Powered by Deep Web Technologies
Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Plant Tumor Growth Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Tumor Growth Rates Plant Tumor Growth Rates Name: Gina and Maria Location: N/A Country: N/A Date: N/A Question: We are doing a science fair project on if B. Carotene, Green tea, and Grape Seed Extract helps plants against the crown gall disease. We injected sunflowers with agrobacterium tum. one week ago (Sun. Feb. 27, 2000). Our questions is how long will it take for the tumors to grow? We scratched the surface of the stems and injected the agrobacterium in the wound. Also which do you think, in your opinion, will do the best, if any? Our science fair is April 13, do you think we'll have growth before then, atleast enough time to do our conclusion and results? Thank you, any information you forward will be very helpful. Replies: Sunflowers form galls relatively quickly. I usually get them in two weeks at least. Good luck.

2

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% 4,100 4,400 4,700 5,000 5,300 5,600 5,900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Distillate Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: 2.5% Aug '12 to Aug '13: -1.3% YTD '12 to YTD '13: 1.5% 300 400 500 600 700 800 900 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons U.S. Residual Fuel Sales 2011 2012 2013 Adjusted Growth Rates* Jul '13 to Aug '13: -0.8%

3

Adjusted Growth Rates* Jan.  

U.S. Energy Information Administration (EIA) Indexed Site

Adjusted Adjusted Growth Rates* Jan. '99 to Feb. '99: -1.7% Feb. '98 to Feb. '99: +19.8% YTD '98 to YTD '99: +15.0% U.S. Distillate Fuel Sales 3,000 3,500 4,000 4,500 5,000 5,500 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -7.4% Jan '99 to Jan '00: -0.1% YTD '99 to YTD '00: -0.1% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -16.8% Jan '99 to Jan '00: -3.2% YTD '99 to YTD '00: -3.2% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1998 1999 2000 Adjusted Growth Rates* Dec '99 to Jan '00: -9.3% Jan '99 to Jan '00: +3.5% YTD '99 to YTD '00: +3.5% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul

4

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

June '99 to July '99: -5.4% June '99 to July '99: -5.4% July '98 to July '99: +3.3% YTD '98 to YTD '99: +6.3% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: -0.5% July '98 to July '99: -0.4% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +0.5% July '98 to July '99: +1.0% YTD '98 to YTD '99: -0.3% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* June '99 to July '99: +1.5% July '98 to July '99: +10.2% YTD '98 to YTD '99: +7.2%

5

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Nov '99 to Dec '99: +5.3% Nov '99 to Dec '99: +5.3% Dec '98 to Dec '99: +8.7% YTD '98 to YTD '99: +5.0% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +6.0% Dec '98 to Dec '99: +4.5% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +2.4% Dec '98 to Dec '99: +3.0% YTD '98 to YTD '99: +0.9% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Nov '99 to Dec '99: +32.3% Dec '98 to Dec '99: +2.0% YTD '98 to YTD '99: +5.5%

6

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

July '99 to Aug. '99: +4.7% July '99 to Aug. '99: +4.7% Aug. '98 to Aug. '99: +1.3% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -1.9% Aug. '98 to Aug. '99: -0.4% YTD '98 to YTD '99: +0.9% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: -0.1% Aug. '98 to Aug. '99: -1.4% YTD '98 to YTD '99: -0.7% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* July '99 to Aug. '99: +22.3% Aug. '98 to Aug. '99: +21.1%

7

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Aug '99 to Sep '99: +4.9% Aug '99 to Sep '99: +4.9% Sep '98 to Sep '99: +4.7% YTD '98 to YTD '99: +4.7% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.4% Sep '98 to Sep '99: +0.4% YTD '98 to YTD '99: +1.3% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: -2.1% Sep '98 to Sep '99: +4.6% YTD '98 to YTD '99: 0.0% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Aug '99 to Sep '99: +7.3% Sep '98 to Sep '99: +8.4% YTD '98 to YTD '99: +8.3%

8

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Oct '99 to Nov '99: +0.1% Oct '99 to Nov '99: +0.1% Nov '98 to Nov '99: +5.5% YTD '98 to YTD '99: +4.5% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: -0.7% Nov '98 to Nov '99: +1.7% YTD '98 to YTD '99: +1.1% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +2.5% Nov '98 to Nov '99: +6.0% YTD '98 to YTD '99: +0.8% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Oct '99 to Nov '99: +9.7% Nov '98 to Nov '99: +2.2% YTD '98 to YTD '99: +6.2%

9

Adjusted Growth Rates*  

U.S. Energy Information Administration (EIA) Indexed Site

Sep '99 to Oct '99: +3.9% Sep '99 to Oct '99: +3.9% Oct '98 to Oct '99: +2.3% YTD '98 to YTD '99: +4.4% U.S. Motor Gasoline Sales 8,000 9,000 10,000 11,000 12,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -0.2% Oct '98 to Oct '99: -0.9% YTD '98 to YTD '99: +1.0% U.S. Kerosene-Type Jet Fuel Sales 1,500 1,600 1,700 1,800 1,900 2,000 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -1.9% Oct '98 to Oct '99: -0.7% YTD '98 to YTD '99: +0.4% U.S. Propane Sales 600 800 1,000 1,200 1,400 1,600 1,800 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Millions of Gallons 1997 1998 1999 Adjusted Growth Rates* Sep '99 to Oct '99: -2.1% Oct '98 to Oct '99: -6.4% YTD '98 to YTD '99: +6.6%

10

Inflation uncertainty, growth uncertainty, oil prices, and output growth in the UK  

Science Journals Connector (OSTI)

This study examines the transmission and response of inflation uncertainty and output uncertainty on inflation and output growth in the UK using a bi-variate EGARCH model. Results suggest that inflation uncertain...

Ramprasad Bhar; Girijasankar Mallik

2013-12-01T23:59:59.000Z

11

Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network [OSTI]

We study the average asymptotic growth rate of cells in randomly fluctuating environments. Using a game-theoretic perspective, we show that any response strategy has an asymptotic growth rate, which is the sum of: (i) the maximal growth rate at the worst possible distribution of environments, (ii) relative information between the actual distribution of environments to the worst one, and (iii) information utilization rate which is the information rate of the sensory devices minus the "information dissipation rate", the amount of information not utilized by the cell for growth. In non-stationary environments, the optimal strategy is the time average of the instantaneous optimal strategy and the optimal switching times are evenly spaced in the statistical (Fisher) metric.

Pugatch, Rami; Tlusty, Tsvi

2013-01-01T23:59:59.000Z

12

Apparatus for silicon web growth of higher output and improved growth stability  

DOE Patents [OSTI]

This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

Duncan, Charles S. (Penn Hills, PA); Piotrowski, Paul A. (Monroeville, PA)

1989-01-01T23:59:59.000Z

13

Estimating phytoplankton growth rates from compositional data  

E-Print Network [OSTI]

I build on the deterministic phytoplankton growth model of Sosik et al. by introducing process error, which simulates real variation in population growth and inaccuracies in the structure of the matrix model. Adding a ...

Thomas, Lorraine (Lorraine Marie)

2008-01-01T23:59:59.000Z

14

Ultraslow growth rates of giant gypsum crystals  

Science Journals Connector (OSTI)

...gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral...gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in...geological timescale. age anhydrite Chihuahua Mexico cooling crystal growth crystallization...

A. E. S. Van Driessche; J. M. García-Ruíz; K. Tsukamoto; L. D. Patińo-Lopez; H. Satoh

2011-01-01T23:59:59.000Z

15

Estimation of Growth Rate from the Mitotic Index  

Science Journals Connector (OSTI)

...Growth Rate from the Mitotic Index KING-THOM CHUNG, EDGAR H...an exponentially 778 MITOTIC INDEX GROWTH RATE 0 la 0 .0 E z...represents the time interval between completion of protein synthesis and division...Scherbaum, 0. 1957. The division index and multiplica- tion in a...

King-Thom Chung; Edgar H. Nilson; Marilyn J. Case; Allen G. Marr; Robert E. Hungate

1973-05-01T23:59:59.000Z

16

Sibling competition and the evolution of growth rates in birds  

Science Journals Connector (OSTI)

...parental investment (e.g. the energy cost of scrambling), sibling...1991 Trade o between growth and energy storage in male Vipera berus...Reproductive success of polygynous male corn buntings Miliaria calandra as...1999 Growth rates of nestling corn buntings Miliaria calandra in...

1999-01-01T23:59:59.000Z

17

The growth rate of gas hydrate from refrigerant R12  

SciTech Connect (OSTI)

Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

Kendoush, Abdullah Abbas; Jassim, Najim Abid [Centre of Engineering Physics, Ministry of Sciences and Technology, P.O. Box 765, Baghdad (Iraq); Joudi, Khalid A. [Al-Nahrain University, Baghdad (Iraq)

2006-07-15T23:59:59.000Z

18

Ultrahigh growth rate of epitaxial silicon by chemical vapor deposition at low temperature with neopentasilane  

E-Print Network [OSTI]

- iane SiH4 to disilane Si2H6 , to trisilane, Si3H8 2 leads to increased epitaxy growth rates at the same growth rate was 0.6 nm/min, and the disilane growth rate was 8 nm/min. In this work, we explored the use

19

Extended Simulations of Graphene Growth with Updated Rate Coefficients  

SciTech Connect (OSTI)

New simulations of graphene growth in flame environments are presented. The simulations employ a kinetic Monte Carlo (KMC) algorithm coupled to molecular mechanics (MM) geometry optimization to track individual graphenic species as they evolve. Focus is given to incorporation of five-member rings and resulting curvature and edge defects. The model code has been re-written to be more computationally efficient enabling a larger set of simulations to be run, decreasing stochastic fluctuations in the averaged results. The model also includes updated rate coefficients for graphene edge reactions recently published in the literature. The new simulations are compared to results from the previous model as well as to hydrogen to carbon ratios recorded in experiment and calculated with alternate models.

Whitesides, R; You, X; Frenklach, M

2010-03-18T23:59:59.000Z

20

Dispersion relation and growth rate in a Cherenkov free electron laser: Finite axial magnetic field  

SciTech Connect (OSTI)

A theoretical analysis is presented for dispersion relation and growth rate in a Cherenkov free electron laser with finite axial magnetic field. It is shown that the growth rate and the resonance frequency of Cherenkov free electron laser increase with increasing axial magnetic field for low axial magnetic fields, while for high axial magnetic fields, they go to a saturation value. The growth rate and resonance frequency saturation values are exactly the same as those for infinite axial magnetic field approximation. The effects of electron beam self-fields on growth rate are investigated, and it is shown that the growth rate decreases in the presence of self-fields. It is found that there is an optimum value for electron beam density and Lorentz relativistic factor at which the maximum growth rate can take place. Also, the effects of velocity spread of electron beam are studied and it is found that the growth rate decreases due to the electron velocity spread.

Kheiri, Golshad; Esmaeilzadeh, Mahdi [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)] [Department of Physics, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)

2013-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - activity growth rate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

allows continuous tracking of promoter activity as cells change their growth rate from exponential... in the distribution across conditions, and their fractional promoter...

22

Output Analysis  

Science Journals Connector (OSTI)

Every discrete-event simulation experiment with random input generates random sample paths as output. Each path usually consists of a sequence of dependent observations that serve as the raw material for estim...

George S. Fishman

2001-01-01T23:59:59.000Z

23

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates  

E-Print Network [OSTI]

Driving Smart Growth: Electric Vehicle Adoption and OffPeak Electricity Rates Peter Driving Smart Growth: Electric Vehicle Adoption Page 2 Executive Summary Reducing our dependence to electric vehicles (EVs)1 is core to reducing reliance on fossil fuels and driving smart growth

Holsinger, Kent

24

Catalyst proximity effects on the growth rate of Si nanowires S. T. Boles,1,a  

E-Print Network [OSTI]

Catalyst proximity effects on the growth rate of Si nanowires S. T. Boles,1,a E. A. Fitzgerald,1 C-liquid-solid VLS mechanism were fabricated using Au-catalyst nanoparticles and silane SiH4 gas on Si substrates. Au, with the growth rate increasing with increasing concentrations of Au-catalyst particles on the wafer surface

25

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process  

E-Print Network [OSTI]

Dynamic estimation of specific growth rates of bacteria for a wastewater treatment process S. Diop1 for specific growth rates for a wastewater treatment process. A 2-stage model of 6 dynamic states is assumed. Steyer, Dynamic model develop- ment and parameter identification for an anaerobic wastewater treatment

Paris-Sud XI, Université de

26

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network [OSTI]

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater anal- ysis and estimation schemes for specific growth rates for an anaerobic wastewater treatment the organic and inorganic materials) of municipal or industrial wastewater often needs to be highly reduced

Paris-Sud XI, Université de

27

The effect of density gradient on the growth rate of relativistic Weibel instability  

SciTech Connect (OSTI)

In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, ?, is larger than the critical temperature anisotropy, ?{sub c}, (??>??{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for ??growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, ??>?2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing ? by a factor of 100 and increasing relativistic parameter by a factor of 3.

Mahdavi, M., E-mail: m.mahdavi@umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Khodadadi Azadboni, F., E-mail: f.khodadadi@stu.umz.ac.ir [Physics Department, University of Mazandaran, P.O. Box 47415-416, Babolsar (Iran, Islamic Republic of); Young Researchers Club, Sari Branch, Islamic Azad University, P.O. Box 48161-194, Sari (Iran, Islamic Republic of)

2014-02-15T23:59:59.000Z

28

Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae in  

E-Print Network [OSTI]

Field Study of Growth and Calcification Rates of Three Species of Articulated Coralline Algae of coralline algae. Decreases in coralline abundance may have cascading effects on marine ecosys- tems- mon species of articulated coralline algae (Bossiella plu- mosa, Calliarthron tuberculosum

Martone, Patrick T.

29

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

30

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

31

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

32

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

33

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

34

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

35

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

36

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

37

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

38

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

39

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

40

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

42

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

43

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

44

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

45

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

46

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

47

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

48

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

49

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

50

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

51

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

52

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

53

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

54

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

55

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

56

Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses  

SciTech Connect (OSTI)

Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

Kay, Steve A. [University of California San Diego

2013-05-02T23:59:59.000Z

57

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

58

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

59

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

60

The Cretaceous Okhotsk–Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic \\{LIPs\\}  

Science Journals Connector (OSTI)

The Cretaceous Okhotsk–Chukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5 × 105 km3 (the most conservative estimate) and over 106 km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published U–Pb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 106–98 Ma, 94–91 Ma, 89–87 Ma, 85.5–84 Ma, and 82–79 Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105 km2 and 2.5 × 105 km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6 × 10? 5 km3yr? 1 km? 1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6 × 10? 5 km3yr? 1 km? 1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic \\{LIPs\\} and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 89–87 and 85.5-84 Ma had higher rates of over 9.0 × 10? 5 km3yr? 1 km? 1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that residual thermal energy preserved in the continental crust after a previous major magmatic event may have been one of major reasons for high proportion of felsic rocks in a volcanic pile. In this scenario, underplating of mantle-derived basalts causes fast and extensive melting of still hot continental crust and generation of voluminous silicic magmas.

P.L. Tikhomirov; E.A. Kalinina; T. Moriguti; A. Makishima; K. Kobayashi; I.Yu. Cherepanova; E. Nakamura

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High Growth Rate of Epitaxial Silicon-Carbon Alloys by High-Order Silane Precursor and Chemical Vapor Deposition  

E-Print Network [OSTI]

rates typically achieved by disilane and silane, respectively, at 575o C. The rate at present is limited precursor HOS than disilane in CVD, even at lower temperatures. Our current growth rates of Si1-yCy alloys

62

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2012 2. Average Tested Heat Rates by Prime Mover and Energy Source, 2007 - 2012 (Btu per Kilowatthour) Prime Mover Coal Petroluem Natural Gas Nuclear 2007 Steam Generator 10,158 10,398 10,440 10,489 Gas Turbine -- 13,217 11,632 -- Internal Combustion -- 10,447 10,175 -- Combined Cycle W 10,970 7,577 -- 2008 Steam Generator 10,138 10,356 10,377 10,452 Gas Turbine -- 13,311 11,576 -- Internal Combustion -- 10,427 9,975 -- Combined Cycle W 10,985 7,642 -- 2009 Steam Generator 10,150 10,349 10,427 10,459 Gas Turbine -- 13,326 11,560 -- Internal Combustion -- 10,428 9,958 -- Combined Cycle W 10,715 7,605 -- 2010 Steam Generator 10,142 10,249 10,416 10,452 Gas Turbine -- 13,386 11,590 -- Internal Combustion -- 10,429 9,917 --

63

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Operating Heat Rate for Selected Energy Sources, . Average Operating Heat Rate for Selected Energy Sources, 2002 through 2012 (Btu per Kilowatthour) Year Coal Petroleum Natural Gas Nuclear 2002 10,314 10,641 9,533 10,442 2003 10,297 10,610 9,207 10,422 2004 10,331 10,571 8,647 10,428 2005 10,373 10,631 8,551 10,436 2006 10,351 10,809 8,471 10,435 2007 10,375 10,794 8,403 10,489 2008 10,378 11,015 8,305 10,452 2009 10,414 10,923 8,159 10,459 2010 10,415 10,984 8,185 10,452 2011 10,444 10,829 8,152 10,464 2012 10,498 10,991 8,039 10,479 Coal includes anthracite, bituminous, subbituminous and lignite coal. Waste coal and synthetic coal are included starting in 2002. Petroleum includes distillate fuel oil (all diesel and No. 1 and No. 2 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil, jet fuel, kerosene, petroleum coke, and waste oil.

64

Rate-dependent morphology of Li2O2 growth in Li-O2 batteries  

E-Print Network [OSTI]

Compact solid discharge products enable energy storage devices with high gravimetric and volumetric energy densities, but solid deposits on active surfaces can disturb charge transport and induce mechanical stress. In this Letter we develop a nanoscale continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes, based on a theory of electrochemical non-equilibrium thermodynamics originally applied to Li-ion batteries. As in the case of lithium insertion in phase-separating LiFePO4 nanoparticles, the theory predicts a transition from complex to uniform morphologies of Li2O2 with increasing current. Discrete particle growth at low discharge rates becomes suppressed at high rates, resulting in a film of electronically insulating Li2O2 that limits cell performance. We predict that the transition between these surface growth modes occurs at current densities close to the exchange current density of the cathode reaction, consistent with experimental observations.

Horstmann, B; Mitchell, R; Bessler, W G; Shao-Horn, Y; Bazant, M Z

2013-01-01T23:59:59.000Z

65

Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate  

E-Print Network [OSTI]

Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate Heather M in the eastern equatorial Pacific show variations of $ 15% in Sr/Ca ratios across the equatorial upwelling zone, with Sr/Ca highest at the equator and decreasing off-axis. These variations cannot be due to changes

Schrag, Daniel

66

Can observational growth rate data favour the clustering dark energy models?  

E-Print Network [OSTI]

Under the commonly used assumption that clumped objects can be well described by a spherical top-hat matter density profile, we investigate the evolution of the cosmic growth index in clustering dark energy (CDE) scenarios on sub-horizon scales. We show that the evolution of the growth index $\\gamma(z)$ strongly depends on the equation-of-state (EoS) parameter and on the clustering properties of the dark energy (DE) component. Performing a $\\chi^2$ analysis, we show that CDE models have a better fit to observational growth rate data points with respect to the concordance $\\Lambda$CDM model. We finally determine $\\gamma(z)$ using an exponential parametrization and demonstrate that the growth index in CDE models presents large variations with cosmic redshift. In particular it is smaller (larger) than the theoretical value for the $\\Lambda$CDM model, $\\gamma_{\\Lambda}\\simeq0.55$, in the recent past (at the present time).

Mehrabi, Ahmad; Pace, Francesco

2014-01-01T23:59:59.000Z

67

The effect of threadfin shad introduction on growth rates of largemouth bass  

E-Print Network [OSTI]

'1ASTER OF SCIENCE December 1976 11ajor Subject: Wildlife and Fisheries Science THE EFFECT OF THREADFIN SHAD INTRODUCTION ON GROWTH RATES OF LARGEMOUTH BASS A Thesis by ALBERT EUGENE BIVINGS, IV Approved as to style and content by: (C (Chairman... Nethodist University Chairman of Advisory Committee: Dr. Raphael E. Quinn A 15 ha farm pond in northeast Texas was treated with a chemical herbicide in the spring of 1973 to remove dense stands of aquatic vegetation and was subsequently stocked...

Bivings, Albert Eugene

2012-06-07T23:59:59.000Z

68

Prediction of PWSCC in nickel base alloys using crack growth rate models  

SciTech Connect (OSTI)

The Ford/Andresen slip-dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material conditions. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip-dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip-dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L. [Knolls Atomic Power Lab., Schenectady, NY (United States)

1995-12-31T23:59:59.000Z

69

A Bioreactor for Growth of Sulfate-Reducing Bacteria: Online Estimation of Specific Growth Rate and Biomass for the Deep-Sea  

E-Print Network [OSTI]

of Specific Growth Rate and Biomass for the Deep-Sea Hydrothermal Vent Thermophile Thermodesulfatator indicus, a chemolithotrophic, thermophilic, sulfate-reducing bac- terium recently isolated from a deep-sea hydrothermal vent donor and CO2 as primary carbon source. These experiments were designed to measure growth kinetics under

Reysenbach, Anna-Louise

70

A review of fatigue crack growth rates for offshore steels in air and seawater environments  

SciTech Connect (OSTI)

A literature review of fatigue crack growth rates (FCGR) has been performed for steels in air and seawater environments, either free corroding or with applied cathodic protection potentials of {minus}850 and {minus}1050/{minus}1100 mV Ag/AgCl. In all cases a more precise description of cracking was obtained using a bi-linear growth law rather than the more conventional Paris Law. Recommendations were made for mean and design values of the constants C and m on a piece-wise basis suitable for use in fracture mechanics analyses of structures. An effect of R-ratio was observed, and separate recommendations were made for high and low R-ratios to cater for as-welded, and post weld heat treated joints with low mean stress levels.

King, R.N. [Failure Control Ltd., Cranleigh (United Kingdom); Stacey, A.; Sharp, J.V. [Health and Safety Executive, London (United Kingdom). Offshore Safety Div.

1996-12-01T23:59:59.000Z

71

The Empirical Research of the Growth of the Listing Real Estate Company Based on the “Sustainable Growth Rate” Theory  

Science Journals Connector (OSTI)

This paper is based on the classical Robert C. Higgins sustainable growth model as the theoretical foundation, for the empirical research of the sustainable growth of the listing Real estate company. Through rese...

Shuai Gao; Hong Zhang

2014-01-01T23:59:59.000Z

72

Environmental Dependence of Dark Matter Halo Growth I: Halo Merger Rates  

E-Print Network [OSTI]

In an earlier paper we quantified the mean merger rate of dark matter haloes as a function of redshift z, descendant halo mass M0, and progenitor halo mass ratio xi using the Millennium simulation of the LCDM cosmology. Here we broaden that study and investigate the dependence of the merger rate of haloes on their surrounding environment. A number of local mass overdensity variables, both including and excluding the halo mass itself, are tested as measures of a halo's environment. The simple functional dependence on z, M0, and xi of the merger rate found in our earlier work is largely preserved in different environments, but we find that the overall amplitude of the merger rate has a strong positive correlation with the environmental densities. For galaxy-mass haloes, we find mergers to occur ~2.5 times more frequently in the densest regions than in voids at both z=0 and higher redshifts. Higher-mass haloes show similar trends. We present a fitting form for this environmental dependence that is a function of both mass and local density and is valid out to z=2. The amplitude of the progenitor (or conditional) mass function shows a similarly strong correlation with local overdensity, suggesting that the extended Press-Schechter model for halo growth needs to be modified to incorporate environmental effects.

Onsi Fakhouri; Chung-Pei Ma

2008-08-18T23:59:59.000Z

73

Intra-canopy variability of fruit growth rate in peach trees grafted on rootstocks with different vigour-control capacity  

E-Print Network [OSTI]

Intra-canopy variability of fruit growth rate in peach trees grafted on rootstocks with different research was to study intra-canopy variability in fruit growth under conditions of low fruit-to- fruit vertically into five layers.The diameter of 12 fruit per canopy layer was measured early in the growing

DeJong, Theodore

74

Effects of ion abundances on electromagnetic ion cyclotron wave growth rate in the vicinity of the plasmapause  

SciTech Connect (OSTI)

Electromagnetic ion cyclotron (EMIC) waves in multi-ion species plasmas propagate in branches. Except for the branch corresponding to the heaviest ion species, which has only a resonance at its gyrofrequency, these branches are bounded below by a cutoff frequency and above by a resonant gyrofrequency. The condition for wave growth is determined by the thermal anisotropies of each ion species, j, which sets an upper bound, ?{sub j}{sup ?}, on the wave frequency below which that ion species contributes positively to the growth rate. It follows that the relative positions of the cutoffs and the critical frequencies ?{sub j}{sup ?} play a crucial role in determining whether a particular wave branch will be unstable. The effect of the magnetospheric ion abundances on the growth rate of each branch of the EMIC instability in a model where all the ion species have kappa velocity distributions is investigated by appealing to the above ideas. Using the variation of the cutoff frequencies predicted by cold plasma theory as a guide, optimal ion abundances that maximise the EMIC instability growth rate are sought. When the ring current is comprised predominantly of H{sup +} ions, all branches of the EMIC wave are destabilised, with the proton branch having the maximum growth rate. When the O{sup +} ion abundance in the ring current is increased, a decrease in the growth rate of the proton branch and cyclotron damping of the helium branch are observed. The oxygen branch, on the other hand, experiences an increase in the maximum growth rate with an increase in the O{sup +} ion abundance. When the ring current is comprised predominantly of He{sup +} ions, only the helium and oxygen branches of the EMIC wave are destabilised, with the helium branch having the maximum growth rate.

Henning, F. D., E-mail: farranalfonso@gmail.com; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000 (South Africa)

2014-04-15T23:59:59.000Z

75

Effect of the growth rate on the morphology and structural properties of hut-shaped Ge  

Science Journals Connector (OSTI)

The effect of Ge deposition rate on the morphology and structural properties of self-assembled Ge/Si(001) islands was studied. Ge/Si(001) layers were grown by solid-source molecular-beam epitaxy at 500?°C. We adjusted the Ge coverage, 6 monolayers (ML), and varied the Ge growth rate by a factor of 100, R = 0.02–2 ML s?1, to produce films consisting of hut-shaped Ge islands. The samples were characterized by scanning tunnelling microscopy, Raman spectroscopy, and Rutherford backscattering measurements. The mean lateral size of Ge nanoclusters decreases from 14.1 nm at R = 0.02 ML s?1 to 9.8 nm at R = 2 ML s?1. The normalized width of the size distribution shows non-monotonic behaviour as a function of R and has a minimum value of 19% at R = 2 ML s?1. Ge nanoclusters fabricated at the highest deposition rate demonstrate the best structural quality and the highest Ge content (~0.9).

A I Yakimov; A I Nikiforov; A V Dvurechenskii; V V Ulyanov; V A Volodin; R Groetzschel

2006-01-01T23:59:59.000Z

76

Effect of flow rate of ethanol on growth dynamics of VA-SWNT -Transition from no-flow CVD to normal ACCVD  

E-Print Network [OSTI]

Effect of flow rate of ethanol on growth dynamics of VA-SWNT - Transition from no-flow CVD a growth model [2]. In this study, the flow rate of ethanol during the CVD was controlled precisely. Figure 1 shows the growth curve of VA-SWNT film for various ethanol flow rates. In the figure, "No

Maruyama, Shigeo

77

Ice in Clouds Experiment—Layer Clouds. Part I: Ice Growth Rates Derived from Lenticular Wave Cloud Penetrations  

Science Journals Connector (OSTI)

Lenticular wave clouds are used as a natural laboratory to estimate the linear and mass growth rates of ice particles at temperatures from ?20° to ?32°C and to characterize the apparent rate of ice nucleation at water saturation at a nearly ...

Andrew J. Heymsfield; Paul R. Field; Matt Bailey; Dave Rogers; Jeffrey Stith; Cynthia Twohy; Zhien Wang; Samuel Haimov

2011-11-01T23:59:59.000Z

78

Pulsed Helium Ion Beam Induced Deposition: A Means to High Growth Rates  

SciTech Connect (OSTI)

The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH{sub 3}){sub 3}Pt(CPCH{sub 3}) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.

Alkemade, Paul F. A. [Delft University of Technology, Delft, Netherlands; Miro, Hozanna [Delft University of Technology, Delft, Netherlands; Van Veldhoven, Emile [TNO Van Leeuwenhoek Laboratory; Maas, Diederick [TNO Van Leeuwenhoek Laboratory; Smith, Daryl [University of Tennessee, Knoxville (UTK); Rack, P. D. [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

79

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

80

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RATES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

82

Summary We compared radiation-use efficiency of growth (), defined as rate of biomass accumulation per unit of ab-  

E-Print Network [OSTI]

) employed a model based on the conversion efficiency of solar radiation to biomass, combined with spaSummary We compared radiation-use efficiency of growth (), defined as rate of biomass accumulation-use efficiency (), a concept employed initially in crops research, is the quotient of cumulative biomass to ab

DeLucia, Evan H.

83

The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9  

Science Journals Connector (OSTI)

......research-article Papers The WiggleZ Dark Energy Survey: the growth rate of cosmic...power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a...have constructed the WiggleZ Dark Energy Survey (Drinkwater et al. 2010......

Chris Blake; Sarah Brough; Matthew Colless; Carlos Contreras; Warrick Couch; Scott Croom; Tamara Davis; Michael J. Drinkwater; Karl Forster; David Gilbank; Mike Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry Madore; D. Christopher Martin; Kevin Pimbblet; Gregory B. Poole; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

2011-08-11T23:59:59.000Z

84

The Stress Corrosion Crack Growth Rate of Alloy 600 Heat Affected Zones Exposed to High Purity Water  

SciTech Connect (OSTI)

Grain boundary chromium carbides improve the resistance of nickel based alloys to primary water stress corrosion cracking (PWSCC). However, in weld heat affected zones (HAZ's), thermal cycles from fusion welding can solutionize beneficial grain boundary carbides, produce locally high residual stresses and strains, and promote PWSCC. The present research investigates the crack growth rate of an A600 HAZ as a function of test temperature. The A600 HAZ was fabricated by building up a gas-tungsten-arc-weld deposit of EN82H filler metal onto a mill-annealed A600 plate. Fracture mechanics based, stress corrosion crack growth rate testing was performed in high purity water between 600 F and 680 F at an initial stress intensity factor of 40 ksi {radical}in and at a constant electrochemical potential. The HAZ samples exhibited significant SCC, entirely within the HAZ at all temperatures tested. While the HAZ samples showed the same temperature dependence for SCC as the base material (HAZ: 29.8 {+-} 11.2{sub 95%} kcal/mol vs A600 Base: 35.3 {+-} 2.58{sub 95%} kcal/mol), the crack growth rates were {approx} 30X faster than the A600 base material tested at the same conditions. The increased crack growth rates of the HAZ is attributed to fewer intergranular chromium rich carbides and to increased plastic strain in the HAZ as compared to the unaffected base material.

George A. Young; Nathan Lewis

2003-04-05T23:59:59.000Z

85

Calcite growth rates as a function of aqueous calcium-to-carbonate ratio, saturation index and strontium concentration  

SciTech Connect (OSTI)

Using in situ atomic force microscopy, the growth rates of the obtuse and acute step orientations on the calcite surface were measured at two saturation indices as a function of the aqueous calcium-to-carbonate ratio and aqueous strontium concentration. The amount of strontium required to inhibit growth was found to correlate with the aqueous calcium concentration, but did not correlate with carbonate. This suggests that strontium inhibits attachment of calcium ions to the reactive sites on the calcite surface. Strontium/calcium cation exchange selectivity coefficients for those sites, Kex, of 1.09 0.09 and 1.44 0.19 are estimated for the obtuse and acute step orientations, respectively. The implication of this finding is that to avoid poisoning calcite growth, the concentration of calcium should be higher than the quotient of the strontium concentration and Kex, regardless of saturation state. Additionally, analytical models of nucleation and propagation of steps are expanded from previous work to capture growth rates of these steps at multiple saturation indices and the effect of strontium. This work will have broader implications for naturally occurring or engineered calcite growth, such as to sequester subsurface strontium contamination.

Bracco, Jacquelyn N [ORNL; Grantham, Ms. Meg [Georgia Institute of Technology; Stack, Andrew G [ORNL

2012-01-01T23:59:59.000Z

86

Metal-to-Insulator Transition in Anatase TiO2 Thin Films Induced by Growth Rate Modulation  

SciTech Connect (OSTI)

We demonstrate control of the carrier density of single phase anatase TiO{sub 2} thin films by nearly two orders of magnitude by modulating the growth kinetics during pulsed laser deposition, under fixed thermodynamic conditions. The resistivity and the intensity of the photoluminescence spectra of these TiO{sub 2} samples, both of which correlate with the number of oxygen vacancies, are shown to depend strongly on the growth rate. A quantitative model is used to explain the carrier density changes.

Tachikawa, T; Minohara, M.; Nakanishi, Y.; Hikita, Y.; Yoshita, M.; Akiyama, H.; Bell, C.; Hwang, H.Y.

2012-06-21T23:59:59.000Z

87

Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system  

SciTech Connect (OSTI)

The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5{times}10{sup 14}W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4{percent}{endash}7{percent} over a 600-{mu}m-diam region defined by the 90{percent} intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with {ital ORCHID} simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam. {copyright} {ital 1997 American Institute of Physics.}

Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W. [Laboratory for Laser Energetics, University of Rochester (United States); Glendinning, S.G.; Kalantar, D.H. [Lawrence Livermore National Laboratory (United States); Watt, R.G.; Gobby, P.L. [Los Alamos National Laboratory (United States); Willi, O.; Taylor, R.J. [Imperial College (United States)

1997-04-01T23:59:59.000Z

88

Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system  

SciTech Connect (OSTI)

The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600-{mu}m-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-{mu}m and 60-{mu}m wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-{mu}m-thick polystyrene foam buffer layer resulted in reduced growth of the 31-{mu}m perturbation and essentially unchanged growth for the 60-{mu}m case when compared to targets without foam.

Knauer, J. P.; Verdon, C. P.; Meyerhofer, D. D.; Boehly, T. R.; Bradley, D. K.; Smalyuk, V. A.; Ofer, D.; McKenty, P. W.; Glendinning, S. G.; Kalantar, D. H.; Watt, R. G.; Gobby, P. L.; Willi, O.; Taylor, R. J. [Laboratory for Laser Energetics, University of Rochester (United States); Lawrence Livermore National Laboratory (United States); Los Alamos National Laboratory (United States); Imperial College (United Kingdom)

1997-04-15T23:59:59.000Z

89

A Change in the Early Growth Rates of Four Larval Marine Fishes  

Science Journals Connector (OSTI)

ABSTRACT. The growth curves (age on length) of four widely diversified species of fish larvae (Sar- ... ratios lie between 4 and 10. The effect of ..... through larval lift may bc compared with the slope ... was calculated by the two-point formula.

1999-12-16T23:59:59.000Z

90

Regular three-dimensional bubble clusters: shape, packing and growth-rate  

E-Print Network [OSTI]

approached with continuum approximations. An understanding of foam properties such as aging, due to gas dif to line-length) structure of equal- size bubbles that fills space? In 2D, Hales [3] proved/V2/3. · Growth laws: how does a foam age, or coarsen, due to gas diffusion across its surfaces? The 2

Cox, Simon

91

High Growth Rate Deposition of Hydrogenated Amorphous Silicon-Germanium Films and Devices Using ECR-PECVD  

SciTech Connect (OSTI)

Hydrogenated amorphous silicon germanium films (a-SiGe:H) and devices have been extensively studied because of the tunable band gap for matching the solar spectrum and mature the fabrication techniques. a-SiGe:H thin film solar cells have great potential for commercial manufacture because of very low cost and adaptability to large-scale manufacturing. Although it has been demonstrated that a-SiGe:H thin films and devices with good quality can be produced successfully, some issues regarding growth chemistry have remained yet unexplored, such as the hydrogen and inert-gas dilution, bombardment effect, and chemical annealing, to name a few. The alloying of the SiGe introduces above an order-of-magnitude higher defect density, which degrades the performance of the a-SiGe:H thin film solar cells. This degradation becomes worse when high growth-rate deposition is required. Preferential attachment of hydrogen to silicon, clustering of Ge and Si, and columnar structure and buried dihydride radicals make the film intolerably bad. The work presented here uses the Electron-Cyclotron-Resonance Plasma-Enhanced Chemical Vapor Deposition (ECR-PECVD) technique to fabricate a-SiGe:H films and devices with high growth rates. Helium gas, together with a small amount of H{sub 2}, was used as the plasma species. Thickness, optical band gap, conductivity, Urbach energy, mobility-lifetime product, I-V curve, and quantum efficiency were characterized during the process of pursuing good materials. The microstructure of the a-(Si,Ge):H material was probed by Fourier-Transform Infrared spectroscopy. They found that the advantages of using helium as the main plasma species are: (1) high growth rate--the energetic helium ions break the reactive gas more efficiently than hydrogen ions; (2) homogeneous growth--heavy helium ions impinging on the surface promote the surface mobility of the reactive radicals, so that heteroepitaxy growth as clustering of Ge and Si, columnar structure are reduced; (3) surface hydrogen removal--heavier and more energetic helium ions break the Si-H much easier than hydrogen ions. The preferential attachment of Si-H to Ge-H is reduced. They also found that with the small amount of hydrogen put into the plasma, the superior properties of a-(Si,Ge):H made from pure hydrogen dilution plasma were still maintained. These hydrogen ions help to remove the subsurface weakly bonded hydrogen and buried hydrogen. They also help to passivate the Ge-dangling bond.

Yong Liu

2002-05-31T23:59:59.000Z

92

Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models  

SciTech Connect (OSTI)

The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

1995-02-22T23:59:59.000Z

93

The effect of pulse duration on the growth rate of laser-induced damage sites at 351 nm on fused silica surfaces  

SciTech Connect (OSTI)

Past work in the area of laser-induced damage growth has shown growth rates to be primarily dependent on the laser fluence and wavelength. More recent studies suggest that growth rate, similar to the damage initiation process, is affected by a number of additional parameters including pulse duration, pulse shape, site size, and internal structure. In this study, we focus on the effect of pulse duration on the growth rate of laser damage sites located on the exit surface of fused silica optics. Our results demonstrate, for the first time, a significant dependence of growth rate at 351 nm on pulse duration from 1 ns to 15 ns as {tau}{sup 0.3} for sites in the 50-100 {micro}m size range.

Negres, R A; Norton, M A; Liao, Z M; Cross, D A; Bude, J D; Carr, C W

2009-10-29T23:59:59.000Z

94

Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations  

SciTech Connect (OSTI)

Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations.

Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke [Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum (Germany); Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea [Institute of Pathology, Ruhr-University Bochum (Germany); Wieczorek, Stefan; Epplen, Joerg Thomas [Department of Human Genetics, Ruhr-University Bochum (Germany); Tilkorn, Daniel [Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum (Germany); Steinstraesser, Lars, E-mail: lars.steinstraesser@rub.de [Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum (Germany)

2013-07-15T23:59:59.000Z

95

Physiological and Proteomic Adaptation of “Aromatoleum aromaticum” EbN1 to Low Growth Rates in Benzoate-Limited, Anoxic Chemostats  

Science Journals Connector (OSTI)

...single- and multi-objective optimizer. Matlab Central, MathWorks, Ismaning, Germany...aromaticum EbN1 cells at different growth rates PDF file, 1.1MB. Supplemental file 1 Physiological...deceleration of benzoate metabolism and cellular processes in response to slow growth. In contrast...

Kathleen Trautwein; Sven Lahme; Lars Wöhlbrand; Christoph Feenders; Kai Mangelsdorf; Jens Harder; Alexander Steinbüchel; Bernd Blasius; Richard Reinhardt; Ralf Rabus

2012-02-24T23:59:59.000Z

96

Measurements of Ice Crystal Growth Rates in Air at -5C and -10C K. G. Libbrecht and H. M. Arnold  

E-Print Network [OSTI]

Measurements of Ice Crystal Growth Rates in Air at -5C and -10C K. G. Libbrecht and H. M. Arnold to: kgl@caltech.edu Abstract. We present experiments investigating the growth of ice crystals from produce large morphological changes at all scales. One popular example of this phenomenon is the formation

Libbrecht, Kenneth G.

97

A novel null test for the $\\Lambda$CDM model with growth-rate data  

E-Print Network [OSTI]

Current and upcoming surveys will measure the cosmological parameters with an extremely high accuracy. The primary goal of these observations is to eliminate some of the currently viable cosmological models created to explain the late time accelerated expansion (either real or only inferred). However, most of the statistical tests used in cosmology have a strong requirement: the use of a model to fit the data. Recently there has been an increased interest on finding tests that are model independent, i.e. to have a function that depends entirely on observed quantities and not on the model, see for instance [1]. In this letter we present an alternative consistency check at the perturbative level for a homogeneous and isotropic Universe filled with a dark energy component. This test makes use of the growth of matter perturbations data and it is able to not only test the homogeneous and isotropic Universe but also, within the framework of a Friedmann-Lema\\^itre-Robertson-Walker Universe, if the dark energy compon...

Nesseris, Savvas

2014-01-01T23:59:59.000Z

98

A novel null test for the $?$CDM model with growth-rate data  

E-Print Network [OSTI]

Current and upcoming surveys will measure the cosmological parameters with an extremely high accuracy. The primary goal of these observations is to eliminate some of the currently viable cosmological models created to explain the late time accelerated expansion (either real or only inferred). However, most of the statistical tests used in cosmology have a strong requirement: the use of a model to fit the data. Recently there has been an increased interest on finding tests that are model independent, i.e. to have a function that depends entirely on observed quantities and not on the model, see for instance [1]. In this letter we present an alternative consistency check at the perturbative level for a homogeneous and isotropic Universe filled with a dark energy component. This test makes use of the growth of matter perturbations data and it is able to not only test the homogeneous and isotropic Universe but also, within the framework of a Friedmann-Lema\\^itre-Robertson-Walker Universe, if the dark energy component is able to cluster, if there is a tension in the data or if we are dealing with a modification of gravity.

Savvas Nesseris; Domenico Sapone

2014-09-12T23:59:59.000Z

99

Time growth rate and field profiles of hybrid modes excited by a relativistic elliptical electron beam in an elliptical metallic waveguide with dielectric rod  

SciTech Connect (OSTI)

The dispersion relation of guided electromagnetic waves propagating in an elliptical metallic waveguide with a dielectric rod driven by relativistic elliptical electron beam (REEB) is investigated. The electric field profiles and the growth rates of the waves are numerically calculated by using Mathieu functions. The effects of relative permittivity constant of dielectric rod, accelerating voltage, and current density of REEB on the growth rate are presented.

Jazi, B.; Rahmani, Z.; Abdoli-Arani, A. [Faculty of Physics, Department of Laser and Photonics, University of Kashan, Kashan (Iran, Islamic Republic of); Heidari-Semiromi, E. [Faculty of Physics, Department of Condense Matter, University of Kashan, Kashan (Iran, Islamic Republic of)

2012-10-15T23:59:59.000Z

100

A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8 s latency and 66 MHz output event-rate  

E-Print Network [OSTI]

A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8 µs latency and 66 MHz output and complexity in recent years, thanks also the adoption of the Address-Event Representation (AER) as a standard for transmitting signals among chips, and building multi-chip event-based systems. AER mapper devices that route

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The WiggleZ Dark Energy Survey: constraining the evolution of Newton's constant using the growth rate of structure  

E-Print Network [OSTI]

We constrain the evolution of Newton's constant using the growth rate of large-scale structure measured by the WiggleZ Dark Energy Survey in the redshift range $0.1 Survey Luminous Red Galaxy (SDSS LRG) data is $\\ddotGeff(t_0)=-3.6\\pm 6.8\\cdot 10^{-21}h^2 \\rm{yr}^{-2}$, both being consistent with General Relativity. Finally, our constraint for the rms mass fluctuation $\\sigma_8$ using the WiggleZ data is $\\sigma_8=0.75 \\pm 0.08$, while using both the WiggleZ and the SDSS LRG data $\\sigma_8=0.77 \\pm 0.07$, both in good agreement with the latest measurements from the Cosmic Microwave Background radiation.

Savvas Nesseris; Chris Blake; Tamara Davis; David Parkinson

2011-07-19T23:59:59.000Z

102

Enhanced performance CCD output amplifier  

DOE Patents [OSTI]

A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

Dunham, Mark E. (Los Alamos, NM); Morley, David W. (Santa Fe, NM)

1996-01-01T23:59:59.000Z

103

arXiv:1308.0623v1[physics.bio-ph]2Aug2013 Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network [OSTI]

Information Utilization Rate R. Pugatch,1 N. Barkai,2 and T. Tlusty1 1 School of Natural Sciences, Simons

Tlusty, Tsvi

104

Derivation of a Langmuir type of model to describe the intrinsic growth rate of gas hydrates during crystallization from gas mixtures  

E-Print Network [OSTI]

Derivation of a Langmuir type of model to describe the intrinsic growth rate of gas hydrates during crystallization from gas mixtures Jean-Michel Herri* and Matthias Kwaterski Ecole Nationale Supérieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint- Etienne, France Abstract Gas Hydrates

Paris-Sud XI, Université de

105

The effect of cover crop and fertilizer rate on the growth and survival of loblolly pine in East Texas mine spoil  

E-Print Network [OSTI]

of these studies was to determine the effect of cover crop and N and P fertil- izer rates, used to prevent soil erosion, on the survival and growth of loblolly pine planted in mine spoil. Coastal bermudagrass, fertilized with 0, 50 or 100 kg N/ha/year, was used.../ha/year, fertilized with 0, 25 or 50 kg P/ha, were evaluated in the P study. CcnIpetition between cover crops and trees for light, water and nutrients influenced survival and growth of trees. Tree survival, after three years, was greatest in the subterranean...

Kee, David Dwayne

2012-06-07T23:59:59.000Z

106

Nucleation and particle growth with fluctuating rates at the intermediate stage of phase transitions in metastable systems  

Science Journals Connector (OSTI)

...difficult problem of statistical physics. However, in a first approximation...Earth [37]) and applied physics (aggregate growth in colloids...Press 13 Gardiner, CW . 1983 Handbook on stochastic methods: for physics, chemistry and the natural...

2014-01-01T23:59:59.000Z

107

Linear model-based estimation of blood pressure and cardiac output for Normal and Paranoid cases  

Science Journals Connector (OSTI)

Provisioning a generic simple linear mathematical model for Paranoid and Healthy cases leading to auxiliary investigation of the neuroleptic drugs effect imposed on cardiac output (CO) and blood pressure (BP). Multi-input single output system identification ... Keywords: Blood pressure, Cardiac output, Heart rate, MISO transfer function, Stroke volume, System identification

Mohamed Abdelkader Aboamer, Ahmad Taher Azar, Khaled Wahba, Abdallah S. Mohamed

2014-11-01T23:59:59.000Z

108

The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function  

Science Journals Connector (OSTI)

......research-article Article The WiggleZ Dark Energy Survey: measuring the cosmic growth...galaxy redshifts from the WiggleZ Dark Energy Survey. We divide the data into four...correlation function of the WiggleZ Dark Energy Survey (hereafter WiggleZ; Drinkwater......

Carlos Contreras; Chris Blake; Gregory B. Poole; Felipe Marin; Sarah Brough; Matthew Colless; Warrick Couch; Scott Croom; Darren Croton; Tamara M. Davis; Michael J. Drinkwater; Karl Forster; David Gilbank; Mike Gladders; Karl Glazebrook; Ben Jelliffe; Russell J. Jurek; I-hui Li; Barry Madore; D. Christopher Martin; Kevin Pimbblet; Michael Pracy; Rob Sharp; Emily Wisnioski; David Woods; Ted K. Wyder; H. K. C. Yee

2013-01-01T23:59:59.000Z

109

Desiccation resistance and root growth rate of St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze 'Floratam') as influenced by potassium  

E-Print Network [OSTI]

The influence of potassium on the mean visual turfgrass quality rating of previously stressed and watered St. Augustinegrass turfs during the 12 day period of recovery from water stress. 58 12. The influence of previous water regime treat- ment on the root.... . . . . . . . . 100 22 The influence of previous water regime of the visual turfgrass quality ratings of St. Augustinegrass maintained in the greenhouse 104 23. The influence of previous water stress on the clipping dry weights obtained from St. Augustinegrass...

DiPaola, J. M

2012-06-07T23:59:59.000Z

110

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect (OSTI)

Air Products set out to investigate the impact of additives on the deposition rate of both ���µCSi and ���±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products�¢���� electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

111

The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species  

E-Print Network [OSTI]

the exotherm initiation temperatures (EIT) of leaf sections. The effect of 2 growth temperatures (5 and 25oC) on the absolute water content and EIT of T. recurvata and T. usneoides was also determined. All p * * pt T. mb'1 ', f o t ld temperatures at 80... used to detect ice formation in plant tissues by exotherm detection. An electronic device is used to measure the heat released (exotherm) when water freezes. From this information, the freezing and supercooling temperatures of plant tissues can...

Hagar, Christopher Flint

1990-01-01T23:59:59.000Z

112

Study of the combined effect of temperature, pH and water activity on the radial growth rate of the white-rot basidiomycete Physisporinus vitreus by using a hyphal growth model  

E-Print Network [OSTI]

The present work investigates environmental effects on the growth of fungal colonies of P. vitreus by using a lattice-free discrete modelling approach called FGM (Fuhr et al. (2010), arXiv:1101.1747), in which hyphae and nutrients are considered as discrete structures. A discrete modelling approach allows studying the underlying mechanistic rule concerning the basic architecture and dynamic of fungal networks on the scale of a single colony. By comparing simulations of the FGM with laboratory experiments of growing fungal colonies on malt extract agar we show that combined effect of temperature, pH and water activity on the radial growth rate of a fungal colony on a macroscopic scale may be explained by a power law for the growth costs of hyphal expansion on a microscopic scale. The information about the response of the fungal mycelium on a microscopic scale to environmental conditions is essential to simulate its behavior in complex structure substrates such as wood, where the impact of the fungus to the woo...

Fuhr, M J; Schubert, M; Schwarze, F W M R; Herrmann, H J

2011-01-01T23:59:59.000Z

113

Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.  

SciTech Connect (OSTI)

In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

2008-05-05T23:59:59.000Z

114

Tier 2 Vintage Rate Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Tier 2 Rate Alternatives Tier 2 Rate Alternatives Load Growth Rate BPA commits to meet Load Following customers' load growth placed on BPA for the term of the commitment period...

115

Gas Phase Diagnosis of Disilane/Hydrogen RF Glow Discharge Plasma and Its Application to High Rate Growth of High Quality Amorphous Silicon  

Science Journals Connector (OSTI)

Gas phase diagnosis of disilane/hydrogen plasma was carried out using mass spectrometry. At high growth rate (20 Ĺ/s) conditions using pure disilane as a source gas, the partial pressure of disilane molecules measured by mass spectrometry was more than one order of magnitude higher than in the case when mono-silane was used as a source gas. The stability of amorphous silicon films prepared from disilane was improved by the hydrogen dilution technique, although the disilane partial pressure in this condition was much higher than in the case when mono-silane was used as a source gas for device quality films. The relation between the gas phase species and the stability of the resulting films is studied. It was found that increase in disilane related signal intensity do not decrease film stability directly.

Wataru Futako; Tomoko Takagi; Tomonori Nishimoto; Michio Kondo; Isamu Shimizu; Akihisa Matsuda

1999-01-01T23:59:59.000Z

116

OutputInput Analogue Discrete  

E-Print Network [OSTI]

of the signal band. Higher order modulators (containing more energy storages) give enhanced performance useful features which may be applied to transducer technology, e.g. flat frequency response down to zero. For successful operation the limit cycle frequency, which is a function of the sampling rate, has to be much

Kraft, Michael

117

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

118

Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure  

SciTech Connect (OSTI)

Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivity along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.

Venteris, Erik R.; McBride, Robert; Coleman, Andre M.; Skaggs, Richard; Wigmosta, Mark S.

2014-02-21T23:59:59.000Z

119

Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs  

E-Print Network [OSTI]

Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

Venditti, David A.

120

Direct Observation of Aggregative Nanoparticle Growth: Kinetic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size...

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NAO Climatology: ROMS output is saved once every 3 days and written to an output file  

E-Print Network [OSTI]

NAO Climatology: ROMS output is saved once every 3 days and written to an output file every 6 days Output after 30 days in 6th file. The Starting Month = July Example: roms_low_his_levts0570dg.0120.nc.gz : July 3 roms_low_his_levts0570dg.0122.nc.gz : July 6 and July 9 roms_low_his_levts0570dg.0124.nc

Gangopadhyay, Avijit

122

Boosting America's Hydropower Output | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

123

PV output smoothing with energy storage.  

SciTech Connect (OSTI)

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

124

Gesture output: eyes-free output using a force feedback touch surface  

Science Journals Connector (OSTI)

We propose using spatial gestures not only for input but also for output. Analogous to gesture input, the proposed gesture output moves the user's finger in a gesture, which the user then recognizes. We use our concept in a mobile scenario where a motion ... Keywords: eyes free, force feedback, gestures, touch

Anne Roudaut; Andreas Rau; Christoph Sterz; Max Plauth; Pedro Lopes; Patrick Baudisch

2013-04-01T23:59:59.000Z

125

Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output  

E-Print Network [OSTI]

shifts between periods. Finally, higher variable costs, incurred if power stations are operated below their optimal rating, are allocated to the locally lowest de- mand. For inflexible power stations like nuclear, combined cycle gas turbines or coal... the start of the station has to be decided several hours before delivering output. At the earlier time there is still uncertainty about the future demand, possible failures of power stations and predictions for wind-output. We represent the uncertainty...

Musgens, Felix; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

126

Single Inductor Dual Output Buck Converter  

E-Print Network [OSTI]

of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5 V) within well controlled ripple levels. Dynamic hysteresis control is used...

Eachempatti, Haritha

2010-07-14T23:59:59.000Z

127

Bioenergy technology balancing energy output with environmental  

E-Print Network [OSTI]

E2.3 Bioenergy technology ­ balancing energy output with environmental benefitsbenefits John standards #12;Is it right to grow bioenergy? Or How much bioenergy production is right? #12;Historical bioenergy Farmers historically used 25% land for horse feed #12;Energy crops are `solar panels' Solar energy

Levi, Ran

128

Modeling Multi Output Filtering Effects in PCMOS  

E-Print Network [OSTI]

Modeling Multi Output Filtering Effects in PCMOS Anshul Singh*, Arindam Basu, Keck-Voon Ling, Nanyang Technological University (NTU), Singapore *NTU-Rice Institute of Sustainable and Applied Infodynamics (ISAID), NTU, Singapore $School of Computer Engineering, NTU, Singapore §School of ECE, Georgia

Mooney, Vincent

129

Title Slide "The broadband acoustic output of  

E-Print Network [OSTI]

Title Slide "The broadband acoustic output of marine seismic airgun sources" Les Hatton CISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #12;Seismic sources ­ marine airguns Introduction Modelling Marine Life Impact Where next Overview #12 Normal speed surface movie of airgun firing Courtesy IO limited #12;Seismic sources ­ marine airguns

Hatton, Les

130

Administrator Ready Reference Guide Customizing an Output Style  

E-Print Network [OSTI]

may be in various sections of the instructions. Some things to look for: - line spacing Preview Utility (Tools, Preview Output Styles) or by simply opening the Output Style Editor (Bibliography, Edit button -- to the right of the output style drop- down). The Output Style Preview Utility

University of Technology, Sydney

131

Generalized Input-Output Inequality Systems  

SciTech Connect (OSTI)

In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

Liu Yingfan [Department of Mathematics, Nanjing University of Post and Telecommunications, Nanjing 210009 (China)], E-mail: yingfanliu@hotmail.com; Zhang Qinghong [Department of Mathematics and Computer Science, Northern Michigan University, Marquette, MI 49855 (United States)], E-mail: qzhang@nmu.edu

2006-09-15T23:59:59.000Z

132

Characterizing detonator output using dynamic witness plates  

SciTech Connect (OSTI)

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

133

Cr2O3 scale growth rates on metallic interconnectors derived from 40,000 h solid oxide fuel cell stack operation  

Science Journals Connector (OSTI)

Abstract The ohmic resistance caused by Cr2O3 scale formation on metallic interconnects (MICs) can significantly contribute to the overall degradation of SOFC stacks. For this reason oxide scale growth on Cr5Fe1Y2O3 (CFY) and Fe22Cr0.5Mn (Crofer) was investigated by scanning electron microscopy (SEM) from post-test samples that were either exposed to air at 850 °C (furnace) or operated in Hexis planar SOFC-stacks under dual atmospheres (anode and cathode conditions) at temperatures around 900 °C. The study includes unique test results from a stack operated for 40,000 h. To analyze inhomogeneity in scale thicknesses a dedicated statistical image analysis method has been applied. SEM images were used to compare the structural phenomena related to MIC oxidation at different sample locations. The observed differences between different sample locations may relate to locally different conditions (temperature, pO2, H2O/O2-ratio). Cr2O3 scale growth on the anode side is found to be approximately twice as fast in comparison to the scale growth on cathode side. Finally, based on our time lapse analyses with extensive sampling it can be concluded that reliable predictions of scale growth requires statistical analyses over a period that covers at least a quarter (10,000 h) of the required SOFC stack lifetime (40,000 h).

Markus Linder; Thomas Hocker; Lorenz Holzer; K. Andreas Friedrich; Boris Iwanschitz; Andreas Mai; J. Andreas Schuler

2013-01-01T23:59:59.000Z

134

ARM - Measurement - Radiative heating rate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsRadiative heating rate govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Radiometric, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments MOLTS : Model Output Location Time Series Datastreams MOLTS : Model Output Location Time Series Datastreams MOLTSEDASSNDCLASS1 : Model Output Loc. Time Ser. (MOLTS): EDAS

135

Off-set stabilizer for comparator output  

DOE Patents [OSTI]

A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

Lunsford, James S. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

136

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

137

Application of computer voice input/output  

SciTech Connect (OSTI)

The advent of microprocessors and other large-scale integration (LSI) circuits is making voice input and output for computers and instruments practical; specialized LSI chips for speech processing are appearing on the market. Voice can be used to input data or to issue instrument commands; this allows the operator to engage in other tasks, move about, and to use standard data entry systems. Voice synthesizers can generate audible, easily understood instructions. Using voice characteristics, a control system can verify speaker identity for security purposes. Two simple voice-controlled systems have been designed at Los Alamos for nuclear safeguards applicaations. Each can easily be expanded as time allows. The first system is for instrument control that accepts voice commands and issues audible operator prompts. The second system is for access control. The speaker's voice is used to verify his identity and to actuate external devices.

Ford, W.; Shirk, D.G.

1981-01-01T23:59:59.000Z

138

Coordinated Output Regulation of Multiple Heterogeneous Linear Systems  

E-Print Network [OSTI]

, the generalizations of coordination of multiple linear dynamic systems to the cooperative output regulation problemCoordinated Output Regulation of Multiple Heterogeneous Linear Systems Ziyang Meng, Tao Yang, Dimos V. Dimarogonas, and Karl H. Johansson Abstract-- The coordinated output regulation problem

Dimarogonas, Dimos

139

Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting  

Science Journals Connector (OSTI)

Abstract Light emitting diode (LED) technology has significant potential advantages over other light sources in algal aquaculture. This study investigated \\{LEDs\\} as light sources for the culture of Gracilaria tikvahiae. We cultured a wild-type and a green mutant strain of G. tikvahiae, comparing growth rate and tissue chlorophyll a, total carotenoids, and phycobiliprotein concentrations under high output cool white fluorescent, pure primary color LED, and mixed LED lighting. Under monochromatic light, the growth rates under high output cool white fluorescent lighting were significantly higher than rates under pure LED light (all three colors for wild strain and green and blue for green mutant). However, when pure color LED lighting was mixed (50%/50%), the red + green (wild-type strain and green mutant) and the green + blue LED combinations (wild-type only) showed growth rates similar to those under high output cool white fluorescent lighting. In the trichromatic experiment, growth of the wild-type strain under mixed three-color (40%/40%/20%) LED light was indistinguishable from those of the fluorescent control lighting. Chlorophyll a and carotenoid concentrations of Gracilaria grown in the dichromatic light experiment were 55% and 74% higher, respectively, under red + blue LED lighting than under the other light treatments. The wild-type strain of G. tikvahiae possessed significantly greater concentrations of chlorophyll a, and phycoerythrin than did the green mutant, while green mutant thalli had higher phycocyanin levels. With rising LED efficiency and energy savings, \\{LEDs\\} will be an increasingly better choice for indoor seaweed cultivation, especially if control of pigment production and morphogenesis by selective use of particular wavelengths is desirable.

Jang K. Kim; Yunxiang Mao; George Kraemer; Charles Yarish

2015-01-01T23:59:59.000Z

140

Extended range radiation dose-rate monitor  

DOE Patents [OSTI]

An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

Valentine, Kenneth H. (Knoxville, TN)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Compact waveguide power divider with multiple isolated outputs  

DOE Patents [OSTI]

A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

Moeller, Charles P. (Del Mar, CA)

1987-01-01T23:59:59.000Z

142

GAMS program used to estimate capacity output using a distance function with both good and bad output, variable returns to scale and weak disposability of the bad outputs.  

E-Print Network [OSTI]

." VIMS Marine resource Report N. 2007-6. August 2007. Author: John B. Walden NMFS/NEFSC 166 Water St(obs) weights ; POSITIVE Variable weight, lambda; EQUATIONS CONSTR1(GOUTPUT, OBS) DEA constraint for each output

143

Constellation Shaping for Communication Channels with Quantized Outputs  

E-Print Network [OSTI]

average energy are selected more frequently than constellations with higher energy. However, the resultsConstellation Shaping for Communication Channels with Quantized Outputs Chandana Nannapaneni signal constellation and the output is quantized by a uniform scalar quantizer. The goal is to jointly

Valenti, Matthew C.

144

ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO  

E-Print Network [OSTI]

ADIOS ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE CO NATIONAL RADIO ASTRONOMY OBSERVATORY TABLES ADIOS - ANALOG-DIGITAL INPUT OUTPUT SYSTEM FOR APPLE COMPUTER TABLE FOR CONTENTS Page I Module and Apple Card (Photograph) Figure 3 Complete Apple/ADIOS System (Photograph) Figure 4 Analog

Groppi, Christopher

145

Most efficient quantum thermoelectric at finite power output  

E-Print Network [OSTI]

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

146

Rate Schedules  

Broader source: Energy.gov [DOE]

One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

147

The theory of stabilization of the output power of a rechargeable fuel cell battery under conditions of significant concentration polarization  

Science Journals Connector (OSTI)

A theory is developed for the output power stabilization of a rechargeable fuel cell battery in which the reactants and the electrochemical reaction products are in the electrolyte. Possible means of voltage stabilization are considered which employ continuous-flow and continuous flow—circulation supply of the working solution (electrolyte) to a fuel cell. Expressions are derived for the effective stabilization time and the required electrolyte flow rate. For a battery with known output parameters, the means of stabilization have been optimized based on the electrolyte flow rate and time of stabilization. The optimum solution is shown to depend on the net energy losses in implementing the stabilization procedure.

I.G. Gurevich

1979-01-01T23:59:59.000Z

148

Rate of Growth of Fungus Rings  

Science Journals Connector (OSTI)

... MR. O. G. S. CRAWFORD'S letter in NATURE of December 26, page 938, concerning the age of fairy rings, seems to warrant a letter ...

J. RAMSBOTTOM

1926-01-30T23:59:59.000Z

149

Ultraslow growth rates of giant gypsum crystals  

Science Journals Connector (OSTI)

...gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral...gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject...gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject...

A. E. S. Van Driessche; J. M. García-Ruíz; K. Tsukamoto; L. D. Patińo-Lopez; H. Satoh

2011-01-01T23:59:59.000Z

150

Growth Rates of Sulfolobus acidocaldarius in Nature  

Science Journals Connector (OSTI)

...sulfur- rich, acidic, geothermal habitats. In previous...low volatility, low cost, availability in large...elemental sulfur as the sole energy source, which varied...contract from the Atomic Energy Commission (COO-2151-17...origin of sulfuric acid in geothermal habitats. Science 179...

J. L. Mosser; B. B. Bohlool; T. D. Brock

1974-06-01T23:59:59.000Z

151

ARM - Lesson Plans: Rate of Coral Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need the following: Graph paper Pen Ruler Important Points to Understand If the greenhouse effect occurs, its effects will be global, both on land and in the sea. The information...

152

Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography  

SciTech Connect (OSTI)

The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.

Grottoli, A.; Adkins, J; Panero, W; Reaman, D; Moots, K

2010-01-01T23:59:59.000Z

153

Rates - WAPA-137 Rate Order  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WAPA-137 Rate Order WAPA-137 Rate Order 2009 CRSP Management Center Customer Rates Second Step Presentation from the June 25, 2009, Customer Meeting Handout Materials from the June 25, 2009, Customer Meeting Customer Comment Letters ATEA CREDA Farmington ITCA AMPUA Rate Adjustment Information The second step of WAPA-137 SLCA/IP Firm Power, CRSP Transmission and Ancillary Services rate adjustment. FERC Approval of Rate Order No. WAPA-137 Notice Of Filing for Rate Order No. WAPA-137 Published Final FRN for Rate Order No. WAPA-137 Letter to Customers regarding the published Notice of Extension of Public Process for Rate Order No. WAPA-137 Published Extension of Public Process for Rate Order No. WAPA-137 FRN Follow-up Public Information and Comment Forum Flier WAPA-137 Customer Meetings and Rate Adjustment Schedule

154

The Net Effect of Exchange Rates on Agricultural Inputs and Outputs  

E-Print Network [OSTI]

offered a listening ear and support throughout my time here at Texas A&M. viii NOMENCLATURE BACE Bayesian Averaging of Classical Estimates BU Bushel CWT Hundred-weight DAP Di-ammonium Phosphate EIA Energy Information Administration ERS... will be considered for the fuel costs because according to the U.S. Energy Information ?dministration ?in agriculture, diesel fuels more than two-thirds of all farm equipment in the United States??US EIA, 2010b). In 2007 and 2008, fuel costs were 14...

Johnson, Myriah D.

2012-10-19T23:59:59.000Z

155

Relationship Among Efficiency and Output Power of Heat Energy Converters  

E-Print Network [OSTI]

Relationship among efficiency and output power of heat-electric energy converters as well as of any converters for transforming of heat energy into any other kind of energy is considered. It is shown, that the parameter efficiency does not determine univocally the output power of a converter. It is proposed to use another parameter for determination of working ability of heat energy converters. It is shown, that high output power can not be achieved by any kind of Stirling-type converters in spite of their high efficiency.

Alexander Luchinskiy

2004-09-02T23:59:59.000Z

156

Sparse Convolved Gaussian Processes for Multi-output Regression  

E-Print Network [OSTI]

the concentration of different heavy metal pollutants [5]. Modelling multiple output variables is a challenge as we methodology for synthetic data and real world applications on pollution prediction and a sensor network. 1

Rattray, Magnus

157

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs  

E-Print Network [OSTI]

Computability in Anonymous Networks: Revocable vs. Irrecovable Outputs Yuval Emek1 , Jochen Seidel2, and leader election. 1 Introduction We study computability in networks, referred to hereafter as distributed

158

Failure mode and effects analysis outputs: are they valid?  

Science Journals Connector (OSTI)

Failure Mode and Effects Analysis (FMEA) is a prospective risk assessment tool that ... this study was to explore the validity of FMEA outputs within a hospital setting in the...

Nada Atef Shebl; Bryony Dean Franklin; Nick Barber

2012-06-01T23:59:59.000Z

159

Grid adaptation for functional outputs of compressible flow simulations  

E-Print Network [OSTI]

An error correction and grid adaptive method is presented for improving the accuracy of functional outputs of compressible flow simulations. The procedure is based on an adjoint formulation in which the estimated error in ...

Venditti, David Anthony, 1973-

2002-01-01T23:59:59.000Z

160

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reliable Gas Turbine Output: Attaining Temperature Independent Performance  

E-Print Network [OSTI]

of availability, it is the major option for future power generation. One inherent disadvantage of gas turbines is the degradation of output as the ambient air temperature increases. This reduction in output during times of peak load create a reliability..., power generation for offshore platforms, utility peak load 58 ESL-IE-92-04-10 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992 power generation, emergency power, ship propulsion, and private...

Neeley, J. E.; Patton, S.; Holder, F.

162

Rate schedule  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Firm Power Service Provided by Rate/Charges Firm Power Service Provided by Rate/Charges Rate/Charges Effective Through (or until superceded) Firm Sales (SLIP-F9) Composite Rate SLIP 29.62 mills/kWh 9/30/2015 Demand Charge SLIP $5.18/kW-month 9/30/2015 Energy Charge SLIP 12.19 mills/kWh 9/30/2015 Cost Recovery Charge (CRC) SLIP 0 mills/kWh 9/30/2015 Transmission Service Provided by Current Rates effective10/12 - 9/15 (or until superceded) Rate Schedule Effective Through Firm Point-to-Point Transmission (SP-PTP7) CRSP $1.14 per kW-month $13.69/kW-year $0.00156/kW-hour $0.04/kW-day $0.26/kW-week 10/1/2008-9/30/2015 Network Integration Transmission (SP-NW3) CRSP see rate schedule 10/1/2008-9/30/2015 Non-Firm Point-to-Point Transmission (SP-NFT6) CRSP see rate schedule 10/1/2008-9/30/2015 Ancillary Services Provided by Rate Rate Schedule

163

Interpreting and analyzing model output (A very cursory introduction) Here will talk briefly about using "ncview" and "matlab" to analyze output  

E-Print Network [OSTI]

using "ncview" and "matlab" to analyze output from your model. The model output is in netcdf format for the output. I use matlab to measure, plot, compute, etc.. Recall the the model output is stored in: /scratch shown at the top.) matlab I hope you have some experience with matlab. There are handy tutorials

Gerber, Edwin

164

Size structuring of planktonic communities : biological rates and ecosystem dynamics  

E-Print Network [OSTI]

Bight and central equatorial Pacific show increasing growth rates with size, while those cells measured in the Somali Basin,

Taniguchi, Darcy Anne Akiko

2013-01-01T23:59:59.000Z

165

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output  

Open Energy Info (EERE)

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Focus Area: Clean Fossil Energy Topics: Market Analysis Website: cdn.globalccsinstitute.com/sites/default/files/publications/7326/carbo Equivalent URI: cleanenergysolutions.org/content/carbon-capture-transport-and-storage- Policies: Regulations Regulations: Emissions Mitigation Scheme The Scottish Government published this report to identify regulatory gaps or overlaps in the nation's framework for regulating carbon capture and storage (CCS). The report aims to streamline and better manage CCS regulation. It focuses on evaluating the risks, barriers, information gaps,

166

OECD Input-Output Tables | Open Energy Information  

Open Energy Info (EERE)

OECD Input-Output Tables OECD Input-Output Tables Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Input-Output Tables Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: Co-benefits assessment, Market analysis, Co-benefits assessment, Pathways analysis Resource Type: Dataset Website: www.oecd.org/document/3/0,3343,en_2649_34445_38071427_1_1_1_1,00.html Country: Sweden, Finland, Japan, South Korea, Argentina, Australia, China, Israel, United Kingdom, Portugal, Romania, Greece, Poland, Slovakia, Chile, India, Canada, New Zealand, United States, Denmark, Norway, Spain, Austria, Italy, Netherlands, Ireland, France, Belgium, Brazil, Czech Republic, Estonia, Germany, Hungary, Luxembourg, Mexico, Slovenia, South Africa, Turkey, Indonesia, Switzerland, Taiwan, Russia

167

Formalization of computer input and output: the Hadley model  

Science Journals Connector (OSTI)

Current digital evidence acquisition tools are effective, but are tested rather than formally proven correct. We assert that the forensics community will benefit in evidentiary ways and the scientific community will benefit in practical ways by moving beyond simple testing of systems to a formal model. To this end, we present a hierarchical model of peripheral input to and output from von Neumann computers, patterned after the Open Systems Interconnection model of networking. The Hadley model categorizes all components of peripheral input and output in terms of data flow; with constructive aspects concentrated in the data flow between primary memory and the computer sides of peripherals' interfaces. The constructive domain of Hadley is eventually expandable to all areas of the I/O hierarchy, allowing for a full view of peripheral input and output and enhancing the forensics community's capabilities to analyze, obtain, and give evidentiary force to data.

Matthew Gerber; John Leeson

2004-01-01T23:59:59.000Z

168

Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.  

SciTech Connect (OSTI)

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

Stein, Joshua S.; Miyamoto, Yusuke (Kandenko, Ibaraki, Japan); Nakashima, Eichi (Kandenko, Ibaraki, Japan); Lave, Matthew

2011-11-01T23:59:59.000Z

169

An input-output approach to analyze the ways to increase total output of energy sectors: The case of Japan  

Science Journals Connector (OSTI)

The purpose of this study is to analyze the ways to increase total output of Japanese energy sectors in future time. In this study, Input-Output (IO) analysis is employed as a tool of analysis. This study focuses on petroleum refinery products and non-ferrous metals as analyzed sectors. The results show that positive impact observed in export and outside households consumption modifications while opposite impact is given by modification of import. The recommendations suggested based on these results are Japanese government should make breakthroughs so analyzed sector's export activities can increase and they have to careful in conducting import activities related to these sectors.

Ubaidillah Zuhdi

2014-01-01T23:59:59.000Z

170

Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004  

Broader source: Energy.gov [DOE]

Handbook providing practical information to help regulators decide if they want to use output-based regulations and explains how to develop an output-based emission standard

171

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh*  

E-Print Network [OSTI]

MODELING MULTI-OUTPUT FILTERING EFFECTS IN PCMOS Anshul Singh* , Arindam Basu , Keck-Voon Ling* and Vincent J. Mooney III*$§ Email: anshul.singh@research.iiit.ac.in, {arindam.basu, ekvling}@ntu, Nanyang Technological University (NTU), Singapore * NTU-Rice Institute of Sustainable and Applied

Mooney, Vincent

172

Output-Sensitive Algorithms for Tukey Depth and Related Problems  

E-Print Network [OSTI]

Output-Sensitive Algorithms for Tukey Depth and Related Problems David Bremner University of New de Bruxelles Pat Morin Carleton University Abstract The Tukey depth (Tukey 1975) of a point p halfspace that contains p. Algorithms for computing the Tukey depth of a point in various dimensions

Morin, Pat

173

Soft-Input Soft-Output Sphere Decoding Christoph Studer  

E-Print Network [OSTI]

Soft-Input Soft-Output Sphere Decoding Christoph Studer Integrated Systems Laboratory ETH Zurich Laboratory ETH Zurich, 8092 Zurich, Switzerland Email: boelcskei@nari.ee.ethz.ch Abstract--Soft-input soft, 8092 Zurich, Switzerland Email: studer@iis.ee.ethz.ch Helmut Bölcskei Communication Technology

174

Maximizing output from oil reservoirs without water breakthrough  

E-Print Network [OSTI]

Maximizing output from oil reservoirs without water breakthrough S.K. Lucas School of Mathematics, revised May 2003, published 45(3), 2004, 401­422 Abstract Often in oil reservoirs a layer of water lies, for example, Muskat [8], Bear [1]). When oil is removed from the reservoir by an oil well, it will generate

Lucas, Stephen

175

Growth & Development / Parental Care  

E-Print Network [OSTI]

participate; if one parents is lost, fledging rates usually drop #12;Winkler reduced clutch size from 5 to 3Growth & Development / Parental Care #12;Embryonic Development Although the sequence of 42 stages the egg The hatching muscle helps the chick break out of the egg Parents typically dispose of the egg

Butler, Christopher J.

176

Heart Rate Variability Malvin Carl Teich  

E-Print Network [OSTI]

Heart Rate Variability Malvin Carl Teich Boston University and Columbia University http, Grasmere, UK, 2005 #12;CONGESTIVE HEART FAILURE INABILITY OF HEART TO INCREASE CARDIAC OUTPUT IN PROPORTION of breath Swelling in legs General fatigue and weakness Clinical diagnostics: Ascultate heart Carotid pulse

Teich, Malvin C.

177

An Advanced simulation Code for Modeling Inductive Output Tubes  

SciTech Connect (OSTI)

During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

Thuc Bui; R. Lawrence Ives

2012-04-27T23:59:59.000Z

178

Clock-controlled generators with large period output sequences  

Science Journals Connector (OSTI)

Clock-controlled generators are a kind of pseudo-random number generators (PRNG). Recently, some clock-controlled generators based on jumping Linear Finite State Machines (LFSMs) have been proposed, such as Pomaranch and MICKEY. The period and the linear complexity of their output sequences need to be large enough to provide security against linear attacks. In this paper, a new condition for the period to reach its maximal value is presented. The condition is better than the previous one. Further, some clock-controlled generators are considered, including a new generator which uses a Feedback with Carry Shift Register (FCSR) as the control register. How to maximise the period of their output sequences is investigated.

Zhiqiang Lin

2014-01-01T23:59:59.000Z

179

Control of XeF laser output by pulse injecton  

SciTech Connect (OSTI)

Injection locking is investigated as a means for control of optical pulse duration and polarization in a XeF laser. Intense short-pulse generation in the ultraviolet is achieved by injection of a low-level 1-ns optical pulse into a XeF oscillator. Control of laser output polarization by injection locking is demonstrated and studied as a function of injected signal level. Enhancement of XeF electric-discharge laser efficiency by injection pulse ''priming'' is observed.

Pacala, T.J.; Christensen, C.P.

1980-04-15T23:59:59.000Z

180

Output power characteristics of the neutral xenon long laser  

SciTech Connect (OSTI)

Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines  

Science Journals Connector (OSTI)

A comprehensive theoretical model is proposed for the performance evaluation of a solar chimney power plant (SCPP), and has been verified by the experimental data of the Spanish prototype. This model takes account of the effects of flow and heat losses, and the temperature lapse rates inside and outside the chimney. There is a maximum power output for a certain SCPP under a given solar radiation condition, due to flow and heat losses and the installation of the turbines. In addition, the design flow rate of the turbine in the SCPP system is found beneficial for power output when it is lower than that at the maximum power point. Furthermore, a limitation on the maximum collector radius exists for the maximum attainable power of the SCPP; whereas, no such limitation exists for chimney height in terms of contemporary construction technology.

Jing-yin Li; Peng-hua Guo; Yuan Wang

2012-01-01T23:59:59.000Z

182

E-Print Network 3.0 - assisted crack growth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cal crack growth by stress... for the first time in sapphire for both modes of subcritical cracking. It was found that growth rates were... growth rates could be closely...

183

Photovoltaic Degradation Rates -- An Analytical Review  

SciTech Connect (OSTI)

As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

Jordan, D. C.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

184

3.0 GROWTH FACILITY SPACE REQUESTS Prospective users of the greenhouses or growth chambers are encouraged to  

E-Print Network [OSTI]

for greenhouse and growth chamber specifications, including space, lighting and fees. Greenhouse and Growth Chamber Space Inventory Greenhouse and Growth Chamber Lighting Inventory #12;Hourly Rate Service Charges3.0 GROWTH FACILITY SPACE REQUESTS Prospective users of the greenhouses or growth chambers

Pawlowski, Wojtek

185

Radiation dose-rate meter using an energy-sensitive counter  

DOE Patents [OSTI]

A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

Kopp, Manfred K. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

186

NCPART: management of ICEMDDN output for numerical control users  

SciTech Connect (OSTI)

NCPART is a procedure developed by the Numerical Control Department at Bendix Kansas City Division to handle the entry to and exit from ICEMDDN, and process all of the local files output by ICEMDDN. The NCPART procedure is menu driven, and provides automatic access to ICEMDDN and any files necessary to process information with ICEM for numerical Control users. Basically, the procedure handles all of the ICEMDDN operations that involve operating system commands, and frees the NC programmer to concentrate on his/her work as a programmer.

Rossini, B.F.

1986-04-01T23:59:59.000Z

187

Waveguide submillimetre laser with a uniform output beam  

SciTech Connect (OSTI)

A method for producing non-Gaussian light beams with a uniform intensity profile is described. The method is based on the use of a combined waveguide quasi-optical resonator containing a generalised confocal resonator with an inhomogeneous mirror with absorbing inhomogeneities discretely located on its surface and a hollow dielectric waveguide whose size satisfies the conditions of self-imaging of a uniform field in it. The existence of quasi-homogeneous beams at the output of an optically pumped 0.1188-mm waveguide CH{sub 3}OH laser with a amplitude-stepped mirror is confirmed theoretically and experimentally. (lasers)

Volodenko, A V; Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Topkov, A N [V.N. Karazin Kharkiv National University, Kharkiv (Ukraine)

2007-01-31T23:59:59.000Z

188

Definition: Emergency Rating | Open Energy Information  

Open Energy Info (EERE)

Emergency Rating Emergency Rating Jump to: navigation, search Dictionary.png Emergency Rating The rating as defined by the equipment owner that specifies the level of electrical loading or output, usually expressed in megawatts (MW) or Mvar or other appropriate units, that a system, facility, or element can support, produce, or withstand for a finite period. The rating assumes acceptable loss of equipment life or other physical or safety limitations for the equipment involved.[1] Related Terms rating References ↑ Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Emergency_Rating&oldid=480317" Categories:

189

Techniques for increasing output power from mode-locked semiconductor lasers  

SciTech Connect (OSTI)

Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

Mar, A.; Vawter, G.A.

1996-02-01T23:59:59.000Z

190

New mechanism of modulation of output radiation of a laser with an unstable resonator  

SciTech Connect (OSTI)

It is shown that modulation of the intensity of the radiation emitted by continuous-flow lasers with unstable resonators may give rise to optical inhomogeneities. Expressions are obtained for the natural frequencies of perturbations and for the instability increment. An analysis is made of the effects of pumping of an active medium in a resonator, of the exchange of excitations between molecules, and of the relaxation process on the rate of growth of optical inhomogeneities in CO/sub 2/ lasers.

Deryugin, A.A.; Likhanskii, V.V.; Napartovich, A.P.

1985-02-01T23:59:59.000Z

191

ARM - Measurement - Hygroscopic growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsHygroscopic growth govMeasurementsHygroscopic growth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hygroscopic growth The rate that aerosol particles grow at relative humidity values less than 100 percent. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AOS : Aerosol Observing System

192

BIOTIC INFLUENCES AFFECTING POPULATION GROWTH OF  

E-Print Network [OSTI]

of Chlorella and Nitz8chia _ Growth curve and division rate of Chlorella _ Growth curve and division rate in conditioned media _ Inhibitory effect o~ Chlorella of Nitz8chia-conditioned medium _ Inhibitory effect on Nitz8chia of Chlorella-condit,ioned medium _ Inhibitory effects of filtrate from conditioned media

193

Method and system for managing an electrical output of a turbogenerator  

DOE Patents [OSTI]

The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

Stahlhut, Ronnie Dean (Bettendorf, IA); Vuk, Carl Thomas (Denver, IA)

2010-08-24T23:59:59.000Z

194

EXPLAINING OUTCROSSING RATE IN CAMPANULASTRUM AMERICANUM (CAMPANULACEAE): GEITONOGAMY  

E-Print Network [OSTI]

SELF-INCOMPATIBILITY Leah J. Kruszewski and Laura F. Galloway1 Department of Biology, University, the high outcrossing rate could result from cryptic self-incompatibility, a mechanism that favors outcross differential growth rates of self and outcross pollen tubes produce cryptic self-incompatibility. Growth rates

Galloway, Laura F.

195

GAMS program used to estimate capacity output using a distance function with both desirable and undesirable outputs, and weak disposability for the undesirable outputs.  

E-Print Network [OSTI]

." VIMS Marine resource Report N. 2007-6. August 2007. Author: John B. Walden NMFS/NEFSC 166 Water St(obs,var) variuable input utilization rate weight(obs) weights ; POSITIVE Variable weight, lambda; EQUATIONS CONSTR1 /dd_res_crs.txt/ MODEL CAP /ALL/; /*Use all the equations. Alternatively, the model could be solved

196

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

197

Quantum teleportation scheme by selecting one of multiple output ports  

E-Print Network [OSTI]

The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state, and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases, and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of $N\\to\\infty$. The entanglement properties of the teleportation scheme are also discussed.

Satoshi Ishizaka; Tohya Hiroshima

2009-04-06T23:59:59.000Z

198

Rates & Repayment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Environmental Review-NEPA Financial Data Operations Planning & Projects Power Marketing Rates Rate Adjustments Transmission Ancillary Services Rates WAPA-137 Rate Order Rates and Repayment Services Rates Current and Historical Rate Information Collbran Power Rates CRSP Power Rates CRSP Transmission System Rates CRSP Management Center interest rates Falcon-Amistad Power Rates Provo River Power Rates Rio Grande Power Rates Seedskadee Power Rates SLCA/IP Power Rates Rate Schedules & Supplemental Rate Information Current Rates for Firm Power, Firm & Non-firm Transmission Service, & Ancillary Services Current Transmission & Ancillary Services Rates Tariffs Components of the SLCA/IP Existing Firm Power Rate Cost Recovery Charge (CRC) Page MOA Concerning the Upper Colorado River Basin

199

Growth, innovation, scaling, and the pace of life in cities  

Science Journals Connector (OSTI)

...characterized by energy consumption rates, growth rates...determine the rates at which energy is delivered to...refers to total energy consumed in households...Shannon Larsen. · Fuel sales by gasoline...put forward by Florida (2), "supercreative...

Luís M. A. Bettencourt; José Lobo; Dirk Helbing; Christian Kühnert; Geoffrey B. West

2007-01-01T23:59:59.000Z

200

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms  

E-Print Network [OSTI]

A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

Liberzon, Daniel

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Internet growth: Myth and reality, use and abuse Andrew Odlyzko  

E-Print Network [OSTI]

Internet growth: Myth and reality, use and abuse Andrew Odlyzko AT&T Labs ­ Research amo@research.att.com http://www.research.att.com/¸amo Abstract Actual Internet traffic growth rates of 100 percent per year to Internet growth claim astronomical rates of increase; the usual phrase is that ``Internet traffic

Odlyzko, Andrew M.

202

Internet growth: Myth and reality, use and abuse Andrew Odlyzko  

E-Print Network [OSTI]

Internet growth: Myth and reality, use and abuse Andrew Odlyzko AT&T Labs - Research amo@research.att.com http://www.research.att.com/ amo Abstract Actual Internet traffic growth rates of 100 percent per year to Internet growth claim astronomical rates of increase; the usual phrase is that "Internet traffic

Odlyzko, Andrew M.

203

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

204

Population Growth, (Per Capita) Economic Growth, and Poverty Reduction in Uganda: A brief Summary of Theory and Evidence  

E-Print Network [OSTI]

Population Growth, (Per Capita) Economic Growth, and Poverty Reduction in Uganda: A brief Summary: This note examines the link between population and per capita economic growth in Uganda. After showing that Uganda has one of the highest population growth rates in the world which, due to the inherent demographic

Krivobokova, Tatyana

205

Optimization of the output and efficiency of a high power cascaded arc hydrogen plasma source  

SciTech Connect (OSTI)

The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I-V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that (without a magnetic field) an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. [Appl. Phys. Lett. 90, 121501 (2007)] should be possible.

Vijvers, W. A. J.; Gils, C. A. J. van; Goedheer, W. J.; Meiden, H. J. van der; Veremiyenko, V. P.; Westerhout, J.; Lopes Cardozo, N. J.; Rooij, G. J. van [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Schram, D. C. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2008-09-15T23:59:59.000Z

206

Output, efficiency, emissions improved with Cat's 3500 series B engine  

SciTech Connect (OSTI)

Like most technologies, engine developments tend to follow evolutionary paths. And it's a given that the longer an engine's been around and the more successful it's been, the more likely it is that any changes made would be incremental. On the surface, such is the case with the Caterpillar 3500 Series B diesel engine, recently introduced in Europe and the United States. Based on the well-proven 3500 engine first introduced in 1980 and upgraded with a Phase II program five years later, most of the changes appear incremental. But taken as a whole, they provide a level of performance and durability that Caterpillar anticipates will make this engine an even stronger contender in power generation and marine applications for years to come. It's not hard to see why. Output has been increased between 17% and 30% on some models; fuel consumption is improved by as much as 15%; and with the new aftertreatment system introduced with the engines, emissions as low as 1.3 g/kWh NO[sub x] are said to be achieveable. This paper outlines the design, specifications, and highlights of the improvements in performance of these new engines. 3 figs.

Brezonick, M.

1995-03-01T23:59:59.000Z

207

Molar Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molar Growth Molar Growth Name: Daniel Location: N/A Country: N/A Date: N/A Question: What animals have molars that grow continuously ? Replies: No mammals that I or my colleagues are aware of, only some few whose incisors grow continuously. J. Elliott Most vertebrates are "polyphyodonts" meaning that they replace teeth continuously through out their lives. All the teeth aren't replaced at once, but in waves so that the animals always have functional teeth around those that are lost. Most mammals are "diphyodonts", which means that they have only 2 sets of teeth: baby teeth and adult teeth. The teeth of herbivore mammals, those which eat grasses, seem to grow throughout their lives. But really, the teeth are very long and extend far down into the jaws. They gradually move up in the jaw toward the surface over time, with the area beneath them filling in with bone.

208

Compilation and Application of Japanese Inventories for Energy Consumption and Air Pollutant Emissions Using Input?Output Tables  

Science Journals Connector (OSTI)

Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan ... Next, for each of the 400 sectors (the 399 sectors of the consolidated Input?Output Table plus the “consumption expenditure of households” sector, which is one of the final demand sectors), various statistics and source materials were used to estimate gross consumptions, expressed as a physical amount for each sector, of 6 coal-based fuels, 12 petroleum-based fuels, 3 natural gas-based fuels, and 5 other fuels. ... LPG. LPG for automobile and household use is more expensive than that used by industry, because of its higher tax rate and less efficient mode of supply. ...

Keisuke Nansai; Yuichi Moriguchi; Susumu Tohno

2003-04-04T23:59:59.000Z

209

Sinusoidal self-modulation in the output of a CO/sub 2/ laser with an intracavity saturable absorber  

SciTech Connect (OSTI)

Conditions under which a sinusoidally modulated laser output occurs in a CO/sub 2/ laser with a saturable absorber were studied experimentally and theoretically for a wide range of laser operating parameters. A novel type of transition between stability and instability appears in the high-pressure range of the saturable absorber. Through the rate-equation analysis based on the three-level (the gain medium): two-level (the loss medium) model, the observed pulse shapes and the features of transitions in the phase diagram are reproducible. The conditions of saturable absorbers to obtain the sinusoidal are clarified from the analysis.

Tanii, K.; Tachikawa, M.; Kajita, M.; Shimizu, T.

1988-01-01T23:59:59.000Z

210

Transatlantic Growth Differentials, ICT Dynamics, Fiscal Policy and Innovation Policy  

Science Journals Connector (OSTI)

The United States (US) recorded in the period 1991–2000 a formidable growth rate of about 3% p.a. where a considerable impulse for high and sustained growth stems from high investment in information and commun...

Professor Dr. Paul J. J. Welfens

2002-01-01T23:59:59.000Z

211

Effects of head-up tilt on mean arterial pressure, heart rate, and regional cardiac output distribution in aging rats  

E-Print Network [OSTI]

Approved by: Chair of Committee, Michael Delp Committee Members, Robert Armstrong Judy Muller-Delp Janet r Head of Department, Steve M. Dorman December 2005 Major Subject: Kinesiology iii ABSTRACT Effects of Head-up Tilt... Armstrong, and Dr. Janet Parker for their patience, guidance, and support thoughout the course of this research. vi TABLE OF CONTENTS Page ABSTRACT????????????????????????.. iii ACKNOWLEDGEMENTS??????????????????.. v TABLE OF CONTENTS...

Ramsey, Michael Wiechmann

2006-04-12T23:59:59.000Z

212

Neural Networks for Post-processing Model Output: Caren Marzban  

E-Print Network [OSTI]

variables to the neural network are: Forecast hour, model forecast temperature, relative humidity, wind direction and speed, mean sea level pressure, cloud cover, and precipitation rate and amount. The single to being able to approximate a large class of functions, they are less inclined to overfit data than some

Marzban, Caren

213

Generation of high power, high repetition-rate pulses using erbium-doped fiber ring laser  

E-Print Network [OSTI]

This thesis presents the results obtained from crographics. generation of high repetition rate, high peak power output pulses using an erbium-doped fiber amplifier (EDFA). Two configurations were employed. The first setup used a linear cavity...

Hinson, Brett Darren

2012-06-07T23:59:59.000Z

214

Economic Growth Policies & Economic Growth Theory Influences.  

E-Print Network [OSTI]

?? The aim of this thesis is to describe the presence of theories for economic growth in municipalities’ economic growth strategies, and to compare the… (more)

Hallden, Sophie

2012-01-01T23:59:59.000Z

215

Is water security necessary? An empirical analysis of the effects of climate hazards on national-level economic growth  

Science Journals Connector (OSTI)

...extremes leads to risk aversion and a...counterproductive reduction in investment, leading to a...industrial output, investment growth and political stability to all...infrastructure investment is by nature too risky. The greater risk, however, probably...

2013-01-01T23:59:59.000Z

216

Public Capital, Growth and Welfare  

E-Print Network [OSTI]

and sanitation--increase in enrolment rates (especially for girls, rural areas). 2. Electricity reason: improved access benefits the poor more than proportionally; if inequality is bad for growth (e be internalized. #12;18 Policy Implications #12; 1. Investment spending is a poor proxy for the accumulation

217

Definition: Rated power | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Rated power Jump to: navigation, search Dictionary.png Rated power The power output of a device under specific or nominal operating conditions[1] View on Wikipedia Wikipedia Definition In electrical and electronic engineering, the power rating of a device is a guideline set by the manufacturer as a maximum power to be used with that device. This limit is usually set somewhat lower than the level where the device will be damaged, to allow a margin of safety. In devices which primarily dissipate electric power or convert it into mechanical power, such as resistors, electric motors, and speakers, the power rating given is usually the maximum power that can be safely dissipated by the

218

Combining frequency and time domain approaches to systems with multiple spike train input and output  

E-Print Network [OSTI]

between neuronal spike trains. Prog Biophys Mol Biol Vapnikto systems with multiple spike train input and output D. R.Keywords Multiple spike trains · Neural coding · Maximum

Brillinger, D. R.; Lindsay, K. A.; Rosenberg, J. R.

2009-01-01T23:59:59.000Z

219

On using transputers to design the header and output processors for the PSi architecture  

E-Print Network [OSTI]

the complexity associatecl with general soft ware. From Upper Layer Needer Processor From Lower Leyei' Input Bus Concoction Processor Connection Processor 256 CP's Output Bus To Upper Layer Output Processor To Lower Layer Fig. 2. d. Block... yer From Lower Layer T2 T3 To Input Bus of CP's From Output Bus of CF's From Output Bus of Cfes Fig, 4. 1. e. Block diagram of Design I transputers has its own private memory. Tl acts as the header processor. Two of its serial links...

Manickam, Muralidhar

2012-06-07T23:59:59.000Z

220

A CSP Timed Input-Output Relation and a Strategy for Mechanised Conformance Verification  

Science Journals Connector (OSTI)

Here we propose a timed input-output conformance relation (named CSPTIO) based on the process algebra CSP. In contrast to other relations, CSPTIO...

Gustavo Carvalho; Augusto Sampaio…

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FORMALIZATION OF INPUT AND OUTPUT IN MODERN OPERATING SYSTEMS: THE HADLEY MODEL.  

E-Print Network [OSTI]

??We present the Hadley model, a formal descriptive model of input and output for modern computer operating systems. Our model is intentionally inspired by the… (more)

Gerber, Matthew

2005-01-01T23:59:59.000Z

222

Cavity dumping versus stationary output coupling in repetitively Q-switched solid-state lasers  

Science Journals Connector (OSTI)

A comparative theoretical analysis of continuously pumped actively Q-switched solid-state lasers differing in output coupling methods (cavity dumping versus a partially transmitting...

Grishin, Mikhail

2011-01-01T23:59:59.000Z

223

Eyeball Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eyeball Growth Eyeball Growth Name: Jade Hawk Status: N/A Age: N/A Location: N/A Country: N/A Date: N/A Question: Okay, I know I'm supposed to be able to answer questions here, but a friend who teaches grades 7 & 8 general science wants to know if the human eyeball is fully grown at birth. I checked my references, which are rather limited when it comes to human physiology, and found nothing. Can anyone help? Replies: The eye will still develop in size, pigmentation, and neurologically but I don't have the details here at hand. A kitten is born with eyes even more immature than human babies. Besides having sealed eyes that take about a week to open, they have retinas that a avascularized and need to undergo neovascularization to properly nourish and oxygenate the tissue. We have used the kitten to study retinopathy of prematurity, a condition caused in part by increased inspired oxygen. The kitten is also used in the study of diabetic retinopathy which a I think is the leading cause of blindness in the US. Look up publications by Dale Phelps, MD.

224

Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: July 28, 2003 8: July 28, 2003 Annual VMT Growth Rates to someone by E-mail Share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Facebook Tweet about Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Twitter Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Google Bookmark Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Delicious Rank Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on Digg Find More places to share Vehicle Technologies Office: Fact #278: July 28, 2003 Annual VMT Growth Rates on AddThis.com... Fact #278: July 28, 2003 Annual VMT Growth Rates Vehicle miles of travel (VMT) of highway vehicles in 2001 was 2.5 times

225

Growth of Betti Numbers Bryan Clair  

E-Print Network [OSTI]

Growth of Betti Numbers Bryan Clair _____________________________________________________________________________ Introduction Let X = fX= be a finite simplicial complex. We study the growth rate of the Betti numbers of X. It is easy to see that the sequence of Betti numbers {bq(Xi)} can grow at most linearly

Clair, Bryan

226

Graphene Layer Growth: Collision of Migrating Five-Member Rings  

E-Print Network [OSTI]

Monte Carlo simulations of graphene edge buildup, the rateGraphene layer growth: Collision of migrating five- memberon the zigzag edge of a graphene layer. The process is

Whitesides, Russell; Kollias, Alexander C.; Domin, Dominik; Lester Jr., William A.; Frenklach, Michael

2005-01-01T23:59:59.000Z

227

Chlorite Dissolution Rates  

SciTech Connect (OSTI)

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

2013-07-01T23:59:59.000Z

228

Chlorite Dissolution Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

Carroll, Susan

229

Power Rate Cases (pbl/rates)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

230

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

231

Design of fast output sampling feedback control for smart structure model  

Science Journals Connector (OSTI)

In this paper, the problem of modelling and output feedback control design for a smart structural system using piezoelectric material as a sensor/actuator is addressed. The model for a smart cantilever beam is developed by the finite element method. ... Keywords: output feedback, smart structure, vibration control

M. Umapathy; B. Bandyopadhyay

2007-01-01T23:59:59.000Z

232

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

SciTech Connect (OSTI)

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

233

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design  

E-Print Network [OSTI]

PWM Inverter Output Filter Cost to Losses Trade Off and Optimal Design Robert J. Pasterczyk Jean--This paper describes how to design the output filter of a PWM inverter used in a Uninterruptible Power SupplyVA 3-ph. PWM inverter is taken as example. B. Design Constraints Uninterruptible Power Supply (UPS

Paris-Sud XI, Université de

234

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

235

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

236

Statistical post processing of model output from the air quality model LOTOS-EUROS  

E-Print Network [OSTI]

Statistical post processing of model output from the air quality model LOTOS-EUROS Annemiek processing of model output from the air quality model LOTOS-EUROS Author: Annemiek Pijnappel Supervisor summary Air quality forecasts are produced routinely, focusing on concentrations of polluting gases

Stoffelen, Ad

237

Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization and Integrated Control  

E-Print Network [OSTI]

1 Optimizing the Output of a Human-Powered Energy Harvesting System with Miniaturization mechanical energy from human foot-strikes and explore its configuration and control towards optimized energy output. Dielectric Elastomers (DEs) are high-energy density, soft, rubber-like material

Potkonjak, Miodrag

238

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu  

E-Print Network [OSTI]

Optimization on Solar Panels: Finding the Optimal Output Brian Y. Lu January 1, 2013 1 Introduction of solar panel: Routing the configuration between solar cells with a switch matrix. However, their result models and control policies for the optimal output of solar panels. The smallest unit on a solar panel

Lavaei, Javad

239

Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and their Correlation  

E-Print Network [OSTI]

Wind energy plays an increasing role in the supply of energy world-wide. The energy output of a wind farm is highly dependent on the weather condition present at the wind farm. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproductions. With this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We reveal the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly given weather data.

Vladislavleva, Katya; Neumann, Frank; Wagner, Markus

2011-01-01T23:59:59.000Z

240

Method for leveling the power output of an electromechanical battery as a function of speed  

DOE Patents [OSTI]

The invention is a method of leveling the power output of an electromechanical battery during its discharge, while at the same time maximizing its power output into a given load. The method employs the concept of series resonance, employing a capacitor the parameters of which are chosen optimally to achieve the desired near-flatness of power output over any chosen charged-discharged speed ratio. Capacitors are inserted in series with each phase of the windings to introduce capacitative reactances that act to compensate the inductive reactance of these windings. This compensating effect both increases the power that can be drawn from the generator before inductive voltage drops in the windings become dominant and acts to flatten the power output over a chosen speed range. The values of the capacitors are chosen so as to optimally flatten the output of the generator over the chosen speed range. 3 figs.

Post, R.F.

1999-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Distinguishing Weak and Strong Disposability among Undesireable Outputs in DEA: The Example of the Environmental Efficiency of Chinese Coal-Fired Power Plants  

E-Print Network [OSTI]

in terajoules (TJ). 4.2 Undesirable Outputs Undesirable variable refers to emissions from the electricity generation process. Coal is a combustible mineral composed primarily of carbon and hydrocarbon, along with other assorted elements including nitrogen... of the sample power plants is 211.71GW. The total annual generation is 1117.59 TWh. Data, such as installed capacity, annual fuel consumption (coal and oil), number of employees, annual electricity generation, heat rates, and quality of fuel, were collected...

Yu, Hongliang; Pollitt, Michael G.

242

Sensor response rate accelerator  

SciTech Connect (OSTI)

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

243

Analytical Improvements in PV Degradation Rate Determination  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

244

High beach temperatures increased female-biased primary sex ratios but reduced output of female hatchlings in the leatherback turtle  

Science Journals Connector (OSTI)

Abstract Sex of offspring in most turtles is determined by temperature-dependent sex determination (TSD). In sea turtles, higher incubation temperatures produce female hatchlings and primary sex ratios are often highly female-biased. Because of the current rate of climate warming, highly female-biased sex ratios have raised concern among scientists and managers because populations might become too female biased for genetic viability. We tested the effects of higher incubation temperatures on embryo and hatchling mortality and on sex ratios in a population of leatherback turtles (Dermochelys coriacea) in the eastern Pacific. The long-term study provided a large sample size in a location influenced by El Nińo Southern Oscillation that resulted in highly variable climatic conditions between seasons. High temperatures reduced emergence success. Output of female hatchlings increased with incubation temperature as it reached the upper end of the transitional range (range of temperatures that produce both sexes) (30 °C) and decreased afterwards because high temperatures increased mortality of ‘female clutches’. Effect of temperature on female hatchling output lessened female-biased sex ratios from 85% female primary sex ratios to 79% secondary sex ratios (sex ratios of total number of hatchlings emerged). If male turtles reproduce more often than females, operational sex ratios will be closer to 1:1. Female-biased primary sex ratios should not raise concerns by default, but climate change may still threaten populations by reducing hatchling output and increasing frequency of seasons with 100% female production. Clutch relocation to cooler conditions may alter sex ratios and should be used cautiously unless temperatures are so high that no hatchlings survive. In addition, it is unknown what differential survival of male versus female hatchlings may have on the eventual adult sex ratio after they enter the ocean and disperse.

Pilar Santidrián Tomillo; Daniel Oro; Frank V. Paladino; Rotney Piedra; Annette E. Sieg; James R. Spotila

2014-01-01T23:59:59.000Z

245

Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output  

E-Print Network [OSTI]

We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat-engines and refrigerators with finite power outputs. This article gives detailed derivations of the results summarized in Phys. Rev. Lett. 112, 130601 (2014). It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analogue in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however a general proof of this remains elusive.

Robert S. Whitney

2015-01-28T23:59:59.000Z

246

Growth rate of the major phylogenetic bacterial groups in the ...  

Science Journals Connector (OSTI)

ABSTRACT: The phylogenetic composition of bacterial communities varies along the salinity gradient of estuaries, one notable pattern being the prevalence of ...

247

Some factors influencing digestion and growth rates of beef steers  

E-Print Network [OSTI]

~K 20i49 34. 78 '2221 20+49 26. 81 mgs 20i49 26, 81 19i92 66i51 KlI 19a92 ~38. 7 21i10 ~0+9 Oi93 Oe93 0. 93 0, 90 8. 5T 98 e9 0 94 8. 63 98. 9 Oi94 Oi94 5. 23 li03 7. 49 4 01 KGF 1 i03 4il2 li22 lg ilHSUL')S kg... of the steers under the ccnditicns cf this oxparincnt? Dttssttss trials Tho results of tbo digestion tria1s aro a~ed in Table 5. Ths addition of cny supple+mt to tbo basal ration u ed throughout tlaso studies very signifioantIy (p (0. 01) inprcved ths...

Gossett, John Warren

2012-06-07T23:59:59.000Z

248

Lasalocid effects on growth rates of grazing heifers  

E-Print Network [OSTI]

of five treatments and individually fed 454 g/hd/d of a ground sorghum grain carrier containing lasalocid at levels of: (1) 0, (2) 50, (3) 100, (4) 200 ot' (5) 300 mg/hd/d. ADC (kg) for the five treatments wes (1) '. 53, (2) . 61, (3) . 59, (4) . 58... AVERAGE SUPPLEMENT INTAKE PER HEIFER (KG/HD/D). 2 LASALOCID EFFECTS ON INTAKE AND WEIGHT GAIN OF GRAZING HEIFERS ~ ~. . . . . . . . . . . . . . . . . . . . . . . . . 12 3 INTAKE LEVEL AND PERFORMANCE BY TREATMENT ~ 14 4 LASALOCID EFFECTS ON AVERAGE...

May, Ray Alton

2012-06-07T23:59:59.000Z

249

Ribosome recycling induces optimal translation rate at low ribosomal availability  

Science Journals Connector (OSTI)

...important consequences for the physics of transport of ribosomes...on protein production rates under differing growth...production, fine-tuning the rate of production in the face...suggests that ribosomes can pass directly from termination...the protein production rate and ribosome density on...

2014-01-01T23:59:59.000Z

250

X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof  

DOE Patents [OSTI]

An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

Radley, Ian (Glenmont, NY); Bievenue, Thomas J. (Delmar, NY); Burdett, John H. (Charlton, NY); Gallagher, Brian W. (Guilderland, NY); Shakshober, Stuart M. (Hudson, NY); Chen, Zewu (Schenectady, NY); Moore, Michael D. (Alplaus, NY)

2008-06-08T23:59:59.000Z

251

Use of Coupled Rate Equations To Describe Nucleation-and-Branching Rate-Limited Solid-State Processes  

Science Journals Connector (OSTI)

Use of Coupled Rate Equations To Describe Nucleation-and-Branching Rate-Limited Solid-State Processes ... Coincident with nuclei growth may be the process of nuclei multiplication or “branching”. ... We consider that nucleation and branching may be considered as two interrelated yet distinct steps (often rate determining) in a series of steps required to achieve a conversion. ...

Peter J. Skrdla

2004-07-20T23:59:59.000Z

252

Florida Growth Fund (Florida)  

Broader source: Energy.gov [DOE]

The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

253

Association of automobile passenger transportation and economic growth in Japan  

E-Print Network [OSTI]

) (Nember) January 1969 ABSTRACT Association cf Automobile Passenger Transportation and Economic Growth in Japan. (January 1969) Teruhiko Boric, B. A. , &faseda University Directed by: Dr. ~felvin L. Greenhut In order to evaluate the growth... of Japanese post-war passenger transportation, a comparative study of the U. S. passenger transporta- ti. on development between 1910 and 1940 has been made. The growth rate of automobile ownership prior to the Great Depression is larger than the rate...

Horie, Teruhiko

1969-01-01T23:59:59.000Z

254

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Broader source: Energy.gov (indexed) [DOE]

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

255

Ensemble regression : using ensemble model output for atmospheric dynamics and prediction  

E-Print Network [OSTI]

Ensemble regression (ER) is a linear inversion technique that uses ensemble statistics from atmospheric model output to make dynamical inferences and forecasts. ER defines a multivariate regression operator using ensemble ...

Gombos, Daniel (Daniel Lawrence)

2009-01-01T23:59:59.000Z

256

Primate Motor Cortex: Individual and Ensemble Neuron-Muscle Output Relationships  

E-Print Network [OSTI]

The specific aims of this study were to: 1) investigate the encoding of forelimb muscle activity timing and magnitude by corticomotoneuronal (CM) cells, 2) test the stability of primary motor cortex (M1) output to forelimb ...

Griffin, Darcy Michelle

2008-07-30T23:59:59.000Z

257

Augmentation of Power Output of Axisymmetric Ducted Wind Turbines by Porous Trailing Edge Disks  

E-Print Network [OSTI]

This paper presents analytical and experimental results that demonstrated that the power output from a ducted wind turbine can be dramatically increased by the addition of a trailing edge device such as a porous disk. In ...

widnall, sheila

2014-06-30T23:59:59.000Z

258

A Hardware Implementation of the Soft Output Viterbi Algorithm for Serially Concatenated Convolutional Codes  

E-Print Network [OSTI]

This thesis outlines the hardware design of a soft output Viterbi algorithm decoder for use in a serially concatenated convolutional code system. Convolutional codes and their related structures are described, as well as the algorithms used...

Werling, Brett William

2010-06-28T23:59:59.000Z

259

Code design for multiple-input multiple-output broadcast channels  

E-Print Network [OSTI]

Recent information theoretical results indicate that dirty-paper coding (DPC) achieves the entire capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This thesis presents practical code designs for Gaussian...

Uppal, Momin Ayub

2009-06-02T23:59:59.000Z

260

Cardiac output and stroke volume estimation using a hybrid of three models  

E-Print Network [OSTI]

Cardiac output (CO) and stroke volume (SV) are the key hemodynamic parameters to be monitored and assessed in ambulatory and critically ill patients. The purpose of this study was to introduce and validate a new algorithm ...

Arai, Tatsuya

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Power output enhancement of a vibration-driven electret generator for wireless sensor applications  

Science Journals Connector (OSTI)

We developed a compact vibration-driven electret generator that excelled at a power output. It succeeded in the operation of wireless sensor modules only on electricity from electret generators. This electret generator can supply enough power to operate a wireless sensor module without an external power source. It was necessary for enabling this operation to enhance the power output of the electret generator. We enhanced the power output by decreasing the parasitic capacitance. To decrease the parasitic capacitance, we fabricated a collector substrate using concave electrodes. We decreased it from 25 to 17 pF. As a result, the power output from our generator was enhanced from 40 to 100 µW considerably at an acceleration of 0.15 g (1.47 m s?2) and a resonance frequency of 30 Hz.

Tatsuakira Masaki; Kenji Sakurai; Toru Yokoyama; Masayo Ikuta; Hiroshi Sameshima; Masashi Doi; Tomonori Seki; Masatoshi Oba

2011-01-01T23:59:59.000Z

262

Variable-Speed Wind Generator System with Maximum Output Power Control  

Science Journals Connector (OSTI)

To achieve maximum output power from wind generator systems, the rotational speed of wind generators should be adjusted in real time according to natural wind speed. This chapter pays attention to an optimum rota...

Yoko Amano

2013-01-01T23:59:59.000Z

263

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

264

Imprinting a complete information about a quantum channel on its output state  

E-Print Network [OSTI]

We introduce a novel property of bipartite quantum states, which we call "faithfulness", and we say that a state is faithful when acting with a channel on one of the two quantum systems, the output state carries a complete information about the channel. The concept of faithfulness can also be extended to sets of states, when the output states patched together carry a complete imprinting of the channel.

Giacomo Mauro D'Ariano; Paoloplacido Lo Presti

2002-11-20T23:59:59.000Z

265

Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque  

DOE Patents [OSTI]

A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

2014-10-28T23:59:59.000Z

266

rates | OpenEI  

Open Energy Info (EERE)

rates rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

267

The effect of small field output factor measurements on IMRT dosimetry  

SciTech Connect (OSTI)

Purpose: To evaluate how changes in the measured small field output factors affect the doses in intensity-modulated treatment planning. Methods: IMRT plans were created using Philips Pinnacle treatment planning system. The plans were optimized to treat a cylindrical target 2 cm in diameter and 2 cm in length. Output factors for 2 Multiplication-Sign 2 and 3 Multiplication-Sign 3 cm{sup 2} field sizes were changed by {+-}5%, {+-}10%, and {+-}20% increments from the baseline measurements and entered into the planning system. The treatment units were recommissioned in the treatment planning system after each modification of the output factors and treatment plans were reoptimized. All plans were delivered to a solid water phantom and dose measurements were made using an ionization chamber. The percentage differences between measured and computed doses were calculated. An Elekta Synergy and a Varian 2300CD linear accelerator were separately evaluated. Results: For the Elekta unit, decreasing the output factors resulted in higher measured than computed doses by 0.8% for -5%, 3.6% for -10%, and 8.7% for -20% steps. Increasing the output factors resulted in lower doses by 2.9% for +5%, 5.4% for +10%, and 8.3% for +20% steps. For the Varian unit no changes were observed for either increased or decreased output factors. Conclusions: The measurement accuracy of small field output factors are of importance especially when the treatment plan consists of small segments as in IMRT. The method proposed here could be used to verify the accuracy of the measured small field output factors for certain linear accelerators as well as to test the beam model. The Pinnacle treatment planning system model uses output factors as a function of jaw setting. Consequently, plans using the Elekta unit, which conforms the jaws to the segments, are sensitive to small field measurement accuracy. On the other hand, for the Varian unit, jaws are fixed and segments are modeled as blocked fields hence, the impact of small field output factors on IMRT monitor unit calculation is not evaluable by this method.

Azimi, Rezvan; Alaei, Parham; Higgins, Patrick [Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2012-08-15T23:59:59.000Z

268

The effect of performance-based research funding on output of R&D results in the Czech Republic  

Science Journals Connector (OSTI)

We have studied the effects of performance-based research funding introduced to the Czech (CZ) R&D system in 2008 on outputs of R&D results. We have analyzed annual changes in number of various types of publications and applications including ... Keywords: Bibliometrics, Citation analysis, Patent output, Performance-based research funding, R&D results output

Jiri Vanecek

2014-01-01T23:59:59.000Z

269

Historical Interest Rates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current and Historical Interest Rates Current and Historical Interest Rates The table lists interest rates, from the project's inception through the present, for all projects with repayment supervised by the CRSP MC. The latest available interest rate is used for all future interest rate calculations. The Amistad-Falcon, Collbran, Provo River, and Rio Grande Projects are all assigned the average daily "Yield Rate" calculated by the U.S. Treasury, on an annual basis, for Treasury bonds having terms of 15 years or more remaining to maturity. The calculated yield rate is rounded to the nearest one-eighth of one percent. The yield rate is based upon the bond's interest rate, as well as its market value. The Colorado River Storage Project and its participating projects, Dolores and Seedskadee, are assigned the average daily "Coupon Rate," annualized for the same U.S. Treasury bonds used in "Yield Rate" calculations. The coupon rate is the interest rate that the bond carries upon its face.

270

Carbon dioxide emissions, impact on Malaysia's manufacturing productivity growth  

Science Journals Connector (OSTI)

The methods used to measure productivity growth generally ignore the pollutants that are produced by the industrial processes. For example, pollutant emissions generated as undesirable output, apart from the main output of Malaysia's manufacturing sector, are excluded from the productivity accounting framework. This study aims at an extended productivity measure that takes pollutants into account by internalisation of Carbon dioxide (CO2) as a measure of air pollutant emissions into the production function, as an unpriced input. The results show that there was a slowdown in the contribution of total factor productivity (TFP) growth in general, and a negative impact of CO2 emissions produced by the sector in particular, compared to other productivity indicators of the sector when CO2 is internalised in the models.

Elsadig Musa Ahmed

2006-01-01T23:59:59.000Z

271

Cost Analysis Rate Settin  

E-Print Network [OSTI]

Cost Analysis and Rate Settin for Animal Research Facilities #12;#12;Cost Analysis and Rate ... .. . ...................... . . . ................................. . .... 7 Chapter 2 Preparation for Cost Analysis ......................................................... 9 Chapter 3 Assignment of Costs to Animal Research Facility Cost Centers

Baker, Chris I.

272

Chemical-equilibrium model of optimal a-Si:H growth from SiH4  

Science Journals Connector (OSTI)

A model of optimal hydrogenated-amorphous-silicon growth based on bulk chemical reactions involving Si-Si and Si-H bonds is proposed. The optimal growth temperature is determined by the balance between the rate of hydrogen diffusion and the rate of film growth.

K. Winer

1990-04-15T23:59:59.000Z

273

Dynamics of growth roughening and smoothening on Ge (001)  

SciTech Connect (OSTI)

We present reflection high-energy electron diffraction measurements of the evolution of surface morphology during molecular beam epitaxy of Ge on Ge (001) and subsequent annealing. We find that there is a critical ''growth roughening'' temperature (375 C) above which a smooth surface remains smooth during growth, but below which it roughens during growth. Surprisingly, smooth starting surfaces never appear to roughen without bound, but reach steady-state roughnesses which depend on temperature and deposition rate. The results can be fit empirically with simple phenomenological equations based on a competition between growth roughening and growth smoothening of a ''pseudo-statistical'' surface. Furthermore, growth-roughened surfaces tend to smoothen, after growth, at a rate consistent with an Ostwald-like ripening mechanism. 4 figs.

Chason, E.; Tsao, J.Y.; Horn, K.M.; Picraux, S.T.

1988-01-01T23:59:59.000Z

274

A numerical method for calculation of power output from ducted vertical axis hydro-current turbines  

Science Journals Connector (OSTI)

Abstract This paper investigates effects of ducting on power output from vertical axis hydro-current turbines. A numerical two-dimensional method based on the potential flow theory is developed for calculation of non-dimensional power output from these turbines. In this method, the blades are represented by vortex filaments. The vortex shedding from the blades is modeled by discrete vortices. A boundary element method is used to incorporate the duct shape which is represented by a series of panels with constant distributions of sources and doublets. The aerodynamic loading on the blades are calculated using a quasi-steady modeling. A time-marching scheme is used for implementation of the numerical method. The results of this method are compared with experimental results for a turbine model. A good correlation between the numerical and experimental results is obtained for tip speed ratios equal and higher than 2.25. However due to a lack of dynamic stall modeling, the numerical method is not able to predict power output accurately at lower tip speed ratios wherein effects of dynamic stall are significant. Both numerical and experimental results also showed that the power output from a turbine can increase significantly when it is enclosed within a well-designed duct. The maximum power output of the turbine model investigated in this paper showed a 74% increase when the turbine is operating within the duct relative to the case it is in free-stream conditions.

Mahmoud Alidadi; Sander Calisal

2014-01-01T23:59:59.000Z

275

Economic impacts and challenges of China’s petroleum industry: An input–output analysis  

Science Journals Connector (OSTI)

It is generally acknowledged that the petroleum industry plays an important role in China’s national economic and social development. The direct, indirect, and induced impacts of China’s petroleum industry are analyzed in this study by using the Input–Output approach. The study also considers the main challenges that China’s economy might face in the future. The research results suggest the following: (1) The total economic impacts coefficients on output, given each unit of final demands change in extraction of petroleum and processing of petroleum, are 1.9180 and 3.2747 respectively, and the corresponding economic impacts coefficients on GDP are 1.0872 and 0.9001 respectively; (2) Extraction of petroleum has a more direct impact on GDP, while processing of petroleum has a greater effect on the total output; (3) Extraction of petroleum’s total economic impacts coefficients on both output and GDP have remained stable in recent years after a period of long decline; processing of petroleum’s total economic impacts coefficient on output is steadily increasing; (4) Import uncertainty, the likelihood of rising oil prices, and net oil exports caused by items manufactured with petroleum products (i.e. “Made in China” goods) are the main challenges the petroleum industry will cause for China’s overall economy.

Tang Xu; Zhang Baosheng; Feng Lianyong; Marwan Masri; Afshin Honarvar

2011-01-01T23:59:59.000Z

276

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Existing Capacity by Producer Type, 2012 (Megawatts) 4. Existing Capacity by Producer Type, 2012 (Megawatts) Producer Type Number of Generators Generator Nameplate Capacity Net Summer Capacity Net Winter Capacity Electric Power Sector Electric Utilities 9,624 680,592 621,785 644,358 Independent Power Producers, Non-Combined Heat and Power Plants 6,148 412,045 374,964 389,349 Independent Power Producers, Combined Heat and Power Plants 609 39,916 35,266 38,023 Total 16,381 1,132,554 1,032,015 1,071,729 Commercial and Industrial Sectors Commercial Sector 962 3,610 3,223 3,349 Industrial Sector 1,680 31,832 27,795 29,381 Total 2,642 35,442 31,018 32,730 All Sectors Total 19,023 1,167,995 1,063,033 1,104,459 Notes: In 2011, EIA corrected the NAICS codes of several plants which resulted in a net capacity shift from the electric utility sector to the commercial sector.

277

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. U.S. Transformer Sustained Automatic Outage Counts B. U.S. Transformer Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 1.00 1.00 300-399 2.00 -- 4.00 6.00 400-599 14.00 -- 11.00 25.00 600+ -- -- -- -- Grand Total 16.00 -- 16.00 32.00 Sustained Automatic Outage Hours High-Side Voltage (kV) Eastern Interconnection TRE WECC Contiguous U.S. 100-199 -- -- -- -- 200-299 -- -- 27.58 27.58 300-399 153.25 -- 15.87 169.12 400-599 3,070.88 -- 258.37 3,329.25 600+ -- -- -- -- Grand Total 3,224.13 -- 301.82 3,525.95 Outage Hours per Outage Incident Eastern Interconnection TRE WECC Contiguous U.S.

278

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Coal Consumption at Commercial and Institutional Users by Census Division and State" 6. Coal Consumption at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",20,52,24,73,83,-12.4 " Pennsylvania",20,52,24,73,83,-12.4 "East North Central",112,197,127,309,331,-6.8 " Illinois",34,45,29,79,66,18.9 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

279

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" Number of Employees at Underground and Surface Mines by State and Mine Production Range, 2012" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","Above 0","Zero2","Total Number" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50","to 10",,"of Employees" "Alabama",3415,97,655,317,160,224,54,105,5041 " Underground",2981,"-","-","-",36,88,"-",81,3190 " Surface",434,97,655,317,124,136,54,24,1851

280

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" 8. Average Sales Price of Coal by State and Mine Type, 2012 and 2011" "(dollars per short ton)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",107.73,104.51,106.57,100.17,108.71,102.69,7.6,-3.9,3.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Coal Production by State and Mining Method, 2012" Underground Coal Production by State and Mining Method, 2012" "(thousand short tons)" "Coal-Producing State and Region1","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",139,20,12410,12570 "Arkansas",96,"-","-",96 "Colorado",757,"-",22889,23646 "Illinois",18969,"-",23868,42837 "Indiana",15565,"-","-",15565 "Kentucky Total",56179,2018,"-",58198 " Kentucky (East)",22090,2010,"-",24100 " Kentucky (West)",34089,9,"-",34098 "Maryland",797,"-","-",797 "Montana","-","-",5708,5708

282

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Mining Productivity by State, Mine Type, and Union Status, 2012" Coal Mining Productivity by State, Mine Type, and Union Status, 2012" "(short tons produced per employee hour)" ,"Union",,"Nonunion" "Coal-Producing State and Region1","Underground","Surface","Underground","Surface" "Alabama",1.69,"-",0.66,1.8 "Alaska","-",5.98,"-","-" "Arizona","-",7.38,"-","-" "Arkansas","-","-",0.59,"-" "Colorado",4.9,6.09,6.02,4.45 "Illinois",2.09,"-",5.34,4.7 "Indiana","-","-",3.23,5.41 "Kentucky Total",3.02,2.45,2.36,3.06 " Kentucky (East)","-",2.45,1.64,2.65

283

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of U.S. Coal by State and Disposition, 2012" Average Sales Price of U.S. Coal by State and Disposition, 2012" "(dollars per short ton)" "Coal-Producing State","Open Market1","Captive2","Total3" "Alabama",85.06,"-",106.57 "Alaska","w","-","w" "Arizona","w","-","w" "Arkansas","w","-","w" "Colorado",38.51,43.19,37.54 "Illinois",49.04,54.71,53.08 "Indiana",49.16,54.5,52.01 "Kentucky Total",61.85,73.08,63.12 " Kentucky (East)",75.8,73.08,75.62 " Kentucky (West)",48.6,"-",48.67 "Louisiana","w","-","w"

284

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Emissions from Energy Consumption at 5. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants, by State, 2011 and 2012 (Thousand Metric Tons) Census Division and State Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 34,766 37,698 33 58 39 37 Connecticut 8,987 8,196 7 1 12 6 Maine 3,722 4,351 8 12 7 8 Massachusetts 14,346 16,404 15 22 14 14 New Hampshire 4,295 5,127 2 23 4 5 Rhode Island 3,403 3,595 0.03 0.07 2 3 Vermont 12 24 0.05 0.09 1 1 Middle Atlantic 161,786 171,603 275 370 187 203 New Jersey 16,120 16,917 4 5 14 13 New York 35,669 37,256 31 52 40 43 Pennsylvania 109,997 117,430 240 313 133 147

285

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2012 and 2011" Recoverable Coal Reserves and Average Recovery Percentage at Producing Mines by State, 2012 and 2011" "(million short tons)" ,2012,,2011 "Coal-Producing","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Percent Change" "State","Reserves","Percentage","Reserves","Percentage","Recoverable Coal" ,,,,,"Reserves" "Alabama",265,53.63,306,55.39,-13.2 "Alaska","w","w","w","w","w" "Arizona","w","w","w","w","w" "Arkansas","w","w","w","w","w"

286

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Average Retail Price of Electricity to Ultimate Customers: 7. Average Retail Price of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Cents per Kilowatthour) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 8.72 8.03 5.11 7.54 7.44 2004 8.95 8.17 5.25 7.18 7.61 2005 9.45 8.67 5.73 8.57 8.14 2006 10.40 9.46 6.16 9.54 8.90 2007 10.65 9.65 6.39 9.70 9.13 2008 11.26 10.36 6.83 10.74 9.74 2009 11.51 10.17 6.81 10.65 9.82 2010 11.54 10.19 6.77 10.57 9.83 2011 11.72 10.23 6.82 10.46 9.90 2012 11.88 10.09 6.67 10.21 9.84 2010 January 10.49 9.55 6.50 10.17 9.28 February 10.89 9.89 6.55 10.48 9.47 March 11.11 9.95 6.53 10.28 9.48 April 11.71 9.95 6.55 10.52 9.53 May 11.91 10.15 6.64 10.52 9.72

287

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2002 - 2012 1. Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, 2002 - 2012 Electric Power Sector Electric Utilities Independent Power Producers Period Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) Coal (Thousand Tons) Petroluem Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) End of Year Stocks 2002 141,714 43,935 1,711 116,952 29,601 328 24,761 14,334 1,383 2003 121,567 45,752 1,484 97,831 28,062 378 23,736 17,691 1,105 2004 106,669 46,750 937 84,917 29,144 627 21,751 17,607 309 2005 101,137 47,414 530 77,457 29,532 374 23,680 17,882 156 2006 140,964 48,216 674 110,277 29,799 456 30,688 18,416 217

288

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by High-Voltage Size and NERC Region, 2012 Sustained Automatic Outage Counts Voltage Region Type Operating (kV) FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. AC 200-299 142 49 14 141 242 49 -- 484 1,121 AC 300-399 -- 88 107 95 46 56 80 165 637 AC 400-599 9 3 -- 22 86 -- -- 125 245 AC 600+ -- -- 6 9 -- -- -- -- 15 AC Total 151 140 127 267 374 105 80 774 2,018 DC 100-199 -- -- -- -- -- -- -- -- -- DC 200-299 -- 18 -- -- -- -- -- 5 23 DC 300-399 -- -- -- -- -- -- -- -- -- DC 400-499 -- 5 -- -- -- -- -- -- 5 DC 500-599 -- -- -- 5 -- -- -- 17 22 DC 600+ -- -- -- -- -- -- -- -- --

289

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Price of Coal by State and Underground Mining Method, 2012" Sales Price of Coal by State and Underground Mining Method, 2012" "(dollars per short ton)" "Coal-Producing State","Continuous1","Conventional and","Longwall3","Total" ,,"Other2" "Alabama","w","-","w",107.73 "Arkansas","w","-","-","w" "Colorado","w","-",37.18,"w" "Illinois",48.08,"-",59.51,54.18 "Indiana",52.94,"-","-",52.94 "Kentucky Total","w","w","-",62.24 " Kentucky (East)","w","w","-",79.23 " Kentucky (West)",50.18,"-","-",50.18

290

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Steam Coal Exports by Customs District" Steam Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",4951041,5566950,6554494,10517991,11407664,-7.8 " Baltimore, MD",1275530,831976,1715016,2107506,2852092,-26.1 " Boston, MA",7,"-",12,7,24,-70.8 " Buffalo, NY",1180,1516,2826,2696,5257,-48.7 " New York City, NY",3088,2664,2168,5752,6106,-5.8 " Norfolk, VA",3578715,4697769,4760354,8276484,8443756,-2 " Ogdensburg, NY",36894,3610,3090,40504,6838,492.3 " Philadelphia, PA",55513,29255,34241,84768,56733,49.4

291

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

and Number of Mines by State, County, and Mine Type, 2012" and Number of Mines by State, County, and Mine Type, 2012" "(thousand short tons)" ,"Underground",,"Surface",,"Total" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and County" "Alabama",8,12570,38,6752,46,19321 " Bibb","-","-",2,119,2,119 " Blount","-","-",2,236,2,236 " Fayette",1,2249,"-","-",1,2249 " Franklin","-","-",2,137,2,137 " Jackson","-","-",3,152,3,152 " Jefferson",3,3589,9,1106,12,4695

292

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) 0. Receipts, Average Cost, and Quality of Fossil Fuels: Commerical Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 0 0 -- -- -- -- 18,671 18,256 3.44 3.52 24.7 3.03 2003 0 0 -- -- -- 0.0 18,169 17,827 4.96 5.06 30.5 4.02 2004 0 0 -- -- -- 0.0 16,176 15,804 5.93 6.07 21.9 4.58 2005 0 0 -- -- -- 0.0 17,600 17,142 8.38 8.60 25.2 6.25 2006 0 0 -- -- -- 0.0 21,369 20,819 8.33 8.55 30.7 6.42

293

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3.A. Net Generation by Energy Source: Independent Power Producers, 2002 - 2012 3.A. Net Generation by Energy Source: Independent Power Producers, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 395,943 22,241 8,368 378,044 1,763 272,684 18,189 44,466 -1,309 8,612 1,149,001 2003 452,433 35,818 7,949 380,337 2,404 304,904 21,890 46,060 -1,003 8,088 1,258,879 2004 443,547 33,574 7,410 427,510 3,194 312,846 19,518 48,636 -962 7,856 1,303,129 2005 507,199 37,096 9,664 445,625 3,767 345,690 21,486 51,708 -1,174 6,285 1,427,346 2006 498,316 10,396 8,409 452,329 4,223 361,877 24,390 59,345 -1,277 6,412 1,424,421

294

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Consumption of Coal for Electricity Generation by State by Sector, 9. Consumption of Coal for Electricity Generation by State by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 1,787 2,998 -40% 520 898 1,257 2,087 0 0 10 12 Connecticut 297 317 -6.5% 0 0 297 317 0 0 0 0 Maine 11 14 -18% 0 0 6 7 0 0 5 6 Massachusetts 959 1,769 -46% 0 0 954 1,763 0 0 5 6 New Hampshire 520 898 -42% 520 898 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 44,000 53,658 -18% 6 16 43,734 53,052 4 1 256 589

295

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Retail Price of Electricity to Ultimate Customers 4. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector 2002 through 2012 (Cents per kilowatthour) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 8.44 7.89 4.88 N/A 6.75 7.20 2003 8.72 8.03 5.11 7.54 N/A 7.44 2004 8.95 8.17 5.25 7.18 N/A 7.61 2005 9.45 8.67 5.73 8.57 N/A 8.14 2006 10.40 9.46 6.16 9.54 N/A 8.90 2007 10.65 9.65 6.39 9.70 N/A 9.13 2008 11.26 10.36 6.83 10.74 N/A 9.74 2009 11.51 10.17 6.81 10.65 N/A 9.82 2010 11.54 10.19 6.77 10.57 N/A 9.83 2011 11.72 10.23 6.82 10.46 N/A 9.90 2012 11.88 10.09 6.67 10.21 N/A 9.84 Full-Service Providers 2002 8.40 7.77 4.78 N/A 6.65 7.13 2003 8.68 7.89 5.01 6.82 N/A 7.38

296

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Steam Coal Exports" Average Price of U.S. Steam Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",65.1,63.67,73.81,64.48,78.9,-18.3 " Canada*",59.34,55.22,63.02,57.57,73.63,-21.8 " Dominican Republic",78.47,74.41,73.89,75.4,76.61,-1.6 " Honduras","-",54.58,54.43,54.58,54.43,0.3 " Jamaica",480,54.43,"-",54.72,55.42,-1.3 " Mexico",69.42,73.33,82.64,70.83,86.44,-18.1 " Other**",80.33,389.3,70.37,82.45,76.1,8.3

297

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by Coalbed Thickness and Mine Type, 2012" Coal Production by Coalbed Thickness and Mine Type, 2012" "(thousand short tons)" "Coal Thickness (inches)","Underground","Surface","Total" "Under 7","-",17,17 "7 - Under 13","-",2108,2108 "13 - Under 19",429,6688,7117 "19 - Under 25",111,14107,14217 "25 - Under 31",4147,12913,17060 "31 - Under 37",15128,19022,34150 "37 - Under 43",23868,17285,41153 "43 - Under 49",26035,15597,41632 "49 - Under 55",18909,22544,41453 "55 - Under 61",36946,11285,48231 "61 - Under 67",43146,15074,58220 "67 - Under 73",40983,8783,49766 "73 - Under 79",32914,10193,43107 "79 - Under 85",27011,3554,30565

298

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Carbon Dioxide Uncontrolled Emission Factors 3. Carbon Dioxide Uncontrolled Emission Factors Fuel EIA Fuel Code Source and Tables (As Appropriate) Factor (Pounds of CO2 Per Million Btu)*** Bituminous Coal BIT Source: 1 205.30000 Distillate Fuel Oil DFO Source: 1 161.38600 Geothermal GEO Estimate from EIA, Office of Integrated Analysis and Forecasting 16.59983 Jet Fuel JF Source: 1 156.25800 Kerosene KER Source: 1 159.53500 Lignite Coal LIG Source: 1 215.40000 Municipal Solid Waste MSW Source: 1 (including footnote 2 within source) 91.90000 Natural Gas NG Source: 1 117.08000 Petroleum Coke PC Source: 1 225.13000 Propane Gas PG Sources: 1 139.17800 Residual Fuel Oil RFO Source: 1 173.90600 Synthetic Coal SC Assumed to have the emissions similar to Bituminous Coal. 205.30000

299

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District" Coal Imports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",469878,331008,156004,800886,350124,128.7 " Baltimore, MD","-","-",106118,"-",154318,"-" " Boston, MA",373985,154438,"-",528423,51185,"NM" " Buffalo, NY",44,"-","-",44,"-","-" " New York City, NY",1373,1402,487,2775,507,447.3 " Norfolk, VA","-",68891,"-",68891,35856,92.1 " Ogdensburg, NY","-",1,12,1,12,-91.7

300

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Exports" U.S. Coke Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",162796,79217,201795,242013,340944,-29 " Canada*",73859,17837,112348,91696,161596,-43.3 " Mexico",88535,60517,86721,149052,176163,-15.4 " Other**",402,863,2726,1265,3185,-60.3 "South America Total",223,217,591,440,1158,-62 " Other**",223,217,591,440,1158,-62 "Europe Total",48972,59197,"-",108169,6,"NM" " Other**",347,11743,"-",12090,"-","-"

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. U.S. Coal Stocks, 2007 - 2013" 7. U.S. Coal Stocks, 2007 - 2013" "(thousand short tons)" ,"Coal Consumers" "Last Day of Quarter","Electric","Coke","Other","Commercial","Total","Coal Producers","Total" ,"Power","Plants","Industrial2","and",,"and" ,"Sector1",,,"Institutional Users",,"Distributors" 2007 " March 31",141389,2444,5756,"-",149588,34007,183595 " June 30",154812,2364,5672,"-",162849,32484,195333 " September 30",142666,1972,5811,"-",150448,30090,180538 " December 31",151221,1936,5624,"-",158781,33977,192758

302

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Unit of Measure Equivalents 5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours Terawatthours (TWh) 1,000,000,000,000 (One Trillion) Watthours Gigawatthours 1,000,000 (One Million) Kilowatthours Thousand Gigawatthours 1,000,000,000(One Billion Kilowatthours U.S. Dollar 1,000 (One Thousand) Mills U.S. Cent 10 (Ten) Mills Barrel of Oil 42 Gallons

303

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) 6. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 75,711 2,677 0.63 17.68 4.98 126.0 1,680,518 1,634,734 3.68 3.78 72.3 1.53 2003 89,618 3,165 0.74 20.94 5.51 124.0 1,486,088 1,439,513 5.59 5.77 81.6 1.74 2004 107,985 3,817 0.89 25.15 5.10 92.0 1,542,746 1,499,933 6.15 6.33 82.9 1.87 2005 102,450 3,632 1.29 36.31 5.16 87.9 1,835,221 1,780,721 8.32 8.57 83.4 2.38

304

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: 2 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by State, 2012 and 2011 Census Division and State Coal (Thousand Tons) Petroleum Liquids (Thousand Barrels) Petroleum Coke (Thousand Tons) December 2012 December 2011 Percentage Change December 2012 December 2011 Percentage Change December 2012 December 2011 Percentage Change New England 1,030 1,389 -26% 2,483 2,680 -7.3% 0 0 -- Connecticut W W W 1,300 954 36% 0 0 -- Maine 0 0 -- W W W 0 0 -- Massachusetts W 675 W 837 990 -15% 0 0 -- New Hampshire W W W W W W 0 0 -- Rhode Island 0 0 -- W W W 0 0 -- Vermont 0 0 -- 51 49 3.0% 0 0 -- Middle Atlantic 7,553 7,800 -3.2% 5,496 6,591 -17% W W W New Jersey 926 871 6.3% 1,084 1,113 -2.6% 0 0 --

305

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Coal Receipts at Commercial and Institutional Users by Census Division and State" 0. Coal Receipts at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",25,54,32,79,90,-12 " Pennsylvania",25,54,32,79,90,-12 "East North Central",115,183,117,298,301,-0.9 " Illinois",31,42,28,73,67,8.1 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

306

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Receipts at Other Industrial Plants by Census Division and State" Coal Receipts at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",627,587,637,1214,1254,-3.1 " New York",214,178,194,392,377,4

307

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Mines, 2012" Major U.S. Coal Mines, 2012" "Rank","Mine Name / Company","Mine Type","State","Production (short tons)" 1,"North Antelope Rochelle Mine / Peabody Powder River Mining Ll","Surface","Wyoming",107639188 2,"Black Thunder / Thunder Basin Coal Company Llc","Surface","Wyoming",93082919 3,"Cordero Mine / Cordero Mining Llc","Surface","Wyoming",39204736 4,"Antelope Coal Mine / Antelope Coal Llc","Surface","Wyoming",34316314 5,"Belle Ayr Mine / Alpha Coal West, Inc.","Surface","Wyoming",24227846 6,"Eagle Butte Mine / Alpha Coal West, Inc.","Surface","Wyoming",22466733

308

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Petroleum Liquids: Consumption for Electricity Generation, D. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 835,481 553,390 241,892 3,953 36,243 2003 1,089,307 658,868 380,378 5,358 44,702 2004 1,031,954 651,712 350,093 4,544 25,606 2005 1,035,045 618,811 387,355 3,469 25,410 2006 459,392 335,130 105,312 1,963 16,987 2007 512,423 355,999 139,977 1,505 14,942 2008 332,367 242,379 79,816 957 9,215 2009 266,508 196,346 59,277 1,101 9,784 2010 244,114 188,987 49,042 970 5,115 2011 163,954 125,755 33,166 801 4,233 2012 134,956 105,179 24,081 1,618 4,078 2010 January 33,737 26,715 6,282 100 639

309

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2012 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0 3,060.0 1,154.0 -- -- -- -- 1,588.0 12,863.0 9,591 2009 4,339.0 4,147.0 4,621.0 1,166.0 -- -- -- -- 1,729.0 16,002.0 13,006 2010 886.8 186.0 109.9 97.4 98.9 236.3 -- 372.7 -- 1,988.0 15,630

310

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, D. Wood / Wood Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 605,054 10,659 129,947 469 463,980 2003 519,294 16,545 139,852 437 362,460 2004 344,134 19,973 130,248 168 193,745 2005 355,250 27,373 138,407 207 189,263 2006 350,074 27,455 135,546 269 186,803 2007 353,025 31,568 132,953 284 188,220 2008 338,786 29,150 130,122 287 179,227 2009 320,444 29,565 130,894 274 159,712 2010 349,530 40,167 137,072 274 172,016 2011 347,623 35,474 130,108 482 181,559 2012 390,342 32,723 138,217 478 218,924 2010 January 29,578 3,731 11,954 23 13,870

311

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports and Imports, 2007 - 2013" U.S. Coal Exports and Imports, 2007 - 2013" "(thousand short tons)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2007,11139,8786,14702,8405,16198,10559,17124,8597,59163,36347 2008,15802,7640,23069,8982,20321,8485,22329,9101,81519,34208 2009,13335,6325,12951,5426,15159,5441,17653,5447,59097,22639 2010,17807,4803,21965,5058,21074,4680,20870,4811,81716,19353 2011,26617,3381,26987,3419,25976,3588,27679,2700,107259,13088 2012,28642,2022,37534,2329,31563,2415,28006,2394,125746,9159

312

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 1. Consumption of Petroleum Coke for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 56 121 -54% 0 0 0 94 0 0 56 27

313

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nitrogen Oxides Uncontrolled Emission Factors 2. Nitrogen Oxides Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Cyclone Boiler Fluidized Bed Boiler Opposed Firing Boiler Spreader Stoker Boiler Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Dry-Bottom Boilers Dry-Bottom Boilers Dry-Bottom Boilers Wet-Bottom Boilers Dry-Bottom Boilers Agricultural Byproducts AB Source: 1 Lbs per ton 1.20 1.20 1.20 N/A 1.20 Blast Furnace Gas BFG Sources: 1 (including footnote 7 within source); EIA estimates Lbs per MMCF 15.40 15.40 15.40 N/A 15.40 Bituminous Coal BIT Source: 2, Table 1.1-3 Lbs per ton 33.00 5.00 12.00 31.00 11.00 Black Liquor BLQ Source: 1 Lbs per ton ** 1.50 1.50 1.50 N/A 1.50

314

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Number of Ultimate Customers Served by Sector, by Provider, 2.1. Number of Ultimate Customers Served by Sector, by Provider, 2002 through 2012 Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

315

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Exports" Average Price of U.S. Coke Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",240.59,241.38,218.4,240.85,225.8,6.7 " Canada*",147.49,330.47,243.04,183.08,286.56,-36.1 " Mexico",316.57,211.63,189.12,273.97,171.71,59.6 " Other**",612.42,485.63,134.48,525.92,135.04,289.5 "South America Total",140.65,156.15,322.7,148.29,250.36,-40.8 " Other**",140.65,156.15,322.7,148.29,250.36,-40.8 "Europe Total",259.26,255.24,"-",257.06,427.83,-39.9

316

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Demand-Side Management Program Annual Effects by Program 2. Demand-Side Management Program Annual Effects by Program Category, by Sector, 2002 through 2012 Year Residential Commercial Industrial Transportation Total Energy Efficiency - Energy Savings (Thousand MWh) 2002 15,284 24,803 10,242 -- 50,328 2003 12,914 24,758 10,031 551 48,254 2004 17,185 24,290 11,137 50 52,663 2005 18,894 28,073 11,986 47 59,000 2006 21,150 28,720 13,155 50 63,076 2007 22,772 30,359 14,038 108 67,278 2008 25,396 34,634 14,766 75 74,871 2009 27,395 34,831 14,610 76 76,912 2010 32,150 37,416 17,259 89 86,914 2011 46,790 50,732 23,061 76 120,659 2012 54,516 58,894 25,023 92 138,525 Energy Efficiency - Actual Peak Load Reduction (MW) 2002 5,300 5,389 2,768 -- 13,457 2003 5,909 4,911 2,671 94 13,585

317

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Total (All Sectors), 2002 - 2012 A. Net Generation by Energy Source: Total (All Sectors), 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 1,933,130 78,701 15,867 691,006 11,463 780,064 264,329 79,109 -8,743 13,527 3,858,452 2003 1,973,737 102,734 16,672 649,908 15,600 763,733 275,806 79,487 -8,535 14,045 3,883,185 2004 1,978,301 100,391 20,754 710,100 15,252 788,528 268,417 83,067 -8,488 14,232 3,970,555 2005 2,012,873 99,840 22,385 760,960 13,464 781,986 270,321 87,329 -6,558 12,821 4,055,423 2006 1,990,511 44,460 19,706 816,441 14,177 787,219 289,246 96,525 -6,558 12,974 4,064,702

318

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 8. Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Kilowatthours) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 47,208 47,481 44,864 45,018 27,818 27,927 566 569 120,456 120,995 Connecticut 12,758 12,919 12,976 13,087 3,566 3,668 193 185 29,492 29,859 Maine 4,481 4,382 4,053 4,018 3,027 3,016 0 0 11,561 11,415 Massachusetts 20,313 20,473 17,723 17,767 16,927 16,974 350 357 55,313 55,570 New Hampshire 4,439 4,454 4,478 4,478 1,953 1,936 0 0 10,870 10,869 Rhode Island 3,121 3,129 3,640 3,660 923 916 24 27 7,708 7,732

319

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) C. Net Summer Capacity of Utility Scale Units Using Primarily Fossil Fuels and by State, 2012 and 2011 (Megawatts) Census Division and State Natural Gas Fired Combined Cycle Natural Gas Fired Combustion Turbine Other Natural Gas Coal Petroleum Coke Petroleum Liquids Other Gases Total Fossil Fuels Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 12,190.5 11,593.8 1,090.0 1,058.9 876.4 830.1 2,546.1 2,755.5 0.0 0.0 7,916.1 7,915.3 0.0 0.0 24,619.1 24,153.6 Connecticut 2,513.4 2,447.7 458.1 432.7 61.0 44.7 389.1 564.4 0.0 0.0 3,186.1 3,185.0 0.0 0.0 6,607.7 6,674.5 Maine 1,250.0 1,250.0 306.0 302.2 119.0 93.0 85.0 85.0 0.0 0.0 1,004.9 1,007.2 0.0 0.0 2,764.9 2,737.4

320

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" "NAICS Code","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "311 Food Manufacturing",875,926,1015,-13.9 "312 Beverage and Tobacco Product Mfg.",26,17,19,35.8 "313 Textile Mills",22,22,25,-13.9 "315 Apparel Manufacturing","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w" "322 Paper Manufacturing",570,583,743,-23.3 "324 Petroleum and Coal Products*",127,113,156,-18.7

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type, 2012" "(million short tons)" ,"Underground",,"Surface",,"Total" "Mine Production Range","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery","Recoverable Coal","Average Recovery" "(thousand short tons)","Reserves","Percentage","Reserves","Percentage","Reserves","Percentage" "Over 1,000",4874,57.96,11153,91.28,16028,81.15 "Over 500 to 1,000",531,47.14,226,81.9,757,57.49 "Over 200 to 500",604,52.72,333,69.16,938,58.57

322

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 4. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Commercial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 0 -- -- 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- -- Middle Atlantic 0 -- -- 0 -- -- 0 -- --

323

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Average Cost of Petroleum Liquids Delivered for Electricity Generation by State, 2012 and 2011 8. Average Cost of Petroleum Liquids Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 18.64 W W 21.43 21.12 18.47 W Connecticut W 21.91 W 23.87 NM W 21.93 Maine W W W -- NM W W Massachusetts 17.17 19.76 -13% 17.45 NM 17.16 19.66 New Hampshire 23.23 W W 23.23 19.90 -- W Rhode Island -- W W -- NM -- W Vermont 24.11 NM NM 24.11 NM -- -- Middle Atlantic W 20.15 W 21.01 19.21 W 20.66 New Jersey 19.77 18.36 7.7% -- NM 19.77 20.28 New York W 19.66 W 21.01 20.00 W 19.36 Pennsylvania 21.84 22.19 -1.6% -- NM 21.84 22.19

324

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity of Coal Mines by State, 2012 and 2011" Productive Capacity of Coal Mines by State, 2012 and 2011" "(thousand short tons)" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",14594,7967,22561,16102,8911,25013,-9.4,-10.6,-9.8 "Alaska","-","w","w","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w","w","-","w"

325

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" Quantity and Average Price of U.S. Coal Imports by Origin, 2007 - 2013" "(thousand short tons and dollars per short ton)" "Year and Quarter","Australia","Canada","Colombia","Indonesia","China","Venezuela","Other","Total" ,,,,,,,"Countries" 2007,66,1967,26864,3663,50,3425,311,36347 2008,149,2027,26262,3374,45,2312,39,34208 2009,152,1288,17787,2084,9,1297,21,22639 2010,380,1767,14584,1904,53,582,83,19353 2011,62,1680,9500,856,22,779,188,13088 2012 " January - March","-",260,1594,59,7,80,22,2022 " April - June","-",281,1728,49,21,170,80,2329 " July - September","-",297,1762,266,39,"-",51,2415

326

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Sales Price of Coal by State, County, and Number of Mines, 2012" Average Sales Price of Coal by State, County, and Number of Mines, 2012" "Coal-Producing State and County","Number of Mines","Sales","Average Sales Price" ,,"(thousand short tons)","(dollars per short ton)" "Alabama",39,19021,106.57 " Bibb",1,"w","w" " Blount",2,"w","w" " Fayette",1,"w","w" " Franklin",1,"w","w" " Jackson",2,"w","w" " Jefferson",11,4298,146.04 " Marion",1,"w","w" " Tuscaloosa",7,8599,111.55 " Walker",11,2370,81.88

327

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Coal Stocks at Commercial and Institutional Users by Census Division and State" 2. Coal Stocks at Commercial and Institutional Users by Census Division and State" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" "and State",,,,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic",62,58,56,10.9 " Pennsylvania",62,58,56,10.9 "East North Central",168,171,197,-14.7 " Illinois","w","w","w","w" " Indiana",75,76,75,0.5 " Michigan","w","w","w","w" " Ohio",25,15,19,27 " Wisconsin",5,5,3,59.1 "West North Central",66,75,97,-32.2

328

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Summary Statistics for Coal Refining Plants, 2012 - 2013" 3. Summary Statistics for Coal Refining Plants, 2012 - 2013" "(thousand short tons)" "Year and","Coal Receipts","Average Price of Coal Receipts","Coal Used","Coal Stocks1" "Quarter",,"(dollars per short ton)" 2012 " January - March",2151,27.47,1756,771 " April - June",3844,25.42,3688,825 " July - September",5399,24.32,5286,812 " October - December",4919,24.55,4680,787 " Total",16313,25.06,15410 2013 " January - March",5067,24.6,4989,793 " April - June",4015,25.24,3754,756 " Total",9082,24.88,8744 "1 Reported as of the last day of the quarter." "Note: Average price is based on the cost, insurance, and freight (c.i.f. value). Total may not equal sum of components because of independent rounding."

329

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Proposed Transmission Capacity Additions by High-Voltage Size, 2013 - 2019 B. Proposed Transmission Capacity Additions by High-Voltage Size, 2013 - 2019 (Circuit Miles of Transmission) Voltage Circuit Miles Type Operating (kV) Year 2013 Year 2014 Year 2015 Year 2016 Year 2017 Year 2018 Year 2019 All Years AC 100-199 954 1,222 992 1,047 392 382 176 5,165 AC 200-299 1,003 792 1,398 319 539 427 118 4,596 AC 300-399 4,779 839 1,532 1,527 502 1,650 349 11,178 AC 400-599 399 708 669 643 660 1,151 334 4,564 AC 600+ -- -- 14 -- -- 69 -- 83 AC Total 7,134 3,562 4,606 3,536 2,092 3,679 978 25,586 DC 100-199 2 11 5 -- -- 7 -- 25 DC 200-299 -- -- -- -- -- -- -- -- DC 300-399 -- -- -- -- 333 -- -- 333 DC 400-599 -- -- 10 -- -- -- -- 10 DC 600+ -- -- -- -- -- -- -- --

330

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) 3. Revenue and Expense Statistics for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Million Dollars) Description 2002 2003 2004 2005 2006 2007 Utility Operating Revenues 219,609 230,151 238,759 265,652 275,501 270,964 ......Electric Utility 200,360 206,268 213,012 234,909 246,736 240,864 ......Other Utility 19,250 23,883 25,747 30,743 28,765 30,100 Utility Operating Expenses 189,062 201,057 206,960 236,786 245,589 241,198 ......Electric Utility 171,604 179,044 183,121 207,830 218,445 213,076 ............Operation 116,660 125,436 131,560 150,645 158,893 153,885 ..................Production 90,715 98,305 103,871 120,586 127,494 121,700 ........................Cost of Fuel 24,149 26,871 28,544 36,106 37,945 39,548

331

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coke Imports" U.S. Coke Imports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Origin",2013,2013,2012,,,"Change" "North America Total",10284,2293,159462,12577,183712,-93.2 " Canada",3009,2293,159462,5302,183712,-97.1 " Panama",7275,"-","-",7275,"-","-" "South America Total",25267,13030,88424,38297,106612,-64.1 " Brazil","-","-",78595,"-",78595,"-" " Colombia",25267,13030,9829,38297,28017,36.7 "Europe Total",6044,40281,165027,46325,485791,-90.5

332

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Coalbed Thickness by Major Coalbeds and Mine Type, 2012" Coal Production and Coalbed Thickness by Major Coalbeds and Mine Type, 2012" ,"Production (thousand short tons)",,,"Thickness (inches)" "Coalbed ID Number1","Underground","Surface","Total","Average2","Low","High" "Coalbed Name" "1699 Wyodak","-",351188,351188,778,160,913 "0036 Pittsburgh",52476,3871,56348,74,18,138 "0489 No. 9",42193,12181,54374,61,24,74 "0484 Herrin (Illinois No. 6)",48526,1910,50436,71,46,89 "0212 Pittsburgh",27355,76,27431,75,27,98 "1701 Smith","-",23847,23847,822,745,912 "1696 Anderson-Dietz 1-Dietz 2","-",18992,18992,932,660,960

333

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, 0. Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Cents per Kilowatthour) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 15.71 15.89 13.68 14.31 11.83 12.55 6.68 7.85 14.02 14.49 Connecticut 17.34 18.11 14.65 15.57 12.67 13.24 9.69 10.25 15.54 16.35 Maine 14.66 15.38 11.53 12.29 7.98 8.88 -- -- 11.81 12.58 Massachusetts 14.91 14.67 13.84 14.33 12.57 13.38 4.91 6.14 13.79 14.11 New Hampshire 16.07 16.52 13.36 14.04 11.83 12.27 -- -- 14.19 14.74 Rhode Island 14.40 14.33 11.87 12.37 10.68 11.27 8.28 14.11 12.74 13.04

334

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Revenue from Retail Sales of Electricity to Ultimate Customers 3. Revenue from Retail Sales of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Million Dollars) Year Residential Commercial Industrial Transportation Other Total Total Electric Industry 2002 106,834 87,117 48,336 N/A 7,124 249,411 2003 111,249 96,263 51,741 514 N/A 259,767 2004 115,577 100,546 53,477 519 N/A 270,119 2005 128,393 110,522 58,445 643 N/A 298,003 2006 140,582 122,914 62,308 702 N/A 326,506 2007 148,295 128,903 65,712 792 N/A 343,703 2008 155,433 138,469 68,920 827 N/A 363,650 2009 157,008 132,940 62,504 828 N/A 353,280 2010 166,782 135,559 65,750 815 N/A 368,906 2011 166,714 135,926 67,606 803 N/A 371,049 2012 163,280 133,898 65,761 747 N/A 363,687

335

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Metallurgical Coal Exports" U.S. Metallurgical Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",1503162,764701,1411897,2267863,2261900,0.3 " Canada*",975783,343309,1260473,1319092,1895263,-30.4 " Dominican Republic",94,51064,"-",51158,"-","-" " Mexico",527285,370328,151424,897613,366637,144.8 "South America Total",2091488,2561772,2389018,4653260,4543747,2.4 " Argentina",104745,155806,203569,260551,253841,2.6 " Brazil",1921144,2352098,2185449,4273242,4022618,6.2

336

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Price of Coal Receipts at Commercial and Institutional Users by Census Division and State" 1. Average Price of Coal Receipts at Commercial and Institutional Users by Census Division and State" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Middle Atlantic",139.64,145,158.61,143.29,158.91,-9.8 " Pennsylvania",139.64,145,158.61,143.29,158.91,-9.8 "East North Central",87.62,97.3,87.11,93.56,95.13,-1.7 " Illinois",59.27,60.3,62.17,59.86,66.69,-10.2 " Indiana","w","w","w","w","w","w" " Michigan","w","w","w","w","w","w"

337

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" Average Price of Coal Receipts at Other Industrial Plants by Census Division and State" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w","w","w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",87.05,93.03,93.73,89.93,95.68,-6 " New York",102.14,105.8,117.15,103.8,117.61,-11.7

338

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Coal Stocks at Coke Plants by Census Division" 8. Coal Stocks at Coke Plants by Census Division" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" ,,,,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic","w","w","w","w" "East North Central",1313,1177,1326,-1 "South Atlantic","w","w","w","w" "East South Central","w","w","w","w" "U.S. Total",2500,2207,2295,8.9 "w = Data withheld to avoid disclosure." "Note: Total may not equal sum of components because of independent rounding."

339

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 7 Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 3,710,847 182,482 1.37 27.96 1.15 87.0 186,271 30,043 4.19 25.98 0.61 76.4 2003 4,365,996 223,984 1.34 26.20 1.15 90.4 347,546 56,138 5.41 33.50 0.58 89.7 2004 4,410,775 227,700 1.41 27.27 1.13 93.3 337,011 54,152 5.35 33.31 0.61 93.6 2005 4,459,333 229,071 1.56 30.39 1.10 83.0 381,871 61,753 8.30 51.34 0.54 97.2

340

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Metallurgical Coal Exports by Customs District" Metallurgical Coal Exports by Customs District" "(short tons)" ,,,,"Year to Date" "Customs District","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Eastern Total",11716074,14136513,15167377,25852587,27578514,-6.3 " Baltimore, MD",2736470,4225450,5123600,6961920,9037970,-23 " Boston, MA","-","-","-","-",28873,"-" " Buffalo, NY",247714,121347,524040,369061,725698,-49.1 " Norfolk, VA",8730257,9784866,9519119,18515123,17784479,4.1 " Ogdensburg, NY",1633,4850,618,6483,1494,333.9 "Southern Total",3551564,3824484,4264938,7376048,8976503,-17.8

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: 3 Stocks of Coal, Petroleum Liquids, and Petroleum Coke: Electric Power Sector, by Census Divison, 2012 and 2011 Electric Power Sector Electric Utilities Independent Power Producers Census Division December 2012 December 2011 Percentage Change December 2012 December 2011 December 2012 December 2011 Coal (Thousand Tons) New England 1,030 1,389 -25.9% W W W W Middle Atlantic 7,553 7,800 -3.2% W W W W East North Central 36,139 37,262 -3.0% 27,069 27,316 9,070 9,946 West North Central 30,554 28,544 7.0% 30,554 28,544 0 0 South Atlantic 38,859 36,920 5.3% 35,527 33,163 3,331 3,757 East South Central 19,657 17,185 14.4% 19,657 17,185 0 0 West South Central 28,807 22,910 25.7% 17,047 15,125 11,760 7,785

342

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Coal: Consumption for Electricity Generation, D. Coal: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 19,996,890 15,517,857 4,215,043 9,168 254,821 2003 20,366,879 15,391,188 4,745,545 13,080 217,066 2004 20,375,751 15,610,335 4,606,584 8,251 150,581 2005 20,801,716 15,397,688 5,250,824 8,314 144,889 2006 20,527,410 15,211,077 5,166,001 7,526 142,807 2007 20,841,871 15,436,110 5,287,202 7,833 110,727 2008 20,548,610 15,189,050 5,242,194 8,070 109,296 2009 18,240,611 13,744,178 4,390,596 7,007 98,829 2010 19,196,315 14,333,496 4,709,686 6,815 146,318 2011 18,074,298 13,551,416 4,399,144 7,263 116,475

343

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Electric Utilities, 2002 - 2012 A. Net Generation by Energy Source: Electric Utilities, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 1,514,670 52,838 6,286 229,639 206 507,380 242,302 3,089 -7,434 480 2,549,457 2003 1,500,281 62,774 7,156 186,967 243 458,829 249,622 3,421 -7,532 519 2,462,281 2004 1,513,641 62,196 11,498 199,662 374 475,682 245,546 3,692 -7,526 467 2,505,231 2005 1,484,855 58,572 11,150 238,204 10 436,296 245,553 4,945 -5,383 643 2,474,846 2006 1,471,421 31,269 9,634 282,088 30 425,341 261,864 6,588 -5,281 700 2,483,656

344

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

10.6. Advanced Metering Count by Technology Type, 10.6. Advanced Metering Count by Technology Type, 2007 through 2012 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 Advanced Metering Infrastructure (AMI) 2007 2,202,222 262,159 9,106 2 2,473,489 2008 4,190,244 444,003 12,757 12 4,647,016 2009 8,712,297 876,419 22,675 10 9,611,401 2010 18,369,908 1,904,983 59,567 67 20,334,525 2011 33,453,548 3,682,159 154,659 7 37,290,373

345

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2003 through 2012 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2003 N/A N/A N/A N/A N/A 5,870 775 168 -- 6,813 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304 -- 70,009 2009 N/A N/A N/A N/A N/A 88,205 7,365 919 -- 96,489 Photovoltaic 2010 697.890 517.861 243.051 -- 1,458.802 137,618 11,897 1,225 -- 150,740

346

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Summary Statistics for the United States, 2002 - 2012 2. Summary Statistics for the United States, 2002 - 2012 (From Table 2.1.) Number of Ultimate Customers Year Residential Commercial Industrial Transportation Other Total 2002 116,622,037 15,333,700 601,744 N/A 1,066,554 133,624,035 2003 117,280,481 16,549,519 713,221 1,127 N/A 134,544,348 2004 118,763,768 16,606,783 747,600 1,025 N/A 136,119,176 2005 120,760,839 16,871,940 733,862 518 N/A 138,367,159 2006 122,471,071 17,172,499 759,604 791 N/A 140,403,965 2007 123,949,916 17,377,219 793,767 750 N/A 142,121,652 2008 124,937,469 17,562,726 774,713 727 N/A 143,275,635 2009 125,177,175 17,561,661 757,519 705 N/A 143,497,060 2010 125,717,935 17,674,338 747,746 239 N/A 144,140,258 2011 126,143,072 17,638,062 727,920 92 N/A 144,509,146

347

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Disposition by State, 2012" Coal Disposition by State, 2012" "(thousand short tons)" "Coal-Producing State","Open Market Sales1","Captive Sales / Transactions2","Exports3","Total" "Alabama",8688,"-",10333,19021 "Alaska","w","-",968,"w" "Arizona","w","-","-","w" "Arkansas","w","-","-","w" "Colorado",20836,4552,3468,28856 "Illinois",29252,5113,12341,46705 "Indiana",17127,18404,375,35906 "Kentucky Total",76602,6884,5668,89154 " Kentucky (East)",37324,6884,3588,47796 " Kentucky (West)",39277,"-",2081,41358

348

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Natural Gas: Consumption for Electricity Generation, A. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,126,062 2,259,684 3,148,595 32,545 685,239 2003 5,616,135 1,763,764 3,145,485 38,480 668,407 2004 5,674,580 1,809,443 3,265,896 32,839 566,401 2005 6,036,370 2,134,859 3,349,921 33,785 517,805 2006 6,461,615 2,478,396 3,412,826 34,623 535,770 2007 7,089,342 2,736,418 3,765,194 34,087 553,643 2008 6,895,843 2,730,134 3,612,197 33,403 520,109 2009 7,121,069 2,911,279 3,655,712 34,279 519,799 2010 7,680,185 3,290,993 3,794,423 39,462 555,307 2011 7,883,865 3,446,087 3,819,107 47,170 571,501

349

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2. Consumption of Nautral Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 460,887 461,590 -0.2% 3,652 4,218 428,781 432,350 8,630 6,287 19,824 18,735 Connecticut 120,380 110,546 8.9% 69 730 113,620 105,965 3,952 2,061 2,739 1,790 Maine 44,424 49,352 -10% 0 0 28,456 33,555 307 12 15,662 15,785 Massachusetts 184,330 190,063 -3.0% 2,792 2,393 176,497 182,865 3,749 3,761 1,293 1,045 New Hampshire 50,678 46,927 8.0% 754 1,046 49,655 45,765 139 0 131 115

350

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Other Waste Biomass: Consumption for Electricity Generation, D. Other Waste Biomass: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 34,775 2,456 15,859 4,566 11,894 2004 19,215 2,014 9,240 4,308 3,654 2005 17,852 2,485 7,365 4,677 3,325 2006 17,727 2,611 7,788 4,436 2,893 2007 19,083 2,992 8,861 4,049 3,181 2008 24,288 3,409 12,745 3,684 4,450 2009 24,847 3,679 13,231 3,760 4,177 2010 29,996 3,668 14,449 3,790 8,090 2011 30,771 4,488 16,115 3,816 6,352 2012 30,342 4,191 15,740 4,016 6,395 2010 January 2,223 189 1,078 321 635 February 2,336 275 1,208 291 561 March 2,287 311 1,079 302 594

351

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. U.S. Coal Summary Statistics, 2007 - 2013" 1. U.S. Coal Summary Statistics, 2007 - 2013" "(thousand short tons)" "Year and","Production1","Imports","Waste Coal","Producer and","Consumption","Exports","Consumer","Losses and" "Quarter",,,"Supplied","Distributor",,,"Stocks2","Unaccounted" ,,,,"Stocks2",,,,"For3" 2007 " January - March",286041,8786,3264,34007,278727,11139,149588 " April - June",285687,8405,3387,32484,267106,14702,162849 " July - September",286035,10559,3697,30090,303665,16198,150448 " October - December",288872,8597,3727,33977,278500,17124,158781 " Total",1146635,36347,14076,,1127998,59163,,4085

352

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 1. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 294,234 13,659 1.45 31.29 1.56 52.1 29,137 4,638 3.55 22.33 1.24 26.5 2003 322,547 15,076 1.45 31.01 1.37 60.7 27,538 4,624 4.85 28.86 1.25 23.2 2004 326,495 15,324 1.63 34.79 1.43 57.6 25,491 4,107 4.98 30.93 1.38 18.5 2005 339,968 16,011 1.94 41.17 1.42 61.9 36,383 5,876 6.64 41.13 1.36 26.4

353

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 2. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Electric Utilties by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 353 2.20 7.7 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 0 -- -- 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 353 2.20 7.7 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

354

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" Productive Capacity and Capacity Utilization of Underground Coal Mines by State and Mining Method, 2012" "(thousand short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Productive","Capacity","Productive","Capacity","Productive","Capacity","Productive","Capacity" "State","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization","Capacity","Utilization" ,,"Percent",,"Percent",,"Percent",,"Percent" "Alabama","w","w","-","-","w","w",14594,85.99

355

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 6. Receipts of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 440,421 484,260 -9.1% 3,652 4,226 419,062 434,504 3,636 13,156 14,072 32,373 Connecticut 112,084 116,563 -3.8% 71 738 112,012 107,121 0 3,210 0 5,494 Maine 42,374 56,230 -25% 0 0 28,302 33,578 0 NM 14,072 22,639 Massachusetts 175,314 198,295 -12% 2,789 2,393 168,890 184,156 3,636 7,872 0 3,875 New Hampshire 50,408 47,137 6.9% 754 1,046 49,655 45,725 0 0 0 NM

356

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 A. U.S. Transmission Circuit Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 AC & DC Circuit Outage Counts Sustained Outage Causes FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Weather, excluding lightning 6.00 27.00 3.00 30.00 63.00 12.00 -- 69.00 210.00 Lightning 5.00 10.00 8.00 5.00 31.00 16.00 13.00 57.00 145.00 Environmental -- 1.00 1.00 5.00 -- 1.00 -- -- 8.00 Contamination 14.00 -- -- -- 22.00 3.00 6.00 7.00 52.00 Foreign Interference 34.00 3.00 -- 4.00 13.00 1.00 2.00 14.00 71.00 Fire -- 2.00 -- 1.00 6.00 3.00 1.00 85.00 98.00 Vandalism, Terrorism, or Malicious Acts -- -- -- -- 2.00 -- -- 1.00 3.00 Failed AC Substation Equipment 18.00 16.00 35.00 63.00 57.00 16.00 15.00 65.00 285.00

357

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins B. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Net Internal Demand (Megawatts) -- Winter Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 / 2013 36,409 45,545 386,359 4,925 74,430 122,566 149,359 35,079 46,909 101,706 616,927 Projected 2013 / 2014 43,384 46,008 399,149 5,385 75,320 132,229 145,657 40,558 51,435 107,341 647,317 Projected 2014 / 2015 44,060 46,090 403,883 5,500 76,252 134,742 146,130 41,259 53,742 109,418 657,192 Projected 2015 / 2016 44,596 46,184 408,927 5,563 77,058 137,338 147,201 41,767 55,346 110,814 665,866

358

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Noncoincident Peak Load by North American Electric Reliability Corporation Assessment Area, B. Noncoincident Peak Load by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Summer Peak Load (Megawatts) Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 44,338 58,319 468,092 5,051 96,769 154,339 161,687 50,246 66,548 130,465 767,762 Projected 2013 45,668 59,969 469,857 5,109 96,192 155,553 159,032 53,971 67,998 133,523 777,015 Projected 2014 46,338 60,654 475,005 5,249 96,879 158,717 159,457 54,703 69,289 132,731 784,017 Projected 2015 47,053 61,428 484,637 5,360 97,565 162,216 164,150 55,346 71,423 134,183 798,724

359

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" 3. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012" "(short tons produced per employee hour)" ,"Mine Production Range (thousand short tons)" "Coal-Producing State, Region1","Above 1,000","Above 500","Above 200","Above 100","Above 50","Above 10","10 or Under","Total2" "and Mine Type",,"to 1,000","to 500","to 200","to 100","to 50" "Alabama",1.69,2.5,1.95,1.72,1.83,0.69,0.55,1.68 " Underground",1.73,"-","-","-",1.08,0.31,"-",1.64 " Surface",1.36,2.5,1.95,1.72,2.11,1.19,0.55,1.75

360

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Cost of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 9. Average Cost of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England -- -- -- -- -- -- -- Connecticut -- -- -- -- -- -- -- Maine -- -- -- -- -- -- -- Massachusetts -- -- -- -- -- -- -- New Hampshire -- -- -- -- -- -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- -- Middle Atlantic -- W W -- -- -- W New Jersey -- -- -- -- -- -- -- New York -- W W -- -- -- W Pennsylvania -- -- -- -- -- -- -- East North Central W W W 4.10 4.01 W W

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: 5. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Industrial Sector by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 19 0.66 6.9 0 -- -- 0 -- -- Connecticut 0 -- -- 0 -- -- 0 -- -- Maine 19 0.66 6.9 0 -- -- 0 -- -- Massachusetts 0 -- -- 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

362

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) B. Existing Net Summer Capacity of Other Renewable Sources by Producer Type, 2002 through 2012 (Megawatts) Year Wind Solar Thermal and Photovoltaic Wood and Wood-Derived Fuels Geothermal Other Biomass Total (Other Renewable Sources) Total (All Sectors) 2002 4,417 397 5,844 2,252 3,800 16,710 2003 5,995 397 5,871 2,133 3,758 18,153 2004 6,456 398 6,182 2,152 3,529 18,717 2005 8,706 411 6,193 2,285 3,609 21,205 2006 11,329 411 6,372 2,274 3,727 24,113 2007 16,515 502 6,704 2,214 4,134 30,069 2008 24,651 536 6,864 2,229 4,186 38,466 2009 34,296 619 6,939 2,382 4,317 48,552 2010 39,135 866 7,037 2,405 4,369 53,811 2011 45,676 1,524 7,077 2,409 4,536 61,221 2012 59,075 3,170 7,508 2,592 4,811 77,155

363

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012" Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012" "(million short tons)" ,"Continuous1",,"Conventional and Other2",,"Longwall3",,"Total" "Coal-Producing","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery","Recoverable","Average Recovery" "State","Coal Reserves","Percentage","Coal Reserves","Percentage","Coal Reserves","Percentage","Coal Reserves","Percentage" ,"at Producing",,"at Producing",,"at Producing",,"at Producing"

364

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. U.S. Transmission Circuit Outages by Type and NERC region, 2012 A. U.S. Transmission Circuit Outages by Type and NERC region, 2012 Outage Type FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 151.00 163.00 127.00 272.00 374.00 105.00 80.00 796.00 2,068.00 Non-Automatic Outages (Operational) 77.00 44.00 97.00 230.00 192.00 27.00 45.00 337.00 1,049.00 Non-Automatic Outages (Planned) 2,650.00 453.00 512.00 2,050.00 2,450.00 369.00 472.00 2,744.00 11,700.00 Circuit Outage Hours Automatic Outages (Sustained) 2,852.28 1,312.97 14,244.87 19,857.23 7,123.70 1,509.51 682.60 24,238.64 71,821.80 Non-Automatic Outages (Operational) 186.87 27.08 67.68 186.08 426.59 3.32 13.96 67.59 979.17 Non-Automatic Outages (Planned) 872.65 710.33 1,222.36 1,095.46 503.01 357.44 105.06 1,105.43 5,971.74

365

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, A. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 21,196 695 18,300 2,087 115 2004 19,587 444 17,308 1,811 24 2005 19,370 560 17,033 1,753 25 2006 19,629 500 17,343 1,761 25 2007 19,576 553 17,116 1,785 122 2008 19,805 509 17,487 1,809 0 2009 19,669 465 17,048 2,155 0 2010 19,437 402 16,802 2,233 0 2011 16,972 388 14,625 1,955 4 2012 16,968 418 14,235 2,304 12 2010 January 1,546 30 1,332 184 0 February 1,384 25 1,215 144 0 March 1,650 36 1,434 180 0 April 1,655 33 1,426 196 0

366

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 3. Consumption of Landfill Gas for Electricity Generation by State, by Sector, 2012 and 2011 (Million Cubic Feet) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 9,595 9,945 -3.5% 0 0 9,074 9,945 520 0 0 0 Connecticut 595 624 -4.6% 0 0 595 624 0 0 0 0 Maine 518 524 -1.0% 0 0 518 524 0 0 0 0 Massachusetts 3,603 3,623 -0.6% 0 0 3,603 3,623 0 0 0 0 New Hampshire 1,790 1,485 21% 0 0 1,270 1,485 520 0 0 0 Rhode Island 2,409 3,037 -21% 0 0 2,409 3,037 0 0 0 0

367

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" 4. Average Price of Coal Delivered to End Use Sector by Census Division and State, 2012 and 2011" "(dollars per short ton)" ,2012,,,,2011,,,,"Annual Percent Change" "Census Division","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial","Electric","Other","Coke","Commercial" "and State","Power1","Industrial",,"and","Power1","Industrial",,"and","Power1","Industrial",,"and" ,,,,"Institutional",,,,"Institutional",,,,"Institutional" "New England",88.32,165.17,"-","-",87.62,"w","-","-",0.8,"w","-","-"

368

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption by End-Use Sector, 2007 - 2013" U.S. Coal Consumption by End-Use Sector, 2007 - 2013" "(thousand short tons)" ,,,"Other Industrial",,,"Commercial and Institutional" "Year and","Electric","Coke","CHP2","Non-","Total","CHP4","Non-","Total","Total" "Quarter","Power","Plants",,"CHP3",,,"CHP5" ,"Sector1" 2007 " January - March",257516,5576,5834,8743,14578,547,510,1058,278727 " April - June",246591,5736,5552,8521,14074,426,279,705,267106 " July - September",283556,5678,5546,8180,13725,458,247,705,303665 " October - December",257478,5726,5605,8634,14238,495,563,1058,278500

369

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 9. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(dollars per short ton)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",51.17,49.59,50.96,50.35,50.94,-1.2 "312 Beverage and Tobacco Product Mfg.",111.56,115.95,113.47,113.49,117.55,-3.5 "313 Textile Mills",115.95,118.96,127.41,117.4,128.07,-8.3 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

370

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Landfill Gas: Consumption for Electricity Generation, A. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 136,421 9,168 121,984 3,280 1,989 2004 143,844 11,250 125,848 4,081 2,665 2005 141,899 11,490 123,064 4,797 2,548 2006 160,033 16,617 136,108 6,644 664 2007 166,774 17,442 144,104 4,598 630 2008 195,777 20,465 169,547 5,235 530 2009 206,792 19,583 180,689 5,931 589 2010 218,331 19,975 192,428 5,535 393 2011 232,795 22,086 180,856 29,469 384 2012 256,376 25,193 201,965 26,672 2,545 2010 January 17,531 1,715 15,323 461 32 February 16,189 1,653 14,120 384 33

371

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 . Receipts, Average Cost, and Quality of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas All Fossil Fuels Average Cost Average Cost Average Cost Average Cost Period Receipts (Thousand Tons) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Ton) Receipts (Thousand Barrels) Average Sulfur Percent by Weight (Dollars per MMBtu) (Dollars per Barrel) Receipts (Thousand Mcf) (Dollars per MMBtu) (Dollars per MMBtu) 2002 884,287 0.94 1.25 25.52 120,851 1.64 3.34 20.77 5,607,737 3.56 1.86 2003 986,026 0.97 1.28 26.00 185,567 1.53 4.33 26.78 5,500,704 5.39 2.28 2004 1,002,032 0.97 1.36 27.42 186,655 1.66 4.29 26.56 5,734,054 5.96 2.48 2005 1,021,437 0.98 1.54 31.20 194,733 1.61 6.44 39.65 6,181,717 8.21 3.25

372

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 9. Receipts, Average Cost, and Quality of Fossil Fuels: Commercial Sector, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMBtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Barrels) (Dollars per MMBtu) (Dollars per Barrel) Average Sulfur Percent by Weight Percentage of Consumption Annual Totals 2002 9,580 399 2.10 50.44 2.59 28.4 503 91 5.38 29.73 0.02 7.5 2003 8,835 372 1.99 47.24 2.43 20.5 248 43 7.00 40.82 0.04 3.1 2004 10,682 451 2.08 49.32 2.48 23.5 3,066 527 6.19 35.96 0.20 26.9 2005 11,081 464 2.57 61.21 2.43 24.2 1,684 289 8.28 48.22 0.17 18.3 2006 12,207 518 2.63 61.95 2.51 27.5 798 137 13.50 78.70 0.17 15.5

373

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Breeze Production at Coke Plants" Coke and Breeze Production at Coke Plants" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",2303,2314,2365,4617,4754,-2.9 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",4152,4098,4104,8249,8233,0.2 "Coke Total",3954,3841,3863,7795,7721,1

374

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Electric Power Industry - Electricity Sales for Resale, 2. Electric Power Industry - Electricity Sales for Resale, 2002 through 2012 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total 2002 1,838,901 5,757,283 943,531 28,963 8,568,678 2003 1,824,030 3,906,220 1,156,796 33,909 6,920,954 2004 1,923,440 3,756,175 1,053,364 25,996 6,758,975 2005 1,925,710 2,867,048 1,252,796 26,105 6,071,659 2006 1,698,389 2,446,104 1,321,342 27,638 5,493,473 2007 1,603,179 2,476,740 1,368,310 31,165 5,479,394 2008 1,576,976 2,718,661 1,355,017 30,079 5,680,733 2009 1,495,636 2,240,399 1,295,857 33,139 5,065,031 2010 1,541,554 2,946,452 1,404,137 37,068 5,929,211 2011 1,529,434 2,206,981 1,372,306 34,400 5,143,121

375

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, 2. Fuel-Switching Capacity of Operable Generators Reporting Petroleum Liquids as the Primary Fuel, by Producer Type, 2012 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Petroleum as the Primary Fuel Net Summer Capacity of Petroleum-Fired Generators Reporting the Ability to Switch to Natural Gas Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Natural Gas Electric Utilities 26,732 7,640 28.6 7,224 Independent Power Producers, Non-Combined Heat and Power Plants 18,644 7,867 42.2 6,628 Independent Power Producers, Combined Heat and Power Plants 317 -- -- -- Electric Power Sector Subtotal 45,693 15,507 33.9 13,852 Commercial Sector 443 21 4.8 21

376

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Coke: Consumption for Electricity Generation, A. Petroleum Coke: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,836 2,125 3,580 2 1,130 2003 6,303 2,554 3,166 2 582 2004 7,677 4,150 2,985 1 541 2005 8,330 4,130 3,746 1 452 2006 7,363 3,619 3,286 1 456 2007 6,036 2,808 2,715 2 512 2008 5,417 2,296 2,704 1 416 2009 4,821 2,761 1,724 1 335 2010 4,994 3,325 1,354 2 313 2011 5,012 3,449 1,277 1 286 2012 3,675 2,105 756 1 812 2010 January 433 283 121 0.17 29 February 404 258 120 0.15 25 March 438 308 108 0.19 23 April 382 253 107 0.12 22 May 415 261 129 0 25

377

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Retail Sales of Electricity to Ultimate Customers: 5. Retail Sales of Electricity to Ultimate Customers: Total by End-Use Sector, 2003 - December 2012 (Million Kilowatthours) Period Residential Commercial Industrial Transportation All Sectors Annual Totals 2003 1,275,824 1,198,728 1,012,373 6,810 3,493,734 2004 1,291,982 1,230,425 1,017,850 7,224 3,547,479 2005 1,359,227 1,275,079 1,019,156 7,506 3,660,969 2006 1,351,520 1,299,744 1,011,298 7,358 3,669,919 2007 1,392,241 1,336,315 1,027,832 8,173 3,764,561 2008 1,379,981 1,335,981 1,009,300 7,700 3,732,962 2009 1,364,474 1,307,168 917,442 7,781 3,596,865 2010 1,445,708 1,330,199 970,873 7,712 3,754,493 2011 1,422,801 1,328,057 991,316 7,672 3,749,846 2012 1,374,515 1,327,101 985,714 7,320 3,694,650 2010

378

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Coal Carbonized at Coke Plants by Census Division" 3. Coal Carbonized at Coke Plants by Census Division" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",3051,2997,3092,6048,6156,-1.8 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",5471,5280,5296,10751,10579,1.6 "w = Data withheld to avoid disclosure."

379

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 4. Consumption of Biogenic Municipal Solid Waste for Electricity Generation by State, by Sector, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,041 4,122 -2.0% 0 0 3,838 3,922 203 200 0 0 Connecticut 1,415 1,442 -1.9% 0 0 1,415 1,442 0 0 0 0 Maine 440 445 -1.3% 0 0 237 246 203 200 0 0 Massachusetts 2,017 2,063 -2.2% 0 0 2,017 2,063 0 0 0 0 New Hampshire 169 172 -2.0% 0 0 169 172 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0

380

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, A. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, 2002 - 2012, Actual Net Internal Demand (Megawatts) -- Summer Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 37,951 55,164 430,396 101,251 54,296 53,267 -- -- 28,825 -- -- 154,459 38,298 55,833 117,032 696,376 2003 40,387 53,936 422,253 98,487 53,566 53,617 -- -- 28,775 -- -- 148,380 39,428 59,282 120,894 696,752 2004 42,243 51,580 419,349 95,300 52,049 50,499 -- -- 29,094 -- -- 153,024 39,383 58,531 121,205 692,908

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 29,643 N/A N/A N/A 0 3,825 N/A 2003 0 0 0 27,988 96 36 583 0 4,222 32,926 2004 0 0 0 28,367 120 30 647 0 3,248 32,413 2005 0 0 0 28,271 113 34 585 0 3,195 32,199 2006 0 0 0 28,400 29 35 509 0 2,899 31,872 2007 0 0 0 28,287 27 40 565 0 1,590 30,509 2008 0 0 0 26,641 21 0 800 0 1,676 29,138 2009 0 0 0 25,292 22 0 718 0 1,868 27,901 2010 0 2 0 25,706 15 0 853 0 1,668 28,244

382

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation from Other Energy Sources 6. Net Generation from Other Energy Sources by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 2,153 2,019 6.7% 0 0 1,944 1,888 88 84 121 46 Connecticut 756 705 7.3% 0 0 756 704 0 0 0 1 Maine 424 390 8.7% 0 0 245 261 88 84 92 45 Massachusetts 906 860 5.5% 0 0 877 860 0 0 29 0 New Hampshire 66 64 2.6% 0 0 66 64 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 2,497 2,441 2.3% 0 0 1,924 1,975 465 344 107 122

383

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Steam Coal Exports" U.S. Steam Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",1619502,1246181,2153814,2865683,3065683,-6.5 " Canada*",797861,599752,841061,1397613,1280803,9.1 " Dominican Republic",51698,160672,124720,212370,312741,-32.1 " Honduras","-",41664,34161,41664,68124,-38.8 " Jamaica",25,36311,"-",36336,33585,8.2 " Mexico",717687,407422,1116653,1125109,1331754,-15.5 " Other**",52231,360,37219,52591,38676,36

384

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 . Receipts and Quality of Coal Delivered for the Electric Power Industry, 2002 through 2012 Bituminous Subbituminous Lignite Period Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight 2002 423,128 1.47 10.1 391,785 0.36 6.2 65,555 0.93 13.3 2003 467,286 1.50 10.0 432,513 0.38 6.4 79,869 1.03 14.4 2004 470,619 1.52 10.4 445,603 0.36 6.0 78,268 1.05 14.2 2005 480,179 1.56 10.5 456,856 0.36 6.2 77,677 1.02 14.0 2006 489,550 1.59 10.5 504,947 0.35 6.1 75,742 0.95 14.4 2007 467,817 1.62 10.3 505,155 0.34 6.0 71,930 0.90 14.0

385

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumption at Other Industrial Plants by Census Division and State" Coal Consumption at Other Industrial Plants by Census Division and State" "(thousand short tons)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "New England","w","w",20,"w","w","w" " Maine","w","w","w","w","w","w" " Massachusetts","w","w","w","w","w","w" "Middle Atlantic",583,589,651,1171,1237,-5.3 " New York",155,181,206,337,374,-10.1

386

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Landfill Gas: Consumption for Electricity Generation, D. Landfill Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 65,770 3,930 59,089 1,753 998 2004 69,331 5,373 60,514 2,093 1,351 2005 67,902 5,650 58,624 2,360 1,269 2006 75,970 8,287 63,950 3,388 345 2007 79,712 8,620 68,432 2,344 316 2008 94,215 10,242 81,029 2,668 276 2009 99,821 9,748 86,773 2,999 301 2010 105,835 10,029 92,763 2,837 205 2011 112,538 11,146 89,857 11,332 203 2012 124,297 12,721 99,938 10,356 1,282 2010 January 8,441 853 7,335 236 17 February 7,824 830 6,781 197 17 March 9,056 1,013 7,796 226 21

387

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Natural Gas: Consumption for Electricity Generation, D. Natural Gas: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 6,249,585 2,307,358 3,214,286 30,626 697,315 2003 5,735,770 1,809,003 3,200,057 39,424 687,286 2004 5,827,470 1,857,247 3,351,469 33,623 585,132 2005 6,212,116 2,198,098 3,444,875 34,645 534,498 2006 6,643,926 2,546,169 3,508,597 35,473 553,687 2007 7,287,714 2,808,500 3,872,646 34,872 571,697 2008 7,087,191 2,803,283 3,712,872 34,138 536,899 2009 7,301,522 2,981,285 3,750,080 35,046 535,111 2010 7,852,665 3,359,035 3,882,995 40,356 570,279 2011 8,052,309 3,511,732 3,906,484 48,509 585,584

388

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Price of Coal Receipts at Coke Plants by Census Division" 4. Average Price of Coal Receipts at Coke Plants by Census Division" "(dollars per short ton)" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "Middle Atlantic","w","w","w","w","w","w" "East North Central",157.29,176.84,199.7,166.21,198.26,-16.2 "South Atlantic","w","w","w","w","w","w" "East South Central","w","w","w","w","w","w" "U.S. Total",157.26,171.51,191.48,163.85,190.51,-14

389

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Demand-Side Management Program Direct and Indirect Costs, 5. Demand-Side Management Program Direct and Indirect Costs, 2002 through 2012 (Thousand Dollars) Year Energy Efficiency Load Management Direct Cost Indirect Cost Total Cost 2002 1,032,911 410,323 1,443,234 206,169 1,649,403 2003 807,403 352,137 1,159,540 137,670 1,340,686 2004 910,816 510,281 1,421,097 132,295 1,560,578 2005 1,180,576 622,287 1,802,863 127,925 1,939,115 2006 1,270,602 663,980 1,934,582 128,886 2,072,962 2007 1,677,969 700,362 2,378,331 160,326 2,604,711 2008 2,137,452 836,359 2,973,811 181,843 3,186,742 2009 2,221,480 944,261 3,165,741 394,193 3,607,076 2010 2,906,906 1,048,356 3,955,262 275,158 4,230,420 2011 4,002,672 1,213,102 5,215,774 328,622 5,544,396 2012 4,397,635 1,270,391 5,668,026 332,440 6,000,466

390

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 B. Net Generation from Renewable Sources: Electric Utilities, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 213 N/A N/A 709 N/A N/A N/A 1,402 242,302 N/A 2003 354 2 0 882 394 326 214 1,249 249,622 253,043 2004 405 6 0 1,209 460 198 166 1,248 245,546 249,238 2005 1,046 16 0 1,829 503 250 175 1,126 245,553 250,499 2006 2,351 15 0.18 1,937 705 228 190 1,162 261,864 268,452 2007 4,361 10 1 2,226 751 240 226 1,139 226,734 235,687 2008 6,899 16 1 1,888 844 211 252 1,197 229,645 240,953

391

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Petroleum Liquids: Consumption for Electricity Generation, A. Petroleum Liquids: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 134,415 88,595 39,035 826 5,959 2003 175,136 105,319 61,420 882 7,514 2004 165,107 103,793 56,342 760 4,212 2005 165,137 98,223 62,154 580 4,180 2006 73,821 53,529 17,179 327 2,786 2007 82,433 56,910 22,793 250 2,480 2008 53,846 38,995 13,152 160 1,538 2009 43,562 31,847 9,880 184 1,652 2010 40,103 30,806 8,278 164 855 2011 27,326 20,844 5,633 133 716 2012 22,604 17,521 4,110 272 702 2010 January 5,587 4,381 1,083 17 106 February 2,156 1,599 454 15 88

392

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Mills per Kilowatthour) 4. Average Power Plant Operating Expenses for Major U.S. Investor-Owned Electric Utilities, 2002 through 2012 (Mills per Kilowatthour) Operation Maintenance Year Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale Nuclear Fossil Steam Hydro-electric Gas Turbine and Small Scale 2002 9.00 2.59 3.71 3.26 5.04 2.67 2.62 2.38 2003 9.12 2.74 3.47 3.50 5.23 2.72 2.32 2.26 2004 8.97 3.13 3.83 4.27 5.38 2.96 2.76 2.14 2005 8.26 3.21 3.95 3.69 5.27 2.98 2.73 1.89 2006 9.03 3.57 3.76 3.51 5.69 3.19 2.70 2.16 2007 9.54 3.63 5.44 3.26 5.79 3.37 3.87 2.42 2008 9.89 3.72 5.78 3.77 6.20 3.59 3.89 2.72 2009 10.00 4.23 4.88 3.05 6.34 3.96 3.50 2.58 2010 10.50 4.04 5.33 2.79 6.80 3.99 3.81 2.73

393

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Imports" Price of U.S. Coal Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Origin",2013,2013,2012,,,"Change" "North America Total",147.86,138.39,191.01,144.86,197.96,-26.8 " Canada",147.86,138.39,191,144.86,197.95,-26.8 " Mexico","-","-",286.23,"-",286.23,"-" "South America Total",75.29,80.74,86.52,77.2,87.17,-11.4 " Argentina","-","-",504.7,"-",504.7,"-" " Colombia",74.87,80.74,83.03,76.96,85.25,-9.7 " Peru",87.09,"-","-",87.09,"-","-"

394

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, 4. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, by Year of Initial Commercial Operation, 2012 (Megawatts, Percent) Year of Initial Commercial Operation Number of Generators Net Summer Capacity Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Pre-1970 318 11,735 7,535 1970-1974 376 18,210 11,033 1975-1979 105 11,031 7,283 1980-1984 46 945 211 1985-1989 107 3,155 413 1990-1994 208 11,738 1,453 1995-1999 134 9,680 2,099 2000-2004 392 39,841 5,098 2005-2009 116 14,791 2,066 2010-2012 78 8,479 320 Total 1,880 129,604 37,510 Notes: Petroleum includes distillate fuel oil (all diesel and No. 1, No. 2, and No. 4 fuel oils), residual fuel oil (No. 5 and No. 6 fuel oils and bunker C fuel oil), jet fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion methodology), waste oil, and beginning in 2011, synthetic gas and propane. Prior to 2011, synthetic gas and propane were included in Other Gases.

395

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 5. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2256,2561,1864,4817,4343,10.9 "312 Beverage and Tobacco Product Mfg.",38,50,48,88,95,-7.7 "313 Textile Mills",31,29,21,60,59,2.2 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

396

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, D. Biogenic Municipal Solid Waste: Consumption for Electricity Generation, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 148,110 5,766 128,947 13,095 302 2004 141,577 3,705 124,815 12,909 146 2005 144,339 4,724 126,529 12,923 164 2006 146,987 4,078 129,779 12,964 165 2007 146,308 4,557 127,826 13,043 881 2008 148,452 4,476 130,041 13,934 0 2009 146,971 3,989 126,649 16,333 0 2010 144,934 3,322 124,437 17,176 0 2011 135,241 3,433 115,841 15,933 34 2012 135,735 3,910 113,418 18,307 100 2010 January 11,540 244 9,886 1,410 0 February 10,313 190 9,030 1,094 0

397

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 3. Average Quality of Fossil Fuel Receipts for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Cubic Foot 2002 10,168 0.94 8.7 147,903 1.64 0.2 1,025 2003 10,137 0.97 9.0 147,086 1.53 0.1 1,030 2004 10,074 0.97 9.0 147,286 1.66 0.2 1,027 2005 10,107 0.98 9.0 146,481 1.61 0.2 1,028 2006 10,063 0.97 9.0 143,883 2.31 0.2 1,027 2007 10,028 0.96 8.8 144,546 2.10 0.1 1,027 2008 9,947 0.97 9.0 142,205 2.21 0.3 1,027 2009 9,902 1.01 8.9 141,321 2.14 0.2 1,025 2010 9,842 1.16 8.8 140,598 2.14 0.2 1,022

398

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Net Generation from Hydroelectric (Pumped Storage) Power 5. Net Generation from Hydroelectric (Pumped Storage) Power by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England -305 -435 -29.9% 0 0 -305 -435 0 0 0 0 Connecticut 3 6 -51.5% 0 0 3 6 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts -308 -440 -30.1% 0 0 -308 -440 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic -1,022 -1,124 -9.0% -579 -630 -443 -494 0 0 0 0

399

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coal Exports" Average Price of U.S. Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",78.29,77.25,102.62,77.88,105.14,-25.9 " Canada*",81.61,80.7,110.67,81.3,112.16,-27.5 " Dominican Republic",78.54,75.09,73.89,75.77,76.61,-1.1 " Honduras","-",54.58,54.43,54.58,54.43,0.3 " Jamaica",480,54.43,"-",54.72,55.42,-1.3 " Mexico",73.45,75.81,94.36,74.35,100.95,-26.3 " Other**",80.33,389.3,70.37,82.45,76.1,8.3

400

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5. Receipts, Average Cost, and Quality of Fossil Fuels: Electric Utilities, 2002 - 2012 Coal Petroleum Liquids Receipts Average Cost Receipts Average Cost Period (Billion Btu)...

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2012 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

402

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Fuel-Switching Capacity of Operable Generators: From Natural Gas to Petroleum Liquids, by Type of Prime Mover, 2012 (Megawatts, Percent) Prime Mover Type Number of Generators...

403

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

" Italy","-","-","-","-",3,"-" " Netherlands","-","-","-","-",1046,"-" " Russia",42439,"-","-",42439,"-","-" " Ukraine",80025,23142,"-",103167,22155,365.7 " United...

404

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

455,214 Other Gases 94 2,253 1,946 1,933 Nuclear 104 107,938 101,885 104,182 Hydroelectric Conventional 4,023 78,241 78,738 78,215 Wind 947 59,629 59,075 59,082 Solar...

405

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3,001 2,267 2,431 Other Gases 1 * * * 4 120 152 152 Nuclear -- -- -- -- -- -- -- -- Hydroelectric Conventional 15 345 344 342 28 317 315 314 Wind 149 12,953 12,885 12,885 1 13 12...

406

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Net Generation from Hydroelectric (Conventional) Power by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors...

407

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

because of independent rounding." "Source: U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, 'Quarterly Mine Employment and Coal Production Report.'...

408

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2012 (From Chapter 2.) Supply (Million Megawatthours) Generation Year Electric Utilities IPP (Non-CHP) IPP (CHP) Commercial Sector Industrial Sector Total Imports Total...

409

SAS Output  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- Electricity Purchases, 2002 through 2012 (Thousand Megawatthours) Year Electric Utilities Energy-Only Providers Independent Power Producers Combined Heat and Power U.S. Total...

410

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

to Date" "Customs District","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "Eastern Total",14307904,16331296,16667115,3063920...

411

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,"Year to Date" "Commodity","April - June","January - March","April - June",2014,2013,"Percent" ,2014,2014,2013,,,"Change" "Coke" " Sales",1969,1865,1969,3834,3905,-1.8 "...

412

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

18,481,678 1,320,095 624,502 45,083,186 19,106,180 2011 51,075,952 14,398,470 1,223,758 650,082 52,299,710 15,048,552 2012 57,971,110 11,392,267 1,285,959 603,382...

413

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Productivity by State and Mine Type, 2012 and 2011" ,"Number of Mining Operations2",,,"Number of Employees3",,,"Average Production per Employee Hour" ,,,"(short tons)4"...

414

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012" "(million short tons)" ,"Underground - Minable...

415

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Number of Mines by State and Coal Rank, 2012" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing","Number...

416

SAS Output  

Gasoline and Diesel Fuel Update (EIA)

B. U.S. Transformer Outages by Type and NERC region, 2012 Outage Type Eastern Interconnection TRE WECC Contiguous U.S. Circuit Outage Counts Automatic Outages (Sustained) 16.00 --...

417

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2012 2,162,230 102,223 1,509 -- 2,265,963 In 2006 the single largest provider of green pricing services in the country discontinued service in two States. More than...

418

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins B. Summer Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Assessment Area, 2012 Actual, 2013-2017 Projected Net Internal Demand (Megawatts) -- Summer Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region MAPP MISO PJM SERC SPP TRE WECC Contiguous U.S. Actual 2012 44,338 58,319 469,273 4,967 96,769 156,319 158,041 53,177 66,548 130,465 768,943 Projected 2013 42,532 59,969 447,171 5,022 91,644 144,378 152,949 53,177 65,901 129,278 744,851 Projected 2014 43,142 60,654 448,912 5,161 92,331 144,497 152,843 54,080 67,592 128,200 748,499 Projected 2015 43,812 61,428 457,865 5,270 93,017 147,568 157,287 54,722 69,679 129,553 762,336

419

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 A. Net Generation by Energy Source: Industrial Sector, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 21,525 3,196 1,207 79,013 9,493 0 3,825 30,489 0 3,832 152,580 2003 19,817 3,726 1,559 78,705 12,953 0 4,222 28,704 0 4,843 154,530 2004 19,773 4,128 1,839 78,959 11,684 0 3,248 29,164 0 5,129 153,925 2005 19,466 3,804 1,564 72,882 9,687 0 3,195 29,003 0 5,137 144,739 2006 19,464 2,567 1,656 77,669 9,923 0 2,899 28,972 0 5,103 148,254 2007 16,694 2,355 1,889 77,580 9,411 0 1,590 28,919 0 4,690 143,128

420

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Existing Net Summer Capacity by Energy Source and Producer Type, 2002 through 2012 (Megawatts) A. Existing Net Summer Capacity by Energy Source and Producer Type, 2002 through 2012 (Megawatts) Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewable Sources Hydroelectric Pumped Storage Other Energy Sources Total Total (All Sectors) 2002 315,350 59,651 312,512 2,008 98,657 79,356 16,710 20,371 686 905,301 2003 313,019 60,730 355,442 1,994 99,209 78,694 18,153 20,522 684 948,446 2004 313,020 59,119 371,011 2,296 99,628 77,641 18,717 20,764 746 962,942 2005 313,380 58,548 383,061 2,063 99,988 77,541 21,205 21,347 887 978,020 2006 312,956 58,097 388,294 2,256 100,334 77,821 24,113 21,461 882 986,215 2007 312,738 56,068 392,876 2,313 100,266 77,885 30,069 21,886 788 994,888

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Average Cost of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 0. Average Cost of Natural Gas Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 3.69 4.94 -25% 4.73 5.70 3.68 4.93 Connecticut 3.88 4.97 -22% 6.45 NM 3.87 4.96 Maine W W W -- -- W W Massachusetts 3.55 4.88 -27% 4.47 5.75 3.53 4.87 New Hampshire W W W 5.54 6.01 W W Rhode Island 3.86 5.01 -23% -- -- 3.86 5.01 Vermont 4.06 5.22 -22% 4.06 5.22 -- -- Middle Atlantic 3.52 5.14 -32% 3.86 5.32 3.46 5.11 New Jersey 3.52 5.11 -31% -- -- 3.52 5.11 New York 3.85 5.45 -29% 3.86 5.32 3.84 5.50

422

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Natural Gas 0. Net Generation from Natural Gas by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 62,490 63,236 -1.2% 345 357 58,757 59,763 901 700 2,488 2,416 Connecticut 16,537 15,188 8.9% 6 NM 15,801 14,715 397 211 333 227 Maine 6,044 6,877 -12.1% 0 0 4,057 4,850 26 0.26 1,960 2,026 Massachusetts 24,672 25,940 -4.9% 278 240 23,812 25,120 416 443 166 136 New Hampshire 7,050 6,658 5.9% 58 80 6,947 6,552 16 0 29 26 Rhode Island 8,185 8,571 -4.5% 0 0 8,140 8,525 45 46 0 0

423

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" 4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "Middle Atlantic" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "Pennsylvania" " Btu",12906,12815,11709,12844,12440,3.2 " Sulfur",1.03,0.92,0.99,0.96,0.97,-1 " Ash",8.94,8.62,10,8.72,9.11,-4.3 "East North Central" " Btu",11928,12228,11682,12112,11933,1.5

424

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Major U.S. Coal Producers, 2012" Major U.S. Coal Producers, 2012" "Rank","Controlling Company Name","Production (thousand short tons)","Percent of Total Production" 1,"Peabody Energy Corp",192563,18.9 2,"Arch Coal Inc",136992,13.5 3,"Alpha Natural Resources LLC",104306,10.3 4,"Cloud Peak Energy",90721,8.9 5,"CONSOL Energy Inc",55752,5.5 6,"Alliance Resource Operating Partners LP",35406,3.5 7,"Energy Future Holdings Corp",31032,3.1 8,"Murray Energy Corp",29216,2.9 9,"NACCO Industries Inc",28207,2.8 10,"Patriot Coal Corp",23946,2.4 11,"Peter Kiewit Sons Inc",22725,2.2 12,"Westmoreland Coal Co",22215,2.2 13,"BHP Billiton Ltd",12580,1.2

425

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 5. Receipts of Petroleum Coke Delivered for Electricity Generation by State, 2012 and 2011 (Thousand Tons) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 106 79 35% 0 0 0 23 0 0 106 56 New Jersey 0 NM NM 0 0 0 0 0 0 0 NM

426

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

6. Net Generation 6. Net Generation by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 120,887 123,338 -2.0% 3,278 4,408 111,191 112,613 1,178 949 5,240 5,368 Connecticut 36,118 33,745 7.0% 37 93 35,347 33,208 397 211 337 233 Maine 14,429 15,974 -9.7% 0.17 1 10,186 10,890 208 176 4,035 4,907 Massachusetts 36,198 38,055 -4.9% 591 610 34,321 36,783 469 490 817 172 New Hampshire 19,264 20,066 -4.0% 2,017 2,994 17,170 17,020 49 20 29 31

427

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Summer Capacity of Utility Scale Units Using Primarily Renewable Energy Sources and by State, 2012 and 2011 (Megawatts) B. Net Summer Capacity of Utility Scale Units Using Primarily Renewable Energy Sources and by State, 2012 and 2011 (Megawatts) Census Division and State Wind Solar Photovoltaic Solar Thermal Conventional Hydroelectric Biomass Sources Geothermal Total Renewable Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 784.1 422.8 49.2 13.9 0.0 0.0 1,956.9 1,946.9 1,367.5 1,421.6 0.0 0.0 4,157.7 3,805.2 Connecticut 0.0 0.0 0.0 0.0 0.0 0.0 122.2 121.7 172.5 178.2 0.0 0.0 294.7 299.9 Maine 427.6 322.5 0.0 0.0 0.0 0.0 742.3 742.3 534.6 576.0 0.0 0.0 1,704.5 1,640.8 Massachusetts 63.8 29.6 41.2 11.7 0.0 0.0 261.1 262.7 395.4 406.9 0.0 0.0 761.5 710.9

428

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 3. Receipts and Quality of Coal by Rank Delivered for Electricity Generation: Independent Power Producers by State, 2012 Bituminous Subbituminous Lignite Census Division and State Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight Receipts (Thousand Tons) Average Sulfur Percent by Weight Average Ash Percent by Weight New England 732 0.87 10.5 41 0.09 2.0 0 -- -- Connecticut 0 -- -- 41 0.09 2.0 0 -- -- Maine 32 0.80 7.0 0 -- -- 0 -- -- Massachusetts 700 0.88 10.7 0 -- -- 0 -- -- New Hampshire 0 -- -- 0 -- -- 0 -- -- Rhode Island 0 -- -- 0 -- -- 0 -- -- Vermont 0 -- -- 0 -- -- 0 -- --

429

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Average Cost of Coal Delivered for Electricity Generation by State, 2012 and 2011 7. Average Cost of Coal Delivered for Electricity Generation by State, 2012 and 2011 (Dollars per MMBtu) Census Division and State Electric Power Sector Electric Utilities Independent Power Producers Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 New England 3.59 3.68 -2.4% 4.07 3.55 3.34 3.74 Connecticut W W W -- -- W W Maine W W W -- -- W W Massachusetts W W W -- -- W W New Hampshire 4.07 3.55 15% 4.07 3.55 -- -- Rhode Island -- -- -- -- -- -- -- Vermont -- -- -- -- -- -- -- Middle Atlantic 2.50 2.68 -6.7% -- 2.92 2.50 2.63 New Jersey 4.05 4.18 -3.1% -- -- 4.05 4.18 New York 3.12 3.27 -4.6% -- 3.88 3.12 3.27 Pennsylvania 2.43 2.55 -4.7% -- 2.91 2.43 2.45

430

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

. Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 . Count of Electric Power Industry Power Plants, by Sector, by Predominant Energy Sources within Plant, 2002 through 2012 Year Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Other Renewables Hydroelectric Pumped Storage Other Energy Sources Total (All Sectors) 2002 633 1,147 1,649 40 66 1,426 682 38 28 2003 629 1,166 1,693 40 66 1,425 741 38 27 2004 625 1,143 1,670 46 66 1,425 749 39 28 2005 619 1,133 1,664 44 66 1,422 781 39 29 2006 616 1,148 1,659 46 66 1,421 843 39 29 2007 606 1,163 1,659 46 66 1,424 929 39 25 2008 598 1,170 1,655 43 66 1,423 1,076 39 29 2009 593 1,168 1,652 43 66 1,427 1,219 39 28 2010 580 1,169 1,657 48 66 1,432 1,355 39 32

431

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) 2. Receipts, Average Cost, and Quality of Fossil Fuels: Industrial Sector, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 3,846 138 0.76 21.20 5.91 9.1 852,547 828,439 3.36 3.46 66.8 2.88 2003 16,383 594 1.04 28.74 5.73 47.3 823,681 798,996 5.32 5.48 69.9 4.20 2004 14,876 540 0.98 27.01 5.59 40.4 839,886 814,843 6.04 6.22 68.4 4.76 2005 16,620 594 1.21 33.75 5.44 58.2 828,882 805,132 8.00 8.24 74.3 6.18

432

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Existing Transmission Capacity by High-Voltage Size, 2012 A. Existing Transmission Capacity by High-Voltage Size, 2012 Voltage Circuit Miles Type Operating (kV) FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. AC 100-199 -- -- -- -- -- -- -- -- -- AC 200-299 6,018 7,813 1,538 6,933 21,757 2,948 -- 38,410 85,416 AC 300-399 -- 7,362 5,850 13,429 3,650 5,303 9,529 10,913 56,036 AC 400-599 1,201 543 -- 2,618 8,876 94 -- 12,794 26,125 AC 600-799 -- -- 190 2,226 -- -- -- -- 2,416 AC Multi-Circuit Structure 200-299 1,198 686 36 2,008 4,156 9 -- -- 8,092 AC Multi-Circuit Structure 300-399 -- 372 274 3,706 313 153 2,747 -- 7,564 AC Multi-Circuit Structure 400-599 -- -- -- 90 857 -- -- -- 947 AC Multi-Circuit Structure 600-799 -- -- -- -- -- -- -- -- --

433

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Energy for Load by North American Electric Reliability Corporation Assessment Area, A. Net Energy for Load by North American Electric Reliability Corporation Assessment Area, 2002 - 2012, Actual Net Energy (Thousands of Megawatthours) Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 211,116 286,199 2,301,321 567,897 273,907 279,264 -- -- 150,058 -- -- 835,319 194,876 280,269 666,696 3,745,601 2003 219,021 288,791 2,255,233 545,109 276,600 267,068 -- -- 153,918 -- -- 826,964 185,574 283,868 664,754 3,711,667 2004 220,335 292,725 2,313,180 553,236 283,646 274,760 -- -- 152,975 -- -- 856,734 191,829 289,146 682,053 3,797,439 2005 226,544 303,607 2,385,461 -- -- -- -- -- 216,633 -- 1,005,226 962,054 201,548 299,225 685,624 3,900,461

434

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports" U.S. Coal Exports" "(short tons)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",3122664,2010882,3565711,5133546,5327583,-3.6 " Canada*",1773644,943061,2101534,2716705,3176066,-14.5 " Dominican Republic",51792,211736,124720,263528,312741,-15.7 " Honduras","-",41664,34161,41664,68124,-38.8 " Jamaica",25,36311,"-",36336,33585,8.2 " Mexico",1244972,777750,1268077,2022722,1698391,19.1 " Other**",52231,360,37219,52591,38676,36

435

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. U.S. Transformer Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 B. U.S. Transformer Sustained Automatic Outage Counts and Hours by Cause Code and by NERC Region, 2012 Transformer Outage Counts Sustained Outage Causes FRCC MRO NPCC RFC SERC SPP TRE WECC Contiguous U.S. Weather, excluding lightning -- -- -- -- 1.00 -- -- -- 1.00 Lightning -- -- -- -- -- -- -- -- -- Environmental -- -- -- -- -- -- -- -- -- Contamination 1.00 -- -- -- -- -- -- -- 1.00 Foreign Interference -- -- -- -- -- -- -- -- -- Fire -- -- -- -- -- -- -- -- -- Vandalism, Terrorism, or Malicious Acts -- -- -- -- -- -- -- -- -- Failed AC Substation Equipment 3.00 1.00 -- 1.00 5.00 -- -- 4.00 14.00 Failed AC/DC Terminal Equipment -- -- -- -- -- -- -- -- -- Failed Protection System Equipment -- 1.00 -- -- 3.00 -- -- -- 4.00

436

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,157.7 3,805.2 24,619.1 24,153.6 1,753.4 1,709.4 3.0 3.0 4,630.3 4,653.7 48.0 26.0 35,211.5 34,350.9 Connecticut 294.7 299.9 6,607.7 6,674.5 29.4 29.4 0.0 0.0 2,102.5 2,102.5 26.0 26.0 9,060.3 9,132.3 Maine 1,704.5 1,640.8 2,764.9 2,737.4 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 4,491.4 4,378.2 Massachusetts 761.5 710.9 11,155.2 10,637.8 1,724.0 1,680.0 3.0 3.0 677.3 684.7 0.0 0.0 14,321.0 13,716.4

437

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

by State" by State" "(thousand short tons)" ,,,,"Year to Date" "Coal-Producing Region","April - June","January - March","April - June",2013,2012,"Percent" "and State",2013,2013,2012,,,"Change" "Alabama",4649,4410,5171,9059,10150,-10.8 "Alaska",442,300,542,742,1091,-32 "Arizona",2184,1825,2002,4009,4169,-3.8 "Arkansas",2,4,11,6,33,-83.1 "Colorado",5297,5781,6885,11079,13914,-20.4 "Illinois",13474,13996,12487,27470,24419,12.5 "Indiana",9516,9422,9147,18938,18794,0.8 "Kansas",5,5,5,9,8,23.7 "Kentucky Total",20683,20594,22803,41276,49276,-16.2 " Eastern (Kentucky)",10392,10144,12444,20536,27516,-25.4

438

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Generation from Solar 0. Net Generation from Solar by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 35 7 427.1% 9 4 25 2 1 1 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 30 5 521.6% 9 4 20 0.14 1 1 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 5 2 179.0% 0 0 5 2 0 0 0 0 Middle Atlantic 389 98 295.3% 41 19 303 65 37 8 8 5

439

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, A. Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Assessment Area, 2002 - 2012, Actual Net Internal Demand (Megawatts) -- Winter Eastern Interconnection ERCOT Western Interconnection All Interconnections Period FRCC NPCC Balance of Eastern Region ECAR MAAC MAIN MAPP MISO MRO PJM RFC SERC SPP TRE WECC Contiguous U.S. 2002 / 2003 42,001 45,980 360,748 84,844 46,159 39,974 -- -- 23,090 -- -- 137,541 29,140 44,719 94,554 588,002 2003 / 2004 36,229 47,850 357,026 86,332 45,625 39,955 -- -- 24,042 -- -- 133,244 27,828 41,988 100,337 583,430 2004 / 2005 41,449 47,859 371,011 91,800 45,565 40,618 -- -- 24,446 -- -- 139,486 29,096 44,010 101,002 605,331

440

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Consumers in the Manufacturing and Coke Sectors, 2012" Coal Consumers in the Manufacturing and Coke Sectors, 2012" "Company Name","Plant Location" "Top Ten Manufacturers" "American Crystal Sugar Co","MN, ND" "Archer Daniels Midland","IA, IL, MN, ND, NE" "Carmeuse Lime Stone Inc","AL, IL, IN, KY, MI, OH, PA, TN, VA, WI" "Cemex Inc","AL, CA, CO, FL, GA, KY, OH, TN, TX" "Dakota Gasification Company","ND" "Eastman Chemical Company","TN" "Georgia-Pacific LLC","AL, GA, OK, VA, WI" "Holcim (US) Inc","AL, CO, MD, MO, MT, OK, SC, TX, UT" "NewPage Corporation","MD, MI, WI" "U S Steel Corporation","AL, IN, MI, MN"

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 B. Net Generation from Renewable Sources: Commerical Sector, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 0 N/A N/A 13 N/A N/A N/A 0 13 N/A 2003 0 0 0 13 152 717 420 0 72 1,374 2004 0 0 0 13 172 945 444 0 105 1,680 2005 0 0 0 16 218 953 486 0 86 1,759 2006 0 0 0 21 173 956 470 0 93 1,713 2007 0 0 0 15 203 962 434 0 77 1,691 2008 0 0.08 0 21 234 911 389 0 60 1,615 2009 0.21 0.04 0 20 318 1,045 386 0 71 1,839 2010 16 5 0 21 256 1,031 386 0 80 1,794 2011 51 84 0 26 952 971 393 0 26 2,502

442

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Net Generation from Renewable Sources Excluding Hydroelectric 4. Net Generation from Renewable Sources Excluding Hydroelectric by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 8,557 8,015 6.8% 664 574 5,652 5,352 136 104 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 4,099 4,495 -8.8% 0 0 2,468 2,421 92 89 1,539 1,985 Massachusetts 1,843 1,207 52.8% 68 48 1,198 1,145 11 13 566 0 New Hampshire 1,381 1,091 26.6% 347 291 1,003 800 31 0 0 0.35 Rhode Island 102 130 -21.8% 0 0 102 130 0 0 0 0

443

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" 3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State" ,,,,"Year to Date" "Census Division","April - June","January - March","April - June",2013,2012,"Percent" "and State1",2013,2013,2012,,,"Change" "New England" " Btu",13323,13196,13391,13253,13339,-0.6 " Sulfur",0.84,0.89,0.72,0.87,0.72,20.3 " Ash",5.95,5.81,5.93,5.87,6.09,-3.6 "Maine" " Btu","w","w","w","w","w","w" " Sulfur","w","w","w","w","w","w" " Ash","w","w","w","w","w","w"

444

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Net Generation from Petroleum Coke 9. Net Generation from Petroleum Coke by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 0 0 -- 0 0 0 0 0 0 0 0 Connecticut 0 0 -- 0 0 0 0 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 0 0 -- 0 0 0 0 0 0 0 0 New Hampshire 0 0 -- 0 0 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0 Middle Atlantic 76 344 -78.0% 0 0 0 263 0 0 76 81 New Jersey 40 58 -30.6% 0 0 0 0 0 0 40 58

445

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Petroleum Liquids 8. Net Generation from Petroleum Liquids by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 413 639 -35.4% 52 120 267 374 49 55 45 90 Connecticut 112 166 -32.6% 4 5 104 155 0.05 0 4 5 Maine 84 178 -52.8% 0.17 1 65 89 2 3 16 85 Massachusetts 174 197 -11.2% 15 40 98 128 37 28 25 NM New Hampshire 22 78 -72.1% 20 57 0.12 1 2 20 0.17 0.10 Rhode Island 18 14 31.0% 11 10 0.12 1 7 2 0 0 Vermont 3 8 -58.1% 2 6 0 0 1 2 0 0

446

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Number of Employees at Underground and Surface Mines by State and Union Status, 2012" Average Number of Employees at Underground and Surface Mines by State and Union Status, 2012" ,"Union",,"Nonunion" "Coal-Producing State","Underground","Surface","Underground","Surface" "and Region1" "Alabama",3044,70,89,1677 "Alaska","-",143,"-","-" "Arizona","-",432,"-","-" "Arkansas","-","-",70,"-" "Colorado",174,212,1858,261 "Illinois",647,58,3291,534 "Indiana","-","-",2054,1868 "Kentucky Total",564,93,10122,4595 " Kentucky (East)",48,93,6821,3943 " Kentucky (West)",516,"-",3301,652

447

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Generation by Energy Source: Commerical Sector, 2002 - 2012 A. Net Generation by Energy Source: Commerical Sector, 2002 - 2012 (Thousand Megawatthours) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Nuclear Hydroelectric Conventional Renewable Sources Excluding Hydroelectric Hydroelectric Pumped Storage Other Total Annual Totals 2002 992 426 6 4,310 0.01 0 13 1,065 0 603 7,415 2003 1,206 416 8 3,899 0 0 72 1,302 0 594 7,496 2004 1,340 493 7 3,969 0 0 105 1,575 0 781 8,270 2005 1,353 368 7 4,249 0 0 86 1,673 0 756 8,492 2006 1,310 228 7 4,355 0.04 0 93 1,619 0 758 8,371 2007 1,371 180 9 4,257 0 0 77 1,614 0 764 8,273 2008 1,261 136 6 4,188 0 0 60 1,555 0 720 7,926 2009 1,096 157 5 4,225 0 0 71 1,769 0 842 8,165

448

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Number of Employees by State and Mine Type, 2012 and 2011" Average Number of Employees by State and Mine Type, 2012 and 2011" ,2012,,,2011,,,"Percent Change" "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total","Underground","Surface","Total" "State and Region1" "Alabama",3190,1851,5041,3138,1618,4756,1.7,14.4,6 "Alaska","-",143,143,"-",136,136,"-",5.1,5.1 "Arizona","-",432,432,"-",419,419,"-",3.1,3.1 "Arkansas",70,3,73,67,3,70,4.5,"-",4.3 "Colorado",2032,473,2505,1927,478,2405,5.4,-1,4.2 "Illinois",3938,574,4512,3563,542,4105,10.5,5.9,9.9

449

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Utilization of Coal Mines by State, 2012 and 2011" Capacity Utilization of Coal Mines by State, 2012 and 2011" "(percent)" ,2012,,,2011 "Coal-Producing","Underground","Surface","Total","Underground","Surface","Total" "State" "Alabama",85.99,83.96,85.28,67.52,90.91,75.85 "Alaska","-","w","w","-","w","w" "Arizona","-","w","w","-","w","w" "Arkansas","w","-","w","w","-","w" "Colorado","w","w",76.65,"w","w",74.63 "Illinois",71.02,57.41,69.11,71.73,53.22,68.54

450

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. Coke Summary Statistics, 2007 - 2013" 2. U.S. Coke Summary Statistics, 2007 - 2013" "(thousand short tons)" "Year and","Production","Imports","Producer and","Consumption2","Exports" "Quarter",,,"Distributor" ,,,"Stocks1" 2007 " January - March",4000,454,717,4078,343 " April - June",4083,685,767,4428,291 " July - September",4063,521,637,4371,344 " October - December",4055,800,632,4394,466 " Total",16201,2460,,17270,1444 2008 " January - March",4036,850,478,4723,316 " April - June",3810,1243,505,4559,466 " July - September",4107,998,464,4494,653 " October - December",3694,512,916,3229,524

451

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Underground Coal Mining Productivity by State and Mining Method, 2012" 2. Underground Coal Mining Productivity by State and Mining Method, 2012" "(short tons produced per employee hour)" "Coal-Producing State, Region1 and Mine Type","Continuous2","Conventional and","Longwall4","Total" ,,"Other3" "Alabama",0.71,"-",1.69,1.66 "Arkansas",0.59,"-","-",0.59 "Colorado",1.9,"-",6.38,5.93 "Illinois",3.65,"-",6.6,4.86 "Indiana",3.25,"-","-",3.25 "Kentucky Total",2.43,1.77,"-",2.39 " Kentucky (East)",1.61,1.77,"-",1.62 " Kentucky (West)",3.61,"-","-",3.56 "Maryland",1.8,"-","-",1.8

452

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Sales Price of Coal by State and Coal Rank, 2012" 1. Average Sales Price of Coal by State and Coal Rank, 2012" "(dollars per short ton)" "Coal-Producing State","Bituminous","Subbituminous","Lignite","Anthracite","Total" "Alabama",106.57,"-","-","-",106.57 "Alaska","-","w","-","-","w" "Arizona","w","-","-","-","w" "Arkansas","w","-","-","-","w" "Colorado","w","w","-","-",37.54 "Illinois",53.08,"-","-","-",53.08 "Indiana",52.01,"-","-","-",52.01

453

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coal Exports and Imports, 2007 - 2013" Average Price of U.S. Coal Exports and Imports, 2007 - 2013" "(dollars per short ton)" ,"January - March",,"April - June",,"July - September",,"October - December",,"Total" "Year","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports","Exports","Imports" 2007,74.13,45.91,64.3,46.86,72.1,47.38,71.09,50.51,70.25,47.64 2008,81.81,52.91,97.24,55.59,102.51,64.65,104.97,65.33,97.68,59.83 2009,113.08,61.03,93.28,65.44,98.7,64.93,100.98,64.72,101.44,63.91 2010,106.52,62.02,121.36,71.91,125.45,77.12,126.16,76.18,120.41,71.77 2011,139.34,86,153,105.86,155.88,112.06,147.38,110.19,148.86,103.32

454

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Coke and Breeze Stocks at Coke Plants by Census Division" 1. Coke and Breeze Stocks at Coke Plants by Census Division" "(thousand short tons)" "Census Division","April - June","January - March","April - June","Percent Change" ,2013,2013,2012,"(June 30)" ,,,,"2013 versus 2012" "Middle Atlantic","w","w","w","w" "East North Central",724,510,509,42.1 "South Atlantic","w","w","w","w" "East South Central","w","w","w","w" "U.S. Total",914,690,674,35.6 "Coke Total",757,573,594,27.5 "Breeze Total",157,117,80,95.2 "w = Data withheld to avoid disclosure."

455

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 5. Planned Generating Capacity Changes, by Energy Source, 2013-2017 Generator Additions Generator Retirements Net Capacity Additions Energy Source Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity Number of Generators Net Summer Capacity 2013 U.S. Total 513 15,144 179 12,604 334 2,540 Coal 4 1,482 28 4,465 -24 -2,983 Petroleum 21 45 41 1,401 -20 -1,356 Natural Gas 87 6,818 55 2,950 32 3,868 Other Gases -- -- 1 4 -1 -4 Nuclear -- -- 4 3,576 -4 -3,576 Hydroelectric Conventional 17 385 36 185 -19 201 Wind 25 2,225 -- -- 25 2,225 Solar Thermal and Photovoltaic 277 3,460 1 1 276 3,459 Wood and Wood-Derived Fuels 10 489 -- -- 10 489 Geothermal 5 50 1 11 4 39

456

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production and Number of Mines by State and Mine Type, 2012 and 2011" Coal Production and Number of Mines by State and Mine Type, 2012 and 2011" "(thousand short tons)" ,2012,,2011,,"Percent Change" "Coal-Producing","Number of Mines","Production","Number of Mines","Production","Number of Mines","Production" "State and Region1" "Alabama",46,19321,52,19071,-11.5,1.3 " Underground",8,12570,9,10879,-11.1,15.5 " Surface",38,6752,43,8192,-11.6,-17.6 "Alaska",1,2052,1,2149,"-",-4.5 " Surface",1,2052,1,2149,"-",-4.5 "Arizona",1,7493,1,8111,"-",-7.6 " Surface",1,7493,1,8111,"-",-7.6 "Arkansas",2,98,2,133,"-",-26.4

457

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Net Generation from Biomass 8. Net Generation from Biomass by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,229 7,138 1.3% 570 515 4,428 4,544 125 94 2,105 1,985 Connecticut 667 660 1.0% 0 0 667 660 0 0 0 0 Maine 3,212 3,788 -15.2% 0 0 1,581 1,714 92 89 1,539 1,985 Massachusetts 1,724 1,140 51.2% 0 0 1,157 1,137 1 3 566 0 New Hampshire 1,173 1,025 14.4% 347 291 795 734 31 0 0 0.35 Rhode Island 101 127 -21.1% 0 0 101 127 0 0 0 0

458

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 B. Net Generation from Renewable Sources: Independent Power Producers, 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 10,141 N/A N/A 8,300 N/A N/A N/A 13,089 18,189 N/A 2003 10,834 0 532 8,645 4,435 7,227 1,211 13,175 21,890 67,949 2004 13,739 0 569 8,528 4,377 6,978 884 13,563 19,518 68,154 2005 16,764 0 535 8,741 4,308 7,092 701 13,566 21,486 73,195 2006 24,238 0 493 8,404 4,771 7,259 774 13,406 24,390 83,736 2007 30,089 6 595 8,486 5,177 7,061 839 13,498 19,109 84,860 2008 48,464 60 787 8,750 6,057 6,975 1,040 13,643 23,451 109,226

459

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" 7. Year-End Coal Stocks by Sector, Census Division, and State, 2012 and 2011" "(thousand short tons)" ,2012,,,,,2011,,,,,"Total" "Census Division","Electric","Other","Coke","Commercial","Producer","Electric","Other","Coke","Commercial","Producer",2012,2011,"Percent" "and State","Power1","Industrial",,"and","and","Power1","Industrial",,"and","and",,,"Change" ,,,,"Institutional","Distributor",,,,"Institutional","Distributor" "New England",1030,13,"-","-","-",1389,"w","-","-","-",1042,"w","w"

460

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Net Generation from Nuclear Energy 2. Net Generation from Nuclear Energy by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 36,116 34,283 5.3% 0 0 36,116 34,283 0 0 0 0 Connecticut 17,078 15,928 7.2% 0 0 17,078 15,928 0 0 0 0 Maine 0 0 -- 0 0 0 0 0 0 0 0 Massachusetts 5,860 5,085 15.2% 0 0 5,860 5,085 0 0 0 0 New Hampshire 8,189 8,363 -2.1% 0 0 8,189 8,363 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 4,989 4,907 1.7% 0 0 4,989 4,907 0 0 0 0

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

7. Net Generation from Coal 7. Net Generation from Coal by State, by Sector, 2012 and 2011 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,103 6,848 -40.1% 1,268 2,208 2,793 4,592 0 0 42 47 Connecticut 653 526 24.2% 0 0 653 526 0 0 0 0 Maine 45 55 -18.0% 0 0 30 38 0 0 15 18 Massachusetts 2,137 4,059 -47.4% 0 0 2,110 4,029 0 0 27 30 New Hampshire 1,268 2,208 -42.6% 1,268 2,208 0 0 0 0 0 0 Rhode Island 0 0 -- 0 0 0 0 0 0 0 0 Vermont 0 0 -- 0 0 0 0 0 0 0 0

462

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Nitrogen Oxides Control Technology Emissions Reduction Factors 4. Nitrogen Oxides Control Technology Emissions Reduction Factors Nitrogen Oxides Control Technology EIA-Code(s) Reduction Factor Advanced Overfire Air AA 30% Alternate Burners BF 20% Flue Gas Recirculation FR 40% Fluidized Bed Combustor CF 20% Fuel Reburning FU 30% Low Excess Air LA 20% Low NOx Burners LN 30% Other (or Unspecified) OT 20% Overfire Air OV 20% Selective Catalytic Reduction SR 70% Selective Catalytic Reduction With Low Nitrogen Oxide Burners SR and LN 90% Selective Noncatalytic Reduction SN 30% Selective Noncatalytic Reduction With Low NOx Burners SN and LN 50% Slagging SC 20% Notes: Starting with 1995 data, reduction factors for Advanced Overfire Air, Low NOx Burners, and Overfire Air were reduced by 10 percent.

463

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Retail Sales and Direct Use of Electricity to Ultimate Customers 2. Retail Sales and Direct Use of Electricity to Ultimate Customers by Sector, by Provider, 2002 through 2012 (Megawatthours) Year Residential Commercial Industrial Transportation Other Total Direct Use Total End Use Total Electric Industry 2002 1,265,179,869 1,104,496,607 990,237,631 N/A 105,551,904 3,465,466,011 166,184,296 3,631,650,307 2003 1,275,823,910 1,198,727,601 1,012,373,247 6,809,728 N/A 3,493,734,486 168,294,526 3,662,029,012 2004 1,291,981,578 1,230,424,731 1,017,849,532 7,223,642 N/A 3,547,479,483 168,470,002 3,715,949,485 2005 1,359,227,107 1,275,079,020 1,019,156,065 7,506,321 N/A 3,660,968,513 150,015,531 3,810,984,044 2006 1,351,520,036 1,299,743,695 1,011,297,566 7,357,543 N/A 3,669,918,840 146,926,612 3,816,845,452

464

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Electric Power Industry Summary Statistics, 2012 and 2011 1. Total Electric Power Industry Summary Statistics, 2012 and 2011 Net Generation and Consumption of Fuels for January through December Total (All Sectors) Electric Power Sector Commercial Industrial Electric Utilities Independent Power Producers Fuel Year 2012 Year 2011 Percentage Change Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Net Generation (Thousand Megawatthours) Coal 1,514,043 1,733,430 -12.7% 1,146,480 1,301,107 354,076 416,783 883 1,049 12,603 14,490 Petroleum Liquids 13,403 16,086 -16.7% 9,892 11,688 2,757 3,655 191 86 563 657 Petroleum Coke 9,787 14,096 -30.6% 5,664 9,428 1,758 3,431 6 3 2,359 1,234 Natural Gas 1,225,894 1,013,689 20.9% 504,958 414,843 627,833 511,447 6,603 5,487 86,500 81,911

465

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, 9. Revenue from Retail Sales of Electricity to Ultimate Customers by End-Use Sector, by State, 2012 and 2011 (Million Dollars) Residential Commercial Industrial Transportation All Sectors Census Division and State Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 7,418 7,546 6,137 6,441 3,292 3,504 38 45 16,885 17,536 Connecticut 2,213 2,339 1,901 2,038 452 486 19 19 4,584 4,882 Maine 657 674 467 494 242 268 0 0 1,366 1,436 Massachusetts 3,029 3,003 2,453 2,547 2,127 2,270 17 22 7,627 7,842 New Hampshire 713 736 598 629 231 238 0 0 1,543 1,602 Rhode Island 450 449 432 453 99 103 2 4 982 1,008 Vermont 356 346 285 281 142 139 0 0 784 766

466

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) 8. Receipts, Average Cost, and Quality of Fossil Fuels: Independent Power Producers, 2002 - 2012 (continued) Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts Average Cost Average Cost Period (Billion Btu) (Thousand Tons) (Dollars per MMbtu) (Dollars per Ton) Average Sulfur Percent by Weight Percentage of Consumption (Billion Btu) (Thousand Mcf) (Dollars per MMBtu) (Dollars per Mcf) Percentage of Consumption (Dollars per MMBtu) Annual Totals 2002 47,805 1,639 1.03 29.98 4.85 44.4 3,198,108 3,126,308 3.55 3.63 91.6 2.42 2003 59,377 2,086 0.60 17.16 4.88 64.3 3,335,086 3,244,368 5.33 5.48 96.2 3.15 2004 73,745 2,609 0.72 20.30 4.95 81.0 3,491,942 3,403,474 5.86 6.01 93.1 3.43 2005 92,706 3,277 0.90 25.42 5.09 82.9 3,675,165 3,578,722 8.20 8.42 95.8 4.69

467

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Coal Stocks at Other Industrial Plants by Census Division and State" 9. Coal Stocks at Other Industrial Plants by Census Division and State" "(thousand short tons)" "Census Division","June 30 2013","March 31 2013","June 30 2012","Percent Change" "and State",,,,"(June 30)" ,,,,"2013 versus 2012" "New England","w","w",21,"w" " Maine","w","w","w","w" " Massachusetts","w","w","w","w" "Middle Atlantic",295,251,286,3.2 " New York",137,78,107,27.6 " Pennsylvania",158,172,179,-11.5 "East North Central",734,692,761,-3.5 " Illinois",160,152,187,-14.1

468

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 4. Stocks of Coal by Coal Rank: Electric Power Sector, 2002 - 2012 Electric Power Sector Period Bituminous Coal Subbituminous Coal Lignite Coal Total End of Year Stocks 2002 70,704 66,593 4,417 141,714 2003 57,716 59,884 3,967 121,567 2004 49,022 53,618 4,029 106,669 2005 52,923 44,377 3,836 101,137 2006 67,760 68,408 4,797 140,964 2007 63,964 82,692 4,565 151,221 2008 65,818 91,214 4,556 161,589 2009 91,922 92,448 5,097 189,467 2010 81,108 86,915 6,894 174,917 2011 82,056 85,151 5,179 172,387 2012 86,437 93,833 4,846 185,116 2010, End of Month Stocks January 86,354 86,893 4,845 178,091 February 82,469 83,721 4,836 171,026 March 86,698 86,014 5,030 177,742 April 92,621 89,545 7,095 189,260 May 93,069 91,514 7,085 191,669

469

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" 8. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code" "(thousand short tons)" ,,,,"Year to Date" "NAICS Code","April - June","January - March","April - June",2013,2012,"Percent" ,2013,2013,2012,,,"Change" "311 Food Manufacturing",2214,2356,1994,4570,4353,5 "312 Beverage and Tobacco Product Mfg.",48,37,53,85,90,-5.6 "313 Textile Mills",31,29,22,59,63,-6.1 "315 Apparel Manufacturing","w","w","w","w","w","w" "321 Wood Product Manufacturing","w","w","w","w","w","w"

470

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Metallurgical Coal Exports" Average Price of U.S. Metallurgical Coal Exports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Destination",2013,2013,2012,,,"Change" "North America Total",92.5,99.4,146.56,94.82,140.7,-32.6 " Canada*",99.83,125.2,142.46,106.43,138.19,-23 " Dominican Republic",114.6,77.21,"-",77.27,"-","-" " Mexico",78.93,78.54,180.76,78.77,153.65,-48.7 "South America Total",119.26,117.51,167.05,118.3,168.12,-29.6 " Argentina",146.7,131.08,182.47,137.36,196.37,-30.1 " Brazil",119.21,117.38,165.61,118.2,171.84,-31.2

471

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production by State, Mine Type, and Union Status, 2012" Coal Production by State, Mine Type, and Union Status, 2012" "(thousand short tons)" ,"Union",,"Nonunion",,"Total" "Coal-Producing","Underground","Surface","Underground","Surface","Underground","Surface" "State and Region1" "Alabama",12410,"-",139,6669,12549,6669 "Alaska","-",2052,"-","-","-",2052 "Arizona","-",7493,"-","-","-",7493 "Arkansas","-","-",96,"-",96,"-" "Colorado",1673,2655,21955,2265,23628,4920 "Illinois",2897,"-",39939,5649,42837,5649

472

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Net Generation from Renewable Sources: Total (All Sectors), 2002 - 2012 B. Net Generation from Renewable Sources: Total (All Sectors), 2002 - 2012 (Thousand Megawatthours) Period Wind Solar Photovoltaic Solar Thermal Wood and Wood-Derived Fuels Landfill Gas Biogenic Municipal Solid Waste Other Waste Biomass Geothermal Conventional Hydroelectric Total Renewable Sources Annual Totals 2002 10,354 N/A N/A 38,665 N/A N/A N/A 14,491 264,329 N/A 2003 11,187 2 532 37,529 5,077 8,306 2,428 14,424 275,806 355,293 2004 14,144 6 569 38,117 5,128 8,151 2,141 14,811 268,417 351,485 2005 17,811 16 535 38,856 5,142 8,330 1,948 14,692 270,321 357,651 2006 26,589 15 493 38,762 5,677 8,478 1,944 14,568 289,246 385,772 2007 34,450 16 596 39,014 6,158 8,304 2,063 14,637 247,510 352,747

473

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Sulfur Dioxide Uncontrolled Emission Factors 1. Sulfur Dioxide Uncontrolled Emission Factors Fuel, Code, Source and Emission Units Combustion System Type / Firing Configuration Fuel EIA Fuel Code Source and Tables (As Appropriate) Emissions Units Lbs = Pounds MMCF = Million Cubic Feet MG = Thousand Gallons Cyclone Boiler Fluidized Bed Boiler Opposed Firing Boiler Spreader Stoker Boiler Tangential Boiler All Other Boiler Types Combustion Turbine Internal Combustion Engine Agricultural Byproducts AB Source: 1 Lbs per ton 0.08 0.01 0.08 0.08 0.08 0.08 N/A N/A Blast Furnace Gas BFG Sources: 1 (including footnote 7 within source); 2, Table 1.4-2 (including footnote d within source) Lbs per MMCF 0.60 0.06 0.60 0.60 0.60 0.60 0.60 0.60 Bituminous Coal* BIT Source: 2, Table 1.1-3 Lbs per ton 38.00 3.80 38.00 38.00 38.00 38.00 N/A N/A

474

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Average Price of U.S. Coke Imports" Average Price of U.S. Coke Imports" "(dollars per short ton)" ,,,,"Year to Date" "Continent and Country","April - June","January - March","April - June",2013,2012,"Percent" "of Origin",2013,2013,2012,,,"Change" "North America Total",263.21,252.66,353.05,261.29,356.01,-26.6 " Canada",263.51,252.66,353.05,258.82,356.01,-27.3 " Panama",263.09,"-","-",263.09,"-","-" "South America Total",196.86,194.14,175.88,195.94,181.01,8.2 " Brazil","-","-",157.6,"-",157.6,"-" " Colombia",196.86,194.14,322.06,195.94,246.68,-20.6

475

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2012 1. Fuel-Switching Capacity of Operable Generators Reporting Natural Gas as the Primary Fuel, by Producer Type, 2012 (Megawatts, Percent) Fuel-Switchable Part of Total Producer Type Total Net Summer Capacity of All Generators Reporting Natural Gas as the Primary Fuel Net Summer Capacity of Natural Gas-Fired Generators Reporting the Ability to Switch to Petroleum Liquids Fuel Switchable Capacity as Percent of Total Maximum Achievable Net Summer Capacity Using Petroleum Liquids Fuel Switchable Net Summer Capacity Reported to Have No Factors that Limit the Ability to Switch to Petroleum Liquids Electric Utilities 206,774 78,346 37.9 74,835 23,624 Independent Power Producers, Non-Combined Heat and Power Plants 170,654 42,509 24.9 40,788 12,216

476

Growth factor parametrization and modified gravity  

SciTech Connect (OSTI)

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models in explaining the cosmic acceleration. The growth rate is parametrized by the growth index {gamma}. We discuss the dependence of {gamma} on the matter energy density {omega} and its current value {omega}{sub 0} for a more accurate approximation of the growth factor. The observational data, including the data of the growth rate, are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the dark energy model with a constant equation of state, we find that {omega}{sub 0}=0.27{+-}0.02 and w=-0.97{+-}0.09. For the {lambda}CDM model, we find that {gamma}=0.64{sub -0.15}{sup +0.17}. For the Dvali-Gabadadze-Porrati model, we find that {gamma}=0.55{sub -0.13}{sup +0.14}.

Gong Yungui [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

2008-12-15T23:59:59.000Z

477

Meeting National Needs, Creating Opportunities for Growth Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Needs, Creating Opportunities for Growth National Needs, Creating Opportunities for Growth Brookhaven National Laboratory Economic Impact Report This report was prepared by Appleseed, a New York City-based economic development consulting firm that works with government, corporations, and nonprofit institutions to promote economic growth and opportunity. 80 Broad Street 13th Floor New York, NY 10004 www.appleseedinc.com Fiscal Year 2009 Highlights By the numbers... State & Local Impacts National Influence Global Reach $704 Million in economic output generated by Brookhaven Lab and its visitors $573 Million in total funding 5,400 jobs created throughout New York State 3,000 employees, 98% living on Long Island 12% growth in employment from 2006 to 2009 $74.7 Million invested in new facilities and renovations

478

Input–output signal selection for damping of power system oscillations using wind power plants  

Science Journals Connector (OSTI)

Abstract During the last years wind power has emerged as one of the most important sources in the power generation share. Due to stringent Grid Code requirements, wind power plants (WPPs) should provide ancillary services such as fault ride-through and damping of power system oscillations to resemble conventional generation. Through an adequate selection of input–output signal pairs, \\{WPPs\\} can be effectively used to provide electromechanical oscillations damping. In this paper, different analysis techniques considering both controllability and observability measures and input–output interactions are compared and critically examined. Recommendations are drawn to select the best signal pairs available from \\{WPPs\\} to contribute to power oscillations damping. Control system design approaches including single-input single-output and multivariable control are considered. The recommendation of analysis techniques is justified through the tools usage in a test system including a WPP.

José Luis Domínguez-García; Carlos E. Ugalde-Loo; Fernando Bianchi; Oriol Gomis-Bellmunt

2014-01-01T23:59:59.000Z

479

About the Ratings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2008 Ratings Changes 2008 Ratings Changes EPA's "New" Fuel Economy Ratings Video about EPA's New Fuel Economy Ratings Windows Media Video (6.8 MB) Quicktime Video (7.8 MB) Text Version EPA changed the way it estimates fuel economy starting with the 2008 model year. This "new" way of estimating fuel economy supplements the previous method by incorporating the effects of Faster speeds and acceleration Air conditioner use Colder outside temperatures What else do I need to know about the "new" ratings? The tests lower MPG estimates for most vehicles. View old/new MPG ratings for a specific vehicle The actual mileage you get will still vary based on your driving habits, traffic conditions, and other factors. All MPG estimates in Find-a-Car have been converted to the new

480

Effective Rate Period  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiscal Year 2014 Fiscal Year 2014 Effective Rate Period As of Beginning of the FY 10/01/2013 - 09/30/2014 Mid-Year Changes (if applicable) 10/01/2013 - 09/30/2014 Power Rates Annual Revenue Requirement Rate Schedule Power Revenue Requirement $73,441,557 CV-F13 Base Resource Revenue Requirement $69,585,875 First Preference Revenue Requirement $3,855,682

Note: This page contains sample records for the topic "output growth rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LCC Guidance Rates  

Broader source: Energy.gov [DOE]

Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

482

Draft Tiered Rate Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

year's weather and other specific factors are removed from the loads of irrigated agriculture. ( ) "Irrigation Rate Mitigation" means the form of a discount by BPA to...

483

Heart Rate Artifact Suppression.  

E-Print Network [OSTI]

??Motion artifact strongly corrupts heart rate measurements in current pulse oximetry systems. In many, almost any motion will greatly diminish the system’s ability to extract… (more)

Dickson, Christopher

2012-01-01T23:59:59.000Z

484

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

485

Solidification at the High and Low Rate Extreme  

SciTech Connect (OSTI)

The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt-pool oscillation may be the dominant factor governing the onset of unsteady thermal conditions accompanied by varying amounts of crystalline nucleation observed near the lower limit. At high quench-wheel velocities, the influence of these oscillations is minimal due to very short melt-pool residence times. However, microstructural evidence suggests that the entrapment of gas pockets at the wheel-metal interface plays a critical role in establishing the upper rate limit. An observed transition in wheel-side surface character with increasing melt-spinning rate supports this conclusion.

Halim Meco

2004-12-19T23:59:59.000Z

486

Compensated count-rate circuit for radiation survey meter  

DOE Patents [OSTI]

A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

Todd, Richard A. (Powell, TN)

1981-01-01T23:59:59.000Z

487

Compensated count-rate circuit for radiation survey meter  

DOE Patents [OSTI]

A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

Todd, R.A.

1980-05-12T23:59:59.000Z

488

Central bank independence and the price-output-variability trade-off  

Science Journals Connector (OSTI)

Data on central bank independence (CBI) and implementation dates of CBI-reforms were used to investigate the relationship between CBI and a possible trade-off between inflation variability and output variability. No such trade-off was found, but there might still be stabilisation gains from CBI-reform.

Mats Landström

2014-01-01T23:59:59.000Z

489

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels  

E-Print Network [OSTI]

Generalized Mercury/Waterfilling for Multiple-Input Multiple-Output Channels Fernando P procedure that generalizes the mercury/waterfilling algorithm, previously proposed for parallel non-interfering chan- nels. In this generalization the mercury level accounts for the sub- optimal (non-Gaussian) input

VerdĂş, Sergio

490

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY  

E-Print Network [OSTI]

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

Perez, Richard R.

491

Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity  

Science Journals Connector (OSTI)

Prior research concerning IT business value has established a link between firm-level IT investment and tangible returns such as output productivity. Research also suggests that IT is vital to intermediate processes such as those that produce intangible ... Keywords: IT business value, breakthrough innovation, information technology, innovation, knowledge production function, patents, productivity, research and development

Landon Kleis; Paul Chwelos; Ronald V. Ramirez; Iain Cockburn

2012-03-01T23:59:59.000Z

492

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS  

E-Print Network [OSTI]

SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS Hans. For the conventional power park, the power production of the wind turbines presents a fluctuating 'negative load PRODUCTION OF WIND TURBINES For the forecast of the power production of wind turbines two approaches may

Heinemann, Detlev

493

Economic Input?Output Life-Cycle Assessment of Trade Between Canada and the United States  

Science Journals Connector (OSTI)

We use an economic input?output life-cycle assessment (EIO-LCA) technique to estimate the economy-wide energy intensity and greenhouse gas (GHG) emissions intensity for 45 manufacturing and resource sectors in Canada and the United States. ... Support?Activities?for?Agriculture ...

Jonathan Norman; Alex D. Charpentier; Heather L. MacLean

2007-01-23T23:59:59.000Z

494

Nuclear norm system identification with missing inputs and outputs Zhang Liua,  

E-Print Network [OSTI]

Nuclear norm system identification with missing inputs and outputs Zhang Liua, , Anders Hanssonb,1 formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing of the alternating direc- tion method of multipliers (ADMM) to solve regularized or non-regularized nuclear norm

Vandenberghe, Lieven

495

Handling Ambiguity via Input-Output Kernel Learning Xinxing Xu Ivor W. Tsang Dong Xu  

E-Print Network [OSTI]

of Computer Engineering, Nanyang Technological University, Singapore xuxi0006@ntu.edu.sg IvorTsang@ntu.edu.sg dongxu@ntu.edu.sg Abstract--Data ambiguities exist in many data mining and machine learning applications the effectiveness of our proposed IOKL framework. Keywords-Group Multiple Kernel Learning; Input-Output Kernel

Tsang Wai Hung "Ivor"

496

Resampling of regional climate model output for the simulation of extreme river flows  

E-Print Network [OSTI]

for the simulation of extreme river flows. This is important to assess the impact of climate change on river flooding biases in the RCM data, the simulated extreme flood quantiles correspond quite well with those obtainedResampling of regional climate model output for the simulation of extreme river flows Robert

Haak, Hein

497

Uni-Traveling-Carrier Photodiodes with Increased Output Response and Low Intermodulation  

E-Print Network [OSTI]

Uni-Traveling-Carrier Photodiodes with Increased Output Response and Low Intermodulation Distortion-traveling-carrier photodiodes have been fabricated and tested to investigate the influence of the doping profile in several of the device layers on saturation characteristics and linearity. Two particular photodiode (PD) structures

Bowers, John

498

Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands  

SciTech Connect (OSTI)

In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

2010-07-01T23:59:59.000Z

499

A comparison between raw EPS output, (modied) BMA and extended LR using ECMWF EPS precipitation reforecasts  

E-Print Network [OSTI]

A comparison between raw EPS output, (modied) BMA and extended LR using ECMWF EPS precipitation (EPS). 2. Data sets, statistical methods and predictand denitions The data sets used in this study [1 and precipitation data from a reforecasting exper- iment with the ECMWF EPS system. Figure 1: BMA-tted pdf of 24-h

Schmeits, Maurice

500

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause voltage fluctuations and  

E-Print Network [OSTI]

Abstract: Wind Energy Conversion Systems (WECS) produce fluctuating output power, which may cause, solar energy conversion, virtual test bed simulation. Preprint Order Number: PE-531EC (02- plying its market-clearing mechanism. This mechanism determines the accepted and unaccepted energy bids

Gross, George