Site

is well on its way to topping 8 million barrels per day by 2014. In its new monthly forecast, the U.S. Energy Information Administration expects daily oil output will average 7.3...

18

The Net Effect of Exchange Rates on Agricultural Inputs and Outputs  

E-Print Network (OSTI)

For more than thirty years, studies about the effect of the exchange rate on exports have been conducted. However, few have considered the combined effect of the exchange rate on imported inputs into the agricultural system and the exports of final agricultural products those inputs produce. This work contributes to the agricultural economics literature by combining those effects. A current concern is for the net effect as the total value and quantity of inputs imported has increased. This research examines the effect of the exchange rate on imported inputs into the corn, wheat, and beef cattle production systems, breaking it down to a producer's budget, examining how the exchange rate affects profitability. Vector Autoregression (VAR) and Bayesian Averaging of Classical Estimates (BACE) models were estimated to evaluate the effects. Daily and weekly price data were used for corn, wheat, feeder steers, ethanol, diesel, ammonia, urea, di-ammonium phosphate, and the exchange rate. A VAR model was estimated to model the relationship between the variables. After having incongruous test results in determining the lag length structure it was decided that a BACE model would be approximated. After estimating the BACE model, the price responses of the commodities to the exchange rates were estimated. The price responses were used in demonstrating the effect of the exchange rate on a producer's profitability. It was determined that, generally, a strengthening exchange rate has a negative impact on prices. It was also found that the exchange rate has a greater impact on prices now than it did 14 years ago, implying that the exchange rate now has a greater affect on profitability. A one percent increase in the value of the dollar led to a decline in profitability ranging from $0.02/bu in wheat to $0.56/cwt in feeder steers. However, agricultural producers should not be overly concerned about a lower valued dollar from the perspective of their agricultural business.

Johnson, Myriah D.

2011-08-01T23:59:59.000Z

19

Evolution of juvenile growth rates in female guppies (Poecilia reticulata): predator regime or resource level?  

E-Print Network (OSTI)

effect offlexible growth rates on optimal sizes and develop¬Adaptive intrinsic growth rates: an inte- gration acrossVariation in larval growth rate among striped bass stocks

Arendt, Jeffrey D.; Reznick, David N

2005-01-01T23:59:59.000Z

20

An Alternative Expression for the Eady Wave Growth Rate  

Science Conference Proceedings (OSTI)

The energetics of Eady's (1949) model of baroclinic instability are used to express the wavenumber-dependent disturbance growth rate in terms of upward and northward fluxes of heat and momentum. This formulation leads to simple physical ...

Daniel Keyser; Richard A. Anthes

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New dogs and old tricks: do money and interest rates still provide information content for forecast of output and prices  

E-Print Network (OSTI)

Out-of-sample forecasting experiments are used as an alternative to looking at F-statistics when examining whether money, interest rates or the commercial paper/T-bill spread provide information content for subsequent movements in output, real and nominal personal income, the CPI and the PPI. Here a variable provides information if it improves the forecast of the explained variable. Employing this procedure we find that the paper-bill spread but not monetary aggregates provide information content for industrial production or real personal income when using data over the 1980-97 period. In contrast, we find that monetary aggregates provide information content for the CPI and nominal personal income but not the PPI.

David C. Black; Paul R. Corrigan; Michael R. Dowd

2000-01-01T23:59:59.000Z

22

Growth Rates of Global Energy Systems and Future Outlooks  

Science Conference Proceedings (OSTI)

The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

Hoeoek, Mikael, E-mail: Mikael.Hook@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Li, Junchen [China University of Petroleum-Beijing, School of Business Administration (China); Johansson, Kersti [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Snowden, Simon [University of Liverpool, Management School (United Kingdom)

2012-03-15T23:59:59.000Z

23

Upscaling Calcite Growth Rates From the Mesoscale to the Macroscale  

Science Conference Proceedings (OSTI)

Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

Bracco, Jacquelyn N [ORNL; Stack, Andrew G [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL)

2013-01-01T23:59:59.000Z

24

Constraining Galileon gravity from observational data with growth rate  

E-Print Network (OSTI)

We studied the cosmological constraints on the Galileon gravity obtained from observational data of the growth rate of matter density perturbations, the supernovae Ia (SN Ia), the cosmic microwave background (CMB), and baryon acoustic oscillations (BAO). For the same value of the energy density parameter of matter $\\Omega_{m,0}$, the growth rate $f$ in Galileon models is enhanced, relative to the $\\Lambda$CDM case, because of an increase in Newton's constant. The smaller $\\Omega_{m,0}$ is, the more growth rate is suppressed. Therefore, the best fit value of $\\Omega_{m,0}$ in the Galileon model, based only the growth rate data, is quite small. This is incompatible with the value of $\\Omega_{m,0}$ obtained from the combination of SN Ia, CMB, and BAO data. On the other hand, in the $\\Lambda$CDM model, the values of $\\Omega_{m,0}$ obtained from different observational data sets are consistent. In the analysis of this paper, we found that the Galileon model is less compatible with observations than the $\\Lambda$CDM model. This result seems to be qualitatively the same in most of the generalized Galileon models in which Newton's constant is enhanced.

Koichi Hirano; Zen Komiya; Hisato Shirai

2011-03-31T23:59:59.000Z

25

Scaling laws in the dynamics of crime growth rate  

E-Print Network (OSTI)

The increasing number of crimes in areas with large concentrations of people have made cities one of the main source of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for the contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behaviour. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

Alves, Luiz Gustavo de Andrade; Mendes, Renio dos Santos

2013-01-01T23:59:59.000Z

26

Evolution of larval foraging behaviour in Drosophila and its effects on growth and metabolic rates  

E-Print Network (OSTI)

1988) Evolution of higher feeding rate in Drosophila due toevolution of growth rate and body size. Evolution, 51, 420–suggesting that larval feeding rate and foraging path length

2005-01-01T23:59:59.000Z

27

Extended Simulations of Graphene Growth with Updated Rate Coefficients  

DOE Green Energy (OSTI)

New simulations of graphene growth in flame environments are presented. The simulations employ a kinetic Monte Carlo (KMC) algorithm coupled to molecular mechanics (MM) geometry optimization to track individual graphenic species as they evolve. Focus is given to incorporation of five-member rings and resulting curvature and edge defects. The model code has been re-written to be more computationally efficient enabling a larger set of simulations to be run, decreasing stochastic fluctuations in the averaged results. The model also includes updated rate coefficients for graphene edge reactions recently published in the literature. The new simulations are compared to results from the previous model as well as to hydrogen to carbon ratios recorded in experiment and calculated with alternate models.

Whitesides, R; You, X; Frenklach, M

2010-03-18T23:59:59.000Z

28

Ultrahigh growth rate of epitaxial silicon by chemical vapor deposition at low temperature with neopentasilane  

E-Print Network (OSTI)

- iane SiH4 to disilane Si2H6 , to trisilane, Si3H8 2 leads to increased epitaxy growth rates at the same growth rate was 0.6 nm/min, and the disilane growth rate was 8 nm/min. In this work, we explored the use

29

Effects of head-up tilt on mean arterial pressure, heart rate, and regional cardiac output distribution in aging rats  

E-Print Network (OSTI)

Many senescent individuals demonstrate an inability to regulate mean arterial pressure (MAP) in response to standing or head-up tilt; however, whether this aging effect is the result of depressed cardiac function or an inability to reduce peripheral vascular conductance remains unknown. Therefore, the purpose of this research was to investigate the effects of aging on MAP, heart rate (HR), regional blood flow (via radioactive-microspheres), and vascular conductance during head-up tilt in conscious young (4 mo; n=12) and old (24 mo; n=10) male Fischer-344 rats. Heart rate and MAP were measured continuously during normal posture and during 10 minutes of head-up tilt. Blood flow was determined during normal posture and at the end of 10 minutes of head-up tilt. Young rats increased MAP significantly at the onset of head-up tilt and generally maintained the increase in MAP for the duration of head-up tilt, while aged rats showed a significant reduction in MAP after 10 minutes of head-up tilt. In the normal posture, aged rats demonstrated lower blood flow to splanchnic, bone, renal, and skin tissues versus young rats. With tilt there were decreases in blood flow to skin, bone, and hind-limb in both age groups and in fat, splanchnic, reproductive, and renal tissues in the young. Bone blood flow was attenuated with age across both conditions in hind foot, distal femur, femur marrow, and proximal and distal tibia. Head-up tilt caused a decrease in blood flow across both age groups in all bones sampled with the exception of the hind foot. These results provide evidence that the initial maintenance of MAP in aged rats during head-up tilt occurs through decreased regional blood flow and vascular conductance, and that the fall in pressure is not attributable to an increase in tissue blood flow and vascular conductance. Therefore, reductions in arterial pressure during headup tilt are likely a result of an old age-induced reduction in cardiac performance. In addition, this is the first study to demonstrate a decreased bone vascular conductance in both young and old rats during head-up tilt.

Ramsey, Michael Wiechmann

2005-12-01T23:59:59.000Z

30

System dynamics model of construction output in Kenya.  

E-Print Network (OSTI)

??This study investigates fluctuations of construction output, and growth of the output in Kenya. Fluctuation and growth of construction activity are matters of concern in… (more)

Mbiti, T

2008-01-01T23:59:59.000Z

31

The Effect of Load-Line Displacement Rate on the SCC Growth Rate of Nickel Alloys and Mechanistic Implications  

DOE Green Energy (OSTI)

A key set of SCC growth experiments was designed to test the hypothesis that deformation/creep is the rate controlling step in LPSCC. These tests were performed on Alloy X-750 AH compact tension specimens at a various constant displacement rates. The deformation/creep rate within the crack tip zone is proportional to the test displacement rate. If crack growth rates were observed to increase with the load-line displacement rate, then this would indicate that deformation/creep is a critical SCC mechanism process. However, results obtained from the load-line displacement tests did not find X-750 AH SCC growth rate to be dependent on the position rate and therefore do not support the assumption that deformation/creep is the rate controlling process in LPSCC. The similarities between the SCC response of X-750, Alloy 600 and EN82H suggests that it is likely that the same SCC process is occurring for all these alloys (i.e., the same rate controlling step) and that deformation based models are also inappropriate for Alloy 600 and EN82H. The strong temperature and coolant hydrogen dependencies exhibited by these alloys make it more likely that nickel alloy LPSCC is controlled by an environmental or corrosion driven process.

D Morton

2005-10-19T23:59:59.000Z

32

Predicting Crack Growth Rate of Pipeline Steel in High Ph ...  

Science Conference Proceedings (OSTI)

Modeling Internal Corrosion Rates of Pipelines which Carry Wet or Dry Natural Gas · Modeling Oxidation-Limited Lifetime of Alumina- and Chromia-Forming ...

33

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

34

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

35

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

36

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

37

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

38

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

39

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

40

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

42

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

43

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

44

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

45

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

46

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

47

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

48

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

49

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

50

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

51

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

52

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

53

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

54

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

55

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

56

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

57

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

58

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

59

Dynamic estimation of specific growth rates and concentrations of bacteria for the  

E-Print Network (OSTI)

for specific growth rates and biomass concentrations of the anaerobic digestion process. A 3-stage model of 5. INTRODUCTION Anaerobic digestion is a biotechnological process with a promising capabilities for solving someDynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic

Paris-Sud XI, Université de

60

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

62

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

63

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

64

Quantum Coherence Conservation by Growth in Environmental Dissipation Rate  

E-Print Network (OSTI)

Quantum coherence conservation is shown to be achieved by a very high rate of dissipation of an environmental system coupled with a principal system. This effect is not in the list of previously-known strategies of noise suppression, such as Zeno effect, dynamical decoupling, quantum error correction code, and decoherence free subspace. An analytical solution is found for a simplified model of a single qubit coupled with an environmental single qubit dissipating rapidly. We also show examples of coherence conservation in a spin-boson linear coupling model with a numerical evaluation.

Akira SaiToh; Robabeh Rahimi; Mikio Nakahara

2007-09-05T23:59:59.000Z

65

Scales, Growth Rates, and Spectral Fluxes of Baroclinic Instability in the Ocean  

Science Conference Proceedings (OSTI)

An observational, modeling, and theoretical study of the scales, growth rates, and spectral fluxes of baroclinic instability in the ocean is presented, permitting a discussion of the relation between the local instability scale; the first ...

Ross Tulloch; John Marshall; Chris Hill; K. Shafer Smith

2011-06-01T23:59:59.000Z

66

Nocturnal Wind Structure and Plume Growth Rates Due to Inertial Oscillations  

Science Conference Proceedings (OSTI)

Theoretical plume growth rates depend upon the atmospheric spatial energy spectrum. Current grid-based numerical models generally resolve large-scale (synoptic) energy, while planetary boundary layer turbulence is parameterized. Energy at ...

Shekhar Gupta; R. T. McNider; Michael Trainer; Robert J. Zamora; Kevin Knupp; M. P. Singh

1997-08-01T23:59:59.000Z

67

Forecasting future economic growth : the term structure of interest rates, volatility and inflation as leading indicators  

E-Print Network (OSTI)

The broad literature documents the empirical regularity that slope of the term structure of interest rates is a reliable predictor of future real economic activity. Steeper slopes presage increasing growth, and downward ...

Khait, Maria

2012-01-01T23:59:59.000Z

68

Lidar Observations of Mixed Layer Dynamics: Tests of Parameterized Entrainment Models of Mixed Layer Growth Rate  

Science Conference Proceedings (OSTI)

Ground based lidar measurements of the atmospheric mixed layer depth, the entrainment zone depth and the wind speed and wind direction were used to test various parameterized entrainment models of mixed layer growth rate. Six case studies under ...

R. Boers; E. W. Eloranta; R. L. Coulter

1984-02-01T23:59:59.000Z

69

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2012 2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2012 (Btu per Kilowatthour) Prime Mover Coal Petroluem Natural Gas Nuclear 2007 Steam Generator 10,158 10,398 10,440 10,489 Gas Turbine -- 13,217 11,632 -- Internal Combustion -- 10,447 10,175 -- Combined Cycle W 10,970 7,577 -- 2008 Steam Generator 10,138 10,356 10,377 10,452 Gas Turbine -- 13,311 11,576 -- Internal Combustion -- 10,427 9,975 -- Combined Cycle W 10,985 7,642 -- 2009 Steam Generator 10,150 10,349 10,427 10,459 Gas Turbine -- 13,326 11,560 -- Internal Combustion -- 10,428 9,958 -- Combined Cycle W 10,715 7,605 -- 2010 Steam Generator 10,142 10,249 10,416 10,452 Gas Turbine -- 13,386 11,590 -- Internal Combustion -- 10,429 9,917 --

70

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Operating Heat Rate for Selected Energy Sources, . Average Operating Heat Rate for Selected Energy Sources, 2002 through 2012 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2002 10,314 10,641 9,533 10,442 2003 10,297 10,610 9,207 10,422 2004 10,331 10,571 8,647 10,428 2005 10,373 10,631 8,551 10,436 2006 10,351 10,809 8,471 10,435 2007 10,375 10,794 8,403 10,489 2008 10,378 11,015 8,305 10,452 2009 10,414 10,923 8,159 10,459 2010 10,415 10,984 8,185 10,452 2011 10,444 10,829 8,152 10,464 2012 10,498 10,991 8,039 10,479 Coal includes anthracite, bituminous, subbituminous and lignite coal. Waste coal and synthetic coal are included starting in 2002. Petroleum includes distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil.

71

Effect of Specimen Size on the Crack Growth Rate Behavior of Irradiated Type 304 Stainless Steel  

Science Conference Proceedings (OSTI)

BackgroundCracks in actual plant components are mainly under plane strain. In order to generate relevant crack growth rate data in the laboratory, specimens where most of the crack front is under plane strain should be used. Since the ASTM E399 size criterion for linear elastic plane-strain fracture toughness is probably conservative, it seems appropriate to also apply it to SCC tests. However, in stress corrosion crack growth rate (CGR) tests on austenitic stainless ...

2012-12-21T23:59:59.000Z

72

An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents  

Science Conference Proceedings (OSTI)

Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies

Yip Chee Yin; Lim Hock-Eam

2012-01-01T23:59:59.000Z

73

Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses  

DOE Green Energy (OSTI)

Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

Kay, Steve A. [University of California San Diego

2013-05-02T23:59:59.000Z

74

Optimal Filtering of AC Output Anemometers  

Science Conference Proceedings (OSTI)

The output of pulsed and AC output anemometers suffer from discretization noise when such anemometers are sampled at fast rates (>1 Hz). This paper describes the construction of an optimal filter designed to reduce this noise. By comparing the ...

J. C. Barnard; L. L. Wendell; V. R. Morris

1998-12-01T23:59:59.000Z

75

High Growth Rate of Epitaxial Silicon-Carbon Alloys by High-Order Silane Precursor and Chemical Vapor Deposition  

E-Print Network (OSTI)

rates typically achieved by disilane and silane, respectively, at 575o C. The rate at present is limited precursor HOS than disilane in CVD, even at lower temperatures. Our current growth rates of Si1-yCy alloys

76

Strategies for OPEC`s pricing and output decisions  

SciTech Connect

This paper examines OPEC pricing and output strategies, both to provide an understanding of OPECs unwise price doubling in 1979-80 and also to analyze what strategy might serve it best for the future. We focus on the unavoidable uncertainty regarding the underlying parameters that characterize the world oil market (price elasticities, income growth rates), and the sensitivity of discounted OPEC revenue to changes in these parameters, for various pricing strategies. In 1979-80, OPEC chose a high-price strategy, which could have yielded good results (like many other price-paths) if the market`s underlying parameters had been more favorable. But the price elasticities of demand and non-OPEC supply were much higher than anticipated, so that OPEC did very poorly-not only in absolute terms, but also relative to what it could have achieved if it had set its price more cautiously. We search for a robustly optimal strategy for OPEC in the future, which will serve it well relative to other strategies, regardless of the true parameter values underlying the market (within some plausible range). We conclude that OPEC`s interests will be served best by a policy of moderate output growth, at a rate no faster than that of world income growth. This will require that OPEC slow its rate of output growth since 1985, cutting it at least in half. Slowing its output growth will allow OPEC gradually to regain the market share lost after its disastrous 1979-80 price doubling, but without jeopardizing its revenue, as might a policy of more rapid increases in output. This will yield a consistently good result for OPEC, relative to alternative strategies, over a fairly wide range of demand and supply conditions. 53 refs., 7 figs., 3 tabs.

Gately, D. [New York Univ., New York, NY (United States)

1995-12-31T23:59:59.000Z

77

Rate-dependent morphology of Li2O2 growth in Li-O2 batteries  

E-Print Network (OSTI)

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.

Horstmann, B; Mitchell, R; Bessler, W G; Shao-Horn, Y; Bazant, M Z

2013-01-01T23:59:59.000Z

78

Dynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion  

E-Print Network (OSTI)

of the estimator performance. I. Introduction Anaerobic digestion is a biotechnological process with a promisingDynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion S. Diop1 and I. Simeonov2 Abstract-- The paper proposes an observability anal- ysis and estimation

79

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network (OSTI)

. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic is devoted to the description of the model of the specific anaerobic digestion processA dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater

80

Determining accurate measurements of the growth rate from the galaxy correlation function in simulations  

E-Print Network (OSTI)

We use high-resolution N-body simulations to develop a new, flexible, empirical approach for measuring the growth rate from redshift-space distortions (RSD) in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a $1 \\, h^{-3}$ Gpc$^3$ volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey (BOSS). Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting Luminous Red Galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the "standard" assumption of a power-law correlation function can result in a significant systematic error in the growth rate determ...

Contreras, Carlos; Poole, Gregory B; Marin, Felipe; 10.1093/mnras/sts649

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Real exchange rates, saving and growth: Is there a link? Working Paper 46, Commision on Growth and Development, The World Bank  

E-Print Network (OSTI)

The view that policies directed at the real exchange rate can have an important effect on economic growth has been gaining adherents in recent years. Unlike the traditional “misalignment " view that temporary departures of the real exchange rate from its equilibrium level harm growth by distorting a key relative price in the economy, the recent literature stresses the growth effects of the equilibrium real exchange rate itself, with the claim being that a depreciated equilibrium real exchange rate promotes economic growth. While there is no consensus on the precise channels through which this effect is generated, an increasingly common view in policy circles points to saving as the channel of transmission, with the claim that a depreciated real exchange rate raises the domestic saving rate-- which in turn stimulates growth by increasing the rate of capital accumulation. This paper offers a preliminary exploration of this claim. Drawing from standard analytical models, stylized facts on saving and real exchange rates, and existing empirical research on saving determinants, the paper assesses the link between the real exchange rate and saving. Overall, the conclusion is that saving is unlikely to provide the mechanism through which the real exchange rate affects growth.

Peter J. Montiel; Luis Servén

2009-01-01T23:59:59.000Z

82

Effect of a Change of Atmospheric Stability on the Growth Rate of Puffs Used in Plume Simulation Models  

Science Conference Proceedings (OSTI)

The dependence of plume growth rate on plume size is discussed. It is shown that the growth rates estimated by techniques used in some widely distributed puff models can be in error by as much as two orders of magnitude, although the errors are ...

F. L. Ludwig

1982-09-01T23:59:59.000Z

83

Molecular dynamics simulation of high strain-rate void nucleation and growth in copper  

Science Conference Proceedings (OSTI)

Isotropic tension is simulated in nanoscale polycrystalline copper with 10 nm grain size using large-scale molecular dynamics. The nanocrystalline copper is fabricated on the computer by growing randomly oriented grains from seed sites in simulations cell. Constant volume strain rates of 10-8 to 10-10 are considered for systems ranging from 10-5 to 10-6 atoms using EAM interatomic potential for copper. The spacing between voids for room temperature single crystal simulations is found to scale approximately as l{approximately}0. 005 Cs/gamma, where Cs is the sound speed and gamma is the strain rate. Below strain rates of about 10-9, only one void is observed to nucleate and grow in the 10 nm polycrystalline simulation cell. The growth of small voids is simulated by cutting a void out of the simulation cell and repeating the isotropic expansion.

Belak, J.

1997-07-01T23:59:59.000Z

84

Crack growth rates of irradiated austenitic stainless steel weld heat affected zone in BWR environments.  

Science Conference Proceedings (OSTI)

Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of reactor pressure vessels because of their superior fracture toughness. However, exposure to high levels of neutron irradiation for extended periods can exacerbate the corrosion fatigue and stress corrosion cracking (SCC) behavior of these steels by affecting the material microchemistry, material microstructure, and water chemistry. Experimental data are presented on crack growth rates of the heat affected zone (HAZ) in Types 304L and 304 SS weld specimens before and after they were irradiated to a fluence of 5.0 x 10{sup 20} n/cm{sup 2} (E > 1 MeV) ({approx} 0.75 dpa) at {approx}288 C. Crack growth tests were conducted under cycling loading and long hold time trapezoidal loading in simulated boiling water reactor environments on Type 304L SS HAZ of the H5 weld from the Grand Gulf reactor core shroud and on Type 304 SS HAZ of a laboratory-prepared weld. The effects of material composition, irradiation, and water chemistry on growth rates are discussed.

Chopra, O. K.; Alexandreanu, B.; Gruber, E. E.; Daum, R. S.; Shack, W. J.; Energy Technology

2006-01-31T23:59:59.000Z

85

test output enable Veto  

E-Print Network (OSTI)

to BIP/FSCC's RESET to (NIM) test output FSCC/COM (NIM) INPUT TRIGGER GLOBAL 0.08­19.5 usec adjustable

Berns, Hans-Gerd

86

Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels  

E-Print Network (OSTI)

With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods involve bubbling carbon dioxide (CO_(2)) gas into the media to provide a carbon source for photosynthesis, but this can be very inefficient releasing most CO_(2) back into the atmosphere. This research began by investigating the effect of sodium bicarbonate (NaHCO_(3)) in the growth media as an alternative carbon source to bubbling CO_(2) into the cultures. The second part examined if NaHCO_(3) could act as a lipid trigger in higher (10.0 g/L) concentrations. The microalgae species Dunaliella tertiolecta (Chlorophyta), Mayamaea spp. (Baciallariophyta) and Synechoccocus sp. (Cyanophyta) were grown with 0.0 g/L, 0.5g/L, 1.0 g/L, 2.0 g/L and 5.0 g/L dissolved NaHCO_(3) in modified seawater (f/2) media. To investigate effects of NaHCO_(3) on lipid accumulation, growth media cultures were divided into two ?lipid phase? medias containing either 0.0g/L (non-boosted) or 10.0 g/L (boosted) NaHCO_(3) treatments. Culture densities were determined using spectrophotometry, which showed both all three species are able to successfully grow in media ameliorated with these high NaHCO_(3) concentrations. Highest growth phase culture densities occurred in NaHCO_(3) concentrations of 2.0 g/L for D. tertiolecta and Mayamaea spp., and the 5.0 g/L treatment for Synechoccocus sp. Highest growth rates occurred in the 5.0 g/L NaHCO_(3) concentration treatments for D. tertiolecta, Mayamaea spp., and Synechoccocus sp. (0.205 d-1 ±0.010, 0.119 d-1 ±0.004, and 0.372 d-1 ±0.003 respectively). As a lipid accumulation trigger two of the three species (D. tertiolecta and Mayamaea spp) had their highest end day oil indices in a 10.0 g/L treatment. Highest oil indices occurred in boosted 5.0 g/L Dunaliella tertiolecta and 2.0 g/L Mayamaea spp. (13136 ± 895 and 62844 ± 8080 respectively (relative units)). The results obtained indicate NaHCO3 could be used as a photosynthetic carbon source for growth in all three species and a lipid trigger for D. tertiolecta and Mayamaea spp.

Gore, Matthew

2013-08-01T23:59:59.000Z

87

Crack growth rates of nickel alloy welds in a PWR environment.  

Science Conference Proceedings (OSTI)

In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

2006-05-31T23:59:59.000Z

88

Ice in Clouds Experiment—Layer Clouds. Part I: Ice Growth Rates Derived from Lenticular Wave Cloud Penetrations  

Science Conference Proceedings (OSTI)

Lenticular wave clouds are used as a natural laboratory to estimate the linear and mass growth rates of ice particles at temperatures from ?20° to ?32°C and to characterize the apparent rate of ice nucleation at water saturation at a nearly ...

Andrew J. Heymsfield; Paul R. Field; Matt Bailey; Dave Rogers; Jeffrey Stith; Cynthia Twohy; Zhien Wang; Samuel Haimov

2011-11-01T23:59:59.000Z

89

Droop (Droop, 2002) points out that equation (3) of Baird et al. (Baird et al., 2001) contains the maximum growth rate,  

E-Print Network (OSTI)

relationship to relate algal growth rate with internal nutrient content. Power laws are often used to empiri this is successful is much harder to gauge than for algal cells, since benthic plant growth rates cannot be easily manipulated by varying dilution rates. Nonetheless, it does allow the growth of benthic plants

Baird, Mark

90

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

91

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

92

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

93

14C/C measurements support Andreev's internode method to determine lichen growth rates in Cladina stygia (Fr.) Ahti  

SciTech Connect

Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot} yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.

Holt, E; Bench, G

2007-12-05T23:59:59.000Z

94

Evolution of larval foraging behaviour in Drosophila and its effects on growth and metabolic rates  

E-Print Network (OSTI)

sumed (i.e. feeding rates increase). This energy requirementexamined, if feeding rates increase then their foraging pathas larval feeding rates increase (Fig. 4a). Second, the

2005-01-01T23:59:59.000Z

95

Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei  

SciTech Connect

This study presents measurements of size and time-resolved particle diameter growth rates for freshly nucleated particles down to 1 nm geometric diameter. Novel data analysis methods were developed, de-coupling for the first time the size and time-dependence of particle growth rates by fitting the aerosol general dynamic equation to size distributions obtained at an instant in time. Size distributions of freshly nucleated total aerosol (neutral and charged) were measured during two intensive measurement campaigns in different environments (Atlanta, GA and Boulder, CO) using a recently developed electrical mobility spectrometer with a diethylene glycol-based ultrafine condensation particle counter as the particle detector. One new particle formation (NPF) event from each campaign was analyzed in detail. At a given instant in time during the NPF event, size-resolved growth rates were obtained directly from measured size distributions and were found to increase approximately linearly with particle size from {approx}1 to 3 nm geometric diameter, increasing from 5.5 {+-} 0.8 to 7.6 {+-} 0.6 nm h{sup -1} in Atlanta (13:00) and from 5.6 {+-} 2 to 27 {+-} 5 nm h{sup -1} in Boulder (13:00). The resulting growth rate enhancement {Lambda}, defined as the ratio of the observed growth rate to the growth rate due to the condensation of sulfuric acid only, was found to increase approximately linearly with size from {approx}1 to 3 nm geometric diameter. For the presented NPF events, values for {Lambda} had lower limits that approached {approx}1 at 1.2 nm geometric diameter in Atlanta and {approx}3 at 0.8 nm geometric diameter in Boulder, and had upper limits that reached 8.3 at 4.1 nm geometric diameter in Atlanta and 25 at 2.7 nm geometric diameter in Boulder. Nucleated particle survival probability calculations comparing the effects of constant and size-dependent growth indicate that neglecting the strong dependence of growth rate on size from 1 to 3 nm observed in this study could lead to a significant overestimation of CCN survival probability.

Kuang C.; Chen, M.; Zhao, J.; Smith, J.; McMurry, P. H.; Wang, J.

2012-04-12T23:59:59.000Z

96

Modeling and optimization of the growth rate for ZnO thin films using neural networks and genetic algorithms  

Science Conference Proceedings (OSTI)

The process modeling for the growth rate in pulsed laser deposition (PLD)-grown ZnO thin films was investigated using neural networks (NNets) based on the back-propagation (BP) algorithm and the process recipes was optimized via genetic algorithms (GAs). ... Keywords: Genetic algorithms, Neural networks, PLD, Process modeling, ZnO

Young-Don Ko; Pyung Moon; Chang Eun Kim; Moon-Ho Ham; Jae-Min Myoung; Ilgu Yun

2009-03-01T23:59:59.000Z

97

Online biomass and specific growth rate estimation aimed to control of a chemostat microbial cultivation accounting for the memory effects  

Science Conference Proceedings (OSTI)

A general chemostat microbial cultivation model accounting for the memory effects (in two modifications - µ-type and S-type) is used for biomass and growth rate estimation, based on measurements of the substrate concentration. The influence ... Keywords: Kalman filtering method, chemostat cultivation, memory (time delay) effects

Trayana Patarinska; Silvia Popova

2003-06-01T23:59:59.000Z

98

Calcite growth rates as a function of aqueous calcium-to-carbonate ratio, saturation index and strontium concentration  

SciTech Connect

Using in situ atomic force microscopy, the growth rates of the obtuse and acute step orientations on the calcite surface were measured at two saturation indices as a function of the aqueous calcium-to-carbonate ratio and aqueous strontium concentration. The amount of strontium required to inhibit growth was found to correlate with the aqueous calcium concentration, but did not correlate with carbonate. This suggests that strontium inhibits attachment of calcium ions to the reactive sites on the calcite surface. Strontium/calcium cation exchange selectivity coefficients for those sites, Kex, of 1.09 0.09 and 1.44 0.19 are estimated for the obtuse and acute step orientations, respectively. The implication of this finding is that to avoid poisoning calcite growth, the concentration of calcium should be higher than the quotient of the strontium concentration and Kex, regardless of saturation state. Additionally, analytical models of nucleation and propagation of steps are expanded from previous work to capture growth rates of these steps at multiple saturation indices and the effect of strontium. This work will have broader implications for naturally occurring or engineered calcite growth, such as to sequester subsurface strontium contamination.

Bracco, Jacquelyn N [ORNL; Grantham, Ms. Meg [Georgia Institute of Technology; Stack, Andrew G [ORNL

2012-01-01T23:59:59.000Z

99

Growth Rates and Habits of Ice Crystals between ?20° and ?70°C  

Science Conference Proceedings (OSTI)

A laboratory study of ice crystal growth characteristics at temperatures between ?20° and ?70°C has been performed at ice supersaturations and pressures comparable with those in the atmosphere using a horizontal static diffusion chamber. Maximum ...

Matthew Bailey; John Hallett

2004-03-01T23:59:59.000Z

100

Ice Crystal Linear Growth Rates from ?20° to ?70°C: Confirmation from Wave Cloud Studies  

Science Conference Proceedings (OSTI)

As a result of recent comprehensive laboratory and field studies, many details have been clarified concerning atmospheric ice crystal habits below ?20°C as a function of temperature, ice supersaturation, air pressure, and growth history. A ...

Matthew Bailey; John Hallett

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation  

Science Conference Proceedings (OSTI)

We demonstrate control of the carrier density of single phase anatase TiO{sub 2} thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO{sub 2} samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

Tachikawa, T; Minohara, M.; Nakanishi, Y.; Hikita, Y.; Yoshita, M.; Akiyama, H.; Bell, C.; Hwang, H.Y.

2012-06-21T23:59:59.000Z

102

A review of irradiation effects on LWR core internal materials - IASCC susceptibility and crack growth rates of austenitic stainless steels.  

SciTech Connect

Austenitic stainless steels (SSs) are used extensively as structural alloys in the internal components of light water reactor (LWR) pressure vessels because of their relatively high strength, ductility, and fracture toughness. However, exposure to neutron irradiation for extended periods changes the microstructure (radiation hardening) and microchemistry (radiation-induced segregation) of these steels, and degrades their fracture properties. Irradiation-assisted stress corrosion cracking (IASCC) is another degradation process that affects LWR internal components exposed to neutron radiation. The existing data on irradiated austenitic SSs were reviewed to evaluate the effects of key parameters such as material composition, irradiation dose, and water chemistry on IASCC susceptibility and crack growth rates of these materials in LWR environments. The significance of microstructural and microchemistry changes in the material on IASCC susceptibility is also discussed. The results are used to determine (a) the threshold fluence for IASCC and (b) the disposition curves for cyclic and IASCC growth rates for irradiated SSs in LWR environments.

Chopra, O. K.; Roa, A. S.; Environmental Science Division; U.S. NRC

2010-12-15T23:59:59.000Z

103

A comparison of diamond growth rate using in-liquid and conventional plasma chemical vapor deposition methods  

Science Conference Proceedings (OSTI)

In order to make high-speed deposition of diamond effective, diamond growth rates for gas-phase microwave plasma chemical vapor deposition and in-liquid microwave plasma chemical vapor deposition are compared. A mixed gas of methane and hydrogen is used as the source gas for the gas-phase deposition, and a methanol solution of ethanol is used as the source liquid for the in-liquid deposition. The experimental system pressure is in the range of 60-150 kPa. While the growth rate of diamond increases as the pressure increases, the amount of input microwave energy per unit volume of diamond is 1 kW h/mm{sup 3} regardless of the method used. Since the in-liquid deposition method provides a superior cooling effect through the evaporation of the liquid itself, a higher electric input power can be applied to the electrodes under higher pressure environments. The growth rate of in-liquid microwave plasma chemical vapor deposition process is found to be greater than conventional gas-phase microwave plasma chemical vapor deposition process under the same pressure conditions.

Takahashi, Yoshiyuki; Toyota, Hiromichi; Nomura, Shinfuku; Mukasa, Shinobu [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Inoue, Toru [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

2009-06-01T23:59:59.000Z

104

Mapping of Indian computer science research output, 1999---2008  

Science Conference Proceedings (OSTI)

The research output of India in computer science during 1999---2008 is analyzed in this paper on several parameters including total research output, its growth, rank and global publication share, citation impact, share of international collaborative ... Keywords: Computer science, Information technology, Mapping, Research priorities in computer

B. M. Gupta; Avinash Kshitij; Charu Verma

2011-02-01T23:59:59.000Z

105

High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD  

DOE Green Energy (OSTI)

Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H{sub 2}, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are reduced; (3) surface hydrogen removal--heavier and more energetic helium ions break the Si-H much easier than hydrogen ions. The preferential attachment of Si-H to Ge-H is reduced. They also found that with the small amount of hydrogen put into the plasma, the superior properties of a-(Si,Ge):H made from pure hydrogen dilution plasma were still maintained. These hydrogen ions help to remove the subsurface weakly bonded hydrogen and buried hydrogen. They also help to passivate the Ge-dangling bond.

Yong Liu

2002-05-31T23:59:59.000Z

106

Grain growth behavior and high-temperature high-strain-rate tensile ductility of iridium alloy DOP-26  

DOE Green Energy (OSTI)

This report summarizes results of studies conducted to date under the Iridium Alloy Characterization and Development subtask of the Radioisotope Power System Materials Production and Technology Program to characterize the properties of the new-process iridium-based DOP-26 alloy used for the Cassini space mission. This alloy was developed at Oak Ridge National Laboratory (ORNL) in the early 1980`s and is currently used by NASA for cladding and post-impact containment of the radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for interplanetary spacecraft. Included within this report are data generated on grain growth in vacuum or low-pressure oxygen environments; a comparison of grain growth in vacuum of the clad vent set cup material with sheet material; effect of grain size, test temperature, and oxygen exposure on high-temperature high-strain-rate tensile ductility; and grain growth in vacuum and high-temperature high-strain-rate tensile ductility of welded DOP-26. The data for the new-process material is compared to available old-process data.

McKamey, C.G.; Gubbi, A.N.; Lin, Y.; Cohron, J.W.; Lee, E.H.; George, E.P.

1998-04-01T23:59:59.000Z

107

The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function  

E-Print Network (OSTI)

The growth history of large-scale structure in the Universe is a powerful probe of the cosmological model, including the nature of dark energy. We study the growth rate of cosmic structure to redshift $z = 0.9$ using more than $162{,}000$ galaxy redshifts from the WiggleZ Dark Energy Survey. We divide the data into four redshift slices with effective redshifts $z = [0.2,0.4,0.6,0.76]$ and in each of the samples measure and model the 2-point galaxy correlation function in parallel and transverse directions to the line-of-sight. After simultaneously fitting for the galaxy bias factor we recover values for the cosmic growth rate which are consistent with our assumed $\\Lambda$CDM input cosmological model, with an accuracy of around 20% in each redshift slice. We investigate the sensitivity of our results to the details of the assumed model and the range of physical scales fitted, making close comparison with a set of N-body simulations for calibration. Our measurements are consistent with an independent power-spe...

Contreras, Carlos; Poole, Gregory B; Marin, Felipe; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croom, Scott; Croton, Darren; Davis, Tamara M; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, D Christopher; Pimbblet, Kevin; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K; Yee, H K C; 10.1093/mnras/sts608

2013-01-01T23:59:59.000Z

108

The Effects of Test Temperature, Temper, and Alloyed Copper on the Hydrogen-Controlled Crack Growth Rate of an Al-Zn-Mg-(Cu) Alloy  

DOE Green Energy (OSTI)

The hydrogen embrittlement controlled stage II crack growth rate of AA 7050 (6.09 wt.% Zn, 2.14 wt% Mg, 2.19 wt.% Cu) was investigated as a function of temper and alloyed copper level in a humid air environment at various temperatures. Three tempers representing the underaged, peak aged, and overaged conditions were tested in 90% relative humidity (RH) air at temperatures between 25 and 90 C. At all test temperatures, an increased degree of aging (from underaged to overaged) produced slower stage II crack growth rates. The stage II crack growth rate of each alloy and temper displayed Arrhenius-type temperature dependence with activation energies between 58 and 99 kJ/mol. For both the normal copper and low copper alloys, the fracture path was predominantly intergranular at all test temperatures (25-90 C) in each temper investigated. Comparison of the stage II crack growth rates for normal (2.19 wt.%) and low (0.06 wt.%) copper alloys in the peak aged and overaged tempers showed the beneficial effect of copper additions on stage II crack growth rate in humid air. In the 2.19 wt.% copper alloy, the significant decrease ({approx} 10 times at 25 C) in stage II crack growth rate upon overaging is attributed to an increase in the apparent activation energy for crack growth. IN the 0.06 wt.% copper alloy, overaging did not increase the activation energy for crack growth but did lower the pre-exponential factor, {nu}{sub 0}, resulting in a modest ({approx} 2.5 times at 25 C) decrease in crack growth rate. These results indicate that alloyed copper and thermal aging affect the kinetic factors that govern stage II crack growth rate. Overaged, copper bearing alloys are not intrinsically immune to hydrogen environment assisted cracking but are more resistant due to an increased apparent activation energy for stage II crack growth.

G.A. Young, Jr.; J.R. Scully

2000-09-17T23:59:59.000Z

109

Accelerated Stem Growth Rates and Improved Fiber Properties of Loblolly Pine: Functional Analysis Of CyclinD from Pinus taeda  

DOE Green Energy (OSTI)

A sustained supply of low-cost, high quality raw materials is essential for the future success of the U.S. forest products industry. To maximize stem (trunk) growth, a fundamental understanding of the molecular mechanisms that regulate cell divisions within the cambial meristem is essential. We hypothesize that auxin levels within the cambial meristem regulate cyclin gene expression and this in turn controls cell cycle progression as occurs in all eukaryotic cells. Work with model plant species has shown that ectopic overexpression of cyclins promotes cell division thereby increasing root growth > five times. We intended to test whether ectopic overexpression of cambial cyclins in the cambial zone of loblolly pine also promotes cell division rates that enhance stem growth rates. Results generated in model annual angiosperm systems cannot be reliably extrapolated to perennial gymnosperms, thus while the generation and development of transgenic pine is time consuming, this is the necessary approach for meaningful data. We succeeded in isolating a cyclin D gene and Clustal analysis to the Arabidopsis cyclin D gene family indicates that it is more closely related to cyclin D2 than D1 or D3 Using this gene as a probe we observed a small stimulation of cyclin D expression in somatic embryo culture upon addition of auxin. We hypothesized that trees with more cells in the vascular cambial and expansion zones will have higher cyclin mRNA levels. We demonstrated that in trees under compressive stress where the rates of cambial divisions are increased on the underside of the stem relative to the top or opposite side, there was a 20 fold increase in the level of PtcyclinD1 mRNA on the compressed side of the stem relative to the opposite. This suggests that higher secondary growth rates correlate with PtcyclinD1 expression. We showed that larger diameter trees show more growth during each year and that the increased growth in loblolly pine trees correlates with more cell divisions in the cambial meristem as expected. We isolated a promoter from a cambial specific gene and commenced development of transformation protocols for loblolly pine. Since our results show that cyclin D expression correlates with increased growth we continued with experiments to demonstrate the effect of cyclin overexpression upon tree growth. Vectors which constitutively express the cyclin D cDNA were constructed and transformed into a transgenic pine system through the collaboration with Forest Research, New Zealand. The transformation system for Pinus radiata is well established and we hoped to gain phenotypic information in a closely related pine, rather than await development of a robust loblolly pine transformation method. Transformation experiments were conducted by a biolistic method developed at Forest Research, NZ. A total of 78 transgenic embryogenic lines were generated and bulked up with a good representation of transgenic lines per construct. Transformed calli were originally identified by resistance to the antibiotic Geneticin contained in the medium. The transgenic nature of the selected lines was subsequently confirmed using histochemical GUS staining. To date, 10 out of 13 selected transgenic lines have produced embryos and we are currently harvesting the first transgenic plantlets. At present time 22 of those plantlets have been moved to GMO facilities. We will soon develop a strategy for assessing potential phenotypic differences between the transclones and non-transformed controls. Transgenic plants are being grown to a stage (approx. 1 year) when meaningful phenotypic evaluation can be conducted. The recent availability of 10,000 element loblolly pine cDNA microarray will permit the evaluation of cyclinD overexpression upon gene expression in transgenic Pinus.

Dr. John Cairney, School of Biology and Institute of Paper Science and Technology @ Georgia Tech, Georgia Institute of Technology; Dr. Gary Peter, University of Florida; Dr. Ulrika Egertsdotter, Dept. of Forestry, Virgina Tech; Dr. Armin Wagner, New Zealand Forest Research Institute Ltd. (Scion Research.)

2005-11-30T23:59:59.000Z

110

The stability and the growth rate of the electron acoustic traveling wave under transverse perturbations in a magnetized quantum plasma  

Science Conference Proceedings (OSTI)

Theoretical and numerical studies are carried out for the stability of the electron acoustic waves under the transverse perturbation in a magnetized quantum plasma. The Zakharov-Kuznetsov (ZK) equation of the electron-acoustic waves (EAWs) is given by using the reductive perturbation technique. The cut-off frequency is obtained by applying a transverse sinusoidal perturbation to the plane soliton solution of the ZK equation. The propagation velocity of solitary waves, the real cut-off frequency, as well as the growth rate of the higher order perturbation to the traveling solitary wave are obtained.

Gao Dongning; Wang Canglong; Yang Xue; Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou, 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

2012-12-15T23:59:59.000Z

111

Hierarchical Growth and Cosmic Star Formation: Enrichment, Outflows and Supernova Rates  

E-Print Network (OSTI)

The cosmic star formation histories are evaluated for different minimum masses of the initial halo structures, with allowance for realistic gas outflows. With a minimum halo mass of 10^{7} - 10^{8} M_odot and a moderate outflow efficiency, we reproduce both the current baryon fraction and the early chemical enrichment of the IGM. The intensity of the formation rate of ``normal'' stars is also well constrained by the observations: it has to be dominated by star formation in elliptical galaxies, except perhaps at very low redshift. The fraction of baryons in stars is predicted as are also the type Ia and II supernova event rates. Comparison with SN observations in the redshift range z=0-2 allows us to set strong constraints on the time delay of type Ia supernovae (a total delay of \\sim 4 Gyr is required to fit the data), the lower end of the mass range of the progenitors (2 - 8 M_odot) and the fraction of white dwarfs that reproduce the type Ia supernova (about 1 per cent). The intensity in the initial starburst of zero metallicity stars below 270 M_\\odot must be limited in order to avoid premature overenrichment of the IGM. Only about 10 - 20 % of the metals present in the IGM at z = 0 have been produced by population III stars at very high z. The remaining 80 - 90 % are ejected later by galaxies forming normal stars, with a maximum outflow efficiency occurring at a redshift of about 5. We conclude that 10^{-3} of the mass in baryons must lie in first massive stars in order to produce enough ionizing photons to allow early reionization of the IGM by z \\sim 15.

Frederic Daigne; Keith A. Olive; Joe Silk; Felix Stoehr; Elisabeth Vangioni

2005-09-07T23:59:59.000Z

112

8.5. Adding New Outputs  

Science Conference Proceedings (OSTI)

... have fixed values in the Output definition will not ... are a few example Output definitions, extracted from ... an example, illustrating the Energy output and ...

2013-08-23T23:59:59.000Z

113

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

Science Conference Proceedings (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

114

BWRVIP-186: BWR Vessel and Internals Project, Effect of Water Chemistry and Temperature Transients on the IGSCC Growth Rates in BWR Components  

Science Conference Proceedings (OSTI)

The oxidizing nature of the boiling water reactor (BWR) environment, coupled with high tensile residual stresses, have led to intergranular stress corrosion cracking (IGSCC) events. This report summarizes the available information on the effect of water chemistry transients on crack growth rates of Type 304 stainless steel and nickel-base weld metal Alloy 182. The report also provides crack growth rate equations and tables for evaluating the amount of crack extension that may have occurred during a trans...

2008-04-16T23:59:59.000Z

115

Influence of growth rate on the epitaxial orientation and crystalline quality of CeO2 thin films grown on Al2O3(0001)  

SciTech Connect

Growth rate-induced epitaxial orientations and crystalline quality of CeO2 thin films grown on Al2O3(0001) by oxygen plasma-assisted molecular beam epitaxy were studied using in-situ and ex-situ characterization techniques. CeO2 grows as three-dimensional (3-D) islands and two-dimensional (2-D) layers at growth rates of 1-7 Å/min, and ?9 Å/min, respectively. The formation of epitaxial CeO2(100) and CeO2(111) thin films occurs at growth rates of 1 Å/min and ? 9 Å/min, respectively. Glancing incidence x-ray diffraction (GIXRD) measurements have shown that the films grown at intermediate growth rates (2-7 Å/min) consist of polycrystalline CeO2 along with CeO2(100). The thin film grown at 1 Å/min exhibits six in-plane domains, characteristic of well-aligned CeO2(100) crystallites. The content of the poorly-aligned CeO2(100) crystallites increases with increasing growth rate from 2 Å/min to 7 Å/min, and three out of six in-plane domains gradually decrease and eventually disappear, as confirmed by XRD pole figures. At growth rates ?9 Å/min, CeO2(111) film with single in-plane domain was identified. The formation of CeO2(100) 3-D islands at growth rates of 1-7 Å/min is a kinetically driven process unlike at growth rates ?9 Å/min which result in an energetically and thermodynamically more stable CeO2(111) surface.

Nandasiri, Manjula I.; Nachimuthu, Ponnusamy; Varga, Tamas; Shutthanandan, V.; Jiang, Weilin; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Seal, Sudipta; Kayani, Asghar N.

2011-01-14T23:59:59.000Z

116

Coded output support vector machine  

Science Conference Proceedings (OSTI)

The authors propose a coded output support vector machine (COSVM) by introducing the idea of information coding to solve multi-class classification problems for large-scale datasets. The COSVM is built based on the support vector regression (SVR) machine ... Keywords: coded output, multi-class classification, number system, parallel implementation, support vector machine (SVM)

Tao Ye; Xuefeng Zhu

2012-07-01T23:59:59.000Z

117

Multiple output timing and trigger generator  

SciTech Connect

In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

118

rifsimp_output.html - CECM  

E-Print Network (OSTI)

Whenever DiffConstraint or UnSolve entries are present in the output, some parts of the algorithm have been disabled by options, and the resulting cases must ...

119

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

July '99 to Aug. '99: -0.1% Aug. '98 to Aug. '99: -1.4% YTD '98 to YTD '99: -0.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

120

Adjusted Growth Rates*  

Annual Energy Outlook 2012 (EIA)

Oct '99 to Nov '99: +2.5% Nov '98 to Nov '99: +6.0% YTD '98 to YTD '99: +0.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sep '99 to Oct '99: -1.9% Oct '98 to Oct '99: -0.7% YTD '98 to YTD '99: +0.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

122

Adjusted Growth Rates* Jan.  

U.S. Energy Information Administration (EIA) Indexed Site

Dec '99 to Jan '00: -9.3% Jan '99 to Jan '00: +3.5% YTD '99 to YTD '00: +3.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

123

Adjusted Growth Rates*  

Annual Energy Outlook 2012 (EIA)

June '99 to July '99: +0.5% July '98 to July '99: +1.0% YTD '98 to YTD '99: -0.3% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

124

Adjusted Growth Rates*  

Annual Energy Outlook 2012 (EIA)

Aug '99 to Sep '99: -2.1% Sep '98 to Sep '99: +4.6% YTD '98 to YTD '99: 0.0% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

125

Adjusted Growth Rates*  

Annual Energy Outlook 2012 (EIA)

Nov '99 to Dec '99: +2.4% Dec '98 to Dec '99: +3.0% YTD '98 to YTD '99: +0.9% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

126

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sales of Petroleum Products Sold for Local Consumption." These data measure primary petroleum product deliveries into the States where they are locally marketed and consumed....

127

Adjusted Growth Rates*  

Annual Energy Outlook 2012 (EIA)

in a different State (e.g., local distributors who truck product from New Jersey to New York, or airline trading divisions shipping product from State to State via pipeline.)...

128

Materials Reliability Program: Determination of Crack Growth Rates for Alloy 82 at Low K Values Under Pressurized Water Reactor Prim ary Water Environment (MRP-270)  

Science Conference Proceedings (OSTI)

Crack propagation experiments, which were performed in the past on nickel-based materials under PWR primary water environment, have left some open questions that need to be answered. In particular, no crack growth rate (CGR) data for control rod driving mechanism (CRDM) nozzle materials are available at low stress intensity (K) values (K < 15 MPam). This interim report summarizes the work done during 2009 on a cooperative project to generate crack growth data under low K values for alloy 82 weld metal.

2009-12-17T23:59:59.000Z

129

Changes in long-term no-till corn growth and yield under different rates of stover mulch  

Science Conference Proceedings (OSTI)

Received for publication January 4, 2006. Removal of corn (Zea mays L.) stover for biofuel production may affect crop yields by altering soil properties. A partial stover removal may be feasible, but information on appropriate rates of removal is unavailable. We assessed the short-term impacts of stover management on long-term no-till (NT) continuous corn grown on a Rayne silt loam (fine loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston in Ohio, and predicted corn yield from soil properties using principal component analysis (PCA). The study was conducted in 2005 on the ongoing experiments started in May 2004 under 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200)% of stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal promoted early emergence and rapid seedling growth (P Stover management affected corn yield only at the Coshocton site where average grain and stover yields in the T200, T100, T75, and T50 (10.8 and 10.3 Mg ha-1) were higher than those in the T0 and T25 treatments (8.5 and 6.5 Mg ha-1) (P stover removal at rates as low as 50% (2.5 Mg ha-1) decreased crop yields. Soil properties explained 71% of the variability in grain yield and 33% of the variability in stover yield for the Coshocton site. Seventeen months after the start of the experiment, effects of stover management on corn yield and soil properties were site-specific.

Blanco-Canqui, Dr. Humberto [Ohio State University, The, Columbus; Lal, Dr. Rattan [Ohio State University, The, Columbus; Post, Wilfred M [ORNL; Owens, Lloyd [U.S. Department of Agriculture, Agricultural Research Service

2006-09-01T23:59:59.000Z

130

Guidance for growth factors, projections, and control strategies for the 15 percent rate-of-progress plans  

Science Conference Proceedings (OSTI)

Section 182(b)(1) of the Clean Air Act (Act) requires all ozone nonattainment areas classified as moderate and above to submit a State Implementation Plan (SIP) revision by November 15, 1993, which describes, in part, how the areas will achieve an actual volatile organic compound (VOC) emissions reduction of at least 15 percent during the first 6 years after enactment of the Clean Air Act Amendments of 1990 (CAAA). In addition, the SIP revision must describe how any growth in emissions from 1990 through 1996 will be fully offset. It is important to note that section 182(b)(1) also requires the SIP for moderate areas to provide for reductions in VOC and nitrogen oxides (NOx) emissions as necessary to attain the national primary ambient air quality standard for ozone by November 15, 1996. The guidance document focuses on the procedures for developing 1996 projected emissions inventories and control measures which moderate and above ozone nonattainment areas must include in their rate-of-progress plans. The document provides technical guidance to support the policy presented in the 'General Preamble: Implementation of Title I of the CAAA of 1990' (57 FR 13498).

Not Available

1993-03-01T23:59:59.000Z

131

BWRVIP-99-A: BWR Vessel and Internals Project, Crack Growth Rates in Irradiated Stainless Steels in BWR Internal Components  

Science Conference Proceedings (OSTI)

The BWR Vessel and Internals Project (BWRVIP) has developed methodologies to evaluate crack growth in internal components of stainless steel and nickel-base alloys in the BWR vessel. One BWRVIP report—BWRVIP-14—developed an approach to evaluate crack growth by intergranular stress corrosion cracking in austenitic stainless steel core shrouds exposed to a limited amount of neutron irradiation. Subsequently another report—BWRVIP-99—was prepared to provide a crack growth methodology applicable to irradiated...

2008-11-24T23:59:59.000Z

132

A Study on the Contribution of 12 Key-Factors to the Growth Rates of the Region of the East Macedonia-Thrace EMTH by Using a Neural Network Model  

Science Conference Proceedings (OSTI)

This study gives a new methodological framework regarding the measuring of the contribution of some key-factors on the regional growth rate and forecasting the future development rates, based on Neural Network Models NN Models. It's a serious attempt ... Keywords: East Macedonia, Future Forecasting, Neural Networks NN, Regional Gross Domestic Product, Regional Growth Rate, Time Series

E. Stathakis; M. Hanias; P. Antoniades; L. Magafas; D. Bandekas

2012-01-01T23:59:59.000Z

133

Influences of gaseous environment on low growth-rate fatigue crack propagation in steels. Annual report No. 1, January 1980. Report No. FPL/R/80/1030  

DOE Green Energy (OSTI)

The influence of gaseous environment is examined on fatigue crack propagation behavior in steels. Specifically, a fully martensitic 300-M ultrahigh strength steel and a fully bainitic 2-1/4Cr-1Mo lower strength steel are investigated in environments of ambient temperature moist air and low pressure dehumidified hydrogen and argon gases over a wide range of growth rates from 10/sup -8/ to 10/sup -2/ mm/cycle, with particular emphasis given to behavior near the crack propagation threshold ..delta..K/sub 0/. It is found that two distinct growth rate regimes exist where hydrogen can markedly accelerate crack propagation rates compared to air, (1) at near-threshold levels below (5 x 10/sup -6/ mm/cycle) and (2) at higher growth rates, typically around 10/sup -5/ mm/cycle above a critical maximum stress intensity K/sub max//sup T/. Hydrogen-assisted crack propagation at higher growth rates is attributed to a hydrogen embrittlement mechanism, with K/sub max//sup T/ nominally equal to K/sub Iscc/ (the sustained load stress corrosion threshold) in high strength steels, and far below K/sub Iscc/ in the strain-rate sensitive lower strength steels. Hydrogen-assisted crack propagation at near-threshold levels is attributed to a new mechanism involving fretting-oxide-induced crack closure generated in moist (or oxygenated) environments. The absence of hydrogen embrittlement mechanisms at near-threshold levels is supported by tests showing that ..delta..K/sub 0/ values in dry gaseous argon are similar to ..delta..K/sub 0/ values in hydrogen. The potential ramifications of these results are examined in detail.

Ritchie, R.O.; Suresh, S.; Toplosky, J.

1980-01-01T23:59:59.000Z

134

Effects of finite beam and plasma temperature on the growth rate of a two-stream free electron laser with background plasma  

SciTech Connect

A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in the TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.

Mahdizadeh, N. [Department of Physics, Sabzevar Branch, Islamic Azad University, Sabzevar (Iran, Islamic Republic of); Aghamir, F. M. [Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of)

2013-02-28T23:59:59.000Z

135

Materials Reliability Program: Determination of Crack Growth Rates for Alloy 82 at Low K Values Under PWR Primary Water Environment (MRP-256)  

Science Conference Proceedings (OSTI)

Crack propagation experiments, which were performed in the past on nickel-based materials in a PWR primary water environment, have left some open questions that need to be answered. In particular, no crack growth rate (CRD) data for control rod driving mechanism (CRDM) nozzle materials are available at low stress intensity (K) values (K 15 MPam). This interim report describes the planning and first stages of a cooperative project to generate crack growth data under low K values for alloy 82 weld metal.

2008-12-23T23:59:59.000Z

136

Pressure vessel and piping codes. Technical basis for revised reference crack growth rate curves for pressure boundary steels in LWR environment  

SciTech Connect

Since the inception of the pressure vessel and piping codes the reference fatigue crack growth rate curves have been contained in Appendix A of Sect. XI. The curves have been designed to be applicable to carbon and low alloy pressure vessel steels exposed to either air or light water reactor coolant environments. Data obtained over the past several years have shown a different behavior of these steels in the light water reactor environment than that predicted by the present reference curve. A revised set of reference curves has been formulated, incorporating a new curve shape as well as a dependency of growth rate on R ratio (minimum load/maximum load). This work provides the background and justification for such a revision, details the methodology used to develop the revised curves, and includes an evalution of the adequacy and impact of the revised curves as compared with the single curve which they replace. 24 references.

Bamford, W.H.

1980-11-01T23:59:59.000Z

137

Overload protection circuit for output driver  

DOE Patents (OSTI)

A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

Stewart, Roger G. (Neshanic Station, NJ)

1982-05-11T23:59:59.000Z

138

Materials Reliability Program: Determination of Crack Growth Rates for Alloy 82 at Low K Values Under PWR Primary Water Environment: 2011 Interim Report (MRP-337)  

Science Conference Proceedings (OSTI)

Crack propagation experiments, which were performed in the past on nickel-based materials under pressurized water reactor (PWR) primary water environments, have left some open questions that need to be answered. In particular, no crack growth rate (CGR) data for control rod drive mechanism (CRDM) nozzle materials are available at low stress intensity (K) values (K 15 MPam). This interim report summarizes the work done during 2011 on a cooperative project to generate CGR data at low K values for alloy 82 ...

2012-04-30T23:59:59.000Z

139

Materials Reliability Program: Effects of B/Li/pH on PWSCC Growth Rates in Ni-Base Alloys (MRP-217)  

Science Conference Proceedings (OSTI)

EPRI's Materials Reliability Program (MRP) is investigating the effects of coolant chemistry on stress corrosion crack (SCC) growth rates of nickel-base alloys in pressurized water reactor (PWR) primary water as a possible strategy to mitigate damage experienced in operating plants with components made of Alloy 600 and its weld metals. Mitigating primary water stress corrosion cracking (PWSCC) by changes in water chemistry (for example, optimizing dissolved hydrogen levels and/or adding zinc) is attracti...

2007-08-20T23:59:59.000Z

140

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect

Air Products set out to investigate the impact of additives on the deposition rate of both ���µCSi and ���±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products�¢���� electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RATES OF RETURN AND ALTERNATIVE MEASURES OF  

E-Print Network (OSTI)

We employ the EU KLEMS database to estimate the real rate of return to capital in 14 countries (11 in the EU, three outside the EU) in 10 branches of the market economy plus the market economy as a whole. Our measure of capital is an aggregate over seven types of asset: three ICT assets and four non-ICT assets. The real rate of return in the market economy does not vary very much across countries, the extremes being Spain (high) and Italy (low). The real rate appears to be trendless in most countries. Within each country however, the rate varies widely across the 10 branches, often being implausibly high or low. We also estimate the growth of capital services by two different methods: ex-post and ex-ante, and the contribution of capital to output growth by three methods: ex-post, ex-ante and hybrid. The ex-ante method uses an estimate of the required rate of return for each country instead of the actual, average rate of return to calculate user costs and also employs the expected growth of asset prices rather than the actual growth. These estimates are derived from exactly the same data as for the ex-post method, ie without any extraneous data being employed. For estimating the contribution of capital to output growth, the ex-ante method uses ex-ante profit as the weight, while both the ex-post and the hybrid method use ex-post profit. We find that the three methods produce very similar results at the market economy level. But differences are much larger at the branch level, particularly between the ex-post and ex-ante methods.

Nicholas Oulton; Ana Rincon-aznar

2009-01-01T23:59:59.000Z

142

Brief paper: Output tracking of continuous bioreactors through recirculation and by-pass  

Science Conference Proceedings (OSTI)

In this paper, we propose to regulate the output of an auto-catalytic bioprocess (a biological process associated with a growth of a micro-organism) by means of a recirculation loop and by-pass. We give conditions on the volume of the reactor and the ... Keywords: Continuous bioreactor, Nonlinear control design, Output regulation, Recirculation loop

Jérôme Harmand; Alain Rapaport; Frédéric Mazenc

2006-06-01T23:59:59.000Z

143

Demographic heterogeneity, cohort selection, and population growth  

E-Print Network (OSTI)

individuals. The growth rate increases monotonically withis quite different: growth rate increases with reproductivepopulation growth rate increases more slowly than linearly

Kendall, Bruce E.; Fox, Gordon A; Fujiwara, Masami; Nogeire, Theresa M

2011-01-01T23:59:59.000Z

144

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

145

Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.  

Science Conference Proceedings (OSTI)

In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

2008-05-05T23:59:59.000Z

146

Light output simulation of LYSO single crystal  

E-Print Network (OSTI)

We used the Geant4 simulation toolkit to estimate the light collection in a LYSO crystal by using cosmic muons and E=105 MeV electrons. The light output as a function of the crystal length is studied. Significant influence of the crystal wrapping in the reflective paper and optical grease coupling to the photodetectors on the light output is demonstrated.

Usubov, Zafar

2013-01-01T23:59:59.000Z

147

A physiological and morphological analysis of the effects of nitrogen supply on the relative growth rates of nine loblolly pine (Pinus taeda L.) clones  

E-Print Network (OSTI)

The influence of nitrogen supply on relationships of relative growth rate (RGR) to leaf physiology, structural and non-structural carbon partitioning, and nitrogen- and water-use efficiencies were examined in loblolly pine (Pinus taeda L.) clonal lines differing in growth potential. Nine 18-month-old loblolly pine clones were grown in a climate-controlled greenhouse for 20 weeks under two contrasting nitrogen (N) regimes (50 and 250 ppm) and a growth analysis was carried out. Higher nitrogen increased plant RGR and largely resulted in proportional shifts in biomass from roots and stems to needles. The RGR of plants receiving higher nitrogen was increased primarily through increased leaf area ratio (LAR), which was increased through higher leaf mass fraction (LMF) and not through changes in needle morphology. Although concentrations of needle glucose in plants receiving 250 ppm N were 22 percent higher than plants receiving lower N, total non-structural carbohydrate concentrations in needles of plants receiving 50 ppm N were nearly double that of clones receiving 250 pm N, primarily due to starch accumulation of the nitrogen-deficient plants. Plants receiving 250 ppm N also had 39 and 18 percent lower starch in the coarse and fine roots, respectively. Plants receiving higher nitrogen were also more water-use efficient, but had lower photosynthetic nitrogen-use efficiency. LAR, net assimilation rate (NAR), specific leaf area (SLA), and LMF were all positively correlated with RGR, but the main influence on RGR differences among clones was LAR. In addition, leaf-level rates of photosynthesis and respiration were positively correlated with RGR; however, faster-growing clones did not exhibit greater carbon economy at the leaf level. Both instantaneous water-use efficiency (A/E) and ?13C were positively correlated with RGR and photosynthetic nitrogen-use efficiency was negatively correlated with RGR. The identification of physiological and morphological traits underpinning differences in RGR among clones and how these traits are affected by nitrogen supply provides new information on trait correlations within species and parallels broader patterns observed among species.

Stover, Corey Michael

2003-05-01T23:59:59.000Z

148

Oil Prices, External Income, and Growth: Lessons from Jordan  

E-Print Network (OSTI)

This paper extends the long-run growth model of Esfahani et al. (2012a) to a labour exporting country that receives large in‡ows of external income – the sum of remittances, FDI and general government transfers – from major oil exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic in‡ation rates. It is shown that real output in the long run is shaped by (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper con…rms the hypothesis that a large share of Jordan’s output volatility can be associated with ‡uctuations in net income received from abroad (arising from oil price shocks). External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Kamiar Mohaddes A; Mehdi Raissi B

2013-01-01T23:59:59.000Z

149

Dynamical Properties of Model Output Statistics Forecasts  

Science Conference Proceedings (OSTI)

The dynamical properties of forecasts corrected using model output statistics (MOS) schemes are explored, with emphasis on the respective role of model and initial condition uncertainties. Analytical and numerical investigations of low-order ...

S. Vannitsem; C. Nicolis

2008-02-01T23:59:59.000Z

150

Characterizing output bottlenecks in a supercomputer  

Science Conference Proceedings (OSTI)

Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below ...

Bing Xie; Jeffrey Chase; David Dillow; Oleg Drokin; Scott Klasky; Sarp Oral; Norbert Podhorszki

2012-11-01T23:59:59.000Z

151

Ensemble Model Output Statistics for Wind Vectors  

Science Conference Proceedings (OSTI)

A bivariate ensemble model output statistics (EMOS) technique for the postprocessing of ensemble forecasts of two-dimensional wind vectors is proposed, where the postprocessed probabilistic forecast takes the form of a bivariate normal probability ...

Nina Schuhen; Thordis L. Thorarinsdottir; Tilmann Gneiting

2012-10-01T23:59:59.000Z

152

Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs  

E-Print Network (OSTI)

Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2 Morris E. (2009) Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)!Akt!mTOR pathway

Halazonetis, Thanos

153

Resource supply shocks and the interest rate  

SciTech Connect

Using a model of optimal economic growth with exhaustible resources, the author focuses on a real shock as an essential element of a model of ecomomic fluctuations that contributes substantially to variations in the interest rate, and output. When there occurs a sudden negative resource supply shock, the rate of extraction of the resource declines. Along the optimal path with capital stock fixed in the short run, the output-capital ratio and the real interest rate fall instantaneously. The hypothesis is tested with the quarterly US data using estimation techniques of Vector Autoregressions (VARs). Included are five variables in the VAR model: crude oil price, price level, interest rate, industrial production, and copper price. The general vector autoregressive models are estimated with a prior distribution imposed on the parameters of the model. The period of fit is 1958 to 1983. Impulse response functions of the system and historical decompositions of the time series are investigated. Empirical studies support the derived working hypothesis that real interest rate falls instantaneously and then slowly recovers in the long run when there occurs a negative resource supply shock.

Kang, M.S.

1984-01-01T23:59:59.000Z

154

Rates of Return and Alternative Measures of Capital  

E-Print Network (OSTI)

We employ the EU KLEMS database to estimate the real rate of return to capital in 14 countries (11 in the EU, three outside the EU) in 10 branches of the market economy plus the market economy as a whole. Our measure of capital is an aggregate over seven types of asset: three ICT assets (computers, communications equipment, and software) and four non-ICT assets (machinery and equipment, nonresidential structures, transport equipment, and other). The real rate of return in the market economy does not vary very much across countries, with the exception of Spain where it is exceptionally high and in Italy where it is exceptionally low. The real rate appears to be trendless in most countries. Within each country however, the rate varies widely across the 10 branches, often being implausibly high or low. We also estimate the growth of capital services by two different methods: ex-post and exante, and the contribution of capital to output growth by three methods: ex-post, ex-ante and hybrid. Our implementation of the ex-ante method uses an estimate of the required rate of return for each country instead of the actual, average rate of return to calculate user costs and also employs the expected growth of asset prices rather than the actual growth. These estimates are derived from exactly the same data as for the ex-post method, ie without any extraneous data being employed. For estimating the contribution of capital to output growth, the ex-ante method uses ex-ante profit as the weight, while both the ex-post and the hybrid method use ex-post profit. We find that the three methods produce very similar results at the market economy level. But differences are much larger at the branch level, particularly between the ex-post and ex-ante methods.

Nicholas Oulton; Ana Rincon-aznar Abstract

2009-01-01T23:59:59.000Z

155

LINEAR COUNT-RATE METER  

DOE Patents (OSTI)

A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

Henry, J.J.

1961-09-01T23:59:59.000Z

156

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

157

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

158

Stress Corrosion Crack Growth Rate Testing and Analytical Electron Microscopy of Alloy 600 as a Function of Pourbaix Space and Microstructure  

DOE Green Energy (OSTI)

Stress corrosion crack (SCC) growth rate tests and analytical electron microscopy (AEM) studies were performed over a broad range of environments and heat treatments of Alloy 600. This effort was conducted to correlate bulk environmental conditions such as pH and electrochemical potential (EcP) with the morphology of the SCC crack. Development of a library of AEM morphologies formed by SCC in different environments is an important step in identifying the conditions that lead to SCC in components. Additionally, AEM examination of stress corrosion cracks formed in different environments and microstructures lends insight into the mechanism(s) of stress corrosion cracking. Testing was conducted on compact tension specimens in three environments: a mildly acidic oxidizing environment containing sulfate ions, a caustic environment containing 10% NaOH, and hydrogenated near-neutral buffered water. Additionally, stress corrosion cracking testing of a smooth specimen was conducted in hydrogenated steam. The following heat treatments of Alloy 600 were examined: mill annealed at 980 C (near-neutral water), mill annealed at 1010 C (steam), sensitized (acid and caustic), and mill annealed + healed to homogenize the grain boundary Cr concentration (caustic). Crack growth rate (CGR) testing showed that sensitized Alloy 600 tested in the mildly acidic, oxidizing environment containing sulfate ions produced the fastest cracking ({approx} 8.8 {micro}m/hr at 260 C), and AEM examination revealed evidence of sulfur segregation to the crack tip. The caustic environment produced slower cracking ({approx} 0.4 {micro}m/hr at 307 C) in the mill annealed + healed heat treatment but no observed cracking in the sensitized condition. In the caustic environment, fully oxidized carbides were present in the crack wake but not ahead of the crack tip. In near-neutral buffered water at 338 C, the CGR was a function of dissolved hydrogen in the water and exhibited a maximum (0.17 {micro}m/hr) near the transition between Ni and NiO stability. The cracks in near-neutral hydrogenated water exhibited Cr-rich spinels and NiO-type oxides but no significant oxidation of grain boundary carbides. No clear effect of dissolved hydrogen on the crack wake morphology was apparent. In hydrogenated steam testing of a smooth specimen (CGR estimated as {approx} 0.7 {micro}m/hr at 399 C), metallic nickel nodules were evident in both the crack wake and on the specimen surface. Oxide particles having a similar size and shape to the microstructural carbides were found in the crack wake, suggesting that these particles are carbides that were oxidized by contact with the steam. The present results show that different environments often produce unique crack tip morphologies that can be identified via AEM.

N. Lewis; S.A. Attanasio; D.S. Morton; G.A. Young

2000-10-04T23:59:59.000Z

159

A method for reducing harmonics in output voltages of a double-connected inverter  

SciTech Connect

A new method for reducing harmonics involved in output voltages of the double-connected inverter is proposed. By adding four auxiliary switching devices and an interphase transformer with secondary winding to the conventional 12-step inverter, output voltages of the proposed circuit can be almost the same waveforms as a conventional 36-step inverter. In this paper, circuit performances and output voltage waveforms are discussed, and the optimum parameters are derived. Then, effects on harmonic reductions can be clarified by theoretical and experimental results, and ratings of system components are investigated.

Masukawa, Shigeo; Iida, Shoji (Tokyo Denki Univ., Tokyo (Japan). Dept. of Electrical Engineering)

1994-09-01T23:59:59.000Z

160

Characterizing output bottlenecks in a supercomputer  

SciTech Connect

Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below the peak. This paper characterizes the data absorption behavior of a center-wide shared Lustre parallel file system on the Jaguar supercomputer. We use a statistical methodology to address the challenges of accurately measuring a shared machine under production load and to obtain the distribution of bandwidth across samples of compute nodes, storage targets, and time intervals. We observe and quantify limitations from competing traffic, contention on storage servers and I/O routers, concurrency limitations in the client compute node operating systems, and the impact of variance (stragglers) on coupled output such as striping. We then examine the implications of our results for application performance and the design of I/O middleware systems on shared supercomputers.

Xie, Bing [Duke University; Chase, Jeffrey [Duke University; Dillow, David A [ORNL; Drokin, Oleg [Intel Corporation; Klasky, Scott A [ORNL; Oral, H Sarp [ORNL; Podhorszki, Norbert [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

UFO - The Universal FeynRules Output  

E-Print Network (OSTI)

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Degrande, Céline; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

2011-01-01T23:59:59.000Z

162

UFO - The Universal FeynRules Output  

E-Print Network (OSTI)

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Céline Degrande; Claude Duhr; Benjamin Fuks; David Grellscheid; Olivier Mattelaer; Thomas Reiter

2011-08-09T23:59:59.000Z

163

Monitoring of Photovoltaic Plant Output and Variability  

Science Conference Proceedings (OSTI)

The performance of photovoltaic (PV) systems, including variability characteristics, is of increasing interest to utilities as they integrate more solar energy onto the electric grid. This study is part of a multi-year research series to investigate influencing factors that affect PV plant output, variability, and approaches to system management. It explores PV variability both from a grid perspective and through examination of project design aspects that can affect annual power production. ...

2012-12-12T23:59:59.000Z

164

Single Inductor Dual Output Buck Converter  

E-Print Network (OSTI)

The portable electronics market is rapidly migrating towards more compact devices with multiple functionalities. Form factor, performance, cost and efficiency of these devices constitute the factors of merit of devices like cell phones, MP3 players and PDA's. With advancement in technology and more intelligent processors being used, there is a need for multiple high integrity voltage supplies for empowering the systems in portable electronic devices. Switched mode power supplies (SMPS's) are used to regulate the battery voltage. In an SMPS, maximum area is taken by the passive components such as the inductor and the capacitor. This work demonstrates a single inductor used in a buck converter with two output voltages from an input battery with voltage of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5V) within well controlled ripple levels. Dynamic hysteresis control is used for the single inductor dual output buck converter in this work. Results of schematic and post layout simulations performed in CADENCE prove the merits of this control method, such as nil cross regulation and excellent transient response.

Eachempatti, Haritha

2009-05-01T23:59:59.000Z

165

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

166

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

167

PULSE RATE DIVIDER  

DOE Patents (OSTI)

A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

McDonald, H.C. Jr.

1962-12-18T23:59:59.000Z

168

Energy conserving automatic light output system  

SciTech Connect

An energy conserving lighting system is provided wherein a plurality of fluorescent lamps are powered by a poorly regulated voltage source power supply which provides a decreasing supply voltage with increasing arc current so as to generally match the volt-ampere characteristics of the lamps. A transistor ballast and control circuit connected in the arc current path controls the arc current, and hence the light output, in accordance with the total ambient light, i.e., the light produced by the lamps together with whatever further light is produced by other sources such as daylight. In another embodiment, a transistor ballast is utilized in combination with an inductive ballast. The transistor ballast provides current control over a wide dynamic range up to a design current maximum at which maximum the transistor is saturated and the inductive ballast takes over the current limiting function. An operational amplifier is preferably connected in the base biassing circuit of the control transistor of the transistor ballast. In an embodiment wherein two sets of lamps with separate inductive ballasts are provided, the arc currents for the two ballasts are scaled or matched to provide the desired light output.

Widmayer, D.F.

1983-07-19T23:59:59.000Z

169

LBA-ECO DECAF Model Output Data Set Published  

NLE Websites -- All DOE Office Websites (Extended Search)

DECAF Model Output Data Set Published The ORNL DAAC announces the publication of the model output data product, Deforestation Carbon Flux (DECAF), from the LBA Land Use-Land Cover...

170

Compact waveguide power divider with multiple isolated outputs  

DOE Patents (OSTI)

The waveguide power divider comprises an input waveguide of rectangular cross-section coupled to multiple reduced height output waveguides of rectangular cross-section. The input is coupled to the output waveguides by axial slots. The length of the slots is selected such that the wave direction of the input waveguide is preserved in the output waveguides. The width of the output guide is equal to the width of the input waveguide so that the input and output guides have the same cutoff wavelength. Waves will then travel with the same phase velocity in the input and output guides. The unused ends of the input and output guides are terminated in matched loads. The load at the end of the input guide absorbs power that is not coupled to the output guides.

Moeller, C.P.

1986-05-27T23:59:59.000Z

171

Robust MPC with output feedback of integrating systems  

Science Conference Proceedings (OSTI)

In this work, it is presented a new contribution to the design of a robust MPC with output feedback, input constraints, and uncertain model. Multivariable predictive controllers have been used in industry to reduce the variability of the process output ...

J. M. Perez; D. Odloak; E. L. Lima

2012-01-01T23:59:59.000Z

172

ARM - Measurement - Radiative heating rate  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

173

Iterative equalization and decoding using reduced-state sequence estimation based soft-output algorithms  

E-Print Network (OSTI)

We study and analyze the performance of iterative equalization and decoding (IED) using an M-BCJR equalizer. We use bit error rate (BER), frame error rate simulations and extrinsic information transfer (EXIT) charts to study and compare the performances of M-BCJR and BCJR equalizers on precoded and non-precoded channels. Using EXIT charts, the achievable channel capacities with IED using the BCJR, M-BCJR and MMSE LE equalizers are also compared. We predict the BER performance of IED using the M-BCJR equalizer from EXIT charts and explain the discrepancy between the observed and predicted performances by showing that the extrinsic outputs of the $M$-BCJR algorithm are not true logarithmic-likelihood ratios (LLR's). We show that the true LLR's can be estimated if the conditional distributions of the extrinsic outputs are known and finally we design a practical estimator for computing the true LLR's from the extrinsic outputs of the M-BCJR equalizer.

Tamma, Raja Venkatesh

2005-05-01T23:59:59.000Z

174

Dialog system for automatic data input/output and processing with two BESM-6 computers  

Science Conference Proceedings (OSTI)

This paper presents a system for conducting experiments with fully automatic processing of data from multichannel recorders in the dialog mode. The system acquires data at a rate of 2.5 . 10/sup 3/ readings/sec, processes in real time, and outputs digital and graphical material in a multitasking environment.

Belyaev, Y.N.; Gorlov, Y.P.; Makarychev, S.V.; Monakov, A.A.; Shcherbakov, S.A.

1985-09-01T23:59:59.000Z

175

Input--output capital coefficients for energy technologies. [Input-output model  

DOE Green Energy (OSTI)

Input-output capital coefficients are presented for five electric and seven non-electric energy technologies. They describe the durable goods and structures purchases (at a 110 sector level of detail) that are necessary to expand productive capacity in each of twelve energy source sectors. Coefficients are defined in terms of 1967 dollar purchases per 10/sup 6/ Btu of output from new capacity, and original data sources include Battelle Memorial Institute, the Harvard Economic Research Project, The Mitre Corp., and Bechtel Corp. The twelve energy sectors are coal, crude oil and gas, shale oil, methane from coal, solvent refined coal, refined oil products, pipeline gas, coal combined-cycle electric, fossil electric, LWR electric, HTGR electric, and hydroelectric.

Tessmer, R.G. Jr.

1976-12-01T23:59:59.000Z

176

Exchange Rates and Fundamentals  

E-Print Network (OSTI)

We show analytically that in a rational expectations present-value model, an asset price manifests near–random walk behavior if fundamentals are I(1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs, inflation, and interest rates provide little help in predicting changes in floating exchange rates. As well, we show that the data do exhibit a related link suggested by standard models—that the exchange rate helps predict these fundamentals. The implication is that exchange rates and fundamentals are linked in a way that is broadly consistent with asset-pricing models of the exchange rate. I.

Charles Engel; Kenneth D. West

2005-01-01T23:59:59.000Z

177

Using the output file from a Gaussian frequency calculation to ...  

Science Conference Proceedings (OSTI)

... extract the essential data from a Gaussian output file and compute thermodynamic functions at several temperatures. The basic data are also ...

2012-10-18T23:59:59.000Z

178

Today in Energy - Seasonal hydroelectric output drives down ...  

U.S. Energy Information Administration (EIA)

Increased hydroelectric output in the Pacific Northwest drove daily, on-peak prices of electricity below $10 per megawatthour in late April (see chart above) at the ...

179

SLAC 16-channel differential TTL output module (Engineering Materials)  

SciTech Connect

The drawings listed on the Drawing List provide the data and specifications for constructing a SLAC 16-channel differential TTL output module as used in the SLAC PEP storage ring instrumentation and control system. It is a CAMAC module used as an output interface module from CAMAC signals.

Not Available

1983-04-05T23:59:59.000Z

180

Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel  

Science Conference Proceedings (OSTI)

Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States); Cullen, W.H. [Materials Engineering Associates, Inc., Lanham, MD (United States)

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Using Economic Input/Output Tables to Predict a Country’s Nuclear Status  

Science Conference Proceedings (OSTI)

Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECD input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nation’s efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a country’s or region’s economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industry’s output to the industrial sectors while a table column shows the input required of each industrial sector by a given industry.

Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.

2010-07-15T23:59:59.000Z

182

Brief Analysis of dual-rate inferential control systems  

Science Conference Proceedings (OSTI)

For a dual-rate control system where the output sampling interval is an integer multiple of the control interval, we propose a model-based inferential control scheme which uses a fast-rate model to estimate the intersample outputs and then supply them ... Keywords: Digital control, Inferential control, Multirate systems, Robustness, Stability

Dongguang Li; Sirish L. Shah; Tongwen Chen

2002-06-01T23:59:59.000Z

183

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, J.R.; Bemis, C.E. Jr.

1984-07-17T23:59:59.000Z

184

Dual output acoustic wave sensor for molecular identification  

DOE Patents (OSTI)

A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

185

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, James R. (Oak Ridge, TN); Bemis, Jr., Curtis E. (Oak Ridge, TN)

1986-01-01T23:59:59.000Z

186

Rate Schedules  

Energy.gov (U.S. Department of Energy (DOE))

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

187

Size structuring of planktonic communities : biological rates and ecosystem dynamics  

E-Print Network (OSTI)

measuring growth and mortality rates among Prochlorococcustemperature on metabolic rate. Science 293:2248-2251. Gregg,and temperature on metabolic rate. Science. 293:2248-2251.

Taniguchi, Darcy Anne Akiko

2013-01-01T23:59:59.000Z

188

Middle East and Central Asia Department Oil Prices, External Income, and Growth: Lessons from Jordan 1  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. This paper extends the long-run growth model of Esfahani et al. (2009) to a labor exporting country that receives large inflows of external income—the sum of remittances, FDI and general government transfers—from major oil-exporting economies. The theoretical model predicts real oil prices to be one of the main long-run drivers of real output. Using quarterly data between 1979 and 2009 on core macroeconomic variables for Jordan and a number of key foreign variables, we identify two long-run relationships: an output equation as predicted by theory and an equation linking foreign and domestic inflation rates. It is shown that real output in the long run is shaped by: (i) oil prices through their impact on external income and in turn on capital accumulation, and (ii) technological transfers through foreign output. The empirical analysis of the paper confirms the hypothesis that a large share of Jordan's output volatility can be associated with fluctuations in net income received from abroad. External factors, however, cannot be relied upon to provide similar growth stimuli in the future, and therefore it will be important to diversify the sources of growth in order to achieve a high and sustained level of income.

Prepared Kamiar Mohaddes; Mehdi Raissi

2011-01-01T23:59:59.000Z

189

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer (OSTI)

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

190

Generalized Exponential Markov and Model Output Statistics: A Comparative Verification  

Science Conference Proceedings (OSTI)

We performed a comparative verification of Model Output Statistics (MOS) against Generalized Exponential Markov (GEM), a single station forecasting technique which uses only the surface observation and climatology as input. The verification was ...

Thomas J. Perrone; Robert G. Miller

1985-09-01T23:59:59.000Z

191

Development of Regional Wind Resource and Wind Plant Output Datasets...  

NLE Websites -- All DOE Office Websites (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

192

Model-Inspired Predictors for Model Output Statistics (MOS)  

Science Conference Proceedings (OSTI)

This article addresses the problem of the choice of the predictors for the multiple linear regression in model output statistics. Rather than devising a selection procedure directly aimed at the minimization of the final scores, it is examined ...

Piet Termonia; Alex Deckmyn

2007-10-01T23:59:59.000Z

193

Narrowing the estimates of species migration rates  

E-Print Network (OSTI)

of species migration rates How fast can species migrate?estimate population growth rates for each population sinceon their data 1 show that the rate of population spread is

Blois, Jessica L.

2013-01-01T23:59:59.000Z

194

Growth Rates of a Topographic Instability  

Science Conference Proceedings (OSTI)

We consider a linear model of a topographically induced shear instability, described by Pedlosky (1980). The perturbation technique used by Pedlosky, to establish the existence of unstable normal modes, is extended to demonstrate that more than ...

Stephen P. Meacham

1983-09-01T23:59:59.000Z

195

PROCESS FOR CONTROLLING ANIMAL GROWTH RATE  

DOE Patents (OSTI)

A method of injecting growing animals with the enzyme urease subcutaneously in increasing dosages is described; this generates within the blood anti-urease which enters the intestinal tract and inhibits the enzymatic decomposition of urea by urease in that location. Ammonia, one of the decomposition products, is thereby kept from diffusing through the intestinal walls into the blood, and this greatly reduces the energy requirements of the liver for removing the ammonia, thereby increasing the feeding efficiency of the animals. (AEC)

Visek, W.J.

1962-04-10T23:59:59.000Z

196

Rates - WAPA-137 Rate Order  

NLE Websites -- All DOE Office Websites (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

197

Energy Rating  

E-Print Network (OSTI)

Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

Cabec Conference; Rashid Mir P. E

2009-01-01T23:59:59.000Z

198

Insertion Rates  

Science Conference Proceedings (OSTI)

HOME > Insertion Rates. TECH HEADLINES. Research Explores a New Layer in Additive Manufacturin... Grand Opening Slated for Electron Microscopy Facility.

199

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network (OSTI)

Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine's compactness, low maintenance, and high levels of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability concern as more gas turbines are added to the electric system. A 10% reduction in gas turbine output, when it comprises only 10% of the electric system, does not cause reliability concerns. A 10% reduction in gas turbine output, when it comprises 50% of the electric system, could create reliability and operational problems. This paper explores the potential for maintaining constant, reliable outputs from gas turbines by cooling ambient air temperatures before the air is used in the compressor section of the gas turbine.

Neeley, J. E.; Patton, S.; Holder, F.

1992-04-01T23:59:59.000Z

200

The world of quantum noise and the fundamental output process  

E-Print Network (OSTI)

A stationary theory of quantum stochastic processes of second order is outlined. It includes KMS processes in wide sense like the equilibrium finite temperature quantum noise given by the Planck's spectral formula. It is shown that for each stationary noise there exists a natural output process output process which is identical to the noise in the infinite temperature limit, and flipping with the noise if the time is reversed at finite temperature. A canonical Hilbert space representation of the quantum noise and the fundamental output process is established and a decomposition of their spectra is found. A brief explanation of quantum stochastic integration with respect to the input-output processes is given using only correlation functions. This provides a mathematical foundation for linear stationary filtering transformations of quantum stochastic processes. It is proved that the colored quantum stationary noise and its time-reversed version can be obtained in the second order theory by a linear nonadapted filtering of the standard vacuum noise uniquely defined by the canonical creation and annihilation operators on the spectrum of the input-output pair.

V. P. Belavkin; O. Hirota; R. Hudson

2005-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Analysis of Crack Growth Data  

Science Conference Proceedings (OSTI)

Table 3   Methods for calculating crack growth rates...the derivative at the midpoint of a data set. These methods use

202

"Projected Real GDP Growth Trend"  

U.S. Energy Information Administration (EIA) Indexed Site

69465655,0.02391459409,0.01807394932 " * These are historical annual growth rates in real GDP (2005 chained dollars). The annual changes are compounded and averaged in the table...

203

Diagnosing oscillatory growth or decay  

SciTech Connect

An analytical study is presented for an oscillatory system in terms of four constants, namely amplitude, phase, growth or decay rate, and frequency. (MOW)

Buneman, O.

1977-12-01T23:59:59.000Z

204

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

205

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output  

Open Energy Info (EERE)

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Focus Area: Clean Fossil Energy Topics: Market Analysis Website: cdn.globalccsinstitute.com/sites/default/files/publications/7326/carbo Equivalent URI: cleanenergysolutions.org/content/carbon-capture-transport-and-storage- Policies: Regulations Regulations: Emissions Mitigation Scheme The Scottish Government published this report to identify regulatory gaps or overlaps in the nation's framework for regulating carbon capture and storage (CCS). The report aims to streamline and better manage CCS regulation. It focuses on evaluating the risks, barriers, information gaps,

206

Maximal output purity and capacity for asymmetric unital qudit channels  

E-Print Network (OSTI)

We consider generalizations of depolarizing channels to maps in which the identity channel is replaced by a convex combinations of unitary conjugations. We show that one can construct unital channels of this type for which the input which achieves maximal output purity is unique. We give conditions under which multiplicativity of the maximal p-norm and additivity of the minimal output entropy. We also show that the Holevo capacity need not equal log d - the minimal entropy as one might expect for a convex combination of unitary conjugations. Conversely, we give examples for which this condition holds, but the channel has no evident covariance properties.

Nilanjana Datta; Mary Beth Ruskai

2005-05-08T23:59:59.000Z

207

Rate schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

208

Identification of Wiener systems with binary-valued output observations  

Science Conference Proceedings (OSTI)

This work is concerned with identification of Wiener systems whose outputs are measured by binary-valued sensors. The system consists of a linear FIR (finite impulse response) subsystem of known order, followed by a nonlinear function with a known parametrization ... Keywords: Binary-valued observations, Identification, Joint identifiability, Parameter estimation, Periodic inputs, Sensor thresholds, Wiener systems

Yanlong Zhao; Le Yi Wang; G. George Yin; Ji-Feng Zhang

2007-10-01T23:59:59.000Z

209

Choose best option for enhancing combined-cycle output  

SciTech Connect

This article describes several methods available for boosting the output of gas-turbine-based combined-cycle plants during warm-weather operation. The technology comparisons help choose the option that is most appropriate. Amidst the many advantages of gas-turbine (GT) combined cycles (CC), one drawback is that their achievable output decreases significantly as ambient temperature increases. Reason: The lower density of warm air reduces mass flow through the GT. Unfortunately, hot weather typically corresponds to peak power loads in many areas. Thus, the need to meet peak-load and power-sales contract requirements causes many plant developers to compensate for ambient-temperature-related output loss. The three most common methods of increasing output include: (1) injecting water or steam into the GT, (2) precooling GT inlet air, and/or (3) supplementary firing of the heat-recovery steam generator (HRSG). All of these options require significant capital outlays and affect other performance parameters. In addition, they may uniquely impact the operation and/or selection of other components, including boiler feedwater and condensate pumps, valves, steam turbine/generators, condensers, cooling towers, and emissions control systems. Although plant-specific issues will have a significant effect on selecting an option, comparing the performance of different systems based on a theoretical reference plant can be helpful. The comparisons here illustrate the characteristics, advantages, and disadvantages of the major power augmentation technologies now in use.

Boswell, M.; Tawney, R.; Narula, R.

1993-09-01T23:59:59.000Z

210

Improved Model Output Statistics Forecasts through Model Consensus  

Science Conference Proceedings (OSTI)

Consensus forecasts are computed by averaging model output statistics (MOS) forecasts based on the limited-area fine-mesh (LFM) model and the nested grid model (NGM) for the three-year period 1990–92. The test consists of four weather elements (...

Robert L. Vislocky; J. Michael Fritsch

1995-07-01T23:59:59.000Z

211

Asymptotically efficient parameter estimation using quantized output observations  

Science Conference Proceedings (OSTI)

This paper studies identification of systems in which only quantized output observations are available. An identification algorithm for system gains is introduced that employs empirical measures from multiple sensor thresholds and optimizes their convex ... Keywords: Cramér-Rao bound, Efficient estimator, Quantized observation, System identification

Le Yi Wang; G. George Yin

2007-07-01T23:59:59.000Z

212

TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT  

E-Print Network (OSTI)

1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

Pang, Grantham

213

The continuity of the output entropy of positive maps  

SciTech Connect

Global and local continuity conditions for the output von Neumann entropy for positive maps between Banach spaces of trace-class operators in separable Hilbert spaces are obtained. Special attention is paid to completely positive maps: infinite dimensional quantum channels and operations. It is shown that as a result of some specific properties of the von Neumann entropy (as a function on the set of density operators) several results on the output entropy of positive maps can be obtained, which cannot be derived from the general properties of entropy type functions. In particular, it is proved that global continuity of the output entropy of a positive map follows from its finiteness. A characterization of positive linear maps preserving continuity of the entropy (in the following sense: continuity of the entropy on an arbitrary subset of input operators implies continuity of the output entropy on this subset) is obtained. A connection between the local continuity properties of two completely positive complementary maps is considered. Bibliography: 21 titles.

Shirokov, Maxim E [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2011-10-31T23:59:59.000Z

214

Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.  

DOE Green Energy (OSTI)

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

2011-11-01T23:59:59.000Z

215

Survey of innovative rates, 1991  

SciTech Connect

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

216

Survey of innovative rates, 1991  

Science Conference Proceedings (OSTI)

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of the MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

217

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Tariff Rates FY 2014 Rates and Rate Schedules FY 2013 Rates and Rate Schedules FY 2012 Rates and Rate Schedules FY 2011 Rates and Rate Schedules FY 2010 Rates and Rate Schedules FY...

218

Optical device with conical input and output prism faces  

DOE Patents (OSTI)

A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

Brunsden, Barry S. (Chicago, IL)

1981-01-01T23:59:59.000Z

219

An Advanced simulation Code for Modeling Inductive Output Tubes  

Science Conference Proceedings (OSTI)

During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

Thuc Bui; R. Lawrence Ives

2012-04-27T23:59:59.000Z

220

OPEC influence grows with world output in next decade  

SciTech Connect

World crude oil and condensate output will rise to 75 million bopd in 2004, concludes a recently released Petroconsultant study, entitled Worldwide Crude Oil 10-Year Forecast. It also projects that OPEC`s role in supplying demand will simultaneously grow to nearly 50% of total output. In reaching these conclusions, this report analyzed and predicted each of 94 significant producing nations for the 1995--2004 period. Output has been projected separately for the onshore and offshore sectors. Each nation, including the new republics of the former Soviet Union and individual emirates of the United Arab Emirates, is discussed within its regional and global framework; and key aspects of each of the seven major regions have been delineated. The study integrated full-cycle resource analysis, economics, infrastructure, politics, history, consumption levels and patterns, energy balances, and other pertinent data to cover both supply and demand pictures. The entire discovery and production history was used to frame exploration and development maturity. Future discovery potential has been estimated from largely geologic parameters.

Foreman, N.E. [Petroconsultants, Inc., Houston, TX (United States)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Current mode instrumentation amplifier with rail-to-rail input and output  

Science Conference Proceedings (OSTI)

A Current Mode Instrumentation Amplifier with rail-to-rail input and output is presented. It is based on constant gm input stages, and cascode output stages. Although this CMIA structure has a good Input Common Mode Voltage, it suffers from a poor output ... Keywords: analog integrated circuits, current mode instrumentation amplifier, rail-to-rail input and output

Filipe Costa Beber Vieira; Cesar Augusto Prior; Cesar Ramos Rodrigues; Leonardo Perin; Joao Baptista dos Santos Martins

2007-09-01T23:59:59.000Z

222

Brief paper: Speed regulation with measured output feedback in the control of heavy haul trains  

Science Conference Proceedings (OSTI)

An approach of output regulation with measurement feedback is proposed for the control of heavy haul trains. The objective is to regulate all cars' speeds to a prescribed speed profile. The output regulation problem of nonlinear systems with measurement ... Keywords: ECP braking system, Heavy haul trains, Measured output feedback, Output regulation, Quadratic programming

X. Zhuan; X. Xia

2008-01-01T23:59:59.000Z

223

Growth of silicon sheets for photovoltaic applications  

DOE Green Energy (OSTI)

The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The fast growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.

Surek, T.

1980-12-01T23:59:59.000Z

224

Rural Public Pension and Endogenous Growth  

Science Conference Proceedings (OSTI)

Employing an endogenous growth model, this paper investigates China’s rural public pension system. We examine the effects of the policy variables on the labor income growth, population growth, etc. The positive effect of the basic benefit rate ... Keywords: rural area, public pension, endogenous growth

Zaigui Yang

2010-06-01T23:59:59.000Z

225

Development of a Bulk GaN Growth Technique for Low Defect Density...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technique: Electrochemical Solution Growth (ESG) Use salt flow to deliver precursors Increase growth rate through flux of reactants (increase spin rate) Precursors can be...

226

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Letter - Preliminary Review of Drought Adder Component for 2011 Firm Power Rates 2010 Rates and Rate Schedule - Current * 2009 Rates and Rate Schedule 2008 Rates and...

227

Method and system for managing an electrical output of a turbogenerator  

SciTech Connect

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2009-06-02T23:59:59.000Z

228

Method and system for managing an electrical output of a turbogenerator  

DOE Patents (OSTI)

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

229

Photovoltaic Degradation Rates -- An Analytical Review  

DOE Green Energy (OSTI)

As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

Jordan, D. C.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

230

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

231

New Research Center to Increase Safety and Power Output of U...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 -...

232

New Research Center to Increase Safety and Power Output of U...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 12:00am...

233

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Loveland Area Project Firm Power Rates Transmission and Ancillary Services Rates 2012 Rate Adjustment-Transmission and Ancillary Services 2010 Rate Adjustment-Firm Power 2009...

234

Rates and Repayment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates and Repayment Services Consolidated Rate Schedules FY 2014 Rates BCP Annual Rate Process Central Arizona Project Transmission Rate Process DSW Multiple System Transmission...

235

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate. 3 figs.

Kopp, M.K.

1986-12-17T23:59:59.000Z

236

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents (OSTI)

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

Kopp, Manfred K. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

237

Definition: Emergency Rating | Open Energy Information  

Open Energy Info (EERE)

Emergency Rating Emergency Rating Jump to: navigation, search Dictionary.png Emergency Rating The rating as defined by the equipment owner that specifies the level of electrical loading or output, usually expressed in megawatts (MW) or Mvar or other appropriate units, that a system, facility, or element can support, produce, or withstand for a finite period. The rating assumes acceptable loss of equipment life or other physical or safety limitations for the equipment involved.[1] Related Terms rating References ↑ Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Emergency_Rating&oldid=480317" Categories:

238

Monte Carlo Potts Investigation of Dynamic Abnormal Grain Growth  

Science Conference Proceedings (OSTI)

A behavior akin to dynamic abnormal grain growth has been found to occur in model results using small strain rates to achieve modest recrystallization rates.

239

Fail safe controllable output improved version of the electromechanical battery  

DOE Patents (OSTI)

Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

Post, R.F.

1999-01-19T23:59:59.000Z

240

SARAH 3.2: Dirac Gauginos, UFO output, and more  

E-Print Network (OSTI)

SARAH is a Mathematica package optimized for the fast, efficient and precise study of supersymmetric models beyond the MSSM: a new model can be defined in a short form and all vertices are derived. This allows SARAH to create model files for FeynArts/FormCalc, CalcHep/CompHep and WHIZARD/OMEGA. The newest version of SARAH now provides the possibility to create model files in the UFO format which is supported by MadGraph 5, MadAnalysis, GoSam, and soon by Herwig++. Furthermore, SARAH also calculates the mass matrices, RGEs and one-loop corrections to the mass spectrum. This information is used to write source code for SPheno in order to create a precision spectrum generator for the given model. This spectrum-generator-generator functionality as well as the output of WHIZARD and CalcHep model files have seen further improvement in this version. Also models including Dirac Gauginos are supported with the new version of SARAH, and additional checks for the consistency of model implementations have been created.

Florian Staub

2012-07-04T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fail safe controllable output improved version of the Electromechanical battery  

DOE Patents (OSTI)

Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

Post, Richard F. (Walnut Creek, CA)

1999-01-01T23:59:59.000Z

242

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

243

Rates & Repayment  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

244

ARM - Measurement - Hygroscopic growth  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsHygroscopic growth govMeasurementsHygroscopic growth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hygroscopic growth The rate that aerosol particles grow at relative humidity values less than 100 percent. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AOS : Aerosol Observing System

245

Battery charger with transducer for controlling charge rate  

SciTech Connect

Disclosed herein is an apparatus for charging a battery including a case containing at least one cell formed of a pair of electrodes immersed in an electrolyte. The apparatus includes a transducer associated with the battery and operable without sensing gas pressure in the battery case for providing a variable signal output in response to electrolyte gassing within the battery case. The apparatus also includes a control circuit arrangement coupled to the signal output for providing a variable control output in response to the signal output, and a battery charger connected to the battery electrodes and operable for charging the battery at a rate subject to the variable control output. In one embodiment of the invention, the transducer is a sound transducer, preferably a ceramic microphone, which provides a variable signal output in response to sound generated within the battery case. In another embodiment, the transducer is a fluid vibration transducer, preferably utilizing a piezo-electric element, which provides a variable signal output in response to fluid vibration in the battery electrolyte. In another embodiment , the battery charger includes a battery temperature detector, preferably utilizing a thermistor, which prevents the battery charger from charging the battery when the temperature of the battery electrolyte exceeds a predetermined upper limit or electrolyte level is low.

Krueger, W.R.

1983-06-14T23:59:59.000Z

246

New results in forecasting of photovoltaic systems output based on solar radiation forecasting  

Science Conference Proceedings (OSTI)

Accurate short term forecasting of photovoltaic (PV) systems output has a great significance for fast development of PV parks in South-East Europe

Laurentiu Fara

2013-01-01T23:59:59.000Z

247

Brief paper: Output feedback strict passivity of discrete-time nonlinear systems and adaptive control system design with a PFC  

Science Conference Proceedings (OSTI)

In this paper, a passivity-based adaptive output feedback control for discrete-time nonlinear systems is considered. Output Feedback Strictly Passive (OFSP) conditions in order to design a stable adaptive output control system will be established. Further, ... Keywords: Adaptive control, Discrete nonlinear systems, Output feedback, Parallel feedforward compensator, Strict passivity

Ikuro Mizumoto; Satoshi Ohdaira; Zenta Iwai

2010-09-01T23:59:59.000Z

248

ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR  

DOE Data Explorer (OSTI)

ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

Richard Coulter; Kevin Widener; Nitin Bharadwaj; Karen Johnson; Timothy Martin

249

Pemex plans large program to expand Burgos basin gas output  

Science Conference Proceedings (OSTI)

Although Burgos basin fields have been in production since 1945--maximum production rate to date was in 1970 with just over 600 MMcfd--Pemex officials are optimistic the basin has sufficient reserves to warrant further exploration. Rather than just explore for new fields and pools, Pemex aims to use 3D seismic technology to get a better picture of existing reservoirs and use new drilling techniques and hydraulic fracturing to boost production levels Because gas reservoirs in the Burgos basin and in the Rio Grande basin of Texas tend to be compact, it is unlikely any cross-border production issues--such as those still to be settled between the two countries in the Gulf of Mexico--will arise. The paper discusses Burgos development, domestic versus US gas, the geologic framework, and Mexico`s infrastructure needs.

NONE

1997-11-10T23:59:59.000Z

250

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

DOE Green Energy (OSTI)

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

251

Brief paper: A multi-regulator sliding mode control strategy for output-constrained systems  

Science Conference Proceedings (OSTI)

This paper proposes a multi-regulator control scheme for single-input systems, where the setpoint of a regulated output must be changed under the constraint that a set of minimum-phase outputs remain within prescribed bounds. The strategy is based on ... Keywords: Aircraft engines, Control with constraints, Hybrid systems, Selector systems, Sliding modes

Hanz Richter

2011-10-01T23:59:59.000Z

252

ANN Models for Steam Turbine Power Output Toward Condenser Circulating Water Flux  

Science Conference Proceedings (OSTI)

Aimed the costliness and the complex process of performance test for steam turbine power output toward circulating water flux and in view of the non—linear advantage about neural network, it brings forward predicting the performance using artificial ... Keywords: Artificial neural network, steam turbine power output, performance prediction

Jia Ruixuan; Xu Hong

2010-05-01T23:59:59.000Z

253

Method for leveling the power output of an electromechanical battery as a function of speed  

SciTech Connect

The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range.

Post, Richard F. (Walnut Creek, CA)

1999-01-01T23:59:59.000Z

254

Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation  

E-Print Network (OSTI)

Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

2011-01-01T23:59:59.000Z

255

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

256

Multi-vector tests: a path to perfect error-rate testing  

Science Conference Proceedings (OSTI)

The importance of testing approaches that exploit error tolerance to improve yield has previously been established. Error rate, defined as the percentage of vectors for which the value at a circuit's output deviates from the corresponding error-free ...

Shideh Shahidi; Sandeep Gupta

2008-03-01T23:59:59.000Z

257

Molar Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Molar Growth Molar Growth Name: Daniel Location: N/A Country: N/A Date: N/A Question: What animals have molars that grow continuously ? Replies: No mammals that I or my colleagues are aware of, only some few whose incisors grow continuously. J. Elliott Most vertebrates are "polyphyodonts" meaning that they replace teeth continuously through out their lives. All the teeth aren't replaced at once, but in waves so that the animals always have functional teeth around those that are lost. Most mammals are "diphyodonts", which means that they have only 2 sets of teeth: baby teeth and adult teeth. The teeth of herbivore mammals, those which eat grasses, seem to grow throughout their lives. But really, the teeth are very long and extend far down into the jaws. They gradually move up in the jaw toward the surface over time, with the area beneath them filling in with bone.

258

Very preliminary. Please do not quote. EXCHANGE RATES AND FUNDAMENTALS  

E-Print Network (OSTI)

Standard economic models hold that exchange rates are influenced by fundamental variables such as relative money supplies, outputs, inflation rates and interest rates. Nonetheless, it has been well documented that such variables little help predict changes in floating exchange rates — that is, exchange rates follow a random walk. We show that the data do exhibit a related link suggested by standard models – that the exchange rate helps predict fundamentals. We also show analytically that in a rational expectations present value model, an asset price manifests near random walk behavior if fundamentals are I(1) and the factor for discounting future fundamentals is near one. We suggest that this may apply to exchange rates. We thank Shiu-Sheng Chen and Akito Matsumoto for research assistance, and the National Science Foundation for financial support. A longstanding puzzle in international economics is the difficulty of tying floating exchange rates to macroeconomic fundamentals such as money supplies, outputs, and interest rates. Our theories state that the exchange rate is determined by such fundamental variables, but floating exchange rates between countries with roughly similar inflation rates are in fact well-approximated as random walks. Fundamental variables do not help predict future changes in exchange rates.

Charles Engel; Kenneth D. West

2002-01-01T23:59:59.000Z

259

Definition: Rated power | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Rated power Jump to: navigation, search Dictionary.png Rated power The power output of a device under specific or nominal operating conditions[1] View on Wikipedia Wikipedia Definition In electrical and electronic engineering, the power rating of a device is a guideline set by the manufacturer as a maximum power to be used with that device. This limit is usually set somewhat lower than the level where the device will be damaged, to allow a margin of safety. In devices which primarily dissipate electric power or convert it into mechanical power, such as resistors, electric motors, and speakers, the power rating given is usually the maximum power that can be safely dissipated by the

260

Calculated power output from a thin iron-seeded plasma  

DOE Green Energy (OSTI)

Ionization equilibrium calculations are carried out for iron ions at a density of 10/sup 12/ cm/sup -3/ in a (hydrogen) plasma with electron density 10/sup 14/ cm/sup -3/, at temperatures from 0.8 to 10 keV. The computed radiated power loss from this plasma due to the iron ions ranges from about 4 W/cm/sup 3/ at the lowest temperature to about 0.4 W/cm/sup 3/ at the highest temperature; loss rates for other electron and ion densities will scale approximately as N/sub e/N/sub Fe/10/sup 26/. The losses are due principally to collisionally excited line radiation (especially ..delta..n = 0 transitions) at low temperatures, and to collisionally excited ..delta..n not equal to 0 transitions and to continuum radiative recombination at high temperatures. Spectra are also computed for diagnostic x-ray K/sub ..cap alpha../ (1s - 2p) transitions; the change in spectral distribution as a function of temperature agrees well with observations in the ST Tokamak. Bound-bound radiative transitions and dielectronic recombination are discussed at length in appendices; the latter process is of great importance in the establishment of ionization equilibrium, and in the excitation of K/sub ..cap alpha../ radiation at the lower temperatures.

Merts, A.L.; Cowan, R.D.; Magee, N.H. Jr.

1976-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reconciling Discrepancies in the Observed Growth of Wind-generated Waves  

Science Conference Proceedings (OSTI)

Spectra from various wave-growth experiments have been collected into a database, and the data have been reanalyzed to explain the differences in the observed growth rates.

Kimmo K. Kahma; Charles J. Calkoen

1992-12-01T23:59:59.000Z

262

Incorporating Undesirable Outputs into Malmquist TFP Index: Environmental Performance Growth of Chinese Coal-Fired Power Plants  

E-Print Network (OSTI)

, the more oil or gas it uses, the less coal is consumed. In order to make the final efficiency evaluation accurate and the comparison between power plants meaningful, it is therefore necessary to convert all kinds of fossil fuel consumption into the same... by local authorities. 13 annual number of employees, annual electricity generation, and quality of fuel, was mainly collected during the author’s fieldwork in China between 2005 and 2006. Data on the quality of fuel is complemented by the CED (2004...

Yang, Hongliang; Pollitt, Michael G.

263

Prediction of Boiler Output Variables Through the PLS Linear Regression Technique  

E-Print Network (OSTI)

Abstract: In this work, we propose to use the linear regression partial least square method to predict the output variables of the RA1G boiler. This method consists in finding the regression of an output block regarding an input block. These two blocks represent the outputs and inputs of the process. A criteria of cross validation, based on the calculation of the predicted residual sum of squares, is used to select the components of the model in the partial least square regression. The obtained results illustrate the effectiveness of this method for prediction purposes.

Abdelmalek Kouadri; Mimoun Zelmat; Alhussein Albarbar

2008-01-01T23:59:59.000Z

264

Eyeball Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

Eyeball Growth Eyeball Growth Name: Jade Hawk Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: Okay, I know I'm supposed to be able to answer questions here, but a friend who teaches grades 7 & 8 general science wants to know if the human eyeball is fully grown at birth. I checked my references, which are rather limited when it comes to human physiology, and found nothing. Can anyone help? Replies: The eye will still develop in size, pigmentation, and neurologically but I don't have the details here at hand. A kitten is born with eyes even more immature than human babies. Besides having sealed eyes that take about a week to open, they have retinas that a avascularized and need to undergo neovascularization to properly nourish and oxygenate the tissue. We have used the kitten to study retinopathy of prematurity, a condition caused in part by increased inspired oxygen. The kitten is also used in the study of diabetic retinopathy which a I think is the leading cause of blindness in the US. Look up publications by Dale Phelps, MD.

265

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

266

EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...  

Gasoline and Diesel Fuel Update (EIA)

e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

267

Exploring the Structure of Regional Climate Scenarios by Combining Synoptic and Dynamic Guidance and GCM Output  

Science Conference Proceedings (OSTI)

A set of regional climate scenarios is constructed for two study regions in North America using a combination of GCM output and synoptic–dynamical reasoning. The approach begins by describing the structure and components of a climate scenario and ...

James S. Risbey; Peter J. Lamb; Ron L. Miller; Michael C. Morgan; Gerard H. Roe

2002-05-01T23:59:59.000Z

268

Use of Medium-Range Numerical Weather Prediction Model Output to Produce Forecasts of Streamflow  

Science Conference Proceedings (OSTI)

This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output ...

Martyn P. Clark; Lauren E. Hay

2004-02-01T23:59:59.000Z

269

Shape control of conditional output probability density functions for linear stochastic systems with random parameters  

Science Conference Proceedings (OSTI)

This paper presents a controller design for shaping conditional output probability density functions (pdf) for non-Gaussian dynamic stochastic systems whose coefficients are random and represented by their known pdfs. The moment-generating ...

Aiping Wang; Yongji Wang; Hong Wang

2011-03-01T23:59:59.000Z

270

Estimates of Cn2 from Numerical Weather Prediction Model Output and Comparison with Thermosonde Data  

Science Conference Proceedings (OSTI)

Area-averaged estimates of Cn2 from high-resolution numerical weather prediction (NWP) model output are produced from local estimates of the spatial structure functions of refractive index with corrections for the inherent smoothing and filtering ...

Rod Frehlich; Robert Sharman; Francois Vandenberghe; Wei Yu; Yubao Liu; Jason Knievel; George Jumper

2010-08-01T23:59:59.000Z

271

Diagnostic and Forecast Graphics Products at NMC Using High Frequency Model Output  

Science Conference Proceedings (OSTI)

Archived hourly output from the National Meteorological Center (NMC) prediction models has provided the basis for advanced graphic diagnostic and forecast tools. The high-frequency data are available on a regional selected station network. Each ...

David W. Plummer

1989-03-01T23:59:59.000Z

272

Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint  

DOE Green Energy (OSTI)

This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

Hodge, B. M.; Shedd, S.; Florita, A.

2012-08-01T23:59:59.000Z

273

Estimating Potential Evaporation from Vegetated Surfaces for Water Management Impact Assessments Using Climate Model Output  

Science Conference Proceedings (OSTI)

River basin managers concerned with maintaining water supplies and mitigating flood risk in the face of climate change are taking outputs from climate models and using them in hydrological models for assessment purposes. While precipitation is the ...

Victoria A. Bell; Nicola Gedney; Alison L. Kay; Roderick N. B. Smith; Richard G. Jones; Robert J. Moore

2011-10-01T23:59:59.000Z

274

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Trillion ...

275

On Time-Invariant Purified-Output-Based Discrete Time Control  

E-Print Network (OSTI)

Oct 14, 2005 ... On Time-Invariant Purified-Output-Based Discrete Time Control. Aharon Ben-Tal (abental ***at*** ie.technion.ac.il) Stephen Boyd (boyd ***at*** ...

276

The Application of Model Output Statistics to Precipitation Prediction in Australia  

Science Conference Proceedings (OSTI)

The Model output Statistics (MOS) technique has been used to produce forecasts of both the probability of precipitation and the rain amount for seven major Australian cities in subtropical and middle latitudes. Single station equations were ...

R. G. Tapp; F. Woodcock; G. A. Mills

1986-01-01T23:59:59.000Z

277

An Application of Model Output Statistics to the Development of a Local Wind Regime Forecast Procedure  

Science Conference Proceedings (OSTI)

The Model Output Statistics (MOS) approach is used to develop a procedure for forecasting the occurrence of a local wind regime at Rota, Spain known as the levante. Variables derived solely from surface pressure and 500 mb height forecast fields ...

Robert A. Godfrey

1982-12-01T23:59:59.000Z

278

Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation  

Science Conference Proceedings (OSTI)

Ensemble prediction systems typically show positive spread-error correlation, but they are subject to forecast bias and dispersion errors, and are therefore uncalibrated. This work proposes the use of ensemble model output statistics (EMOS), an ...

Tilmann Gneiting; Adrian E. Raftery; Anton H. Westveld III; Tom Goldman

2005-05-01T23:59:59.000Z

279

Model Output Statistics Forecasts: Three Years of Operational Experience in the Netherlands  

Science Conference Proceedings (OSTI)

In the Netherlands, one to five day Model Output Statistics (MOS) forecasts have been used operationally since November 1983. The weather elements predicted are the probability of precipitation, the conditional probability of frozen precipitation,...

C. Lemcke; S. Kruizinga

1988-05-01T23:59:59.000Z

280

A Single-Station Approach to Model Output Statistics Temperature Forecast Error Assessment  

Science Conference Proceedings (OSTI)

Error characteristics of model output statistics (MOS) temperature forecasts are calculated for over 200 locations around the continental United States. The forecasts are verified on a station-by-station basis for the year 2001. Error measures ...

Andrew A. Taylor; Lance M. Leslie

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Australian Experimental Model Output Statistics Forecasts of Daily Maximum and Minimum Temperature  

Science Conference Proceedings (OSTI)

Model output statistics (MOS) forecasts of daily temperature maxima and minima are developed for seven Australian cities. The developmental data and method of derivation of the MOS equations are described and the equations briefly compared to ...

F. Woodcock

1984-10-01T23:59:59.000Z

282

Single-inductor, multiple-output buck converter with parallel source transient recovery  

E-Print Network (OSTI)

To address the need for multiple regulated voltage supplies in electronic devices, this thesis presents a modeling and design study of a single-inductor, multiple-output (SIMO) DC-DC buck converter with parallel source ...

King, Charles Jackson, III

2009-01-01T23:59:59.000Z

283

Reduced-basis output bound methods for parametrized partial differential equations  

E-Print Network (OSTI)

An efficient and reliable method for the prediction of outputs of interest of partial differential equations with affine parameter dependence is presented. To achieve efficiency we employ the reduced-basis method: a weighted ...

Rovas, Dimitrios V. (Dimitrios Vasileios), 1975-

2003-01-01T23:59:59.000Z

284

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu)

285

Experiments in probability of Precipitation Amount Forecasting Using Model Output Statistics  

Science Conference Proceedings (OSTI)

Modifications to current model output statistics procedures for quantitative precipitation forecasting were explored. Probability of precipitation amount equations were developed for warm and cool seasons in a region in the eastern United States. ...

Raymond W. Arritt; William M. Frank

1985-11-01T23:59:59.000Z

286

Mesoscale Forecasts Generated from Operational Numerical Weather-Prediction Model Output  

Science Conference Proceedings (OSTI)

A technique called Model Output Enhancement (MOE) has been developed for the generation and display of mesoscale weather forecasts. The MOE technique derives mesoscale or high-resolution (order of 1 km) weather forecasts from synoptic-scale ...

John G. W. Kelley; Joseph M. Russo; Toby N. Carlson; J. Ronald Eyton

1988-01-01T23:59:59.000Z

287

Optimising maximum power output and minimum entropy generation of Atkinson cycle using mutable smart bees algorithm  

Science Conference Proceedings (OSTI)

The purpose of this article is optimising maximum power output (MPO) and minimum entropy generation (MEG) of an Atkinson cycle as a multi-objective constraint thermodynamic problem by a new improved artificial bee colony algorithm which utilises 'mutable ...

Mofid Gorji; Ahmad Mozaffari; Sina Mohammadrezaei Noudeh

2012-07-01T23:59:59.000Z

288

Statistical Downscaling of Precipitation in Korea Using Multimodel Output Variables as Predictors  

Science Conference Proceedings (OSTI)

A pattern projection downscaling method is applied to predict summer precipitation at 60 stations over Korea. The predictors are multiple variables from the output of six operational dynamical models. The hindcast datasets span a period of 21 yr ...

Hongwen Kang; Chung-Kyu Park; Saji N. Hameed; Karumuri Ashok

2009-06-01T23:59:59.000Z

289

Downscaling Solar Power Output to 4-Seconds for Use in Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies Marissa Hummon 3 rd International Solar Power Integration Workshop October 20-22, 2013 London, UK NREL...

290

Downscaling Solar Power Output to 4-Seconds for Use in Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Downscaling Solar Power Output to 4-Seconds for Use in Integration Studies Preprint M. Hummon, A. Weekley, K. Searight, and K. Clark To be presented at the 3rd International...

291

Optimization of the optical output in a C-to-C pulsed gas laser  

SciTech Connect

An investigation of the optimum condition for maximum optical output in a C-to-C pulsed gas laser (N{sub 2} laser) showed that this condition does not happen when the two capacitances are equal (C{sub 1} = C{sub 2}) as this happens in the ``Doubling circuit`` case, but when the peaking capacitance obtains a critical value. This behavior is attributed to the electric pumping pulse formed by the temporary loading of the peaking capacitor. This electric pumping pulse increases as the peaking capacitor increases. However, for low values of the peaking capacitor the optical output follows the rise of the electric pumping pulse. On the other hand, for higher values of the peaking capacitor than a critical one, a part of the electric energy arrives at the laser channel after the laser output, while the exploitable electric energy decreases causing reduction of the optical output.

Persephonis, P.; Giannetas, V.; Parthenios, J.; Ioannou, A.; Georgiades, C. [Univ. of Patras, Patra (Greece). Dept. of Physics

1995-06-01T23:59:59.000Z

292

Monte Carlo simulation of the effect of miniphantom on in-air output ratio  

Science Conference Proceedings (OSTI)

Purpose: The aim of the study was to quantify the effect of miniphantoms on in-air output ratio measurements, i.e., to determine correction factors for in-air output ratio. Methods: Monte Carlo (MC) simulations were performed to simulate in-air output ratio measurements by using miniphantoms made of various materials (PMMA, graphite, copper, brass, and lead) and with different longitudinal thicknesses or depths (2-30 g/cm{sup 2}) in photon beams of 6 and 15 MV, respectively, and with collimator settings ranging from 3x3 to 40x40 cm{sup 2}. EGSnrc and BEAMnrc (2007) software packages were used. Photon energy spectra corresponding to the collimator settings were obtained from BEAMnrc code simulations on a linear accelerator and were used to quantify the components of in-air output ratio correction factors, i.e., attenuation, mass energy absorption, and phantom scatter correction factors. In-air output ratio correction factors as functions of miniphantom material, miniphantom longitudinal thickness, and collimator setting were calculated and compared to a previous experimental study. Results: The in-air output ratio correction factors increase with collimator opening and miniphantom longitudinal thickness for all the materials and for both energies. At small longitudinal thicknesses, the in-air output ratio correction factors for PMMA and graphite are close to 1. The maximum magnitudes of the in-air output ratio correction factors occur at the largest collimator setting (40x40 cm{sup 2}) and the largest miniphantom longitudinal thickness (30 g/cm{sup 2}): 1.008{+-}0.001 for 6 MV and 1.012{+-}0.001 for 15 MV, respectively. The MC simulations of the in-air output ratio correction factor confirm the previous experimental study. Conclusions: The study has verified that a correction factor for in-air output ratio can be obtained as a product of attenuation correction factor, mass energy absorption correction factor, and phantom scatter correction factor. The correction factors obtained in the present study can be used in studies involving in-air output ratio measurements using miniphantoms.

Li Jun; Zhu, Timothy C. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 (United States); Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

2010-10-15T23:59:59.000Z

293

Data Center Rating Infrastructure Rating Development  

NLE Websites -- All DOE Office Websites (Extended Search)

in Portfolio Manager on June 7, 2010. The questions below are designed to help data center owners and operators better understand the rating and benchmark their buildings in...

294

Recommended methods for evaluating the benefits of ECUT Program outputs. [Energy Conversion and Utilization  

SciTech Connect

This study was conducted to define and develop techniques that could be used to assess the complete spectrum of positive effects resulting from the Energy Conversion and Utilization Technologies (ECUT) Program activities. These techniques could then be applied to measure the benefits from past ECUT outputs. In addition, the impact of future ECUT outputs could be assessed as part of an ongoing monitoring process, after sufficient time has elapsed to allow their impacts to develop.

Levine, L.O.; Winter, C.

1986-03-01T23:59:59.000Z

295

Analytical Improvements in PV Degradation Rate Determination  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

296

Tracking the Libor Rate  

E-Print Network (OSTI)

Investigating the Libor Rate,” mimeo. Abrantes-Metz, R. ,Libor data: Historial 1 month Libor rates, British Bankers1108R) Tracking the Libor Rate Rosa M. Abrantes-Metz , Sofia

Abrantes-Metz, Rosa; Villas-Boas, Sofia B.; Judge, George G.

2013-01-01T23:59:59.000Z

297

Persistent Habits, optimal Monetary Policy Inertia and Interest Rate Smoothing  

E-Print Network (OSTI)

supplying the amount of products in demand during period t+k if price is still P optt . It is easy to convert this term into units of an equivalent quantity of the consumption aggregate to obtain the real marginal cost and subsequently to rewrite (15... trade-o¤ between stabilizing the in?ation rate and reducing the output-gap. Following the shock, output falls and in?ation increases initially due to the higher costs of production. However, geometric habits slow down the adjustment of the price level...

Corrado, Luisa; Holly, Sean; Raissi, Mehdi

2012-10-29T23:59:59.000Z

298

Wide Bandgap Semiconductor Material Growth and Characterization  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Advanced Materials for Power Electronics, Power Conditioning, and Power .... due to a historical lack of native substrates and challenges in selectively ... have been optimized to provide equal growth rates of both polarities.

299

Evaluation of Ordering Mobility from Antiphase Domain Growth Rate ...  

Science Conference Proceedings (OSTI)

Register as a New User ... For accurate prediction, reliable data of free energy and mobility are required. Although the free energies for major alloys are ...

300

Effect of Microstructure on Fatigue Crack Growth Rate  

Science Conference Proceedings (OSTI)

plate stock whereas the influence of dislocation substructures was examined on specimens machined from service exposed discs that were retrieved from aero ...

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Growth rate exponents of Richtmyer-Meshkov mixing layers  

Science Conference Proceedings (OSTI)

The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponents and virtual time origin for both sides. The analogy also bounds the power-law exponent between 2/7 and 2/5. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields that are in good agreement with experiment at modest density ratios.

Zhou, Y; Clark, T

2004-01-13T23:59:59.000Z

302

Environmental Effects on Fatigue Crack Growth Rates in Sour ...  

Science Conference Proceedings (OSTI)

Environmentally Assisted Cracking of Carbon Steel in High Temperature Geothermal Well · Evaluation of the Susceptibility to Hydrogen Assisted Cracking in ...

303

Measuring Crystal Growth Rates during Laser Annealing of  

Science Conference Proceedings (OSTI)

Conference Tools for 2014 TMS Annual Meeting & Exhibition ... Office of Basic Energy Sciences, Division of Materials Sciences and Engineering by LLNL under Contract DE-AC52-07NA27344. .... Contact programming@programmaster.org.

304

2012 Rate Adjustments  

NLE Websites -- All DOE Office Websites (Extended Search)

Register Notices Meetings Brochure Brochure Addendum Customer Comment Letter Approved Rate Order FERC Confirmation If you have questions, call Rates and Repayment, 800-472-2306...

305

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA)

figure data Figure 7 shows the percent change in average real rates for those state-to-state ... Estimated transportation rates for coal delivered to electric ...

306

Effective Rate Period  

NLE Websites -- All DOE Office Websites (Extended Search)

10012012 - 09302013 Mid-Year Changes (if applicable) 10012012 - 09302013 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement 73,381,487...

307

Evaluation of the potential to upgrade the Sandia Atomic Iodine Laser SAIL-1 to higher output energies  

DOE Green Energy (OSTI)

The predicted output energy of the Sandia Atomic Iodine Laser SAIL-1 is given for various numbers of preamplifier stages and for various small signal gains in each stage. Additional possibilities for further increasing the output energy are given.

Riley, M.E.; Palmer, R.E.

1977-05-01T23:59:59.000Z

308

The effect of small field output factor measurements on IMRT dosimetry  

Science Conference Proceedings (OSTI)

Purpose: To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning. Methods: IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 Multiplication-Sign 2 and 3 Multiplication-Sign 3 cm{sup 2} field sizes were changed by {+-}5%, {+-}10%, and {+-}20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated. Results: For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for -5%, 3.6% for -10%, and 8.7% for -20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors. Conclusions: The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence, the impact of small field output factors on IMRT monitor unit calculation is not evaluable by this method.

Azimi, Rezvan; Alaei, Parham; Higgins, Patrick [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2012-08-15T23:59:59.000Z

309

Pitch Angle Control of Variable Low Rated Speed Wind Turbine Using Fuzzy Logic Control  

E-Print Network (OSTI)

Abstract — Pitch angle control of wind turbine has been used widely to reduce torque and output power variation in high rated wind speed areas. It is a challenge to maximize available energy in the low rated wind speed areas. In this paper, a wind turbine prototype with a pitch angle control based on fuzzy logic to maximize the output power is built and demonstrated. In the varying low rated wind speed of 4-6 m/s, the use of fuzzy logic controller can maximize the average output power of 14.5 watt compared to 14.0 watt at a fixed pitch angle of the blade. Implementation of pitch angle fuzzy logic-based control to the wind turbine is suitable for the low rated wind speed areas. Index Terms — low rated wind speed areas, pitch angle control, fuzzy logic, wind turbine. T I.

A. Musyafa; A. Harika; I. M. Y. Negara; I. Rob

2010-01-01T23:59:59.000Z

310

Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields  

E-Print Network (OSTI)

Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

Reiche, S; Emma, P; Fawley, W M; Huang, Z; Nuhn, H D; Stupakov, G V

2005-01-01T23:59:59.000Z

311

Utility-scale installations lead solar photovoltaic growth ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... led by particularly strong growth in both utility-scale PV and ... Because the utilization rate for ...

312

Annual Production with 2 Percent Annual Growth & Decline  

U.S. Energy Information Administration (EIA)

It is unlikely that any single constant growth or decline rate would persist before or after the year of peak production. World oil production has sometimes ...

313

Graphene Layer Growth: Collision of Migrating Five-Member Rings  

E-Print Network (OSTI)

Monte Carlo simulations of graphene edge buildup, the rateGraphene layer growth: Collision of migrating five- memberon the zigzag edge of a graphene layer. The process is

Whitesides, Russell; Kollias, Alexander C.; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

2005-01-01T23:59:59.000Z

314

Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 28, 2003 8: July 28, 2003 Annual VMT Growth Rates to someone by E-mail Share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Facebook Tweet about Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Twitter Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Google Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Delicious Rank Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Digg Find More places to share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on AddThis.com... Fact #278: July 28, 2003 Annual VMT Growth Rates Vehicle miles of travel (VMT) of highway vehicles in 2001 was 2.5 times

315

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 21,196 695 18,300 2,087 115 2004 19,587 444 17,308 1,811 24 2005 19,370 560 17,033 1,753 25 2006 19,629 500 17,343 1,761 25 2007 19,576 553 17,116 1,785 122 2008 19,805 509 17,487 1,809 0 2009 19,669 465 17,048 2,155 0 2010 19,437 402 16,802 2,233 0 2011 16,972 388 14,625 1,955 4 2012 16,968 418 14,235 2,304 12 2010 January 1,546 30 1,332 184 0 February 1,384 25 1,215 144 0 March 1,650 36 1,434 180 0 April 1,655 33 1,426 196 0

316

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 9,595 9,945 -3.5% 0 0 9,074 9,945 520 0 0 0 Connecticut 595 624 -4.6% 0 0 595 624 0 0 0 0 Maine 518 524 -1.0% 0 0 518 524 0 0 0 0 Massachusetts 3,603 3,623 -0.6% 0 0 3,603 3,623 0 0 0 0 New Hampshire 1,790 1,485 21% 0 0 1,270 1,485 520 0 0 0 Rhode Island 2,409 3,037 -21% 0 0 2,409 3,037 0 0 0 0

317

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" 4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" "(dollars per short ton)" ,2012,,,,2011,,,,"Annual Percent Change" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial" "and State","Power1","Industrial",,"and","Power1","Industrial",,"and","Power1","Industrial",,"and" ,,,,"Institutional",,,,"Institutional",,,,"Institutional" "New England",88.32,165.17,"-","-",87.62,"w","-","-",0.8,"w","-","-"

318

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption by End-Use Sector, 2007 - 2013" U.S. Coal Consumption by End-Use Sector, 2007 - 2013" "(thousand short tons)" ,,,"Other Industrial",,,"Commercial and Institutional" "Year and","Electric","Coke","CHP2","Non-","Total","CHP4","Non-","Total","Total" "Quarter","Power","Plants",,"CHP3",,,"CHP5" ,"Sector1" 2007 " January - March",257516,5576,5834,8743,14578,547,510,1058,278727 " April - June",246591,5736,5552,8521,14074,426,279,705,267106 " July - September",283556,5678,5546,8180,13725,458,247,705,303665 " October - December",257478,5726,5605,8634,14238,495,563,1058,278500

319

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(dollars per short ton)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",51.17,49.59,50.96,50.35,50.94,-1.2 "312 Beverage and Tobacco Product Mfg.",111.56,115.95,113.47,113.49,117.55,-3.5 "313 Textile Mills",115.95,118.96,127.41,117.4,128.07,-8.3 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

320

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Landfill Gas: Consumption for Electricity Generation, A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 136,421 9,168 121,984 3,280 1,989 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975 192,428 5,535 393 2011 232,795 22,086 180,856 29,469 384 2012 256,376 25,193 201,965 26,672 2,545 2010 January 17,531 1,715 15,323 461 32 February 16,189 1,653 14,120 384 33

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2002 884,287 0.94 1.25 25.52 120,851 1.64 3.34 20.77 5,607,737 3.56 1.86 2003 986,026 0.97 1.28 26.00 185,567 1.53 4.33 26.78 5,500,704 5.39 2.28 2004 1,002,032 0.97 1.36 27.42 186,655 1.66 4.29 26.56 5,734,054 5.96 2.48 2005 1,021,437 0.98 1.54 31.20 194,733 1.61 6.44 39.65 6,181,717 8.21 3.25

322

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 9,580 399 2.10 50.44 2.59 28.4 503 91 5.38 29.73 0.02 7.5 2003 8,835 372 1.99 47.24 2.43 20.5 248 43 7.00 40.82 0.04 3.1 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20 26.9 2005 11,081 464 2.57 61.21 2.43 24.2 1,684 289 8.28 48.22 0.17 18.3 2006 12,207 518 2.63 61.95 2.51 27.5 798 137 13.50 78.70 0.17 15.5

323

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Breeze Production at Coke Plants" Coke and Breeze Production at Coke Plants" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",2303,2314,2365,4617,4754,-2.9 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",4152,4098,4104,8249,8233,0.2 "Coke Total",3954,3841,3863,7795,7721,1

324

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electric Power Industry - Electricity Sales for Resale, 2. Electric Power Industry - Electricity Sales for Resale, 2002 through 2012 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2002 1,838,901 5,757,283 943,531 28,963 8,568,678 2003 1,824,030 3,906,220 1,156,796 33,909 6,920,954 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399 1,295,857 33,139 5,065,031 2010 1,541,554 2,946,452 1,404,137 37,068 5,929,211 2011 1,529,434 2,206,981 1,372,306 34,400 5,143,121

325

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, 2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, by Producer Type, 2012 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Petroleum as the Primary Fuel Net Summer Capacity of Petroleum-Fired Generators Reporting the Ability to Switch to Natural Gas Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Natural Gas Electric Utilities 26,732 7,640 28.6 7,224 Independent Power Producers, Non-Combined Heat and Power Plants 18,644 7,867 42.2 6,628 Independent Power Producers, Combined Heat and Power Plants 317 -- -- -- Electric Power Sector Subtotal 45,693 15,507 33.9 13,852 Commercial Sector 443 21 4.8 21

326

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Coke: Consumption for Electricity Generation, A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,836 2,125 3,580 2 1,130 2003 6,303 2,554 3,166 2 582 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1 812 2010 January 433 283 121 0.17 29 February 404 258 120 0.15 25 March 438 308 108 0.19 23 April 382 253 107 0.12 22 May 415 261 129 0 25

327

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Retail Sales of Electricity to Ultimate Customers: 5. Retail Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Million Kilowatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 1,275,824 1,198,728 1,012,373 6,810 3,493,734 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,379,981 1,335,981 1,009,300 7,700 3,732,962 2009 1,364,474 1,307,168 917,442 7,781 3,596,865 2010 1,445,708 1,330,199 970,873 7,712 3,754,493 2011 1,422,801 1,328,057 991,316 7,672 3,749,846 2012 1,374,515 1,327,101 985,714 7,320 3,694,650 2010

328

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Coal Carbonized at Coke Plants by Census Division" 3. Coal Carbonized at Coke Plants by Census Division" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",3051,2997,3092,6048,6156,-1.8 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",5471,5280,5296,10751,10579,1.6 "w = Data withheld to avoid disclosure."

329

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,041 4,122 -2.0% 0 0 3,838 3,922 203 200 0 0 Connecticut 1,415 1,442 -1.9% 0 0 1,415 1,442 0 0 0 0 Maine 440 445 -1.3% 0 0 237 246 203 200 0 0 Massachusetts 2,017 2,063 -2.2% 0 0 2,017 2,063 0 0 0 0 New Hampshire 169 172 -2.0% 0 0 169 172 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0

330

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, A. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, 2002 - 2012, Actual Net Internal Demand (Megawatts) -- Summer Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 37,951 55,164 430,396 101,251 54,296 53,267 -- -- 28,825 -- -- 154,459 38,298 55,833 117,032 696,376 2003 40,387 53,936 422,253 98,487 53,566 53,617 -- -- 28,775 -- -- 148,380 39,428 59,282 120,894 696,752 2004 42,243 51,580 419,349 95,300 52,049 50,499 -- -- 29,094 -- -- 153,024 39,383 58,531 121,205 692,908

331

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 29,643 N/A N/A N/A 0 3,825 N/A 2003 0 0 0 27,988 96 36 583 0 4,222 32,926 2004 0 0 0 28,367 120 30 647 0 3,248 32,413 2005 0 0 0 28,271 113 34 585 0 3,195 32,199 2006 0 0 0 28,400 29 35 509 0 2,899 31,872 2007 0 0 0 28,287 27 40 565 0 1,590 30,509 2008 0 0 0 26,641 21 0 800 0 1,676 29,138 2009 0 0 0 25,292 22 0 718 0 1,868 27,901 2010 0 2 0 25,706 15 0 853 0 1,668 28,244

332

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation from Other Energy Sources 6. Net Generation from Other Energy Sources by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 2,153 2,019 6.7% 0 0 1,944 1,888 88 84 121 46 Connecticut 756 705 7.3% 0 0 756 704 0 0 0 1 Maine 424 390 8.7% 0 0 245 261 88 84 92 45 Massachusetts 906 860 5.5% 0 0 877 860 0 0 29 0 New Hampshire 66 64 2.6% 0 0 66 64 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 2,497 2,441 2.3% 0 0 1,924 1,975 465 344 107 122

333

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Steam Coal Exports" U.S. Steam Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",1619502,1246181,2153814,2865683,3065683,-6.5 " Canada*",797861,599752,841061,1397613,1280803,9.1 " Dominican Republic",51698,160672,124720,212370,312741,-32.1 " Honduras","-",41664,34161,41664,68124,-38.8 " Jamaica",25,36311,"-",36336,33585,8.2 " Mexico",717687,407422,1116653,1125109,1331754,-15.5 " Other**",52231,360,37219,52591,38676,36

334

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2002 423,128 1.47 10.1 391,785 0.36 6.2 65,555 0.93 13.3 2003 467,286 1.50 10.0 432,513 0.38 6.4 79,869 1.03 14.4 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677 1.02 14.0 2006 489,550 1.59 10.5 504,947 0.35 6.1 75,742 0.95 14.4 2007 467,817 1.62 10.3 505,155 0.34 6.0 71,930 0.90 14.0

335

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption at Other Industrial Plants by Census Division and State" Coal Consumption at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w",20,"w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",583,589,651,1171,1237,-5.3 " New York",155,181,206,337,374,-10.1

336

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Landfill Gas: Consumption for Electricity Generation, D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 65,770 3,930 59,089 1,753 998 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011 112,538 11,146 89,857 11,332 203 2012 124,297 12,721 99,938 10,356 1,282 2010 January 8,441 853 7,335 236 17 February 7,824 830 6,781 197 17 March 9,056 1,013 7,796 226 21

337

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Natural Gas: Consumption for Electricity Generation, D. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,249,585 2,307,358 3,214,286 30,626 697,315 2003 5,735,770 1,809,003 3,200,057 39,424 687,286 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009 7,301,522 2,981,285 3,750,080 35,046 535,111 2010 7,852,665 3,359,035 3,882,995 40,356 570,279 2011 8,052,309 3,511,732 3,906,484 48,509 585,584

338

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Price of Coal Receipts at Coke Plants by Census Division" 4. Average Price of Coal Receipts at Coke Plants by Census Division" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",157.29,176.84,199.7,166.21,198.26,-16.2 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",157.26,171.51,191.48,163.85,190.51,-14

339

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Demand-Side Management Program Direct and Indirect Costs, 5. Demand-Side Management Program Direct and Indirect Costs, 2002 through 2012 (Thousand Dollars) Year Energy Efficiency Load Management Direct Cost Indirect Cost Total Cost 2002 1,032,911 410,323 1,443,234 206,169 1,649,403 2003 807,403 352,137 1,159,540 137,670 1,340,686 2004 910,816 510,281 1,421,097 132,295 1,560,578 2005 1,180,576 622,287 1,802,863 127,925 1,939,115 2006 1,270,602 663,980 1,934,582 128,886 2,072,962 2007 1,677,969 700,362 2,378,331 160,326 2,604,711 2008 2,137,452 836,359 2,973,811 181,843 3,186,742 2009 2,221,480 944,261 3,165,741 394,193 3,607,076 2010 2,906,906 1,048,356 3,955,262 275,158 4,230,420 2011 4,002,672 1,213,102 5,215,774 328,622 5,544,396 2012 4,397,635 1,270,391 5,668,026 332,440 6,000,466

340

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 213 N/A N/A 709 N/A N/A N/A 1,402 242,302 N/A 2003 354 2 0 882 394 326 214 1,249 249,622 253,043 2004 405 6 0 1,209 460 198 166 1,248 245,546 249,238 2005 1,046 16 0 1,829 503 250 175 1,126 245,553 250,499 2006 2,351 15 0.18 1,937 705 228 190 1,162 261,864 268,452 2007 4,361 10 1 2,226 751 240 226 1,139 226,734 235,687 2008 6,899 16 1 1,888 844 211 252 1,197 229,645 240,953

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Liquids: Consumption for Electricity Generation, A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 134,415 88,595 39,035 826 5,959 2003 175,136 105,319 61,420 882 7,514 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855 2011 27,326 20,844 5,633 133 716 2012 22,604 17,521 4,110 272 702 2010 January 5,587 4,381 1,083 17 106 February 2,156 1,599 454 15 88

342

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Mills per Kilowatthour) 4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Mills per Kilowatthour) Operation Maintenance Year Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale 2002 9.00 2.59 3.71 3.26 5.04 2.67 2.62 2.38 2003 9.12 2.74 3.47 3.50 5.23 2.72 2.32 2.26 2004 8.97 3.13 3.83 4.27 5.38 2.96 2.76 2.14 2005 8.26 3.21 3.95 3.69 5.27 2.98 2.73 1.89 2006 9.03 3.57 3.76 3.51 5.69 3.19 2.70 2.16 2007 9.54 3.63 5.44 3.26 5.79 3.37 3.87 2.42 2008 9.89 3.72 5.78 3.77 6.20 3.59 3.89 2.72 2009 10.00 4.23 4.88 3.05 6.34 3.96 3.50 2.58 2010 10.50 4.04 5.33 2.79 6.80 3.99 3.81 2.73

343

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Imports" Price of U.S. Coal Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Origin",2013,2013,2012,,,"Change" "North America Total",147.86,138.39,191.01,144.86,197.96,-26.8 " Canada",147.86,138.39,191,144.86,197.95,-26.8 " Mexico","-","-",286.23,"-",286.23,"-" "South America Total",75.29,80.74,86.52,77.2,87.17,-11.4 " Argentina","-","-",504.7,"-",504.7,"-" " Colombia",74.87,80.74,83.03,76.96,85.25,-9.7 " Peru",87.09,"-","-",87.09,"-","-"

344

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, 4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, by Year of Initial Commercial Operation, 2012 (Megawatts, Percent) Year of Initial Commercial Operation Number of Generators Net Summer Capacity Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Pre-1970 318 11,735 7,535 1970-1974 376 18,210 11,033 1975-1979 105 11,031 7,283 1980-1984 46 945 211 1985-1989 107 3,155 413 1990-1994 208 11,738 1,453 1995-1999 134 9,680 2,099 2000-2004 392 39,841 5,098 2005-2009 116 14,791 2,066 2010-2012 78 8,479 320 Total 1,880 129,604 37,510 Notes: Petroleum includes distillate fuel oil (all diesel and No. 1, No. 2, and No. 4 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil), jet fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion methodology), waste oil, and beginning in 2011, synthetic gas and propane. Prior to 2011, synthetic gas and propane were included in Other Gases.

345

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2256,2561,1864,4817,4343,10.9 "312 Beverage and Tobacco Product Mfg.",38,50,48,88,95,-7.7 "313 Textile Mills",31,29,21,60,59,2.2 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

346

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 148,110 5,766 128,947 13,095 302 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934 3,322 124,437 17,176 0 2011 135,241 3,433 115,841 15,933 34 2012 135,735 3,910 113,418 18,307 100 2010 January 11,540 244 9,886 1,410 0 February 10,313 190 9,030 1,094 0

347

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2002 10,168 0.94 8.7 147,903 1.64 0.2 1,025 2003 10,137 0.97 9.0 147,086 1.53 0.1 1,030 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1 1,027 2008 9,947 0.97 9.0 142,205 2.21 0.3 1,027 2009 9,902 1.01 8.9 141,321 2.14 0.2 1,025 2010 9,842 1.16 8.8 140,598 2.14 0.2 1,022

348

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Net Generation from Hydroelectric (Pumped Storage) Power 5. Net Generation from Hydroelectric (Pumped Storage) Power by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England -305 -435 -29.9% 0 0 -305 -435 0 0 0 0 Connecticut 3 6 -51.5% 0 0 3 6 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts -308 -440 -30.1% 0 0 -308 -440 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic -1,022 -1,124 -9.0% -579 -630 -443 -494 0 0 0 0

349

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coal Exports" Average Price of U.S. Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",78.29,77.25,102.62,77.88,105.14,-25.9 " Canada*",81.61,80.7,110.67,81.3,112.16,-27.5 " Dominican Republic",78.54,75.09,73.89,75.77,76.61,-1.1 " Honduras","-",54.58,54.43,54.58,54.43,0.3 " Jamaica",480,54.43,"-",54.72,55.42,-1.3 " Mexico",73.45,75.81,94.36,74.35,100.95,-26.3 " Other**",80.33,389.3,70.37,82.45,76.1,8.3

350

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

B. U.S. Transformer Outages by Type and NERC region, 2012 Outage Type Eastern Interconnection TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 16.00 --...

351

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

components because of independent rounding." "Source: U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, 'Quarterly Mine Employment and Coal Production...

352

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Existing Capacity by Producer Type, 2012 (Megawatts) 4. Existing Capacity by Producer Type, 2012 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,624 680,592 621,785 644,358 Independent Power Producers, Non-Combined Heat and Power Plants 6,148 412,045 374,964 389,349 Independent Power Producers, Combined Heat and Power Plants 609 39,916 35,266 38,023 Total 16,381 1,132,554 1,032,015 1,071,729 Commercial and Industrial Sectors Commercial Sector 962 3,610 3,223 3,349 Industrial Sector 1,680 31,832 27,795 29,381 Total 2,642 35,442 31,018 32,730 All Sectors Total 19,023 1,167,995 1,063,033 1,104,459 Notes: In 2011, EIA corrected the NAICS codes of several plants which resulted in a net capacity shift from the electric utility sector to the commercial sector.

353

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. U.S. Transformer Sustained Automatic Outage Counts B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 1.00 1.00 300-399 2.00 -- 4.00 6.00 400-599 14.00 -- 11.00 25.00 600+ -- -- -- -- Grand Total 16.00 -- 16.00 32.00 Sustained Automatic Outage Hours High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 27.58 27.58 300-399 153.25 -- 15.87 169.12 400-599 3,070.88 -- 258.37 3,329.25 600+ -- -- -- -- Grand Total 3,224.13 -- 301.82 3,525.95 Outage Hours per Outage Incident Eastern Interconnection TRE WECC Contiguous U.S.

354

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Coal Consumption at Commercial and Institutional Users by Census Division and State" 6. Coal Consumption at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",20,52,24,73,83,-12.4 " Pennsylvania",20,52,24,73,83,-12.4 "East North Central",112,197,127,309,331,-6.8 " Illinois",34,45,29,79,66,18.9 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

355

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","Above 0","Zero2","Total Number" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50","to 10",,"of Employees" "Alabama",3415,97,655,317,160,224,54,105,5041 " Underground",2981,"-","-","-",36,88,"-",81,3190 " Surface",434,97,655,317,124,136,54,24,1851

356

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" 8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" "(dollars per short ton)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",107.73,104.51,106.57,100.17,108.71,102.69,7.6,-3.9,3.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

357

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Coal Production by State and Mining Method, 2012" Underground Coal Production by State and Mining Method, 2012" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",139,20,12410,12570 "Arkansas",96,"-","-",96 "Colorado",757,"-",22889,23646 "Illinois",18969,"-",23868,42837 "Indiana",15565,"-","-",15565 "Kentucky Total",56179,2018,"-",58198 " Kentucky (East)",22090,2010,"-",24100 " Kentucky (West)",34089,9,"-",34098 "Maryland",797,"-","-",797 "Montana","-","-",5708,5708

358

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Mining Productivity by State, Mine Type, and Union Status, 2012" Coal Mining Productivity by State, Mine Type, and Union Status, 2012" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground","Surface","Underground","Surface" "Alabama",1.69,"-",0.66,1.8 "Alaska","-",5.98,"-","-" "Arizona","-",7.38,"-","-" "Arkansas","-","-",0.59,"-" "Colorado",4.9,6.09,6.02,4.45 "Illinois",2.09,"-",5.34,4.7 "Indiana","-","-",3.23,5.41 "Kentucky Total",3.02,2.45,2.36,3.06 " Kentucky (East)","-",2.45,1.64,2.65

359

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of U.S. Coal by State and Disposition, 2012" Average Sales Price of U.S. Coal by State and Disposition, 2012" "(dollars per short ton)" "Coal-Producing State","Open Market1","Captive2","Total3" "Alabama",85.06,"-",106.57 "Alaska","w","-","w" "Arizona","w","-","w" "Arkansas","w","-","w" "Colorado",38.51,43.19,37.54 "Illinois",49.04,54.71,53.08 "Indiana",49.16,54.5,52.01 "Kentucky Total",61.85,73.08,63.12 " Kentucky (East)",75.8,73.08,75.62 " Kentucky (West)",48.6,"-",48.67 "Louisiana","w","-","w"

360

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Emissions from Energy Consumption at 5. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants, by State, 2011 and 2012 (Thousand Metric Tons) Census Division and State Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 34,766 37,698 33 58 39 37 Connecticut 8,987 8,196 7 1 12 6 Maine 3,722 4,351 8 12 7 8 Massachusetts 14,346 16,404 15 22 14 14 New Hampshire 4,295 5,127 2 23 4 5 Rhode Island 3,403 3,595 0.03 0.07 2 3 Vermont 12 24 0.05 0.09 1 1 Middle Atlantic 161,786 171,603 275 370 187 203 New Jersey 16,120 16,917 4 5 14 13 New York 35,669 37,256 31 52 40 43 Pennsylvania 109,997 117,430 240 313 133 147

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2012 and 2011" Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2012 and 2011" "(million short tons)" ,2012,,2011 "Coal-Producing","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Percent Change" "State","Reserves","Percentage","Reserves","Percentage","Recoverable Coal" ,,,,,"Reserves" "Alabama",265,53.63,306,55.39,-13.2 "Alaska","w","w","w","w","w" "Arizona","w","w","w","w","w" "Arkansas","w","w","w","w","w"

362

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Average Retail Price of Electricity to Ultimate Customers: 7. Average Retail Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 8.72 8.03 5.11 7.54 7.44 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.36 6.83 10.74 9.74 2009 11.51 10.17 6.81 10.65 9.82 2010 11.54 10.19 6.77 10.57 9.83 2011 11.72 10.23 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2010 January 10.49 9.55 6.50 10.17 9.28 February 10.89 9.89 6.55 10.48 9.47 March 11.11 9.95 6.53 10.28 9.48 April 11.71 9.95 6.55 10.52 9.53 May 11.91 10.15 6.64 10.52 9.72

363

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2002 - 2012 1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2002 - 2012 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2002 141,714 43,935 1,711 116,952 29,601 328 24,761 14,334 1,383 2003 121,567 45,752 1,484 97,831 28,062 378 23,736 17,691 1,105 2004 106,669 46,750 937 84,917 29,144 627 21,751 17,607 309 2005 101,137 47,414 530 77,457 29,532 374 23,680 17,882 156 2006 140,964 48,216 674 110,277 29,799 456 30,688 18,416 217

364

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts Voltage Region Type Operating (kV) FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. AC 200-299 142 49 14 141 242 49 -- 484 1,121 AC 300-399 -- 88 107 95 46 56 80 165 637 AC 400-599 9 3 -- 22 86 -- -- 125 245 AC 600+ -- -- 6 9 -- -- -- -- 15 AC Total 151 140 127 267 374 105 80 774 2,018 DC 100-199 -- -- -- -- -- -- -- -- -- DC 200-299 -- 18 -- -- -- -- -- 5 23 DC 300-399 -- -- -- -- -- -- -- -- -- DC 400-499 -- 5 -- -- -- -- -- -- 5 DC 500-599 -- -- -- 5 -- -- -- 17 22 DC 600+ -- -- -- -- -- -- -- -- --

365

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Underground Mining Method, 2012" Sales Price of Coal by State and Underground Mining Method, 2012" "(dollars per short ton)" "Coal-Producing State","Continuous1","Conventional and","Longwall3","Total" ,,"Other2" "Alabama","w","-","w",107.73 "Arkansas","w","-","-","w" "Colorado","w","-",37.18,"w" "Illinois",48.08,"-",59.51,54.18 "Indiana",52.94,"-","-",52.94 "Kentucky Total","w","w","-",62.24 " Kentucky (East)","w","w","-",79.23 " Kentucky (West)",50.18,"-","-",50.18

366

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Steam Coal Exports by Customs District" Steam Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",4951041,5566950,6554494,10517991,11407664,-7.8 " Baltimore, MD",1275530,831976,1715016,2107506,2852092,-26.1 " Boston, MA",7,"-",12,7,24,-70.8 " Buffalo, NY",1180,1516,2826,2696,5257,-48.7 " New York City, NY",3088,2664,2168,5752,6106,-5.8 " Norfolk, VA",3578715,4697769,4760354,8276484,8443756,-2 " Ogdensburg, NY",36894,3610,3090,40504,6838,492.3 " Philadelphia, PA",55513,29255,34241,84768,56733,49.4

367

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

and Number of Mines by State, County, and Mine Type, 2012" and Number of Mines by State, County, and Mine Type, 2012" "(thousand short tons)" ,"Underground",,"Surface",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and County" "Alabama",8,12570,38,6752,46,19321 " Bibb","-","-",2,119,2,119 " Blount","-","-",2,236,2,236 " Fayette",1,2249,"-","-",1,2249 " Franklin","-","-",2,137,2,137 " Jackson","-","-",3,152,3,152 " Jefferson",3,3589,9,1106,12,4695

368

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) 0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 0 0 -- -- -- -- 18,671 18,256 3.44 3.52 24.7 3.03 2003 0 0 -- -- -- 0.0 18,169 17,827 4.96 5.06 30.5 4.02 2004 0 0 -- -- -- 0.0 16,176 15,804 5.93 6.07 21.9 4.58 2005 0 0 -- -- -- 0.0 17,600 17,142 8.38 8.60 25.2 6.25 2006 0 0 -- -- -- 0.0 21,369 20,819 8.33 8.55 30.7 6.42

369

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3.A. Net Generation by Energy Source: Independent Power Producers, 2002 - 2012 3.A. Net Generation by Energy Source: Independent Power Producers, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 395,943 22,241 8,368 378,044 1,763 272,684 18,189 44,466 -1,309 8,612 1,149,001 2003 452,433 35,818 7,949 380,337 2,404 304,904 21,890 46,060 -1,003 8,088 1,258,879 2004 443,547 33,574 7,410 427,510 3,194 312,846 19,518 48,636 -962 7,856 1,303,129 2005 507,199 37,096 9,664 445,625 3,767 345,690 21,486 51,708 -1,174 6,285 1,427,346 2006 498,316 10,396 8,409 452,329 4,223 361,877 24,390 59,345 -1,277 6,412 1,424,421

370

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Consumption of Coal for Electricity Generation by State by Sector, 9. Consumption of Coal for Electricity Generation by State by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 1,787 2,998 -40% 520 898 1,257 2,087 0 0 10 12 Connecticut 297 317 -6.5% 0 0 297 317 0 0 0 0 Maine 11 14 -18% 0 0 6 7 0 0 5 6 Massachusetts 959 1,769 -46% 0 0 954 1,763 0 0 5 6 New Hampshire 520 898 -42% 520 898 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 44,000 53,658 -18% 6 16 43,734 53,052 4 1 256 589

371

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Retail Price of Electricity to Ultimate Customers 4. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector 2002 through 2012 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 8.44 7.89 4.88 N/A 6.75 7.20 2003 8.72 8.03 5.11 7.54 N/A 7.44 2004 8.95 8.17 5.25 7.18 N/A 7.61 2005 9.45 8.67 5.73 8.57 N/A 8.14 2006 10.40 9.46 6.16 9.54 N/A 8.90 2007 10.65 9.65 6.39 9.70 N/A 9.13 2008 11.26 10.36 6.83 10.74 N/A 9.74 2009 11.51 10.17 6.81 10.65 N/A 9.82 2010 11.54 10.19 6.77 10.57 N/A 9.83 2011 11.72 10.23 6.82 10.46 N/A 9.90 2012 11.88 10.09 6.67 10.21 N/A 9.84 Full-Service Providers 2002 8.40 7.77 4.78 N/A 6.65 7.13 2003 8.68 7.89 5.01 6.82 N/A 7.38

372

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Steam Coal Exports" Average Price of U.S. Steam Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",65.1,63.67,73.81,64.48,78.9,-18.3 " Canada*",59.34,55.22,63.02,57.57,73.63,-21.8 " Dominican Republic",78.47,74.41,73.89,75.4,76.61,-1.6 " Honduras","-",54.58,54.43,54.58,54.43,0.3 " Jamaica",480,54.43,"-",54.72,55.42,-1.3 " Mexico",69.42,73.33,82.64,70.83,86.44,-18.1 " Other**",80.33,389.3,70.37,82.45,76.1,8.3

373

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by Coalbed Thickness and Mine Type, 2012" Coal Production by Coalbed Thickness and Mine Type, 2012" "(thousand short tons)" "Coal Thickness (inches)","Underground","Surface","Total" "Under 7","-",17,17 "7 - Under 13","-",2108,2108 "13 - Under 19",429,6688,7117 "19 - Under 25",111,14107,14217 "25 - Under 31",4147,12913,17060 "31 - Under 37",15128,19022,34150 "37 - Under 43",23868,17285,41153 "43 - Under 49",26035,15597,41632 "49 - Under 55",18909,22544,41453 "55 - Under 61",36946,11285,48231 "61 - Under 67",43146,15074,58220 "67 - Under 73",40983,8783,49766 "73 - Under 79",32914,10193,43107 "79 - Under 85",27011,3554,30565

374

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

375

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District" Coal Imports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",469878,331008,156004,800886,350124,128.7 " Baltimore, MD","-","-",106118,"-",154318,"-" " Boston, MA",373985,154438,"-",528423,51185,"NM" " Buffalo, NY",44,"-","-",44,"-","-" " New York City, NY",1373,1402,487,2775,507,447.3 " Norfolk, VA","-",68891,"-",68891,35856,92.1 " Ogdensburg, NY","-",1,12,1,12,-91.7

376

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Exports" U.S. Coke Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",162796,79217,201795,242013,340944,-29 " Canada*",73859,17837,112348,91696,161596,-43.3 " Mexico",88535,60517,86721,149052,176163,-15.4 " Other**",402,863,2726,1265,3185,-60.3 "South America Total",223,217,591,440,1158,-62 " Other**",223,217,591,440,1158,-62 "Europe Total",48972,59197,"-",108169,6,"NM" " Other**",347,11743,"-",12090,"-","-"

377

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. U.S. Coal Stocks, 2007 - 2013" 7. U.S. Coal Stocks, 2007 - 2013" "(thousand short tons)" ,"Coal Consumers" "Last Day of Quarter","Electric","Coke","Other","Commercial","Total","Coal Producers","Total" ,"Power","Plants","Industrial2","and",,"and" ,"Sector1",,,"Institutional Users",,"Distributors" 2007 " March 31",141389,2444,5756,"-",149588,34007,183595 " June 30",154812,2364,5672,"-",162849,32484,195333 " September 30",142666,1972,5811,"-",150448,30090,180538 " December 31",151221,1936,5624,"-",158781,33977,192758

378

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Unit of Measure Equivalents 5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours Terawatthours (TWh) 1,000,000,000,000 (One Trillion) Watthours Gigawatthours 1,000,000 (One Million) Kilowatthours Thousand Gigawatthours 1,000,000,000(One Billion Kilowatthours U.S. Dollar 1,000 (One Thousand) Mills U.S. Cent 10 (Ten) Mills Barrel of Oil 42 Gallons

379

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) 6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 75,711 2,677 0.63 17.68 4.98 126.0 1,680,518 1,634,734 3.68 3.78 72.3 1.53 2003 89,618 3,165 0.74 20.94 5.51 124.0 1,486,088 1,439,513 5.59 5.77 81.6 1.74 2004 107,985 3,817 0.89 25.15 5.10 92.0 1,542,746 1,499,933 6.15 6.33 82.9 1.87 2005 102,450 3,632 1.29 36.31 5.16 87.9 1,835,221 1,780,721 8.32 8.57 83.4 2.38

380

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: 2 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by State, 2012 and 2011 Census Division and State Coal (Thousand Tons) Petroleum Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) December 2012 December 2011 Percentage Change December 2012 December 2011 Percentage Change December 2012 December 2011 Percentage Change New England 1,030 1,389 -26% 2,483 2,680 -7.3% 0 0 -- Connecticut W W W 1,300 954 36% 0 0 -- Maine 0 0 -- W W W 0 0 -- Massachusetts W 675 W 837 990 -15% 0 0 -- New Hampshire W W W W W W 0 0 -- Rhode Island 0 0 -- W W W 0 0 -- Vermont 0 0 -- 51 49 3.0% 0 0 -- Middle Atlantic 7,553 7,800 -3.2% 5,496 6,591 -17% W W W New Jersey 926 871 6.3% 1,084 1,113 -2.6% 0 0 --

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Coal Receipts at Commercial and Institutional Users by Census Division and State" 0. Coal Receipts at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",25,54,32,79,90,-12 " Pennsylvania",25,54,32,79,90,-12 "East North Central",115,183,117,298,301,-0.9 " Illinois",31,42,28,73,67,8.1 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

382

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Receipts at Other Industrial Plants by Census Division and State" Coal Receipts at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",627,587,637,1214,1254,-3.1 " New York",214,178,194,392,377,4

383

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Mines, 2012" Major U.S. Coal Mines, 2012" "Rank","Mine Name / Company","Mine Type","State","Production (short tons)" 1,"North Antelope Rochelle Mine / Peabody Powder River Mining Ll","Surface","Wyoming",107639188 2,"Black Thunder / Thunder Basin Coal Company Llc","Surface","Wyoming",93082919 3,"Cordero Mine / Cordero Mining Llc","Surface","Wyoming",39204736 4,"Antelope Coal Mine / Antelope Coal Llc","Surface","Wyoming",34316314 5,"Belle Ayr Mine / Alpha Coal West, Inc.","Surface","Wyoming",24227846 6,"Eagle Butte Mine / Alpha Coal West, Inc.","Surface","Wyoming",22466733

384

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Petroleum Liquids: Consumption for Electricity Generation, D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 835,481 553,390 241,892 3,953 36,243 2003 1,089,307 658,868 380,378 5,358 44,702 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010 244,114 188,987 49,042 970 5,115 2011 163,954 125,755 33,166 801 4,233 2012 134,956 105,179 24,081 1,618 4,078 2010 January 33,737 26,715 6,282 100 639

385

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2012 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0 3,060.0 1,154.0 -- -- -- -- 1,588.0 12,863.0 9,591 2009 4,339.0 4,147.0 4,621.0 1,166.0 -- -- -- -- 1,729.0 16,002.0 13,006 2010 886.8 186.0 109.9 97.4 98.9 236.3 -- 372.7 -- 1,988.0 15,630

386

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 605,054 10,659 129,947 469 463,980 2003 519,294 16,545 139,852 437 362,460 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010 349,530 40,167 137,072 274 172,016 2011 347,623 35,474 130,108 482 181,559 2012 390,342 32,723 138,217 478 218,924 2010 January 29,578 3,731 11,954 23 13,870

387

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports and Imports, 2007 - 2013" U.S. Coal Exports and Imports, 2007 - 2013" "(thousand short tons)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2007,11139,8786,14702,8405,16198,10559,17124,8597,59163,36347 2008,15802,7640,23069,8982,20321,8485,22329,9101,81519,34208 2009,13335,6325,12951,5426,15159,5441,17653,5447,59097,22639 2010,17807,4803,21965,5058,21074,4680,20870,4811,81716,19353 2011,26617,3381,26987,3419,25976,3588,27679,2700,107259,13088 2012,28642,2022,37534,2329,31563,2415,28006,2394,125746,9159

388

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 56 121 -54% 0 0 0 94 0 0 56 27

389

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nitrogen Oxides Uncontrolled Emission Factors 2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Cyclone Boiler Fluidized Bed Boiler Opposed Firing Boiler Spreader Stoker Boiler Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Dry-Bottom Boilers Dry-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Agricultural Byproducts AB Source: 1 Lbs per ton 1.20 1.20 1.20 N/A 1.20 Blast Furnace Gas BFG Sources: 1 (including footnote 7 within source); EIA estimates Lbs per MMCF 15.40 15.40 15.40 N/A 15.40 Bituminous Coal BIT Source: 2, Table 1.1-3 Lbs per ton 33.00 5.00 12.00 31.00 11.00 Black Liquor BLQ Source: 1 Lbs per ton ** 1.50 1.50 1.50 N/A 1.50

390

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Number of Ultimate Customers Served by Sector, by Provider, 2.1. Number of Ultimate Customers Served by Sector, by Provider, 2002 through 2012 Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

391

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Exports" Average Price of U.S. Coke Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",240.59,241.38,218.4,240.85,225.8,6.7 " Canada*",147.49,330.47,243.04,183.08,286.56,-36.1 " Mexico",316.57,211.63,189.12,273.97,171.71,59.6 " Other**",612.42,485.63,134.48,525.92,135.04,289.5 "South America Total",140.65,156.15,322.7,148.29,250.36,-40.8 " Other**",140.65,156.15,322.7,148.29,250.36,-40.8 "Europe Total",259.26,255.24,"-",257.06,427.83,-39.9

392

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Demand-Side Management Program Annual Effects by Program 2. Demand-Side Management Program Annual Effects by Program Category, by Sector, 2002 through 2012 Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2002 15,284 24,803 10,242 -- 50,328 2003 12,914 24,758 10,031 551 48,254 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 59,000 2006 21,150 28,720 13,155 50 63,076 2007 22,772 30,359 14,038 108 67,278 2008 25,396 34,634 14,766 75 74,871 2009 27,395 34,831 14,610 76 76,912 2010 32,150 37,416 17,259 89 86,914 2011 46,790 50,732 23,061 76 120,659 2012 54,516 58,894 25,023 92 138,525 Energy Efficiency - Actual Peak Load Reduction (MW) 2002 5,300 5,389 2,768 -- 13,457 2003 5,909 4,911 2,671 94 13,585

393

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Total (All Sectors), 2002 - 2012 A. Net Generation by Energy Source: Total (All Sectors), 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 1,933,130 78,701 15,867 691,006 11,463 780,064 264,329 79,109 -8,743 13,527 3,858,452 2003 1,973,737 102,734 16,672 649,908 15,600 763,733 275,806 79,487 -8,535 14,045 3,883,185 2004 1,978,301 100,391 20,754 710,100 15,252 788,528 268,417 83,067 -8,488 14,232 3,970,555 2005 2,012,873 99,840 22,385 760,960 13,464 781,986 270,321 87,329 -6,558 12,821 4,055,423 2006 1,990,511 44,460 19,706 816,441 14,177 787,219 289,246 96,525 -6,558 12,974 4,064,702

394

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Kilowatthours) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 47,208 47,481 44,864 45,018 27,818 27,927 566 569 120,456 120,995 Connecticut 12,758 12,919 12,976 13,087 3,566 3,668 193 185 29,492 29,859 Maine 4,481 4,382 4,053 4,018 3,027 3,016 0 0 11,561 11,415 Massachusetts 20,313 20,473 17,723 17,767 16,927 16,974 350 357 55,313 55,570 New Hampshire 4,439 4,454 4,478 4,478 1,953 1,936 0 0 10,870 10,869 Rhode Island 3,121 3,129 3,640 3,660 923 916 24 27 7,708 7,732

395

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 12,190.5 11,593.8 1,090.0 1,058.9 876.4 830.1 2,546.1 2,755.5 0.0 0.0 7,916.1 7,915.3 0.0 0.0 24,619.1 24,153.6 Connecticut 2,513.4 2,447.7 458.1 432.7 61.0 44.7 389.1 564.4 0.0 0.0 3,186.1 3,185.0 0.0 0.0 6,607.7 6,674.5 Maine 1,250.0 1,250.0 306.0 302.2 119.0 93.0 85.0 85.0 0.0 0.0 1,004.9 1,007.2 0.0 0.0 2,764.9 2,737.4

396

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" "NAICS Code","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "311 Food Manufacturing",875,926,1015,-13.9 "312 Beverage and Tobacco Product Mfg.",26,17,19,35.8 "313 Textile Mills",22,22,25,-13.9 "315 Apparel Manufacturing","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w" "322 Paper Manufacturing",570,583,743,-23.3 "324 Petroleum and Coal Products*",127,113,156,-18.7

397

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" "(million short tons)" ,"Underground",,"Surface",,"Total" "Mine Production Range","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery" "(thousand short tons)","Reserves","Percentage","Reserves","Percentage","Reserves","Percentage" "Over 1,000",4874,57.96,11153,91.28,16028,81.15 "Over 500 to 1,000",531,47.14,226,81.9,757,57.49 "Over 200 to 500",604,52.72,333,69.16,938,58.57

398

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

399

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Average Cost of Petroleum Liquids Delivered for Electricity Generation by State, 2012 and 2011 8. Average Cost of Petroleum Liquids Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 18.64 W W 21.43 21.12 18.47 W Connecticut W 21.91 W 23.87 NM W 21.93 Maine W W W -- NM W W Massachusetts 17.17 19.76 -13% 17.45 NM 17.16 19.66 New Hampshire 23.23 W W 23.23 19.90 -- W Rhode Island -- W W -- NM -- W Vermont 24.11 NM NM 24.11 NM -- -- Middle Atlantic W 20.15 W 21.01 19.21 W 20.66 New Jersey 19.77 18.36 7.7% -- NM 19.77 20.28 New York W 19.66 W 21.01 20.00 W 19.36 Pennsylvania 21.84 22.19 -1.6% -- NM 21.84 22.19

400

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity of Coal Mines by State, 2012 and 2011" Productive Capacity of Coal Mines by State, 2012 and 2011" "(thousand short tons)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",14594,7967,22561,16102,8911,25013,-9.4,-10.6,-9.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" "(thousand short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2007,66,1967,26864,3663,50,3425,311,36347 2008,149,2027,26262,3374,45,2312,39,34208 2009,152,1288,17787,2084,9,1297,21,22639 2010,380,1767,14584,1904,53,582,83,19353 2011,62,1680,9500,856,22,779,188,13088 2012 " January - March","-",260,1594,59,7,80,22,2022 " April - June","-",281,1728,49,21,170,80,2329 " July - September","-",297,1762,266,39,"-",51,2415

402

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by State, County, and Number of Mines, 2012" Average Sales Price of Coal by State, County, and Number of Mines, 2012" "Coal-Producing State and County","Number of Mines","Sales","Average Sales Price" ,,"(thousand short tons)","(dollars per short ton)" "Alabama",39,19021,106.57 " Bibb",1,"w","w" " Blount",2,"w","w" " Fayette",1,"w","w" " Franklin",1,"w","w" " Jackson",2,"w","w" " Jefferson",11,4298,146.04 " Marion",1,"w","w" " Tuscaloosa",7,8599,111.55 " Walker",11,2370,81.88

403

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Coal Stocks at Commercial and Institutional Users by Census Division and State" 2. Coal Stocks at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" "and State",,,,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic",62,58,56,10.9 " Pennsylvania",62,58,56,10.9 "East North Central",168,171,197,-14.7 " Illinois","w","w","w","w" " Indiana",75,76,75,0.5 " Michigan","w","w","w","w" " Ohio",25,15,19,27 " Wisconsin",5,5,3,59.1 "West North Central",66,75,97,-32.2

404

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Summary Statistics for Coal Refining Plants, 2012 - 2013" 3. Summary Statistics for Coal Refining Plants, 2012 - 2013" "(thousand short tons)" "Year and","Coal Receipts","Average Price of Coal Receipts","Coal Used","Coal Stocks1" "Quarter",,"(dollars per short ton)" 2012 " January - March",2151,27.47,1756,771 " April - June",3844,25.42,3688,825 " July - September",5399,24.32,5286,812 " October - December",4919,24.55,4680,787 " Total",16313,25.06,15410 2013 " January - March",5067,24.6,4989,793 " April - June",4015,25.24,3754,756 " Total",9082,24.88,8744 "1 Reported as of the last day of the quarter." "Note: Average price is based on the cost, insurance, and freight (c.i.f. value). Total may not equal sum of components because of independent rounding."

405

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Proposed Transmission Capacity Additions by High-Voltage Size, 2013 - 2019 B. Proposed Transmission Capacity Additions by High-Voltage Size, 2013 - 2019 (Circuit Miles of Transmission) Voltage Circuit Miles Type Operating (kV) Year 2013 Year 2014 Year 2015 Year 2016 Year 2017 Year 2018 Year 2019 All Years AC 100-199 954 1,222 992 1,047 392 382 176 5,165 AC 200-299 1,003 792 1,398 319 539 427 118 4,596 AC 300-399 4,779 839 1,532 1,527 502 1,650 349 11,178 AC 400-599 399 708 669 643 660 1,151 334 4,564 AC 600+ -- -- 14 -- -- 69 -- 83 AC Total 7,134 3,562 4,606 3,536 2,092 3,679 978 25,586 DC 100-199 2 11 5 -- -- 7 -- 25 DC 200-299 -- -- -- -- -- -- -- -- DC 300-399 -- -- -- -- 333 -- -- 333 DC 400-599 -- -- 10 -- -- -- -- 10 DC 600+ -- -- -- -- -- -- -- --

406

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) 3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) Description 2002 2003 2004 2005 2006 2007 Utility Operating Revenues 219,609 230,151 238,759 265,652 275,501 270,964 ......Electric Utility 200,360 206,268 213,012 234,909 246,736 240,864 ......Other Utility 19,250 23,883 25,747 30,743 28,765 30,100 Utility Operating Expenses 189,062 201,057 206,960 236,786 245,589 241,198 ......Electric Utility 171,604 179,044 183,121 207,830 218,445 213,076 ............Operation 116,660 125,436 131,560 150,645 158,893 153,885 ..................Production 90,715 98,305 103,871 120,586 127,494 121,700 ........................Cost of Fuel 24,149 26,871 28,544 36,106 37,945 39,548

407

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Imports" U.S. Coke Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Origin",2013,2013,2012,,,"Change" "North America Total",10284,2293,159462,12577,183712,-93.2 " Canada",3009,2293,159462,5302,183712,-97.1 " Panama",7275,"-","-",7275,"-","-" "South America Total",25267,13030,88424,38297,106612,-64.1 " Brazil","-","-",78595,"-",78595,"-" " Colombia",25267,13030,9829,38297,28017,36.7 "Europe Total",6044,40281,165027,46325,485791,-90.5

408

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Coalbed Thickness by Major Coalbeds and Mine Type, 2012" Coal Production and Coalbed Thickness by Major Coalbeds and Mine Type, 2012" ,"Production (thousand short tons)",,,"Thickness (inches)" "Coalbed ID Number1","Underground","Surface","Total","Average2","Low","High" "Coalbed Name" "1699 Wyodak","-",351188,351188,778,160,913 "0036 Pittsburgh",52476,3871,56348,74,18,138 "0489 No. 9",42193,12181,54374,61,24,74 "0484 Herrin (Illinois No. 6)",48526,1910,50436,71,46,89 "0212 Pittsburgh",27355,76,27431,75,27,98 "1701 Smith","-",23847,23847,822,745,912 "1696 Anderson-Dietz 1-Dietz 2","-",18992,18992,932,660,960

409

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, 0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Cents per Kilowatthour) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 15.71 15.89 13.68 14.31 11.83 12.55 6.68 7.85 14.02 14.49 Connecticut 17.34 18.11 14.65 15.57 12.67 13.24 9.69 10.25 15.54 16.35 Maine 14.66 15.38 11.53 12.29 7.98 8.88 -- -- 11.81 12.58 Massachusetts 14.91 14.67 13.84 14.33 12.57 13.38 4.91 6.14 13.79 14.11 New Hampshire 16.07 16.52 13.36 14.04 11.83 12.27 -- -- 14.19 14.74 Rhode Island 14.40 14.33 11.87 12.37 10.68 11.27 8.28 14.11 12.74 13.04

410

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue from Retail Sales of Electricity to Ultimate Customers 3. Revenue from Retail Sales of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Million Dollars) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 106,834 87,117 48,336 N/A 7,124 249,411 2003 111,249 96,263 51,741 514 N/A 259,767 2004 115,577 100,546 53,477 519 N/A 270,119 2005 128,393 110,522 58,445 643 N/A 298,003 2006 140,582 122,914 62,308 702 N/A 326,506 2007 148,295 128,903 65,712 792 N/A 343,703 2008 155,433 138,469 68,920 827 N/A 363,650 2009 157,008 132,940 62,504 828 N/A 353,280 2010 166,782 135,559 65,750 815 N/A 368,906 2011 166,714 135,926 67,606 803 N/A 371,049 2012 163,280 133,898 65,761 747 N/A 363,687

411

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Metallurgical Coal Exports" U.S. Metallurgical Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",1503162,764701,1411897,2267863,2261900,0.3 " Canada*",975783,343309,1260473,1319092,1895263,-30.4 " Dominican Republic",94,51064,"-",51158,"-","-" " Mexico",527285,370328,151424,897613,366637,144.8 "South America Total",2091488,2561772,2389018,4653260,4543747,2.4 " Argentina",104745,155806,203569,260551,253841,2.6 " Brazil",1921144,2352098,2185449,4273242,4022618,6.2

412

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Price of Coal Receipts at Commercial and Institutional Users by Census Division and State" 1. Average Price of Coal Receipts at Commercial and Institutional Users by Census Division and State" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",139.64,145,158.61,143.29,158.91,-9.8 " Pennsylvania",139.64,145,158.61,143.29,158.91,-9.8 "East North Central",87.62,97.3,87.11,93.56,95.13,-1.7 " Illinois",59.27,60.3,62.17,59.86,66.69,-10.2 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

413

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",87.05,93.03,93.73,89.93,95.68,-6 " New York",102.14,105.8,117.15,103.8,117.61,-11.7

414

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Coal Stocks at Coke Plants by Census Division" 8. Coal Stocks at Coke Plants by Census Division" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic","w","w","w","w" "East North Central",1313,1177,1326,-1 "South Atlantic","w","w","w","w" "East South Central","w","w","w","w" "U.S. Total",2500,2207,2295,8.9 "w = Data withheld to avoid disclosure." "Note: Total may not equal sum of components because of independent rounding."

415

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 3,710,847 182,482 1.37 27.96 1.15 87.0 186,271 30,043 4.19 25.98 0.61 76.4 2003 4,365,996 223,984 1.34 26.20 1.15 90.4 347,546 56,138 5.41 33.50 0.58 89.7 2004 4,410,775 227,700 1.41 27.27 1.13 93.3 337,011 54,152 5.35 33.31 0.61 93.6 2005 4,459,333 229,071 1.56 30.39 1.10 83.0 381,871 61,753 8.30 51.34 0.54 97.2

416

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Metallurgical Coal Exports by Customs District" Metallurgical Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",11716074,14136513,15167377,25852587,27578514,-6.3 " Baltimore, MD",2736470,4225450,5123600,6961920,9037970,-23 " Boston, MA","-","-","-","-",28873,"-" " Buffalo, NY",247714,121347,524040,369061,725698,-49.1 " Norfolk, VA",8730257,9784866,9519119,18515123,17784479,4.1 " Ogdensburg, NY",1633,4850,618,6483,1494,333.9 "Southern Total",3551564,3824484,4264938,7376048,8976503,-17.8

417

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: 3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by Census Divison, 2012 and 2011 Electric Power Sector Electric Utilities Independent Power Producers Census Division December 2012 December 2011 Percentage Change December 2012 December 2011 December 2012 December 2011 Coal (Thousand Tons) New England 1,030 1,389 -25.9% W W W W Middle Atlantic 7,553 7,800 -3.2% W W W W East North Central 36,139 37,262 -3.0% 27,069 27,316 9,070 9,946 West North Central 30,554 28,544 7.0% 30,554 28,544 0 0 South Atlantic 38,859 36,920 5.3% 35,527 33,163 3,331 3,757 East South Central 19,657 17,185 14.4% 19,657 17,185 0 0 West South Central 28,807 22,910 25.7% 17,047 15,125 11,760 7,785

418

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Coal: Consumption for Electricity Generation, D. Coal: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 19,996,890 15,517,857 4,215,043 9,168 254,821 2003 20,366,879 15,391,188 4,745,545 13,080 217,066 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009 18,240,611 13,744,178 4,390,596 7,007 98,829 2010 19,196,315 14,333,496 4,709,686 6,815 146,318 2011 18,074,298 13,551,416 4,399,144 7,263 116,475

419

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Electric Utilities, 2002 - 2012 A. Net Generation by Energy Source: Electric Utilities, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 1,514,670 52,838 6,286 229,639 206 507,380 242,302 3,089 -7,434 480 2,549,457 2003 1,500,281 62,774 7,156 186,967 243 458,829 249,622 3,421 -7,532 519 2,462,281 2004 1,513,641 62,196 11,498 199,662 374 475,682 245,546 3,692 -7,526 467 2,505,231 2005 1,484,855 58,572 11,150 238,204 10 436,296 245,553 4,945 -5,383 643 2,474,846 2006 1,471,421 31,269 9,634 282,088 30 425,341 261,864 6,588 -5,281 700 2,483,656

420

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

10.6. Advanced Metering Count by Technology Type, 10.6. Advanced Metering Count by Technology Type, 2007 through 2012 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 Advanced Metering Infrastructure (AMI) 2007 2,202,222 262,159 9,106 2 2,473,489 2008 4,190,244 444,003 12,757 12 4,647,016 2009 8,712,297 876,419 22,675 10 9,611,401 2010 18,369,908 1,904,983 59,567 67 20,334,525 2011 33,453,548 3,682,159 154,659 7 37,290,373

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2003 through 2012 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2003 N/A N/A N/A N/A N/A 5,870 775 168 -- 6,813 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304 -- 70,009 2009 N/A N/A N/A N/A N/A 88,205 7,365 919 -- 96,489 Photovoltaic 2010 697.890 517.861 243.051 -- 1,458.802 137,618 11,897 1,225 -- 150,740

422

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Summary Statistics for the United States, 2002 - 2012 2. Summary Statistics for the United States, 2002 - 2012 (From Table 2.1.) Number of Ultimate Customers Year Residential Commercial Industrial Transportation Other Total 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

423

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Disposition by State, 2012" Coal Disposition by State, 2012" "(thousand short tons)" "Coal-Producing State","Open Market Sales1","Captive Sales / Transactions2","Exports3","Total" "Alabama",8688,"-",10333,19021 "Alaska","w","-",968,"w" "Arizona","w","-","-","w" "Arkansas","w","-","-","w" "Colorado",20836,4552,3468,28856 "Illinois",29252,5113,12341,46705 "Indiana",17127,18404,375,35906 "Kentucky Total",76602,6884,5668,89154 " Kentucky (East)",37324,6884,3588,47796 " Kentucky (West)",39277,"-",2081,41358

424

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Natural Gas: Consumption for Electricity Generation, A. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,126,062 2,259,684 3,148,595 32,545 685,239 2003 5,616,135 1,763,764 3,145,485 38,480 668,407 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009 7,121,069 2,911,279 3,655,712 34,279 519,799 2010 7,680,185 3,290,993 3,794,423 39,462 555,307 2011 7,883,865 3,446,087 3,819,107 47,170 571,501

425

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 460,887 461,590 -0.2% 3,652 4,218 428,781 432,350 8,630 6,287 19,824 18,735 Connecticut 120,380 110,546 8.9% 69 730 113,620 105,965 3,952 2,061 2,739 1,790 Maine 44,424 49,352 -10% 0 0 28,456 33,555 307 12 15,662 15,785 Massachusetts 184,330 190,063 -3.0% 2,792 2,393 176,497 182,865 3,749 3,761 1,293 1,045 New Hampshire 50,678 46,927 8.0% 754 1,046 49,655 45,765 139 0 131 115

426

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Other Waste Biomass: Consumption for Electricity Generation, D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 34,775 2,456 15,859 4,566 11,894 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790 8,090 2011 30,771 4,488 16,115 3,816 6,352 2012 30,342 4,191 15,740 4,016 6,395 2010 January 2,223 189 1,078 321 635 February 2,336 275 1,208 291 561 March 2,287 311 1,079 302 594

427

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. U.S. Coal Summary Statistics, 2007 - 2013" 1. U.S. Coal Summary Statistics, 2007 - 2013" "(thousand short tons)" "Year and","Production1","Imports","Waste Coal","Producer and","Consumption","Exports","Consumer","Losses and" "Quarter",,,"Supplied","Distributor",,,"Stocks2","Unaccounted" ,,,,"Stocks2",,,,"For3" 2007 " January - March",286041,8786,3264,34007,278727,11139,149588 " April - June",285687,8405,3387,32484,267106,14702,162849 " July - September",286035,10559,3697,30090,303665,16198,150448 " October - December",288872,8597,3727,33977,278500,17124,158781 " Total",1146635,36347,14076,,1127998,59163,,4085

428

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 294,234 13,659 1.45 31.29 1.56 52.1 29,137 4,638 3.55 22.33 1.24 26.5 2003 322,547 15,076 1.45 31.01 1.37 60.7 27,538 4,624 4.85 28.86 1.25 23.2 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93 1.38 18.5 2005 339,968 16,011 1.94 41.17 1.42 61.9 36,383 5,876 6.64 41.13 1.36 26.4

429

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 353 2.20 7.7 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 353 2.20 7.7 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

430

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" "(thousand short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Productive","Capacity","Productive","Capacity","Productive","Capacity","Productive","Capacity" "State","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization" ,,"Percent",,"Percent",,"Percent",,"Percent" "Alabama","w","w","-","-","w","w",14594,85.99

431

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 440,421 484,260 -9.1% 3,652 4,226 419,062 434,504 3,636 13,156 14,072 32,373 Connecticut 112,084 116,563 -3.8% 71 738 112,012 107,121 0 3,210 0 5,494 Maine 42,374 56,230 -25% 0 0 28,302 33,578 0 NM 14,072 22,639 Massachusetts 175,314 198,295 -12% 2,789 2,393 168,890 184,156 3,636 7,872 0 3,875 New Hampshire 50,408 47,137 6.9% 754 1,046 49,655 45,725 0 0 0 NM

432

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 AC & DC Circuit Outage Counts Sustained Outage Causes FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Weather, excluding lightning 6.00 27.00 3.00 30.00 63.00 12.00 -- 69.00 210.00 Lightning 5.00 10.00 8.00 5.00 31.00 16.00 13.00 57.00 145.00 Environmental -- 1.00 1.00 5.00 -- 1.00 -- -- 8.00 Contamination 14.00 -- -- -- 22.00 3.00 6.00 7.00 52.00 Foreign Interference 34.00 3.00 -- 4.00 13.00 1.00 2.00 14.00 71.00 Fire -- 2.00 -- 1.00 6.00 3.00 1.00 85.00 98.00 Vandalism, Terrorism, or Malicious Acts -- -- -- -- 2.00 -- -- 1.00 3.00 Failed AC Substation Equipment 18.00 16.00 35.00 63.00 57.00 16.00 15.00 65.00 285.00

433

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Net Internal Demand (Megawatts) -- Winter Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 / 2013 36,409 45,545 386,359 4,925 74,430 122,566 149,359 35,079 46,909 101,706 616,927 Projected 2013 / 2014 43,384 46,008 399,149 5,385 75,320 132,229 145,657 40,558 51,435 107,341 647,317 Projected 2014 / 2015 44,060 46,090 403,883 5,500 76,252 134,742 146,130 41,259 53,742 109,418 657,192 Projected 2015 / 2016 44,596 46,184 408,927 5,563 77,058 137,338 147,201 41,767 55,346 110,814 665,866

434

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Noncoincident Peak Load by North American Electric Reliability Corporation Assessment Area, B. Noncoincident Peak Load by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Summer Peak Load (Megawatts) Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 44,338 58,319 468,092 5,051 96,769 154,339 161,687 50,246 66,548 130,465 767,762 Projected 2013 45,668 59,969 469,857 5,109 96,192 155,553 159,032 53,971 67,998 133,523 777,015 Projected 2014 46,338 60,654 475,005 5,249 96,879 158,717 159,457 54,703 69,289 132,731 784,017 Projected 2015 47,053 61,428 484,637 5,360 97,565 162,216 164,150 55,346 71,423 134,183 798,724

435

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" 3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","10 or Under","Total2" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50" "Alabama",1.69,2.5,1.95,1.72,1.83,0.69,0.55,1.68 " Underground",1.73,"-","-","-",1.08,0.31,"-",1.64 " Surface",1.36,2.5,1.95,1.72,2.11,1.19,0.55,1.75

436

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Cost of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 9. Average Cost of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England -- -- -- -- -- -- -- Connecticut -- -- -- -- -- -- -- Maine -- -- -- -- -- -- -- Massachusetts -- -- -- -- -- -- -- New Hampshire -- -- -- -- -- -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- -- Middle Atlantic -- W W -- -- -- W New Jersey -- -- -- -- -- -- -- New York -- W W -- -- -- W Pennsylvania -- -- -- -- -- -- -- East North Central W W W 4.10 4.01 W W

437

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

438

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2002 4,417 397 5,844 2,252 3,800 16,710 2003 5,995 397 5,871 2,133 3,758 18,153 2004 6,456 398 6,182 2,152 3,529 18,717 2005 8,706 411 6,193 2,285 3,609 21,205 2006 11,329 411 6,372 2,274 3,727 24,113 2007 16,515 502 6,704 2,214 4,134 30,069 2008 24,651 536 6,864 2,229 4,186 38,466 2009 34,296 619 6,939 2,382 4,317 48,552 2010 39,135 866 7,037 2,405 4,369 53,811 2011 45,676 1,524 7,077 2,409 4,536 61,221 2012 59,075 3,170 7,508 2,592 4,811 77,155

439

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012" Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012" "(million short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery" "State","Coal Reserves","Percentage","Coal Reserves","Percentage","Coal Reserves","Percentage","Coal Reserves","Percentage" ,"at Producing",,"at Producing",,"at Producing",,"at Producing"

440

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Outages by Type and NERC region, 2012 A. U.S. Transmission Circuit Outages by Type and NERC region, 2012 Outage Type FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 151.00 163.00 127.00 272.00 374.00 105.00 80.00 796.00 2,068.00 Non-Automatic Outages (Operational) 77.00 44.00 97.00 230.00 192.00 27.00 45.00 337.00 1,049.00 Non-Automatic Outages (Planned) 2,650.00 453.00 512.00 2,050.00 2,450.00 369.00 472.00 2,744.00 11,700.00 Circuit Outage Hours Automatic Outages (Sustained) 2,852.28 1,312.97 14,244.87 19,857.23 7,123.70 1,509.51 682.60 24,238.64 71,821.80 Non-Automatic Outages (Operational) 186.87 27.08 67.68 186.08 426.59 3.32 13.96 67.59 979.17 Non-Automatic Outages (Planned) 872.65 710.33 1,222.36 1,095.46 503.01 357.44 105.06 1,105.43 5,971.74

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

by Sector, 2002 through 2011 Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2002 1,205 1,720 700 -- 3,625 2003 855...

442

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012" "(million short tons)" ,"Underground - Minable...

443

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Productivity by State and Mine Type, 2012 and 2011" ,"Number of Mining Operations2",,,"Number of Employees3",,,"Average Production per Employee Hour" ,,,"(short tons)4"...

444

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

28,723 30,920 ......Production 17,714 18,143 19,559 20,752 23,921 25,799 ......Transmission 524 579 637 665 679 748 ......Distribution 1,589 1,681 1,787 1,860 1,895 2,037...

445

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent"...

446

SAS Output  

Annual Energy Outlook 2012 (EIA)

Cooling Ponds Dry Cooling Systems Hybrid Wet and Dry Cooling Systems Other Cooling System Types Energy Source Quantity Associated Net Summer Capacity (MW) Quantity Associated Net...

447

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Kingdom","-",115,10,115,10,"NM" "Asia Total",337715,127022,70962,464737,136534,240.4 " China",19536,8692,20964,28228,27697,1.9 " India","-",849,611,849,611,39 "...

448

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Quantity and Net Summer Capacity of Operable Environmental Equipment, 2001 - 2011 Flue Gas Desulfurization Systems Electrostatic Precipitators Baghouses Select Catalytic and...

449

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Net Internal Demand (Megawatts) -- Summer Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 44,338 58,319 469,273 4,967 96,769 156,319 158,041 53,177 66,548 130,465 768,943 Projected 2013 42,532 59,969 447,171 5,022 91,644 144,378 152,949 53,177 65,901 129,278 744,851 Projected 2014 43,142 60,654 448,912 5,161 92,331 144,497 152,843 54,080 67,592 128,200 748,499 Projected 2015 43,812 61,428 457,865 5,270 93,017 147,568 157,287 54,722 69,679 129,553 762,336

450

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 21,525 3,196 1,207 79,013 9,493 0 3,825 30,489 0 3,832 152,580 2003 19,817 3,726 1,559 78,705 12,953 0 4,222 28,704 0 4,843 154,530 2004 19,773 4,128 1,839 78,959 11,684 0 3,248 29,164 0 5,129 153,925 2005 19,466 3,804 1,564 72,882 9,687 0 3,195 29,003 0 5,137 144,739 2006 19,464 2,567 1,656 77,669 9,923 0 2,899 28,972 0 5,103 148,254 2007 16,694 2,355 1,889 77,580 9,411 0 1,590 28,919 0 4,690 143,128

451

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Existing Net Summer Capacity by Energy Source and Producer Type, 2002 through 2012 (Megawatts) A. Existing Net Summer Capacity by Energy Source and Producer Type, 2002 through 2012 (Megawatts) Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewable Sources Hydroelectric Pumped Storage Other Energy Sources Total Total (All Sectors) 2002 315,350 59,651 312,512 2,008 98,657 79,356 16,710 20,371 686 905,301 2003 313,019 60,730 355,442 1,994 99,209 78,694 18,153 20,522 684 948,446 2004 313,020 59,119 371,011 2,296 99,628 77,641 18,717 20,764 746 962,942 2005 313,380 58,548 383,061 2,063 99,988 77,541 21,205 21,347 887 978,020 2006 312,956 58,097 388,294 2,256 100,334 77,821 24,113 21,461 882 986,215 2007 312,738 56,068 392,876 2,313 100,266 77,885 30,069 21,886 788 994,888

452

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Average Cost of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 0. Average Cost of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 3.69 4.94 -25% 4.73 5.70 3.68 4.93 Connecticut 3.88 4.97 -22% 6.45 NM 3.87 4.96 Maine W W W -- -- W W Massachusetts 3.55 4.88 -27% 4.47 5.75 3.53 4.87 New Hampshire W W W 5.54 6.01 W W Rhode Island 3.86 5.01 -23% -- -- 3.86 5.01 Vermont 4.06 5.22 -22% 4.06 5.22 -- -- Middle Atlantic 3.52 5.14 -32% 3.86 5.32 3.46 5.11 New Jersey 3.52 5.11 -31% -- -- 3.52 5.11 New York 3.85 5.45 -29% 3.86 5.32 3.84 5.50

453

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Natural Gas 0. Net Generation from Natural Gas by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 62,490 63,236 -1.2% 345 357 58,757 59,763 901 700 2,488 2,416 Connecticut 16,537 15,188 8.9% 6 NM 15,801 14,715 397 211 333 227 Maine 6,044 6,877 -12.1% 0 0 4,057 4,850 26 0.26 1,960 2,026 Massachusetts 24,672 25,940 -4.9% 278 240 23,812 25,120 416 443 166 136 New Hampshire 7,050 6,658 5.9% 58 80 6,947 6,552 16 0 29 26 Rhode Island 8,185 8,571 -4.5% 0 0 8,140 8,525 45 46 0 0

454

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" 4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "Middle Atlantic" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "Pennsylvania" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "East North Central" " Btu",11928,12228,11682,12112,11933,1.5

455

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Producers, 2012" Major U.S. Coal Producers, 2012" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",192563,18.9 2,"Arch Coal Inc",136992,13.5 3,"Alpha Natural Resources LLC",104306,10.3 4,"Cloud Peak Energy",90721,8.9 5,"CONSOL Energy Inc",55752,5.5 6,"Alliance Resource Operating Partners LP",35406,3.5 7,"Energy Future Holdings Corp",31032,3.1 8,"Murray Energy Corp",29216,2.9 9,"NACCO Industries Inc",28207,2.8 10,"Patriot Coal Corp",23946,2.4 11,"Peter Kiewit Sons Inc",22725,2.2 12,"Westmoreland Coal Co",22215,2.2 13,"BHP Billiton Ltd",12580,1.2

456

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 106 79 35% 0 0 0 23 0 0 106 56 New Jersey 0 NM NM 0 0 0 0 0 0 0 NM

457

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation 6. Net Generation by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 120,887 123,338 -2.0% 3,278 4,408 111,191 112,613 1,178 949 5,240 5,368 Connecticut 36,118 33,745 7.0% 37 93 35,347 33,208 397 211 337 233 Maine 14,429 15,974 -9.7% 0.17 1 10,186 10,890 208 176 4,035 4,907 Massachusetts 36,198 38,055 -4.9% 591 610 34,321 36,783 469 490 817 172 New Hampshire 19,264 20,066 -4.0% 2,017 2,994 17,170 17,020 49 20 29 31

458

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Summer Capacity of Utility Scale Units Using Primarily Renewable Energy Sources and by State, 2012 and 2011 (Megawatts) B. Net Summer Capacity of Utility Scale Units Using Primarily Renewable Energy Sources and by State, 2012 and 2011 (Megawatts) Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 784.1 422.8 49.2 13.9 0.0 0.0 1,956.9 1,946.9 1,367.5 1,421.6 0.0 0.0 4,157.7 3,805.2 Connecticut 0.0 0.0 0.0 0.0 0.0 0.0 122.2 121.7 172.5 178.2 0.0 0.0 294.7 299.9 Maine 427.6 322.5 0.0 0.0 0.0 0.0 742.3 742.3 534.6 576.0 0.0 0.0 1,704.5 1,640.8 Massachusetts 63.8 29.6 41.2 11.7 0.0 0.0 261.1 262.7 395.4 406.9 0.0 0.0 761.5 710.9

459

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 732 0.87 10.5 41 0.09 2.0 0 -- -- Connecticut 0 -- -- 41 0.09 2.0 0 -- -- Maine 32 0.80 7.0 0 -- -- 0 -- -- Massachusetts 700 0.88 10.7 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

460

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Average Cost of Coal Delivered for Electricity Generation by State, 2012 and 2011 7. Average Cost of Coal Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 3.59 3.68 -2.4% 4.07 3.55 3.34 3.74 Connecticut W W W -- -- W W Maine W W W -- -- W W Massachusetts W W W -- -- W W New Hampshire 4.07 3.55 15% 4.07 3.55 -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- -- Middle Atlantic 2.50 2.68 -6.7% -- 2.92 2.50 2.63 New Jersey 4.05 4.18 -3.1% -- -- 4.05 4.18 New York 3.12 3.27 -4.6% -- 3.88 3.12 3.27 Pennsylvania 2.43 2.55 -4.7% -- 2.91 2.43 2.45

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2002 633 1,147 1,649 40 66 1,426 682 38 28 2003 629 1,166 1,693 40 66 1,425 741 38 27 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076 39 29 2009 593 1,168 1,652 43 66 1,427 1,219 39 28 2010 580 1,169 1,657 48 66 1,432 1,355 39 32

462

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) 2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 3,846 138 0.76 21.20 5.91 9.1 852,547 828,439 3.36 3.46 66.8 2.88 2003 16,383 594 1.04 28.74 5.73 47.3 823,681 798,996 5.32 5.48 69.9 4.20 2004 14,876 540 0.98 27.01 5.59 40.4 839,886 814,843 6.04 6.22 68.4 4.76 2005 16,620 594 1.21 33.75 5.44 58.2 828,882 805,132 8.00 8.24 74.3 6.18

463

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Existing Transmission Capacity by High-Voltage Size, 2012 A. Existing Transmission Capacity by High-Voltage Size, 2012 Voltage Circuit Miles Type Operating (kV) FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. AC 100-199 -- -- -- -- -- -- -- -- -- AC 200-299 6,018 7,813 1,538 6,933 21,757 2,948 -- 38,410 85,416 AC 300-399 -- 7,362 5,850 13,429 3,650 5,303 9,529 10,913 56,036 AC 400-599 1,201 543 -- 2,618 8,876 94 -- 12,794 26,125 AC 600-799 -- -- 190 2,226 -- -- -- -- 2,416 AC Multi-Circuit Structure 200-299 1,198 686 36 2,008 4,156 9 -- -- 8,092 AC Multi-Circuit Structure 300-399 -- 372 274 3,706 313 153 2,747 -- 7,564 AC Multi-Circuit Structure 400-599 -- -- -- 90 857 -- -- -- 947 AC Multi-Circuit Structure 600-799 -- -- -- -- -- -- -- -- --

464

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Energy for Load by North American Electric Reliability Corporation Assessment Area, A. Net Energy for Load by North American Electric Reliability Corporation Assessment Area, 2002 - 2012, Actual Net Energy (Thousands of Megawatthours) Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 211,116 286,199 2,301,321 567,897 273,907 279,264 -- -- 150,058 -- -- 835,319 194,876 280,269 666,696 3,745,601 2003 219,021 288,791 2,255,233 545,109 276,600 267,068 -- -- 153,918 -- -- 826,964 185,574 283,868 664,754 3,711,667 2004 220,335 292,725 2,313,180 553,236 283,646 274,760 -- -- 152,975 -- -- 856,734 191,829 289,146 682,053 3,797,439 2005 226,544 303,607 2,385,461 -- -- -- -- -- 216,633 -- 1,005,226 962,054 201,548 299,225 685,624 3,900,461

465

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports" U.S. Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",3122664,2010882,3565711,5133546,5327583,-3.6 " Canada*",1773644,943061,2101534,2716705,3176066,-14.5 " Dominican Republic",51792,211736,124720,263528,312741,-15.7 " Honduras","-",41664,34161,41664,68124,-38.8 " Jamaica",25,36311,"-",36336,33585,8.2 " Mexico",1244972,777750,1268077,2022722,1698391,19.1 " Other**",52231,360,37219,52591,38676,36

466

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. U.S. Transformer Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 B. U.S. Transformer Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 Transformer Outage Counts Sustained Outage Causes FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Weather, excluding lightning -- -- -- -- 1.00 -- -- -- 1.00 Lightning -- -- -- -- -- -- -- -- -- Environmental -- -- -- -- -- -- -- -- -- Contamination 1.00 -- -- -- -- -- -- -- 1.00 Foreign Interference -- -- -- -- -- -- -- -- -- Fire -- -- -- -- -- -- -- -- -- Vandalism, Terrorism, or Malicious Acts -- -- -- -- -- -- -- -- -- Failed AC Substation Equipment 3.00 1.00 -- 1.00 5.00 -- -- 4.00 14.00 Failed AC/DC Terminal Equipment -- -- -- -- -- -- -- -- -- Failed Protection System Equipment -- 1.00 -- -- 3.00 -- -- -- 4.00

467

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,157.7 3,805.2 24,619.1 24,153.6 1,753.4 1,709.4 3.0 3.0 4,630.3 4,653.7 48.0 26.0 35,211.5 34,350.9 Connecticut 294.7 299.9 6,607.7 6,674.5 29.4 29.4 0.0 0.0 2,102.5 2,102.5 26.0 26.0 9,060.3 9,132.3 Maine 1,704.5 1,640.8 2,764.9 2,737.4 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 4,491.4 4,378.2 Massachusetts 761.5 710.9 11,155.2 10,637.8 1,724.0 1,680.0 3.0 3.0 677.3 684.7 0.0 0.0 14,321.0 13,716.4

468

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

by State" by State" "(thousand short tons)" ,,,,"Year to Date" "Coal-Producing Region","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Alabama",4649,4410,5171,9059,10150,-10.8 "Alaska",442,300,542,742,1091,-32 "Arizona",2184,1825,2002,4009,4169,-3.8 "Arkansas",2,4,11,6,33,-83.1 "Colorado",5297,5781,6885,11079,13914,-20.4 "Illinois",13474,13996,12487,27470,24419,12.5 "Indiana",9516,9422,9147,18938,18794,0.8 "Kansas",5,5,5,9,8,23.7 "Kentucky Total",20683,20594,22803,41276,49276,-16.2 " Eastern (Kentucky)",10392,10144,12444,20536,27516,-25.4

469

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Solar 0. Net Generation from Solar by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 35 7 427.1% 9 4 25 2 1 1 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 30 5 521.6% 9 4 20 0.14 1 1 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 5 2 179.0% 0 0 5 2 0 0 0 0 Middle Atlantic 389 98 295.3% 41 19 303 65 37 8 8 5

470

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, A. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, 2002 - 2012, Actual Net Internal Demand (Megawatts) -- Winter Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 / 2003 42,001 45,980 360,748 84,844 46,159 39,974 -- -- 23,090 -- -- 137,541 29,140 44,719 94,554 588,002 2003 / 2004 36,229 47,850 357,026 86,332 45,625 39,955 -- -- 24,042 -- -- 133,244 27,828 41,988 100,337 583,430 2004 / 2005 41,449 47,859 371,011 91,800 45,565 40,618 -- -- 24,446 -- -- 139,486 29,096 44,010 101,002 605,331

471

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumers in the Manufacturing and Coke Sectors, 2012" Coal Consumers in the Manufacturing and Coke Sectors, 2012" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, ND, NE" "Carmeuse Lime Stone Inc","AL, IL, IN, KY, MI, OH, PA, TN, VA, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical Company","TN" "Georgia-Pacific LLC","AL, GA, OK, VA, WI" "Holcim (US) Inc","AL, CO, MD, MO, MT, OK, SC, TX, UT" "NewPage Corporation","MD, MI, WI" "U S Steel Corporation","AL, IN, MI, MN"

472

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 13 N/A N/A N/A 0 13 N/A 2003 0 0 0 13 152 717 420 0 72 1,374 2004 0 0 0 13 172 945 444 0 105 1,680 2005 0 0 0 16 218 953 486 0 86 1,759 2006 0 0 0 21 173 956 470 0 93 1,713 2007 0 0 0 15 203 962 434 0 77 1,691 2008 0 0.08 0 21 234 911 389 0 60 1,615 2009 0.21 0.04 0 20 318 1,045 386 0 71 1,839 2010 16 5 0 21 256 1,031 386 0 80 1,794 2011 51 84 0 26 952 971 393 0 26 2,502

473

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Net Generation from Renewable Sources Excluding Hydroelectric 4. Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 8,557 8,015 6.8% 664 574 5,652 5,352 136 104 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 4,099 4,495 -8.8% 0 0 2,468 2,421 92 89 1,539 1,985 Massachusetts 1,843 1,207 52.8% 68 48 1,198 1,145 11 13 566 0 New Hampshire 1,381 1,091 26.6% 347 291 1,003 800 31 0 0 0.35 Rhode Island 102 130 -21.8% 0 0 102 130 0 0 0 0

474

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" 3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "New England" " Btu",13323,13196,13391,13253,13339,-0.6 " Sulfur",0.84,0.89,0.72,0.87,0.72,20.3 " Ash",5.95,5.81,5.93,5.87,6.09,-3.6 "Maine" " Btu","w","w","w","w","w","w" " Sulfur","w","w","w","w","w","w" " Ash","w","w","w","w","w","w"

475

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Net Generation from Petroleum Coke 9. Net Generation from Petroleum Coke by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 76 344 -78.0% 0 0 0 263 0 0 76 81 New Jersey 40 58 -30.6% 0 0 0 0 0 0 40 58

476

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Petroleum Liquids 8. Net Generation from Petroleum Liquids by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 413 639 -35.4% 52 120 267 374 49 55 45 90 Connecticut 112 166 -32.6% 4 5 104 155 0.05 0 4 5 Maine 84 178 -52.8% 0.17 1 65 89 2 3 16 85 Massachusetts 174 197 -11.2% 15 40 98 128 37 28 25 NM New Hampshire 22 78 -72.1% 20 57 0.12 1 2 20 0.17 0.10 Rhode Island 18 14 31.0% 11 10 0.12 1 7 2 0 0 Vermont 3 8 -58.1% 2 6 0 0 1 2 0 0

477

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Number of Employees at Underground and Surface Mines by State and Union Status, 2012" Average Number of Employees at Underground and Surface Mines by State and Union Status, 2012" ,"Union",,"Nonunion" "Coal-Producing State","Underground","Surface","Underground","Surface" "and Region1" "Alabama",3044,70,89,1677 "Alaska","-",143,"-","-" "Arizona","-",432,"-","-" "Arkansas","-","-",70,"-" "Colorado",174,212,1858,261 "Illinois",647,58,3291,534 "Indiana","-","-",2054,1868 "Kentucky Total",564,93,10122,4595 " Kentucky (East)",48,93,6821,3943 " Kentucky (West)",516,"-",3301,652

478

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Commerical Sector, 2002 - 2012 A. Net Generation by Energy Source: Commerical Sector, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 992 426 6 4,310 0.01 0 13 1,065 0 603 7,415 2003 1,206 416 8 3,899 0 0 72 1,302 0 594 7,496 2004 1,340 493 7 3,969 0 0 105 1,575 0 781 8,270 2005 1,353 368 7 4,249 0 0 86 1,673 0 756 8,492 2006 1,310 228 7 4,355 0.04 0 93 1,619 0 758 8,371 2007 1,371 180 9 4,257 0 0 77 1,614 0 764 8,273 2008 1,261 136 6 4,188 0 0 60 1,555 0 720 7,926 2009 1,096 157 5 4,225 0 0 71 1,769 0 842 8,165

479

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Number of Employees by State and Mine Type, 2012 and 2011" Average Number of Employees by State and Mine Type, 2012 and 2011" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State and Region1" "Alabama",3190,1851,5041,3138,1618,4756,1.7,14.4,6 "Alaska","-",143,143,"-",136,136,"-",5.1,5.1 "Arizona","-",432,432,"-",419,419,"-",3.1,3.1 "Arkansas",70,3,73,67,3,70,4.5,"-",4.3 "Colorado",2032,473,2505,1927,478,2405,5.4,-1,4.2 "Illinois",3938,574,4512,3563,542,4105,10.5,5.9,9.9

480

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Utilization of Coal Mines by State, 2012 and 2011" Capacity Utilization of Coal Mines by State, 2012 and 2011" "(percent)" ,2012,,,2011 "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",85.99,83.96,85.28,67.52,90.91,75.85 "Alaska","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w" "Colorado","w","w",76.65,"w","w",74.63 "Illinois",71.02,57.41,69.11,71.73,53.22,68.54

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. Coke Summary Statistics, 2007 - 2013" 2. U.S. Coke Summary Statistics, 2007 - 2013" "(thousand short tons)" "Year and","Production","Imports","Producer and","Consumption2","Exports" "Quarter",,,"Distributor" ,,,"Stocks1" 2007 " January - March",4000,454,717,4078,343 " April - June",4083,685,767,4428,291 " July - September",4063,521,637,4371,344 " October - December",4055,800,632,4394,466 " Total",16201,2460,,17270,1444 2008 " January - March",4036,850,478,4723,316 " April - June",3810,1243,505,4559,466 " July - September",4107,998,464,4494,653 " October - December",3694,512,916,3229,524

482

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Underground Coal Mining Productivity by State and Mining Method, 2012" 2. Underground Coal Mining Productivity by State and Mining Method, 2012" "(short tons produced per employee hour)" "Coal-Producing State, Region1 and Mine Type","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",0.71,"-",1.69,1.66 "Arkansas",0.59,"-","-",0.59 "Colorado",1.9,"-",6.38,5.93 "Illinois",3.65,"-",6.6,4.86 "Indiana",3.25,"-","-",3.25 "Kentucky Total",2.43,1.77,"-",2.39 " Kentucky (East)",1.61,1.77,"-",1.62 " Kentucky (West)",3.61,"-","-",3.56 "Maryland",1.8,"-","-",1.8

483

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

484

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coal Exports and Imports, 2007 - 2013" Average Price of U.S. Coal Exports and Imports, 2007 - 2013" "(dollars per short ton)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2007,74.13,45.91,64.3,46.86,72.1,47.38,71.09,50.51,70.25,47.64 2008,81.81,52.91,97.24,55.59,102.51,64.65,104.97,65.33,97.68,59.83 2009,113.08,61.03,93.28,65.44,98.7,64.93,100.98,64.72,101.44,63.91 2010,106.52,62.02,121.36,71.91,125.45,77.12,126.16,76.18,120.41,71.77 2011,139.34,86,153,105.86,155.88,112.06,147.38,110.19,148.86,103.32

485

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Coke and Breeze Stocks at Coke Plants by Census Division" 1. Coke and Breeze Stocks at Coke Plants by Census Division" "(thousand short tons)" "Census Division","April - June","January - March","April - June","Percent Change" ,2013,2013,2012,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic","w","w","w","w" "East North Central",724,510,509,42.1 "South Atlantic","w","w","w","w" "East South Central","w","w","w","w" "U.S. Total",914,690,674,35.6 "Coke Total",757,573,594,27.5 "Breeze Total",157,117,80,95.2 "w = Data withheld to avoid disclosure."

486

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 Generator Additions Generator Retirements Net Capacity Additions Energy Source Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity 2013 U.S. Total 513 15,144 179 12,604 334 2,540 Coal 4 1,482 28 4,465 -24 -2,983 Petroleum 21 45 41 1,401 -20 -1,356 Natural Gas 87 6,818 55 2,950 32 3,868 Other Gases -- -- 1 4 -1 -4 Nuclear -- -- 4 3,576 -4 -3,576 Hydroelectric Conventional 17 385 36 185 -19 201 Wind 25 2,225 -- -- 25 2,225 Solar Thermal and Photovoltaic 277 3,460 1 1 276 3,459 Wood and Wood-Derived Fuels 10 489 -- -- 10 489 Geothermal 5 50 1 11 4 39

487

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Number of Mines by State and Mine Type, 2012 and 2011" Coal Production and Number of Mines by State and Mine Type, 2012 and 2011" "(thousand short tons)" ,2012,,2011,,"Percent Change" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and Region1" "Alabama",46,19321,52,19071,-11.5,1.3 " Underground",8,12570,9,10879,-11.1,15.5 " Surface",38,6752,43,8192,-11.6,-17.6 "Alaska",1,2052,1,2149,"-",-4.5 " Surface",1,2052,1,2149,"-",-4.5 "Arizona",1,7493,1,8111,"-",-7.6 " Surface",1,7493,1,8111,"-",-7.6 "Arkansas",2,98,2,133,"-",-26.4

488

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Biomass 8. Net Generation from Biomass by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,229 7,138 1.3% 570 515 4,428 4,544 125 94 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 3,212 3,788 -15.2% 0 0 1,581 1,714 92 89 1,539 1,985 Massachusetts 1,724 1,140 51.2% 0 0 1,157 1,137 1 3 566 0 New Hampshire 1,173 1,025 14.4% 347 291 795 734 31 0 0 0.35 Rhode Island 101 127 -21.1% 0 0 101 127 0 0 0 0

489

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 10,141 N/A N/A 8,300 N/A N/A N/A 13,089 18,189 N/A 2003 10,834 0 532 8,645 4,435 7,227 1,211 13,175 21,890 67,949 2004 13,739 0 569 8,528 4,377 6,978 884 13,563 19,518 68,154 2005 16,764 0 535 8,741 4,308 7,092 701 13,566 21,486 73,195 2006 24,238 0 493 8,404 4,771 7,259 774 13,406 24,390 83,736 2007 30,089 6 595 8,486 5,177 7,061 839 13,498 19,109 84,860 2008 48,464 60 787 8,750 6,057 6,975 1,040 13,643 23,451 109,226

490

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" 7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" "(thousand short tons)" ,2012,,,,,2011,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2012,2011,"Percent" "and State","Power1","Industrial",,"and","and","Power1","Industrial",,"and","and",,,"Change" ,,,,"Institutional","Distributor",,,,"Institutional","Distributor" "New England",1030,13,"-","-","-",1389,"w","-","-","-",1042,"w","w"

491

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Net Generation from Nuclear Energy 2. Net Generation from Nuclear Energy by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 36,116 34,283 5.3% 0 0 36,116 34,283 0 0 0 0 Connecticut 17,078 15,928 7.2% 0 0 17,078 15,928 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 5,860 5,085 15.2% 0 0 5,860 5,085 0 0 0 0 New Hampshire 8,189 8,363 -2.1% 0 0 8,189 8,363 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 4,989 4,907 1.7% 0 0 4,989 4,907 0 0 0 0

492

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Net Generation from Coal 7. Net Generation from Coal by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,103 6,848 -40.1% 1,268 2,208 2,793 4,592 0 0 42 47 Connecticut 653 526 24.2% 0 0 653 526 0 0 0 0 Maine 45 55 -18.0% 0 0 30 38 0 0 15 18 Massachusetts 2,137 4,059 -47.4% 0 0 2,110 4,029 0 0 27 30 New Hampshire 1,268 2,208 -42.6% 1,268 2,208 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0

493

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Nitrogen Oxides Control Technology Emissions Reduction Factors 4. Nitrogen Oxides Control Technology Emissions Reduction Factors Nitrogen Oxides Control Technology EIA-Code(s) Reduction Factor Advanced Overfire Air AA 30% Alternate Burners BF 20% Flue Gas Recirculation FR 40% Fluidized Bed Combustor CF 20% Fuel Reburning FU 30% Low Excess Air LA 20% Low NOx Burners LN 30% Other (or Unspecified) OT 20% Overfire Air OV 20% Selective Catalytic Reduction SR 70% Selective Catalytic Reduction With Low Nitrogen Oxide Burners SR and LN 90% Selective Noncatalytic Reduction SN 30% Selective Noncatalytic Reduction With Low NOx Burners SN and LN 50% Slagging SC 20% Notes: Starting with 1995 data, reduction factors for Advanced Overfire Air, Low NOx Burners, and Overfire Air were reduced by 10 percent.

494

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Retail Sales and Direct Use of Electricity to Ultimate Customers 2. Retail Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Megawatthours) Year Residential Commercial Industrial Transportation Other Total Direct Use Total End Use Total Electric Industry 2002 1,265,179,869 1,104,496,607 990,237,631 N/A 105,551,904 3,465,466,011 166,184,296 3,631,650,307 2003 1,275,823,910 1,198,727,601 1,012,373,247 6,809,728 N/A 3,493,734,486 168,294,526 3,662,029,012 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 N/A 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 N/A 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 N/A 3,669,918,840 146,926,612 3,816,845,452

495

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Electric Power Industry Summary Statistics, 2012 and 2011 1. Total Electric Power Industry Summary Statistics, 2012 and 2011 Net Generation and Consumption of Fuels for January through December Total (All Sectors) Electric Power Sector Commercial Industrial Electric Utilities Independent Power Producers Fuel Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Net Generation (Thousand Megawatthours) Coal 1,514,043 1,733,430 -12.7% 1,146,480 1,301,107 354,076 416,783 883 1,049 12,603 14,490 Petroleum Liquids 13,403 16,086 -16.7% 9,892 11,688 2,757 3,655 191 86 563 657 Petroleum Coke 9,787 14,096 -30.6% 5,664 9,428 1,758 3,431 6 3 2,359 1,234 Natural Gas 1,225,894 1,013,689 20.9% 504,958 414,843 627,833 511,447 6,603 5,487 86,500 81,911

496

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Dollars) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,418 7,546 6,137 6,441 3,292 3,504 38 45 16,885 17,536 Connecticut 2,213 2,339 1,901 2,038 452 486 19 19 4,584 4,882 Maine 657 674 467 494 242 268 0 0 1,366 1,436 Massachusetts 3,029 3,003 2,453 2,547 2,127 2,270 17 22 7,627 7,842 New Hampshire 713 736 598 629 231 238 0 0 1,543 1,602 Rhode Island 450 449 432 453 99 103 2 4 982 1,008 Vermont 356 346 285 281 142 139 0 0 784 766

497

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) 8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 47,805 1,639 1.03 29.98 4.85 44.4 3,198,108 3,126,308 3.55 3.63 91.6 2.42 2003 59,377 2,086 0.60 17.16 4.88 64.3 3,335,086 3,244,368 5.33 5.48 96.2 3.15 2004 73,745 2,609 0.72 20.30 4.95 81.0 3,491,942 3,403,474 5.86 6.01 93.1 3.43 2005 92,706 3,277 0.90 25.42 5.09 82.9 3,675,165 3,578,722 8.20 8.42 95.8 4.69

498

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Coal Stocks at Other Industrial Plants by Census Division and State" 9. Coal Stocks at Other Industrial Plants by Census Division and State" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" "and State",,,,"(June 30)" ,,,,"2013 versus 2012" "New England","w","w",21,"w" " Maine","w","w","w","w" " Massachusetts","w","w","w","w" "Middle Atlantic",295,251,286,3.2 " New York",137,78,107,27.6 " Pennsylvania",158,172,179,-11.5 "East North Central",734,692,761,-3.5 " Illinois",160,152,187,-14.1

499

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2002 70,704 66,593 4,417 141,714 2003 57,716 59,884 3,967 121,567 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2010, End of Month Stocks January 86,354 86,893 4,845 178,091 February 82,469 83,721 4,836 171,026 March 86,698 86,014 5,030 177,742 April 92,621 89,545 7,095 189,260 May 93,069 91,514 7,085 191,669

500

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2214,2356,1994,4570,4353,5 "312 Beverage and Tobacco Product Mfg.",48,37,53,85,90,-5.6 "313 Textile Mills",31,29,22,59,63,-6.1 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"