Powered by Deep Web Technologies
Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

2

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

3

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

4

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

5

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

6

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

7

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

8

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

9

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

10

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

11

Japan's Residential Energy Demand Outlook to 2030  

E-Print Network (OSTI)

for Energy Efficiency and Renewable Energy, Planning, Analysis, and Evaluation section in the U.S. Department section in the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. #12;ppaappeerr ttoo bbeeLBNL-292E Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards

12

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Energy Outlook -A Projection up to 2030 under EnvironmentalEnergy Demand Outlook to 2030 Considering Energy EfficiencyEnergy Demand Outlook to 2030 Considering Energy Efficiency

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

13

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Japan Long-Term Energy Outlook -A Projection up to 2030Residential Energy Demand Outlook to 2030 Considering EnergyResidential Energy Demand Outlook to 2030 Considering Energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

14

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

15

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

16

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

17

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

18

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

19

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

20

EIA - Annual Energy Outlook 2008 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2008 with Projections to 2030 Energy Demand Figure 40. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 41. Primary energy use by fuel, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Average Energy Use per Person Levels Off Through 2030 Because energy use for housing, services, and travel in the United States is closely linked to population levels, energy use per capita is relatively stable (Figure 40). In addition, the economy is becoming less dependent on energy in general. Energy intensity (energy use per 2000 dollar of GDP) declines by an average

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California's Summer 2004 Electricity Supply and Demand Outlook  

E-Print Network (OSTI)

transmission or system-wide electricity failures will occur; and, · No significant gaming (manipulationCALIFORNIA ENERGY COMMISSION California's Summer 2004 Electricity Supply and Demand Outlook Ashuckian, Manager Electricity Analysis Office Terrence O'Brien, Deputy Director Systems Assessment

22

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

23

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

24

EIA - Annual Energy Outlook 2009 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

data Rate of Electricity Demand Growth Slows, Following the Historical Trend Electricity demand fluctuates in the short term in response to business cycles, weather conditions,...

25

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

26

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

L ABORATORY Japans Residential Energy Demand Outlook tol i f o r n i a Japans Residential Energy Demand Outlook toParticularly in Japans residential sector, where energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

27

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

Gasoline and Diesel Fuel Update (EIA)

Demand and Price Outlook for Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o Volatile Organic Compounds (VOC) Reduction o Summary of RFG Production Options * Costs of Reformulated Gasoline o Phase 1 RFG Price Premium o California Clean Gasoline Price Premium o Phase 2 RFG Price Premium o Reduced Fuel Economy

28

EIA - Annual Energy Outlook 2009 - Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

demand for renewable fuels increasing the fastestincluding E85 and biodiesel fuels for light-duty vehicles, biomass for co-firing at coal-fired electric power plants, and...

29

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

30

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

31

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

32

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

33

Outlook for US lube oil supply and demand  

Science Conference Proceedings (OSTI)

This paper examines the domestic demand for automotive and industrial lubricants to the year 2000 and evaluates the ability of U.S. refiners to meet the associated demand for base stocks. Changes in the supply/demand picture over the past several years are also reviewed. In the late 1970's, lube base stocks had been in short supply as healthy increases in demand pushed U.S. refiners to near maximum operating levels. Imports were increased to what were then record high levels and exports were reduced. This situation began to reverse itself in mid-1980 as marketers began to feel the impact of recession here and abroad. U.S. base stock consumption has since declined dramatically, to a level in 1982 estimated to be 17.5% below that of 1979's peak. In the meantime, refiners had added another 7.0 MB/CD to manufacturing capacity. 1982 lube plant operations are estimated to have dropped as low as 62% of nameplate capacity. The outlook for recovery is conservative. Due to continued depressed demand in certain market segments, 1983's increase in base oil demand is projected to be held to only 2%. Gains in 1984 and 1985 will be more robust, in the area of 6% per year. Thereafter, the overall rate of growth will drop to under 1% per year. The outlooks for automotive and industrial lubricants demand are summarized. Due to a forecast of greater relative growth in synthetic and water-based lubricants, base stock consumption is forecast to increase at a slower pace than that of the total finished lubricants volume.

Brecht, F.

1983-03-01T23:59:59.000Z

34

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Past Trend and Future Outlook",LBNL forthcoming. de la Rue2006. Building up India: Outlook for Indias real estate,2006a. World Energy Outlook, IEA/OECD, Paris, France.

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

35

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Demand Natural Gas Demand Annual Energy Outlook 2008 with Projections to 2030 Natural Gas Demand Figure 72. Natural gas consumption by sector, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 73. Total natural gas consumption, 1990-2030 (trillion cubic feet). Need help, contact the National Energy Information Center at 202-586-8800. figure data Fastest Increase in Natural Gas Use Is Expected for the Buildings Sectors In the reference case, total natural gas consumption increases from 21.7 trillion cubic feet in 2006 to a peak value of 23.8 trillion cubic feet in 2016, followed by a decline to 22.7 trillion cubic feet in 2030. The natural gas share of total energy consumption drops from 22 percent in 2006

36

Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumption to the Annual Energy Outlook Industrial Demand Module Table 17. Industry Categories Printer Friendly Version Energy-Intensive Manufacturing Nonenergy-Intensive Manufacturing Nonmanufacturing Industries Food and Kindred Products (NAICS 311) Metals-Based Durables (NAICS 332-336) Agricultural Production -Crops (NAICS 111) Paper and Allied Products (NAICS 322) Balance of Manufacturing (all remaining manufacturing NAICS) Other Agriculture Including Livestock (NAICS112- 115) Bulk Chemicals (NAICS 32B) Coal Mining (NAICS 2121) Glass and Glass Products (NAICS 3272) Oil and Gas Extraction (NAICS 211) Hydraulic Cement (NAICS 32731) Metal and Other Nonmetallic Mining (NAICS 2122- 2123) Blast Furnaces and Basic Steel (NAICS 331111) Construction (NAICS233-235)

37

The Outlook for Electricity Supply and Demand to 2035: Key Drivers  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov The Outlook for Electricity Supply and Demand to 2035: Key Drivers

38

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

39

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

40

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Forecasting the demand for commercial telecommunications satellites  

Science Conference Proceedings (OSTI)

This paper summarizes the key elements of a forecast methodology for predicting demand for commercial satellite services and the resulting demand for satellite hardware and launches. The paper discusses the characterization of satellite services into more than a dozen applications (including emerging satellite Internet applications) used by Futron Corporation in its forecasts. The paper discusses the relationship between demand for satellite services and demand for satellite hardware

Carissa Bryce Christensen; Carie A. Mullins; Linda A. Williams

2001-01-01T23:59:59.000Z

42

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

43

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

44

CO2 Monitoring for Demand Controlled Ventilation in Commercial...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Title CO2 Monitoring for Demand Controlled Ventilation in Commercial Buildings Publication Type Report Year...

45

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

46

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

47

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 (Released in the STEO August 1999)  

Reports and Publications (EIA)

This article presents projections of demand and the market price premium for Phase 2 RFG in the year 2000. The projections in this article are based on forecasts in the Short-Term Energy Outlook, which is published monthly by the Energy Information Administration.

Information Center

1999-08-01T23:59:59.000Z

48

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

49

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

50

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

51

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2009 Chapter 2 - Liquid Fuels World liquids consumption in the IEO2009 reference case increases from 85 million barrels per day in 2006 to 107 million barrels per day in 2030. Unconventional liquids, at 13.4 million barrels per day, make up 12.6 percent of total liquids production in 2030. Figure 25. World Liquids Consumption by Region and Country Group, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 26. World Liquids Supply in Three Cases, 2006 and 2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 (million barrels per day). Need help, contact the National Energy Information Center at 202-586-8800.

52

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Commercial Building Energy Consumption Survey (CBECS),7 Figure 3. Energy Consumption in the Agriculture Sector (13 Figure 6. Energy Consumption in the Service

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

53

Assumptions to the Annual Energy Outlook 2002 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

54

Assumptions to the Annual Energy Outlook 2001 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and

55

Alberta's Energy Reserves 2007 and Supply/Demand Outlook  

E-Print Network (OSTI)

............................................................................................5-16 5.2.2 Natural Gas Storage........................................................5-25 5.9 Commercial natural gas storage pools as of December 31, 2007 .....................................................................................5-28 5.31 Alberta natural gas storage injection/withdrawal volumes

Laughlin, Robert B.

56

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

57

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

58

Assumptions to the Annual Energy Outlook 2000 - Electricity Market Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Electricity Market Module (EMM) represents the planning, operations, and pricing of electricity in the United States. It is composed of four primary submodules—electricity capacity planning, electricity fuel dispatching, load and demand-side management, and electricity finance and pricing. In addition, nonutility generation and supply and electricity transmission and trade are represented in the planning and dispatching submodules. Based on fuel prices and electricity demands provided by the other modules of the NEMS, the EMM determines the most economical way to supply electricity, within environmental and operational constraints. There are assumptions about the operations of the electricity sector and the costs of various options in each of the EMM submodules. The major assumptions are summarized below.

59

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

60

Scenario Analysis of Peak Demand Savings for Commercial Buildings with  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Title Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California Publication Type Conference Paper LBNL Report Number LBNL-3636e Year of Publication 2010 Authors Yin, Rongxin, Sila Kiliccote, Mary Ann Piette, and Kristen Parrish Conference Name 2010 ACEEE Summer Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center, demand shifting (pre-cooling), DRQAT Abstract This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30% using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Commercial Demand Module of the National Energy Modeling System ...  

U.S. Energy Information Administration (EIA)

Commercial Demand Module of the National Energy Modeling System: Model Documentation 2012 November 2012 . Independent Statistics & Analysis . www.eia.gov

62

Assumptions to the Annual Energy Outlook - Commercial Demand...  

Annual Energy Outlook 2012 (EIA)

categories16 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division...

63

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand...  

Annual Energy Outlook 2012 (EIA)

household.gif (5637 bytes) The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

64

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

65

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

66

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

67

U.S. Water Demand, Supply and Allocation: Trends and Outlook  

E-Print Network (OSTI)

2007-R-3 Water is an essential resource in the U.S. economy. It plays a crucial role in supporting many economic activities and ensuring the quality of human life and the health of ecological systems. Despite this, the value of water may not be widely appreciated because only some water resources and water uses are easily visible or noticed while others are not. Among the Institute for Water Resources (IWR) Future Directions program activities are the identification of emerging water challenges and opportunities and the tactical engagement of U.S. Army Corps of Engineers (USACE) senior leaders on these issues. Such critical thinking is an essential prerequisite to strategy development and planning. IWR has developed this series of Water Resources Outlook papers, commissioned utilizing outside experts, to identify emerging issues and implications for the Nation. These issues and implications will be presented in the form of provocation sessions with external and internal subject matter experts and stakeholders and will inform the USACE strategic planning process. U.S. Water Demand, Supply and Allocation: Trends and Outlook Given the overall importance of water, the long-term adequacy of water supply is a major national concern. This first in a series of Water Resources Outlook papers reviews future trends

Jack C. Kiefer, Ph.D.

2006-01-01T23:59:59.000Z

68

Demand Shifting With Thermal Mass in Large Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling...

69

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling energy in the building thermal mass and thereby reducing cooling loads during the peak periods. Savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Case studies in a number of office buildings in California has found that a simple demand limiting strategy reduced the chiller power by 20-100% (0.5-2.3W/ft2) during six

70

Commercial & Industrial Demand Response Within Hawaiian Electric Company Service Territory  

Science Conference Proceedings (OSTI)

By reducing power usage during peak demand periods, demand response (DR) programs can help utilities manage power loads and complement energy efficiency activities while providing ratepayers an opportunity to substantially reduce their electric bills. This project assessed the costs and benefits of potential DR programs for Hawaiian Electric Company's (HECO's) commercial and industrial (CI) customers.

2007-06-04T23:59:59.000Z

71

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

72

Energy Conservation and Commercialization in Gujarat: Report On Demand Side  

Open Energy Info (EERE)

Energy Conservation and Commercialization in Gujarat: Report On Demand Side Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Focus Area: Crosscutting Topics: Opportunity Assessment & Screening Website: eco3.org/wp-content/plugins/downloads-manager/upload/Report%20on%20Dem Equivalent URI: cleanenergysolutions.org/content/energy-conservation-and-commercializa Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Resource Integration Planning

73

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

E-Print Network (OSTI)

Scenario Analysis of Peak Demand Savings for CommercialScenario Analysis of Peak Demand Savings for CommercialThe whole-building peak demand of a commercial building with

Yin, Rongxin

2010-01-01T23:59:59.000Z

74

Energy and Emissions Long Term Outlook A Detailed Simulation of Energy Supply-Demand  

E-Print Network (OSTI)

The paper presents the results of a detailed, bottom-up modeling exercise of Mexicos energy markets. The Energy and Power Evaluation Program (ENPEP), the Wien Automatic System Planning (WASP) and the Energy Demand Model (MODEMA) were used to develop forecasts to 2025. Primary energy supply is projected to grow from 9,313 PJ (1999) to 13,130 PJ (2025). Mexicos crude oil production is expected to increase by 1 % annually to 8,230 PJ. As its domestic crude refining capacity becomes unable to meet the rising demand for petroleum products, imports of oil products will become increasingly important. The Mexican natural gas markets are driven by the strong demand for gas in the power generating and manufacturing industries which significantly outpaces projected domestic production. The result is a potential need for large natural gas imports that may reach approximately 46 % of total gas supplies by 2025. The long-term market outlook for Mexicos electricity industry shows a heavy reliance on naturalgas based generating technologies. Gas-fired generation is forecast to increase 26-fold eventually accounting for over 80 % of total generation by 2025. Alternative results for a constrained-gas scenario show a substantial shift to coal-based generation and the associated effects on the natural gas market. A renewables scenario investigates impacts of additional renewables for power generation (primarily wind plus some solar-photovoltaic). A nuclear scenario analyzes the impacts of additional nuclear power

Juan Quintanilla Martnez; Autnoma Mxico; Centro Mario Molina; Juan Quintanilla Martnez

2005-01-01T23:59:59.000Z

75

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

Constraints on Occupant Lighting choices and Satisfaction: A007 "Intelligent Commercial Lighting: Demand-Responsivedirectly. Intelligent Commercial Lighting: Demand-Responsive

Agogino, Alice M.

2005-01-01T23:59:59.000Z

76

Assumptions to the Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Release date: June 2008 Next release date: March 2009 Assumptions to the Annual Energy Outlook 2008 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 113 Petroleum Market Module

77

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Energy. Benefits of Demand Response in Electricity MarketsEnergy Efficiency and Demand Response?7 3.1.Demand Response in Commercial

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

78

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Contribution to Peak Demand?..5 3.potential to reduce peak demand in commercial buildingsbuildings contribution to peak demand and the use of energy

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

79

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

for a large portion of summer peak demand. Research resultspotential to reduce peak demand in commercial buildingsbuildings contribution to peak demand and the use of energy

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

80

Fuel choice and aggregate energy demand in the commercial sector  

SciTech Connect

This report presents a fuel choice and aggregate-demand model of energy use in the commercial sector of the United States. The model structure is dynamic with short-run fuel-price responses estimated to be close to those of the residential sector. Of the three fuels analyzed, electricity consumption exhibits a greater response to its own price than either natural gas or fuel oil. In addition, electricity price increases have the largest effect on end-use energy conservation in the commercial sector. An improved commercial energy-use data base is developed which removes the residential portion of electricity and natural gas use that traditional energy-consumption data sources assign to the commercial sector. In addition, household and commercial petroleum use is differentiated on a state-by-state basis.

Cohn, S.

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the nnual Energy Outlook Assumptions to the nnual Energy Outlook EIA Glossary Assumptions to the Annual Energy Outlook 2004 Report #: DOE/EIA-0554(2004) Release date: February 2004 Next release date:February 2005 The Assumptions to the Annual Energy Outlook presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook. Table of Contents Introduction Macroeconomic Activity Module International Energy Module Household Expenditures Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module Appendix A Adobe Acrobat Logo

82

Computers in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

has risen as well. The Annual Energy Outlook 2002 forecasts that commercial energy demand will grow at an average annual rate of 1.7 percent, with the most rapid increases in...

83

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingthe average and maximum peak demand savings. The electricityuse charges, demand ratchets, peak demand charges, and other

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

84

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Release date: April 2007 Next release date: March 2008 Assumptions to the Annual Energy Outlook 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 107 Petroleum Market Module

85

EIA - Assumptions to the Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2010 This report summarizes the major assumptions used in the NEMS to generate the AEO2010 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions Download the Report Assumptions to the Annual Energy Outlook 2010 Report Cover. Need help, contact the National Energy Information Center at 202-586-8800.

86

EIA - Assumptions to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th This report summarizes the major assumptions used in the NEMS to generate the AEO2009 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions

87

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

step is to calculate energy service demand in each category,mainly determine the energy service demand while pricesthe energy source. In both energy service demand and energy

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

88

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

equipment. Since electricity demand, is projected to exhibitfrom 44% in 2006. In electricity demand, its usage in plugRuns, Average Value) Electricity Demand Power/Electricity

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

89

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Electricity and Natural Gas Demand in Japanese ResidentialWater Heating Natural Gas Demand Mtoe Actual Projection Mtoe

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

90

Automated Demand Response Strategies and Commissioning Commercial Building Controls  

E-Print Network (OSTI)

4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-01-01T23:59:59.000Z

91

Scenario Analysis of Peak Demand Savings for Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study on Energy Efficiency in Buildings Conference Location Pacific Grove, CA Keywords demand response and distributed energy resources center, demand response research center,...

92

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japans population, an important factor in predicting residential energy demand as well

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

93

Testing of peak demand limiting using thermal mass at a small commercial building  

E-Print Network (OSTI)

IBPSA-USA Conference at MIT, Boston, MA. Demand ResponseDemand- Limiting Setpoint Trajectories in Commercial Buildings Using Short-Term Data Analysis, Proceedings of the 2006 IBPSA-USA

Lee, Kyoung-Ho; Braun, James E; Fredrickson, Steve; Konis, Kyle; Arens, Edward

2007-01-01T23:59:59.000Z

94

Commercial Demand Module of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Energy Consumption Survey ... space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The market segment ...

95

Description of the global petroleum supply and demand outlook updated for the 1993 edition of the GRI baseline projection of US energy supply and demand, December 1992  

Science Conference Proceedings (OSTI)

Strategic planning of the research and development program carried out by Gas Research Institute (GRI) is supported by an annual GRI baseline projection of U.S. energy supply and demand. Because petroleum products compete in a wide variety of energy uses, oil prices serve as a market clearing force for the entire energy system. A significant portion of the U.S. petroleum supply is imported, and the price of crude oil to U.S. refiners is determined by the international oil trade. Any projection of the U.S. energy situation, therefore, requires the evaluation of the global oil market and the impact of oil price changes on the supply/demand balances of market participants. The 1992 edition of the projection completed in August 1991 assumed that in the aftermath of the war in the Middle East the fundamentals of oil trade would reassert their influence. This did indeed occur and with astonishing speed. In the face of this outlook, GRI has revised its 1993 oil price track downward.

Dreyfus, D.A.; Koklauner, A.B.

1992-12-01T23:59:59.000Z

96

Automated Demand Response Strategies and Commissioning CommercialBuilding Controls  

SciTech Connect

California electric utilities have been exploring the use of dynamic critical peak pricing (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a new electricity tariff design to promote demand response. This paper begins with a brief review of terminology regarding energy management and demand response, followed by a discussion of DR control strategies and a preliminary overview of a forthcoming guide on DR strategies. The final section discusses experience to date with these strategies, followed by a discussion of the peak electric demand savings from the 2005 Automated CPP program. An important concept identified in the automated DR field tests is that automated DR will be most successful if the building commissioning industry improves the operational effectiveness of building controls. Critical peak pricing and even real time pricing are important trends in electricity pricing that will require new functional tests for building commissioning.

Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

2006-05-01T23:59:59.000Z

97

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Demand Module Demand Module This page inTenTionally lefT blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2040. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

98

Worldwide Natural Gas Supply and Demand and the Outlook for Global ...  

U.S. Energy Information Administration (EIA)

Liquefied natural gas (LNG) is a proven commercial technology for transporting natural gas across oceans. The international trade in LNG is more than 30 years old.

99

Assessment of Commercial Building Automation and Energy Management Systems for Demand Response Applications  

Science Conference Proceedings (OSTI)

This Technical Update is an overview of commercial building automation and energy management systems with a focus on their capabilities (current and future), especially in support of demand response (DR). The report includes background on commercial building automation and energy management systems; a discussion of demand response applications in commercial buildings, including building loads and control strategies; and a review of suppliers building automation and energy management systems to support d...

2009-12-14T23:59:59.000Z

100

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

SciTech Connect

This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

2010-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Natural Gas Winter Outlook 2000-2001  

Reports and Publications (EIA)

This article is based on the Winter Fuels Outlook published in the 4th Quarter Short-Term Energy Outlook and discusses the supply and demand outlook from October 2000 through March 2001.

Information Center

2000-10-01T23:59:59.000Z

102

Worldwide Natural Gas Supply and Demand and the Outlook for Global LNG Trade  

Reports and Publications (EIA)

This article is adapted from testimony by Jay Hakes, Administrator of the Energy Information Administration, before the Senate Energy and Natural Resources Committee on July 23, 1997. The hearing focused on the examination of certain aspects of natural gas into the next century with special emphasis on world natural gas supply and demand to 2015.

Information Center

1997-08-01T23:59:59.000Z

103

Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

Piette, Mary Ann; Kiliccote, Sila

2006-09-01T23:59:59.000Z

104

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

105

Annual Energy Outlook 2012 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2012 Annual Energy Outlook 2012 Release Date: June 25, 2012 | Next Early Release Date: December 5, 2012 | Report Number: DOE/EIA-0383(2012) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2012 presents yearly projections and analysis of energy topics Download the complete June 2012 published report. Executive summary The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2012 (AEO2012) focus on the factors that shape the

106

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

107

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

108

Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings  

SciTech Connect

Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-17T23:59:59.000Z

109

Petroleum and Natural Gas Outlook  

Reports and Publications (EIA)

A presentation to the National Association of State Energy Officials 2005 Energy Outlook Conference, in Washington, DC, on February 17, 2005, giving EIA's outlook for petroleum and natural gas supply, demand, and prices.

Information Center

2005-02-18T23:59:59.000Z

110

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

Science Conference Proceedings (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

111

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

112

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

SciTech Connect

California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

2010-05-14T23:59:59.000Z

113

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

114

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

115

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

116

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network (OSTI)

GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

117

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

Science Conference Proceedings (OSTI)

Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

2011-07-01T23:59:59.000Z

118

Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)  

Reports and Publications (EIA)

Beginning with the December 2002 issue of EIAs Short-Term Energy Outlook (STEO),electricity generation and related fuel consumption totals will be presented on a basis that isconsistent with the definitions and aggregates used in the 2001 edition of EIAs Annual EnergyReview (AER). Particularly affected by these changes are the demand and balancing itemtotals for natural

Information Center

2002-12-01T23:59:59.000Z

119

DSM (demand-side management) commercial customer acceptance: Volume 2, Survey and database documentation: Final report. [Demand-side management  

SciTech Connect

A survey was conducted among utility DSM (demand-side management) program managers to gather information on the characteristics of commercial sector programs. The survey data were used in part to identify the important factors that influence customer participation in such programs. Information was gathered in the following general areas of interest: (1) program characteristics (e.g., program type, objectives, status, etc.); (2) marketing characteristics (e.g., promotional mechanisms, budget, goals, etc.); (3) customer eligibility and participation (e.g., characteristics of the eligible population, participation by customer category, etc.); and (4) market research information (e.g., the data that pertain to the effectiveness of the progress). The survey obtained information on 108 DSM programs covering a broad range of options, including audits, non-audit information, financial incentive, direct load control, distributed local control, thermal energy storage, time-of-use rates, and other rate programs. Program planners can use the survey database, presented in its entirety in this report, to identify utilities that have already implemented DSM programs of interest and to learn from their experience.

George, S.S.; Kirksey, W.E.; Skelton, J.C.

1988-04-01T23:59:59.000Z

120

Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Outlook For NY Energy Forum October 29, 2013 | New York, NY By Adam Sieminski, Administrator Agenda * Winter Fuels Outlook * Drilling Productivity Report * Geopolitical...

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Demand Shifting with Thermal Mass in Large Commercial Buildings in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Shifting with Thermal Mass in Large Commercial Buildings in a Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Title Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone Publication Type Report LBNL Report Number LBNL-3898e Year of Publication 2009 Authors Xu, Peng, Rongxin Yin, Carrie Brown, and DongEun Kim Date Published June 2009 Publisher CEC/LBNL Keywords demand response, demand shifting (pre-cooling), DRQAT, hot climates, market sectors, office buildings, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract The potential for using building thermal mass for load shifting and peak energy demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Previous Lawrence Berkeley National Laboratory research has demonstrated that the approach is very effective in cool and moderately warm climate conditions (California Climate Zones 2-4). However, this method had not been tested in hotter climate zones.This project studied the potential of pre-cooling the building early in the morning and increasing temperature setpoints during peak hours to reduce cooling-related demand in two typical office buildings in hotter California climates - one in Visalia (CEC Climate Zone 13) and the other in San Bernardino (CEC Climate Zone 10). The conclusion of the work to date is that pre-cooling in hotter climates has similar potential to that seen previously in cool and moderate climates. All other factors being equal, results to date indicate that pre-cooling increases the depth (kW) and duration (kWh) of the possible demand shed of a given building. The effectiveness of night pre-cooling in typical office building under hot weather conditions is very limited. However, night pre-cooling is helpful for office buildings with an undersized HVAC system. Further work is required to duplicate the tests in other typical buildings and in other hot climate zones and prove that pre-cooling is truly effective.

122

Demand relief and weather sensitivity in large California commercial office buildings  

SciTech Connect

A great deal of research has examined the weather sensitivity of energy consumption in commercial buildings; however, the recent power crisis in California has given greater importance to peak demand. Several new load-shedding programs have been implemented or are under consideration. Historically, the target customers have been large industrial users who can reduce the equivalent load of several large office buildings. While the individual load reduction from an individual office building may be less significant, there is ample opportunity for load reduction in this area. The load reduction programs and incentives for industrial customers may not be suitable for commercial building owners. In particular, industrial customers are likely to have little variation in load from day to day. Thus a robust baseline accounting for weather variability is required to provide building owners with realistic targets that will encourage them to participate in load shedding programs.

Kinney, Satkartar; Piette, Mary Ann; Gu, Lixing; Haves, Philip

2001-05-01T23:59:59.000Z

123

Short Term Energy Outlook ,October 2002  

Gasoline and Diesel Fuel Update (EIA)

October 2002 October 2002 1 Short-Term Energy Outlook October 2002 Overview World Oil Markets: Continued high oil prices are the result of declining OECD commercial oil inventories, worries over a potential clash with Iraq, and OPEC's decision to leave production quotas unchanged at its September meeting. Solid growth in world oil demand this winter (and for 2003 as a whole) is likely to tighten world oil markets and reduce commercial oil inventories. The West Texas Intermediate (WTI) crude oil spot price averaged $29.75 in September, about $3.50 per barrel above the year-ago level and about $10 per barrel above a low point seen last January. Home Heating Costs Outlook: While fuel supplies should remain sufficient under normal weather

124

Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings  

E-Print Network (OSTI)

2010AssessmentofDemandResponseand AdvancedMetering:DevelopmentforDemandResponse Calculation?FindingsandEnergy Efficiencyand DemandResponsewithCommunicating

Page, Janie

2012-01-01T23:59:59.000Z

125

Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings  

E-Print Network (OSTI)

below. Fig. 4 Automated demand response general features Thearchitecture Automated Demand Response System ArchitectureCould Bene?t for Demand Response Programs, But Challenges

Piette, Mary Ann

2010-01-01T23:59:59.000Z

126

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large FacilitiesNYSERDA) and the Demand Response Research Center (LLC Working Group 2 Demand Response Program Evaluation

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

127

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Open Automated Demand Response Demonstration Project LBNL-2009a). Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California.

Kiliccote, Sila

2010-01-01T23:59:59.000Z

128

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

129

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

algorithm. The preferred demand response strategy was foundimplements the specific demand response policy chosen by theload shedding and demand response, a literature review of

Agogino, Alice M.

2005-01-01T23:59:59.000Z

130

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

residential customers with peak demand greater than 350 kWs) Eligible Customers (peak demand) Optional hourly pricingis relatively small; the peak demand of its large, non-

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

131

Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings  

SciTech Connect

Building thermal mass can be used to reduce the peak cooling load. For example, in summer, the building mass can be pre-cooled during non-peak hours in order to reduce the cooling load in the peak hours. As a result, the cooling load is shifted in time and the peak demand is reduced. The building mass can be cooled most effectively during unoccupied hours because it is possible to relax the comfort constraints. While the benefits of demand shift are certain, different thermal mass discharge strategies result in different cooling load reduction and savings. The goal of an optimized discharge strategy is to maximize the thermal mass discharge and minimize the possibility of rebounds before the shed period ends. A series of filed tests were carefully planned and conducted in two commercial buildings in Northern California to investigate the effects of various precooling and demand shed strategies. Field tests demonstrated the potential of cooling load reduction in peak hours and importance of discharge strategies to avoid rebounds. EnergyPlus simulation models were constructed and calibrated to investigate different kind of recovery strategies. The results indicate the value of pre-cooling in maximizing the electrical shed in the on-peak period. The results also indicate that the dynamics of the shed need to be managed in order to avoid discharging the thermal capacity of the building too quickly, resulting in high cooling load and electric demand before the end of the shed period. An exponential trajectory for the zone set-point during the discharge period yielded good results and is recommended for practical implementation.

Xu, Peng

2006-08-01T23:59:59.000Z

132

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

all the test days and maximum demand savings for the bestin Table 4. Average Maximum Demand Demand Savings SavingsTable 4. Average and maximum demand savings results from

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

133

NASEO Energy Outlook Conference  

Gasoline and Diesel Fuel Update (EIA)

NASEO Energy Outlook Conference NASEO Energy Outlook Conference 2/26/01 Click here to start Table of Contents NASEO Energy Outlook Conference Retail Product Prices Are Driven By Crude Oil WTI Crude Oil Price: Base Case and 95% Confidence Interval OPEC Crude Oil Production 1998-2001 Annual World Oil Demand Growth by Region, 1991-2001 Total OECD Oil Stocks* Fundamentals Explain High Crude Oil Prices Product Price Spreads Over Crude Oil Vary With Seasons and Supply/Demand Balance U.S. Distillate Inventories Distillate Stocks Are Important Part of East Coast Winter Supply Both Distillate Supply and Demand Reached Extraordinary Levels This Winter Heating Oil Imports Strong in 2001 Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Oil Costs Propane prices Influenced by Crude Oil and Natural Gas

134

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

NLE Websites -- All DOE Office Websites (Extended Search)

36E 36E Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California R. Yin, S. Kiliccote, M.A. Piette, K. Parrish Environmental Energy Technologies Division May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

135

Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

340E 340E Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings M.A. Piette, G. Ghatikar, S. Kiliccote, D. Watson Lawrence Berkeley National Laboratory E. Koch, D. Hennage Akuacom June 2009 Journal of Computing Science and Information Engineering, Vol. 9, Issue 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

136

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

3E 3E Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings S. Kiliccote, M.A. Piette, J. Mathieu, K. Parrish Environmental Energy Technologies Division May 2010 Presented at the 2010 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, August 15-20, 2010, and published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information,

137

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

138

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

139

Machine to machine (M2M) technology in demand responsive commercial buildings  

SciTech Connect

Machine to Machine (M2M) is a term used to describe the technologies that enable computers, embedded processors, smart sensors, actuators and mobile devices to communicate with one another, take measurements and make decisions--often without human intervention. M2M technology was applied to five commercial buildings in a test. The goal was to reduce electric demand when a remote price signal rose above a predetermine price. In this system, a variable price signal was generated from a single source on the Internet and distributed using the meta-language, XML (Extensible Markup Language). Each of five commercial building sites monitored the common price signal and automatically shed site-specific electric loads when the price increased above predetermined thresholds. Other than price signal scheduling, which was set up in advance by the project researchers, the system was designed to operate without human intervention during the two-week test period. Although the buildings responded to the same price signal, the communication infrastructures used at each building were substantially different. This study provides an overview of the technologies used at each building site, the price generator/server, and each link in between. Network architecture, security, data visualization and site-specific system features are characterized. The results of the test are discussed, including: functionality at each site, measurement and verification techniques, and feedback from energy managers and building operators. Lessons learned from the test and potential implications for widespread rollout are provided.

Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

2004-08-01T23:59:59.000Z

140

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

period difference in maximum demand was 166 kilowatts (kW).4 p.m. ; however, the maximum demand was not reduced as muchdata indicate that the maximum demand shed always appears

Xu, Peng

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

size (average maximum demand) 84 , business type (SIC code),HECO customers average maximum demands was not available.to estimate the maximum demand (kW) of each customer.

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

142

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

12 Table 4. Average and Maximum Demand Savings Results fromall the test days and maximum demand savings for the best4. Table 4. Average and Maximum Demand Savings Results from

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

143

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network (OSTI)

indicate minimum and maximum demand reduction. There is nopackaged units. In 2009, maximum demand for this facilityat 1.4 MW. Weekday maximum demand is 1.2 MW. Over the last

Kiliccote, Sila

2010-01-01T23:59:59.000Z

144

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network (OSTI)

buildings can reduce peak demand from 5 to 15% with anof events. We benchmark the peak demand of this sample ofyears. This is done with peak demand intensities and load

Kiliccote, Sila

2010-01-01T23:59:59.000Z

145

Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits  

E-Print Network (OSTI)

Braun (Purdue). 2004. Peak demand reduction from pre-coolingmass for load shifting and peak demand reduction has beenpre-cooling strategies on peak demand. In addition, a set of

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-01-01T23:59:59.000Z

146

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

J. E. Braun. 2004. Peak demand reduction from pre-coolingReducing electrical peak demand has a huge economic andmass for load shifting and peak demand reduction has been

Xu, Peng

2010-01-01T23:59:59.000Z

147

Assumptions to the Annual Energy Outlook - Contacts  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Assumption to the Annual Energy Outlook Contacts Specific questions about the information in this report may be directed to: Introduction Paul D. Holtberg 202/586-1284 Macroeconomic Activity Module Ronald F. Earley Yvonne Taylor 202/586-1398 202/586-1398 International Energy Module G. Daniel Butler 202/586-9503 Household Expenditures Module/ Residential Demand Module John H. Cymbalsky 202/586-4815 Commercial Demand Module Erin E. Boedecker 202/586-4791 Industrial Demand Module T. Crawford Honeycutt 202/586-1420 Transportation Demand Module John D. Maples 202/586-1757 Electricity Market Module Laura Martin 202/586-1494 Oil and Gas Supply Module/Natural Gas Transmission and Distribution Module Joseph Benneche 202/586-6132 Petroleum Market Module Bill Brown 202/586-8181

148

Winter Fuels Outlook Conference 2010  

Reports and Publications (EIA)

This presentation at the 2010 Winter Fuels Outlook Conference in Washington, DC, outlined EIA's current forecast for U.S. crude oil, distillate, natural gas, propane and gasoline supply, demand, and markets over the coming winter season.

2010-10-13T23:59:59.000Z

149

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption

150

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 16, 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption

151

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

World Energy Demand and Economic Outlook World Energy Demand and Economic Outlook International Energy Outlook 2010 Graphic Data - World Energy Demand and Economic Outlook Figure 12. World marketed energy consumption, 1990-2035 Figure 13. World marketed energy consumption:OECD and Non-OECD, 1990-2035 Figure 14. Shares of world energy consumption in the United States, China, and India, 1990-2035 Figure 15. Marketed energy use in the Non-OECD economies by region, 1990-2035 Figure 16. World marketed energy use by fuel type, 1990-2035 Figure 17. Coal consumption in selected world regions, 1990-2035 Figure 18. World electricity generation by fuel, 2007-2035 Figure 19. Renewable electricity generation in China by energy source, 2007-2035 Figure 20. World nuclear generating capacity by region, 2007 and 2035

152

IEA World Energy Outlook | Open Energy Information  

Open Energy Info (EERE)

IEA World Energy Outlook IEA World Energy Outlook Jump to: navigation, search Tool Summary Name: IEA World Energy Outlook Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy Topics: Market analysis, Technology characterizations References: World Energy Outlook[1] The 2010 "edition of the World Energy Outlook - the International Energy Agency's flagship publication and leading source of analysis of global energy trends - presents updated projections of energy demand, production, trade and investment, fuel by fuel and region by region to 2035. WEO-2010 includes, for the first time, the result of a new scenario that takes account of the recent commitments that governments have made to

153

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

market Energy providers Target users Program manager (energy provider), energy manager (customer) Commercialization Data Access Trendmarket Energy service providers, utilities Target users Energy manager, operator Commercialization Data Access Trend

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

154

Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings  

E-Print Network (OSTI)

effort to understand pre-cooling thermal mass as a Demandof Building Thermal Mass to Offset Cooling Loads. ASHRAEKey words: Pre-cooling, demand response, thermal mass

Xu, Peng

2010-01-01T23:59:59.000Z

155

Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices  

Science Conference Proceedings (OSTI)

There are 3 appendices listed: (A) DR strategies for HVAC systems; (B) Summary of DR strategies; and (C) Case study of advanced demand response.

Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P.

2007-05-01T23:59:59.000Z

156

Web-based energy information systems for energy management and demand response in commercial buildings  

E-Print Network (OSTI)

download EMCS download Sub-metering Real-time Connectivityof diagnostic testing, sub-metering, and performancecoincident demand at sub-metering S Compare to historical

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-01-01T23:59:59.000Z

157

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

response as: changes in electric usage by end-use customerselectric competition Typical rate design includes demand and/or volumetric distribution charges, with all commodity usage

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

158

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

159

Summer_Gas_Outlook  

Gasoline and Diesel Fuel Update (EIA)

(Energy Information Administration/Short-Term Energy Outlook -- April 2001) (Energy Information Administration/Short-Term Energy Outlook -- April 2001) 1 Summer 2001 Motor Gasoline Outlook Summary April 2001 For the upcoming summer season (April to September), motor gasoline markets are projected to once again exhibit a very tight supply/demand balance. * Retail gasoline prices (regular grade) are expected to average $1.49 per gallon, slightly lower than last summer's average of $1.53 per gallon, but still above the previous (current-dollar) record summer average of $1.35 recorded in 1981. Nominal prices are expected to reach a peak of $1.52 per gallon in June but then decline gradually to about $1.43 by December. These projections presume no

160

Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits  

SciTech Connect

The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction  

E-Print Network (OSTI)

respect to exiting daylighting systems. Limiting peak demandrespect to existing daylighting systems, by specificallyin the tariff. A commercial daylighting system is assumed to

Agogino, Alice M.

2005-01-01T23:59:59.000Z

162

One: California Economic Outlook  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMIC OUTLOOK: AN IMPROVED POWER SITUATIONwas sluggish. An improved outlook for consumer spending inforecast compared with the outlook of UCLA's Anderson

Lieser, Tom K

2002-01-01T23:59:59.000Z

163

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

of Building Thermal Mass to Offset Cooling Loads. ASHRAEThe Role of Thermal Mass on the Cooling Load of Buildings.Keywords: Pre-cooling, demand response, thermal mass, hot

Xu, Peng

2010-01-01T23:59:59.000Z

164

Policy-driven distributed and collaborative demand response in multi-domain commercial buildings  

Science Conference Proceedings (OSTI)

Enabling a sophisticated Demand Response (DR) framework, whereby individual consumers adapt their electricity consumption in response to price variations, is a major objective of the emerging Smart Grid. We first point out why the current model, of EMS-based ...

Archan Misra; Henning Schulzrinne

2010-04-01T23:59:59.000Z

165

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network (OSTI)

energy commodity risk (e.g. gas markets) Attendance at training workshops Technical audits or information information and improved methods that would support more reliable demand response market assessments. Energy

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

166

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(83/3Q) (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

167

Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California  

E-Print Network (OSTI)

and Pre-cooling of Commercial Buildings with Thermal Mass inthe high thermal storage during the pre-cooling period. Forwith low thermal mass is limited, the pre-cooling period can

Yin, Rongxin

2010-01-01T23:59:59.000Z

168

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

4 with Projections to 2025 4 with Projections to 2025 Report #: DOE/EIA-0383(2004) Release date: January 2004 Next release date: January 2005 Errata August 25, 2004 The Annual Energy Outlook presents a midterm forecast and analysis of US energy supply, demand, and prices through 2025 Table of Contents Summary Tables Adobe Acrobat Logo Yearly Tables MS Excel Viewer Regional and other detailed tables (Supplemental) MS Excel Viewer Overview Market Drivers Trends in Economic Activity Economic Growth Cases International Oil Markets Energy Demand Projections Residential Sector Commercial Sector Industrial Sector Transportation Sector Alternative Technology Cases Electricity Forecast Electricity Sales Electricity Generating Capacity Electricity Fuel Costs and Prices Electricity from Nuclear Power

169

International Energy Outlook 2006 - Appendix I  

Gasoline and Diesel Fuel Update (EIA)

I I International Energy Outlook 2006 Appendix I: System for the Analysis of Global Energy Markets (SAGE) The projections of world energy consumption appearing in IEO2006 are based on EIA’s international energy modeling tool, SAGE. SAGE is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Projections of energy consumption to meet the energy demands are estimated on the basis of each region’s existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well as new sources of primary energy supply.

170

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

171

New Zealand Energy Outlook (2010): Electricity and Generation...  

Open Energy Info (EERE)

Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to...

172

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

173

Annual Energy Outlook 2007 with Projections to 2030  

U.S. Energy Information Administration (EIA)

The Annual Energy Outlook 2007 presents a projection and analysis of US energy supply, demand, and prices through 2030. The projections are based on results from the ...

174

Short-term energy outlook, Annual supplement 1995  

SciTech Connect

This supplement is published once a year as a complement to the Short- Term Energy Outlook, Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. Chap. 2 analyzes the response of the US petroleum industry to the recent four Federal environmental rules on motor gasoline. Chap. 3 compares the EIA base or mid case energy projections for 1995 and 1996 (as published in the first quarter 1995 Outlook) with recent projections made by four other major forecasting groups. Chap. 4 evaluates the overall accuracy. Chap. 5 presents the methology used in the Short- Term Integrated Forecasting Model for oxygenate supply/demand balances. Chap. 6 reports theoretical and empirical results from a study of non-transportation energy demand by sector. The empirical analysis involves the short-run energy demand in the residential, commercial, industrial, and electrical utility sectors in US.

1995-07-25T23:59:59.000Z

175

Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings  

Science Conference Proceedings (OSTI)

This paper describes the concept for and lessons from the development and field-testing of an open, interoperable communications infrastructure to support automated demand response (auto-DR). Automating DR allows greater levels of participation, improved reliability, and repeatability of the DR in participating facilities. This paper also presents the technical and architectural issues associated with auto-DR and description of the demand response automation server (DRAS), the client/server architecture-based middle-ware used to automate the interactions between the utilities or any DR serving entity and their customers for DR programs. Use case diagrams are presented to show the role of the DRAS between utility/ISO and the clients at the facilities.

Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Watson, David; Koch, Ed; Hennage, Dan

2009-05-01T23:59:59.000Z

176

Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS  

SciTech Connect

This project provides algorithms to perform demand response using the thermal mass of a building. Using the thermal mass of the building is an attractive method for performing demand response because there is no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building?s construction materials. A near-optimal ?day ahead? predictive approach is developed that is meant to keep the building?s electrical demand constant during the high cost periods. This type of approach is appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the past days data in order to determine the best temperature setpoints for the building during the high price periods on the next day. A second ?model predictive approach? (MPC) uses a thermal model of the building to determine the best temperature for the next sample period. The approach uses constant feedback from the building and is capable of appropriately handling real time pricing. Both approaches are capable of using weather forecasts to improve performance.

Wenzel, Mike

2013-10-14T23:59:59.000Z

177

Annual Energy Outlook Evaluation, 2005  

Gasoline and Diesel Fuel Update (EIA)

Outlook Evaluation, 2005 1 Outlook Evaluation, 2005 1 Annual Energy Outlook Evaluation, 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes,

178

U.S. Distillate Inventory Outlook  

Gasoline and Diesel Fuel Update (EIA)

When EIA's demand forecast is combined with its outlook for production and net imports, distillate stocks are projected to remain low for the rest of the year. - Distillate fuel...

179

Assessing the impacts of future demand for saline groundwater on commercial deployment of CCS in the United States  

SciTech Connect

This paper provides a preliminary assessment of the potential impact that future demand for groundwater might have on the commercial deployment of carbon dioxide capture and storage (CCS) technologies within the United States. A number of regions within the U.S. have populations, agriculture and industries that are particularly dependent upon groundwater. Moreover, some key freshwater aquifers are already over-utilized or depleted, and others are likely to be moving toward depletion as demand grows. The need to meet future water demands may lead some parts of the nation to consider supplementing existing supplies with lower quality groundwater resources, including brackish waters that are currently not considered sources of drinking water but which could provide supplemental water via desalination. In some areas, these same deep saline-filled geologic formations also represent possible candidate carbon dioxide (CO2) storage reservoirs. The analysis presented here suggests that future constraints on CCS deployment due to potential needs to supplement conventional water supplies by desalinating deeper and more brackish waters are likely to be necessary only in limited regions across the country, particularly in areas that are already experiencing water stress.

Davidson, Casie L.; Dooley, James J.; Dahowski, Robert T.

2009-04-20T23:59:59.000Z

180

Petroleum Outlook:.More Volatility?  

Gasoline and Diesel Fuel Update (EIA)

Outlook: More Volatility? Outlook: More Volatility? 3/19/01 Click here to start Table of Contents Petroleum Outlook: More Volatility? Product Price Volatility-This Year and in the Future WTI Crude Oil Price: Potential for Volatility Around Base Case OPEC Crude Oil Production 1998-2001 Annual World Oil Demand Growth by Region, 1991-2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Fundamentals Explain High Crude Oil Prices Product Price Spreads Over Crude Oil Reflect Product Market-Based Volatility U.S. Distillate Inventories Distillate Winter Demand Stronger Than Temperatures Would Imply High Production Offset Lack of Inventory High Production Came From High Yields & High Inputs High Margins Bring High Imports Gasoline Price Volatility Is a Concern This Summer Gasoline Volatility

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million bar- rels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last year's outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period. To meet the projected increase in world oil demand in the IEO2006 reference case, total petroleum supply in 2030 will need to increase

182

International Energy Outlook 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 International Energy Outlook 1997 April 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

183

International Energy Outlook 1995  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 International Energy Outlook 1995 May 1995 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

184

Annual Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Distribution Category UC-950 Annual Energy Outlook 1998 With Projections to 2020 December 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administra- tion and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other or- ganization. The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Informa- tion Administration (EIA). The projections are based on results from EIA's National Energy Modeling

185

International Energy Outlook - Electicity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2004 Electricity Electricity consumption nearly doubles in the IEO2004 projections. Developing nations in Asia are expected to lead the increase in world electricity use. Figure 60. World Net Electricity Consumptin, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 61. World Net Electricity Consumptin by Region, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World net electricity consumption is expected nearly double to over the next two decades, according to the International Energy Outlook 2004 (IEO2004) reference case forecast. Total demand for electricity is projected to increase on average by 2.3 percent per year, from 13,290

186

Annual Energy Outlook 2002  

Gasoline and Diesel Fuel Update (EIA)

2) 2) December 2001 Annual Energy Outlook 2002 With Projections to 2020 December 2001 For Further Information . . . The Annual Energy Outlook 2002 (AEO2002) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@ eia.doe.gov, 202/586-2222), Director, Office of Integrated Analysis and Forecasting; Scott Sitzer (ssitzer@ eia.doe.gov, 202/586-2308), Director, Coal and Electric Power Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director, Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director, Oil and Gas Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor. For ordering information and questions on other energy statistics available from EIA, please contact EIA's National

187

Annual Energy Outlook 2001  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Annual Energy Outlook 2001 With Projections to 2020 Preface The Annual Energy Outlook 2001 (AEO2001) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA’s National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO2001 reference case. The next section, “Legislation and Regulations,” discusses evolving legislative and regulatory issues. “Issues in Focus” discusses the macroeconomic projections, world oil and natural gas markets, oxygenates in gasoline, distributed electricity generation, electricity industry restructuring, and carbon dioxide emissions. It is followed by the analysis of energy market trends.

188

Engineering Methods for Estimating the Impacts of Demand-Side Management Programs: Volume 1: Fundamentals of Engineering Simulations for Residential and Commercial End Uses  

Science Conference Proceedings (OSTI)

This handbook focuses on the use of building energy computer simulations for planning and evaluating demand-side management (DSM) measures. It presents techniques for estimating energy and demand savings for a list of common residential and commercial DSM technologies using widely available public-domain and EPRI computer programs.

1992-08-01T23:59:59.000Z

189

Energy Conservation Through Demand-Side Management (DSM): A Methodology to Characterize Energy Use Among commercial Market Segments  

E-Print Network (OSTI)

Managing energy demand can be beneficial for both the energy consumer and the energy supplier. By reducing energy use, the consumer reduces operating costs and improves production efficiency and competitiveness. Similarly, the supplier may reduce the need for costly capacity expansion and wholesale power purchasing, especially if energy reductions occur during peak loading conditions. Energy reductions may also lessen global climate change and reduce many other consequences of fossil-fuel energy use. The following research highlights a methodology to characterize energy use and optimize a DSM program for different types of commercial buildings. Utilizing publicly available records, such as utility billing data and property tax records, the diverse commercial building market was characterized. The commercial building types were matched to relevant submarkets of the North American Industry Classification System (NAICS). These sources were combined to prioritize building type submarket energy use intensity (kWh/sf/yr), load factor and many other energy use characteristics for each market segment. From this information, lower tier performers in each NAICS submarket can be identified and appropriate DSM alternatives selected specific to each.

Grosskopf, K. R.; Oppenheim, P.; Barclay, D

2007-01-01T23:59:59.000Z

190

Natural Gas Demand: New Domestic Uses and LNG Exports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Natural Gas Demand: New Domestic Uses and LNG Exports Natural Gas Demand Outlook

191

Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior  

SciTech Connect

Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energys (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Daviss Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOEs Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

2010-11-01T23:59:59.000Z

192

Outlook [Caring About Places...  

E-Print Network (OSTI)

Donlyn Lyndon editor Outlook James F. Fulton publisher T o dn w h i c h they join outlook or lookout carries subtlydesign assistant watchman. Outlook becomes a point of view,

Lyndon, Donlyn

1991-01-01T23:59:59.000Z

193

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

194

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

195

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

196

Annual Energy Outlook with Projections to 2025 - Market Trends- Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand and Supply Electricity Demand and Supply Annual Energy Outlook 2005 Market Trends - Electricity Demand and Supply Continued Growth in Electricity Use Is Expected in All Sectors Figure 66. Annual electricity sales by sector, 1970-2025 (billion kilowatthours). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total electricity sales are projected to increase at an average annual rate of 1.9 percent in the AEO2005 reference case, from 3,481 billion kilowatthours in 2003 to 5,220 billion kilowatthours in 2025 (Figure 66). From 2003 to 2025, annual growth in electricity sales is projected to average 1.6 percent in the residential sector, 2.5 percent in the commercial sector, and 1.3 percent in the industrial sector.

197

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summer Motor Gasoline Outlook Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998 level, which was at the high end of the normal range. However, some refinery problems on the West Coast have tightened things up, at least temporarily. * Demand: up 2.0 percent from last summer due to solid economic growth and low (albeit rising) fuel prices; highway travel may reach 1.4 trillion miles for the

198

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

U.S. Energy Information Administration | Annual Energy Outlook 2012 Energy Information Administration Annual Energy Outlook 2012 - DRAFT - June 12, 2012 1 Table B1. Total energy...

199

Annual Energy Outlook  

Annual Energy Outlook 2012 (EIA)

4) January 2004 Annual Energy Outlook 2004 With Projections to 2025 January 2004 For Further Information . . . The Annual Energy Outlook 2004 (AEO2004) was prepared by the Energy...

200

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Short-term energy outlook. Quarterly projections, Third quarter 1994  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202). The feature article for this issue is Demand, Supply and Price Outlook for Reformulated Gasoline, 1995.

1994-08-02T23:59:59.000Z

202

Short-Term Energy Outlook and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook and Winter Fuels Outlook For NASEO Winter Fuels Outlook Conference November 1, 2013| Washington, DC By Adam Sieminski, Administrator EIA works closely...

203

International energy outlook 1999  

SciTech Connect

This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

NONE

1999-03-01T23:59:59.000Z

204

PPMCSA Presentation on Winter Distillate Outlook  

Gasoline and Diesel Fuel Update (EIA)

PPMCSA Presentation on Winter Distillate Outlook PPMCSA Presentation on Winter Distillate Outlook 09/15/2000 Click here to start Table of Contents Winter Distillate Outlook Distillate Prices Increasing With Crude Oil Factors Driving Prices & Forecast First Factor Impacting Distillate Prices: Crude Oil Prices High Crude Prices Go With Low Inventories Second Price Component: Spread Impacted by Distillate Supply/Demand Balance Distillate Stocks are Low – Especially on the East Coast Distillate Stocks Are Important Part of East Coast Winter Supply Winter Demand Impacted by Weather Warm Winters Held Heating Oil Demand Down While Diesel Grew Distillate Demand Strong in December 1999 Dec 1999 & Jan 2000 Production Fell, But Rebounded with Price Higher Yields Can Be Achieved Unusual Net Imports May Only Be Available at a High Price

205

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network (OSTI)

Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy costs during the cooling season as well as the heating season. To achieve air conditioning savings, the system separates dehumidification from sensible cooling; dehumidifies by desiccant absorption, using heat from storage to dry the desiccant; and then cools at an elevated temperature improving overall system efficiency. Efficient heat for desiccant regeneration is provided by a selective-energy system coupled with thermal storage. The selective-energy system incorporates diesel cogeneration, solar energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility energy for refrigeration; 10 to 20% in refrigeration equipment; and space savings due to smaller ductwork and equipment.

Meckler, G.

1985-01-01T23:59:59.000Z

206

Outlook: The Next Twenty Years  

E-Print Network (OSTI)

all this discussion, the outlook for the next twenty yearsLBNL-54470 OUTLOOK: THE NEXT TWENTY YEARS H. MURAYAMAUniversity of California. OUTLOOK: THE NEXT TWENTY YEARS H.

Murayama, Hitoshi

2009-01-01T23:59:59.000Z

207

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Growth in energy use is projected worldwide through 2020. The demand for electricity in homes, business, and industry is growing in all regions, as is the demand for petroleum-powered personal transportation. The International Energy Outlook 1998 (IEO98) reference case forecast indicates that by 2020, the world will consume three times the energy it consumed 28 years ago in 1970 (Figure 2). Much of the projected growth in energy consumption is attributed to expectations of rapid increases in energy use in the developing world—especially in Asia. Although the economic downturn in Asia that began in mid-1997 and continues into 1998 has lowered expectations for near-term growth in the region, the forecast still suggests that almost half the world’s projected increase in energy

208

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

209

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

210

One: The California Economic Outlook  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMIC OUTLOOK Christopher Thornberg,signs of having peaked. The outlook for 2006 is dominated by

Thornberg, Christopher

2006-01-01T23:59:59.000Z

211

Energy Information Administration/Short-Term Energy Outlook - August 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 Short-Term Energy Outlook August 2005 Short-Term Energy Outlook - Regional Enhancements Starting with this edition of the Short-Term Energy Outlook (STEO), EIA is introducing regional projections (the scope of which will vary by fuel) of energy prices, consumption, and production. The addition of regional data and forecasts will allow us to examine regional fuel demands and prices, regional fuel inventory trends, the interaction between regional electricity demand shifts, and regional electric generating capacity. This edition of STEO includes regional projections for heating oil, propane, and gasoline prices and natural gas and electricity demand and prices. Over the next 2 months, we will include additional regional

212

Short-term energy outlook quarterly projections. First quarter 1994  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short- term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets.

Not Available

1994-02-07T23:59:59.000Z

213

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 58 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2003 reference case forecast. In the International Energy Outlook 2003 (IEO2003) reference case, world energy consumption is projected to increase by 58 percent over a 24-year forecast horizon, from 2001 to 2025. Worldwide, total energy use is projected to grow from 404 quadrillion British thermal units (Btu) in 2001 to 640 quadrillion Btu in 2025 (Figure 2). As in past editions of this report, the IEO2003 reference case outlook continues to show robust growth in energy consumption among the developing nations of the world (Figure 3). The strongest growth is projected for developing Asia, where demand for energy is expected to more than double over the forecast period. An average annual growth rate of 3 percent is projected for energy use in developing Asia, accounting for nearly 40 percent of the total projected increment in world energy consumption and 69 percent of the increment for the developing world alone.

214

International energy outlook 1998  

SciTech Connect

The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year`s report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs.

1998-04-01T23:59:59.000Z

215

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

216

International Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Highlights International Energy Outlook 2011 cover. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040. Total world energy use rises from 524 quadrillion British thermal units (Btu) in 2010 to 630 quadrillion Btu in 2020 and to 820 quadrillion Btu in 2040 (Figure 1). Much of the growth in energy consumption occurs in countries outside the Organization for Economic Cooperation and Development (OECD),2 known as non-OECD, where demand is driven by strong, long-term economic growth. Energy use in non-OECD countries increases by 90 percent; in OECD countries, the increase

217

Annual Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Preface The Annual Energy Outlook 2000 (AEO2000) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA’s National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO2000 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses current energy issues—appliance standards, gasoline and diesel fuel standards, natural gas industry expansion, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends.

218

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2003 forecast. Consumption of natural gas is projected to nearly double between 2001 and 2025, with the most robust growth in demand expected among the developing nations. Natural gas is expected to be the fastest growing component of world primary energy consumption in the International Energy Outlook 2003 (IEO2003) reference case. Consumption of natural gas worldwide is projected to increase by an average of 2.8 percent annually from 2001 to 2025, compared with projected annual growth rates of 1.8 percent for oil consumption and 1.5 percent for coal. Natural gas consumption in 2025, at 176 trillion cubic feet, is projected to be nearly double the 2001 total of 90 trillion cubic feet (Figure 40). The natural gas share of total energy consumption is projected to increase from 23 percent in 2001 to 28 percent in 2025.

219

EIA - International Energy Outlook 2007 - Appendix J  

Gasoline and Diesel Fuel Update (EIA)

J - System for the Analysis of Global Energy Markets (SAGE) J - System for the Analysis of Global Energy Markets (SAGE) International Energy Outlook 2007 Appendix J - System for the Analysis of Global Energy Markets (SAGE) Projections of world energy consumption and supply in IEO2007 were generated using EIA’s SAGE model. SAGE is used to project energy use in detail at the end-use sector level. It is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Projections of energy consumption to meet the energy demands are estimated on the basis of each region’s existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well as new sources of primary energy supply.

220

Development of a commercial-sector data base and forecasting model for electricity usage and demand. Volume I. Preliminary model specification. [Description of subprograms BEHAV, DEMAND, ECON, ENER, and INGEN  

SciTech Connect

This is the first of twelve major technical reports under the Commission's contract with Hittman Associates. The contract will lead to the development of a data base on commercial space, and the development of a model to forecast electricity usage and demand. This report presents a preliminary specification of the model to be developed. The model being developed combines econometric and engineering approaches, and consists of five subprograms and an overall executing program. The first subprogram forecasts the stock of commercial space, based on employment data and other economic inputs. It also distinguishes among various types of commercial space, and breaks the commercial space into segments according to fuels for various end uses, such as heating, cooling, etc. The second subprogram uses detailed building-survey data to specify a typical, or characteristic building for each unique type of floorspace considered in the study. The third subprogram calculates monthly electricity usage for the typical buildings specified, using standard engineering techniques, and then scales up the electricity use for each building type according to the amount of space, of that type, in the entire building stock. The fourth subprogram performs a similar function, but produces hourly electricity demands, rather than monthly electricity usage. The fifth, and final subprogram adjusts the energy usage and demand values calculated to simulate the impact of certain economic conditions or policy measures. The report presents a flow chart for each subprogram, and a table of inputs and outputs required for each. The logic, structure, flow, and information transfer of each is described.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

D Results from side cases Table D1. Key results for demand sector technology cases 187 U.S. Energy Information Administration | Annual Energy Outlook 2013 Results from side...

222

EIA - International Energy Outlook 2008-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Demand and Economic Outlook Demand and Economic Outlook International Energy Outlook 2008 Figure 9. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Marketed Energy Use by Fuel Type,1990-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 13. Coal Consumption in Selected World Regions,1980-2030 Figure 13 Data. Need help, contact the National Energy Information Center at 202-586-8800.

223

EIA - Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

AEO 2008 AEO 2008 Annual Energy Outlook 2008 The Annual Energy Outlook 2008 (AEO2008) presents projections and analysis of US energy supply, demand, and prices through 2030. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2008 includes the reference case, additional cases examining energy markets, and complete documentation. Analytical Overview: Energy Trends to 2030 In preparing projections for AEO2008, we evaluated a wide range of trends and issues that could have major implications for U.S. energy markets between today and 2030. The overview focuses on one case, the reference case. ...see full Overview Section You are encouraged to review the full range of alternative cases included in the analysis of other sections of AEO2008 -

224

International Energy Outlook 2006 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2006 Highlights World energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. Figure 1. World Marketed Energy Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2006 (IEO2006) reference case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a

225

Annual Energy Outlook 2005-Acronyms  

Gasoline and Diesel Fuel Update (EIA)

AD AD Associated-dissolved (natural gas) AEO2004 Annual Energy Outlook 2004 AEO2005 Annual Energy Outlook 2005 Altos Altos Partners AMT Alternative Minimum Tax ANWR Arctic National Wildlife Refuge Btu British thermal unit CAFE Corporate average fuel economy CAMR Clean Air Mercury Rule CARB California Air Resources Board CBECS Commercial Buildings Energy Consumption Survey (EIA) CBO Congressional Budget Office CCCC Climate Change Credit Corporation CH 4 Methane CHP Combined heat and power CO 2 Carbon dioxide CTL Coal-to-liquids DB Deutsche Bank, A.G. E85 Fuel containing a blend of 70 to 85 percent ethanol and 30 to 15 percent gasoline by volume EEA Energy and Environmental Analysis, Inc. EIA Energy Information Administration EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 ETBE Ethyl tertiary butyl ether EVA Energy Ventures Analysis, Incorporated FERC

226

International energy outlook 1996  

SciTech Connect

This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

NONE

1996-05-01T23:59:59.000Z

227

Outlook for Biomass Ethanol Production and Demand  

Reports and Publications (EIA)

This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

Information Center

2000-04-01T23:59:59.000Z

228

EIA - Annual Energy Outlook 2013 Early Release  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, ... fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. Energy use in homes, commercial ...

229

ShortShort--Term Energy Outlook Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis ShortShort--Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for ...

230

Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P r e s e n T e d B y : Declining Sales in the Recent Past and Near-Term Future After peaking in 2003, nationwide propane consumption fell by more than 10 percent through 2006. Although propane demand rebounded somewhat in 2007 and 2008 due to colder weather, propane demand appears to have declined again in 2009. The collapse of the new housing market, combined with decreases in fuel use per customer resulting from efficiency upgrades in homes and equipment, resulted in a decline in residential propane sales. The recession also reduced demand in the industrial and commercial sectors. Colder weather in the last half of 2009 and in January

231

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration Independent Statistics & Analysis Short Short- -Term Energy Outlook Term Energy Outlook Chart Gallery for Chart Gallery for November...

232

2011 Summer Transportation Fuels Outlook  

U.S. Energy Information Administration (EIA)

Key factors driving the short-term outlook. 2011 Summer Transportation Fuels Outlook. 2 Disruption of crude oil and liquefied natural gas supply from

233

EIA - International Energy Outlook 2007-Appendix I  

Gasoline and Diesel Fuel Update (EIA)

I - Comparisons With International Energy Agency and IEO2006 Projections I - Comparisons With International Energy Agency and IEO2006 Projections International Energy Outlook 2007 Appendix I - Comparisons With International Energy Agency and IEO2006 Projections Comparisons with IEA’s World Energy Outlook 2006 The International Energy Agency (IEA) provides projections comparable with those in IEO2007 in its World Energy Outlook 2006. Because IEA releases projections only for the years 2015 and 2030, two time periods are compared here—2004 to 2015 and 2015 to 2030. In the 2004 to 2015 projection period, both IEO2007 and IEA expect world energy demand to increase by an average of 2.1 percent per year (Table I1). Not surprisingly, both outlooks project much faster growth in energy demand among the non-OECD nations than in the OECD, with non-OECD energy use growing three times as rapidly. There are, however, some regional differences. IEA’s expectations for demand growth in OECD Asia, for instance, are much higher than those in IEO2007, and the projected 1.4-percent annual growth rate projected by IEA for the region exceeds the 1.3-percent rate in the IEO2007 high economic growth case.

234

International Energy Outlook 2013  

Annual Energy Outlook 2012 (EIA)

International Energy Outlook 2013 Reference case projections Table A4. World gross domestic product (GDP) by region expressed in market exchange rates, Reference case, 2009-2040...

235

Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Natural Gas Outlook National Association of State Energy Officials State Heating Oil and Propane Conference August 30, 2004 William Trapmann Energy Information ...

236

International Energy Outlook 2013  

Annual Energy Outlook 2012 (EIA)

Non-OECD Statistics" (2012), www.iea.org (subscription site). Projections: EIA, Annual Energy Outlook 2013, DOEEIA-0383(2013) (Washington, DC: April 2013); AEO2013 National...

237

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton...

238

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

239

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

U.S. Energy Information Administration | Annual Energy Outlook 2012 234 Regional maps Figure F3. Petroleum Administration for Defense Districts 216 U.S. Energy Information...

240

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 Reference case Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2012 22 Table A10....

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Baryons 2002: Outlook  

E-Print Network (OSTI)

Summary and outlook presented at the 9th International Conference on the Structure of Baryons (BARYONS 2002), Jefferson Lab, March 3-8, 2002

Wolfram Weise

2002-06-05T23:59:59.000Z

242

International Energy Outlook 2013  

Annual Energy Outlook 2012 (EIA)

1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F17. Delivered energy...

243

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

Projections: EIA, AEO2012 National Energy Modeling System run REF2012.D020112C. U.S. Energy Information Administration | Annual Energy Outlook 2012 160 Reference case Table...

244

Residential Sector Demand Module 1999, Model Documentation  

Reports and Publications (EIA)

This is the fifth edition of the Model Documentation Report: Residential Sector DemandModule of the National Energy Modeling System (NEMS). It reflects changes made to themodule over the past year for the Annual Energy Outlook 1999.

John H. Cymbalsky

1998-12-01T23:59:59.000Z

245

EIA - Assumptions to the Annual Energy Outlook 2008  

Annual Energy Outlook 2012 (EIA)

Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and...

246

3129 Commercial Analysis 20130205 LBNL - Home - Energy ...  

Commercialization-Analysis-&Roadmap-- ... theenergycontentofthegasand ... commercialized, it must meet a market demanda demand ...

247

Annual Energy Outlook Forecast Evaluation 2005  

Gasoline and Diesel Fuel Update (EIA)

Forecast Evaluation 2005 Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 Annual Energy Outlook Forecast Evaluation 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes, when defined, are reflected.

248

Propane Outlook  

Gasoline and Diesel Fuel Update (EIA)

4 of 24 4 of 24 Notes: EIA expects lower residential propane prices this winter compared to the high prices seen last winter. As of now, it appears that propane inventories will be more than adequate going into this winter. Although inventories in the Midwest remain low, there is still time for the ample inventories in the Gulf Coast to make their way up into the Midwest before heating season begins in earnest. As always, the major uncertainties affecting demand this winter are the weather and the economy. Other uncertainties affecting the propane market this winter are crude oil and natural gas prices. If natural gas prices this winter are around what EIA expects them to be, we will likely see very little, if any, propane production shut-in at gas plants. However, as the current situation with the TET shows, there could be short

249

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last year’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

250

Short-term energy outlook, quarterly projections, second quarter 1998  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

NONE

1998-04-01T23:59:59.000Z

251

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

252

Short-term energy outlook. Quarterly projections, Third quarter 1995  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the third quarter of 1995 through the fourth quarter of 1996. Values for the second quarter of 1995, however, are preliminary EIA estimates.

NONE

1995-08-02T23:59:59.000Z

253

18-Month Outlook Executive Summary  

E-Print Network (OSTI)

This report presents an assessment of the security and adequacy of the Ontario Electricity System for the 18-month period from April 2002 through September 2003. This assessment is based on forecasts of electricity demand and available supply combined with current information on the configuration and capability of the transmission system. Outage plans of generators and transmitters are based on information available as of February 2002. During the Outlook period, the IMO forecasts show that Ontarios available generation exceeds projected demands. Over this period, approximately 3,000 MW of additional generation resources are expected to either return to service or be placed in service for the first time thereby enhancing the reliability of the Ontario electricity system. During the first half of the Outlook there are periods when Ontarios available reserves are forecast to be between 2,000 and 2,500 MW. These reserves are below the IMOs required planning reserve levels, but do not account for additional resources from outside Ontario that are expected to be available. Reserves are planning buffers identified to address circumstances that cannot be accurately predicted such as weather variations and unscheduled maintenance. The IMO anticipates that the Ontario market will be effective in attracting additional resources to provide adequate reliability. However, there

unknown authors

2002-01-01T23:59:59.000Z

254

Summer 2003 Motor Gasoline Outlook  

U.S. Energy Information Administration (EIA)

Summer 2003 Motor Gasoline Outlook ... State gasoline taxes ... that occurred between spring 1999 and fall 2001, ...

255

The California Economy: The Long Term Outlook  

E-Print Network (OSTI)

1996. First, we cover the outlook for the main macroeconomicin the two economies. The outlook calls for moderate growthunderlies the macroeconomic outlook. Good jobs offer high

Kimbell, Larry J

1997-01-01T23:59:59.000Z

256

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network (OSTI)

14 Peak Demand Baselinewinter morning electric peak demand in commercial buildings.California to reduce peak demand during summer afternoons,

Kiliccote, Sila

2010-01-01T23:59:59.000Z

257

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F13. Delivered energy consumption in China by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.2 1.1 1.1 1.1 1.0 1.0 0.9 -1.0 Natural gas 0.9 1.6 2.5 3.5 4.7 5.9 7.1 7.2 Coal 3.0 2.9 3.0 3.0 3.0 3.0 2.9 -0.2 Electricity 1.8 2.7 3.8 5.0 6.3 7.8 9.2 5.7 Total 6.9 8.3 10.3 12.5 15.0 17.7 20.0 3.6 Commercial Liquids 1.1 1.0 1.0 1.0 1.0 0.9 0.8 -0.8 Natural gas 0.2 0.4 0.6 0.9 1.2 1.5 1.8 7.1 Coal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 Electricity 0.7 1.0 1.4 1.9 2.6 3.5 4.4 6.5 Total 2.5 2.8 3.5 4.3 5.3 6.4 7.6 3.8 Industrial Liquids 8.4 10.2 11.4 12.2 12.7 13.0 13.0 1.5 Natural gas 1.8 2.5 3.2 3.8 4.2 4.5

258

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8 16.5 18.6 21.3 24.3 27.5 31.1 2.5 Total 28.9 30.8 33.6 37.1 40.9 44.8 49.0 1.8 Industrial Liquids 57.2 61.6 66.4 70.1 74.2 78.2 82.1 1.2 Natural gas 45.5 48.8 54.3 59.0 63.4

259

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F9. Delivered energy consumption in Australia/New Zealand by end-use sector and fuel, 2008-2035 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.2 0.2 0.2 0.2 0.2 1.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.3 0.3 1.0 Total 0.4 0.5 0.5 0.5 0.5 0.5 0.6 1.1 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.4 0.4 1.6 Total 0.3 0.4 0.4 0.4 0.4 0.4 0.5 1.2 Industrial Liquids 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.4 Natural gas 0.8 0.8 1.0 1.0 1.1 1.2 1.2 1.4 Coal 0.3 0.2 0.3 0.3 0.3 0.3 0.3 -0.1 Electricity

260

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F3. Delivered energy consumption in the United States by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.1 1.1 1.0 1.0 0.9 0.9 0.9 -1.0 Natural gas 4.9 4.8 4.6 4.5 4.5 4.3 4.2 -0.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.6 Electricity 4.9 4.7 4.8 5.1 5.4 5.7 6.0 0.7 Total 11.4 11.0 11.0 11.0 11.2 11.4 11.6 0.1 Commercial Liquids 0.7 0.7 0.7 0.6 0.6 0.6 0.6 -0.3 Natural gas 3.2 3.4 3.4 3.4 3.5 3.6 3.7 0.5 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.7 Electricity 4.5 4.5 4.7 5.0 5.2 5.5 5.7 0.8 Total 8.6 8.8 8.9 9.2 9.5 9.9 10.2 0.6 Industrial Liquids 8.4 8.2 8.7 8.7 8.6 8.6 8.7 0.1 Natural gas 8.0 8.7 9.6 9.8 9.9 10.1 10.4 0.9 Coal 1.6 1.6 1.6 1.6 1.6 1.6

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F5. Delivered energy consumption in Mexico and Chile by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 Electricity 0.2 0.3 0.4 0.5 0.5 0.6 0.7 4.0 Total 0.6 0.7 0.8 0.8 1.0 1.1 1.2 2.4 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.1 0.2 0.2 0.3 0.4 0.5 0.6 5.5 Total 0.2 0.3 0.3 0.4 0.5 0.6 0.7 4.0 Industrial Liquids 1.1 1.2 1.4 1.6 1.8 2.1 2.4 2.6 Natural gas 1.4 1.5 1.7 1.9 2.2 2.6 3.0 2.5 Coal 0.1 0.1 0.2 0.2 0.2 0.2 0.3 3.1 Electricity

262

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

263

EIA-Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2010 The Annual Energy Outlook presents a projection and analysis of US energy supply, demand, and prices through 2035. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2010 includes Reference case, additional cases examining alternative energy markets. Executive Summary Issues in Focus includes: Market Trends in Economic Activity No Sunset and Extended Policies cases Energy Demand Projections World oil prices and production trends in AEO2010 Electricity Projections Energy intensity trends in AEO2010 Oil and Natural Gas Projections Natural gas as a fuel for heavy trucks: Issues and incentives Coal Projections Factors affecting the relationship between crude oil and natural gas prices

264

U.S. commercial nuclear capacity comes from reactors built ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook ... Search EIA.gov. A-Z Index; ... The last new reactor to enter commercial service was the Tennessee Valley Authority's ...

265

Key Drivers Affecting the Outlook for Renewables  

U.S. Energy Information Administration (EIA)

Source: EIA, Annual Energy Outlook 2013 Early Release, International Energy Outlook 2011 . ... AECO Germany - BEB Hub Netherlands - TTF Belgium - Zeebrugge

266

Short-term energy outlook: Annual supplement 1989  

SciTech Connect

This Supplement is published once a year as a complement to the Short-Term Energy Outlook, Quarterly Projections (Outlook). The purpose is to review the accuracy of the forecasts presented in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. A brief description of the content of each chapter follows below: Chapter 2 evaluates the accuracy of the short-term energy forecasts published in the last 6 issues of the Outlook, for 1988/1989. Chapter 3 discusses the economics of the petrochemical feedstock market, and describes a new model which more fully captures the determinants of feedstock demand. Chapter 4 examines present and proposed new methods of forecasting short-term natural gas prices at the wellhead and spot prices. Chapter 5 discusses the modeling of natural demand in the short term. Chapter 6 discusses regional trends in the demand for fuel by electric utilities. Chapter 7 focuses on industrial coal use trends in recent years. Chapter 8 compares EIA's base case energy projections as published in the Outlook (89/2Q) with recent projections made by three other major forecasting groups. The chapter focuses on macroeconomic assumptions, primary energy demand, and primary energy supply, showing the differences and similarities in the four forecasts.

1989-10-31T23:59:59.000Z

267

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

ieo99cvr.gif (8385 bytes) ieo99cvr.gif (8385 bytes) Preface This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The International Energy Outlook 1999 (IEO99) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of EIA’s Annual Energy Outlook 1999 (AEO99), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in IEO99 are consistent with those published in AEO99. IEO99 is provided as a statistical service to energy managers and analysts, both in government and in the private

268

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

235 U.S. Energy Information Administration | Annual Energy Outlook 2012 Regional maps Figure F4. Oil and gas supply model regions Figure F4. Oil and Gas Supply Model Regions...

269

International Energy Outlook 2011  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration International Energy Outlook 2013 DOE/EIA-0484(2013) Brazil July 24, ... Germany Non-OECD OECD 108.00 86.00 69.00 44.00 35.00

270

Learning from Multiple Outlooks  

E-Print Network (OSTI)

We consider semi-supervised learning from multiple outlooks of the same learning task, that is, learning from different representations of the same type of data. As opposed to learning from multiple views where it is assumed that the exact same instances have multiple representations, we only assume the availability of samples of the same learning task in different domains. We develop an algorithmic framework that is based on mapping the (unlabeled) data followed by adjusting the mapping using the scarcer labeled data. The mapped data from all the outlooks can then be used for a generic classification algorithm. We further provide sample complexity results under the assumption that the different outlooks are inherently low dimension Gaussian mixtures. Experiments with real-world data indicate the performance boost from using multiple outlooks.

Gal-on, Maayan

2010-01-01T23:59:59.000Z

271

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F11. Delivered energy consumption in Russia by end-use sector and fuel,...

272

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F7. Delivered energy consumption in Japan by end-use sector and fuel,...

273

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Evaluation Evaluation Annual Energy Outlook Forecast Evaluation by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the impacts were not incorporated in the AEO projections until their enactment or effective dates in accordance with EIA's requirement to remain policy neutral and include only current laws and regulations in the AEO reference case projections.

274

Assumptions to the Annual Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Release date: March 2006 Next release date: March 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 101 Petroleum Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Coal Market Module

275

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . 99 Petroleum Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Coal Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Renewable Fuels Module . . . . . . . . . . .

276

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

System for the Analysis of Global Energy Markets (SAGE) System for the Analysis of Global Energy Markets (SAGE) The projections of world energy consumption appearing in IEO2006 are based on EIA's international energy modeling tool, SAGE. SAGE is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Pro- jections of energy consumption to meet the energy demands are estimated on the basis of each region's existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well as new sources of primary energy supply.

277

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

System for the Analysis of Global Energy Markets (SAGE) System for the Analysis of Global Energy Markets (SAGE) Projections of world energy consumption and supply in IEO2007 were generated using EIA's SAGE model. SAGE is used to project energy use in detail at the end- use sector level. It is an integrated set of regional models that provide a technology-rich basis for estimating regional energy consumption. For each region, reference case estimates of 42 end-use energy service demands (e.g., car, commercial truck, and heavy truck road travel; residential lighting; steam heat requirements in the paper industry) are developed on the basis of economic and demographic projections. Projections of energy con- sumption to meet the energy demands are estimated on the basis of each region's existing energy use patterns, the existing stock of energy-using equipment, and the characteristics of available new technologies, as well

278

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Demand Module Demand Module This page inTenTionally lefT blank 27 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing

279

Short-term energy outlook: Quarterly projections  

SciTech Connect

The Energy Information Administration (EIA) quarterly forecasts of short-term energy supply, demand, and prices are revised in January, April, July, and October for publication in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes previous forecast errors, compares recent projections by other forecasters, and discusses current topics of the short-term energy markets (see Short- Term Energy Outlook: Annual Supplement, DOE/EIA-0202). The principal users of the Outlook are managers and energy analysts in private industry and government. The projections in this volume extend through the fourth quarter of 1990. The forecasts are produced using the Short-term Integrated Forecasting System (STIFS). The STIFS model uses two principal driving variables: a macroeconomic forecast and world oil price assumptions. Macroeconomic forecasts produced by data Resources, Inc., (DRI), are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic forecast. EIA's Oil Market Simulation Model is used to project world oil prices. 20 refs., 17 figs., 16 tabs.

1989-07-01T23:59:59.000Z

280

Short-term energy outlook, January 1999  

SciTech Connect

The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

NONE

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Information Administration / Annual Energy Outlook Retrospective Review  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook Retrospective Review Energy Information Administration / Annual Energy Outlook Retrospective Review 1 Annual Energy Outlook Retrospective Review: Evaluation of Projections in Past Editions (1982-2006) * The Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. The potential impacts of pending or proposed legislation, regulations, and standards-or of sections of legislation that have been enacted but that require implementing regulations

282

Winter Fuels Outlook Conference Rescheduled for November 1 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 October 7, 2013 - 9:50am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on November 1 at the National Press Club in Washington, DC. Originally scheduled for October 8, the conference has been rescheduled due to the shutdown of the Federal government. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the

283

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

F F Reference case projections by end-use sector and country grouping This page inTenTionally lefT blank 225 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8

284

International Energy Outlook 1999 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

highlights.gif (3388 bytes) highlights.gif (3388 bytes) World energy consumption is projected to increase by 65 percent from 1996 to 2020. The current economic problems in Asia and Russia have lowered projections relative to last year’s report. In the reference case projections for this International Energy Outlook 1999 (IEO99), world energy consumption reaches 612 quadrillion British thermal units (Btu) by 2020 (Figure 2 and Table 1)—an increase of 65 percent over the 24-year projection period. The IEO99 projection for the world’s energy demand in 2020 is about 4 percent (almost 30 quadrillion Btu) lower than last year’s projection. The downward revision is based on events in two parts of the world: Asia and Russia. In Asia, the economic crisis that began in early 1997 persisted throughout 1998, as economic

285

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

by by Esmeralda Sanchez The Office of Integrated Analysis and Forecasting has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: * Over the last two decades, there have been many significant changes in laws, policies, and regulations that could not have been anticipated and were not assumed in the projections prior to their implementation. Many of these actions have had significant impacts on energy supply, demand, and prices; however, the

286

Annual Energy Outlook 1999 - Contact  

Gasoline and Diesel Fuel Update (EIA)

contact.gif (4492 bytes) contact.gif (4492 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

287

Annual Energy Outlook 2000 - Contact  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage For Further Information... The Annual Energy Outlook 2001 (AEO2001) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222), Director, Office of Integrated Analysis and Forecasting; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. For ordering information and questions on other energy statistics available from EIA, please contact EIA’s National Energy Information Center. Addresses, telephone numbers, and hours are as follows:

288

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy Outlook July 2013 1 July 2013 Short-Term Energy Outlook (STEO) Highlights The U.S. Energy Information ...

289

Annual Energy Outlook 1998 Forecasts  

Gasoline and Diesel Fuel Update (EIA)

EIA Administrator's Press Briefing on the Annual Energy Outlook 1998 (AEO98) Annual Energy Outlook 1998 - Errata as of 3698 Data from the AEO98 Assumptions to the AEO98 (Nat'Gas...

290

Winter Distillate .and Propane Outlook  

U.S. Energy Information Administration (EIA)

Winter Distillate .and Propane Outlook. Joanne Shore Energy Information Administration State Heating Oil and Propane Program August 2000

291

Demand Subsidies versus R&D: Comparing the Uncertain Impacts of Policy on a Pre-Commercial Low-Carbon Energy Technology  

E-Print Network (OSTI)

We combine an expert elicitation and a bottom-up manufacturing cost model to compare the effects of R&D and demand subsidies. We model their effects on the future costs of a low-carbon energy technology that is not currently commercially available, purely organic photovoltaics (PV). We find that: (1) successful R&D enables PV to achieve a cost target of 4c/kWh, (2) the cost of PV does not reach the target when only subsidies, and not R&D, are implemented, and (3) production-related effects on technological advancelearning-by-doing and economies of scaleare not as critical to the long-term potential for cost reduction in organic PV than is the investment in and success of R&D. These results are insensitive to two levels of policy intensity, the level of a carbon price, the availability of storage technology, and uncertainty in the main parameters used in the model. However, a case can still be made for subsidies: comparisons of stochastic dominance show that subsidies provide a hedge against failure in the R&D program. 1.

Gregory F. Nemet; Erin Baker

2008-01-01T23:59:59.000Z

292

Outlook positive over long term  

Science Conference Proceedings (OSTI)

The trends established in 1987 will be very important in reestablishing some level of confidence in future price expectations. The authors expect prices to fluctuate widely in the coming year as OPEC makes and breaks various production quota agreements. Continued price instability will certainly all but negate short term marginally economic exploration and development prospects. Utilization rates will suffer accordingly. But on the positive side, the long term outlook is considerably more stable. Rock-bottom prices will increase the demand for cheap oil substantially. We're already seeing world demand figures rise. Increased demand will cause the world's (mainly OPEC's) excess production to be depleted over the next three to five years. Prices will rise slowly in parallel with the decline in excess production capacity over several years. Banking on upward price pressure, financially sound operators with solid cash flow will want to take advantage of low exploration and development costs. Utilization, then, can be expected to follow oil prices in a slow upward spiral over the next three to five years. Next year, the industry should begin to feel the effect of the beginning of that upward trend.

Not Available

1986-11-01T23:59:59.000Z

293

Annual Energy Outlook 2001-Acronyms  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Acronyms AD Associated-dissolved (natural gas) AEO Annual Energy Outlook AGA American Gas Association ANWR Arctic National Wildlife Refuge BEA Bureau of Economic Analysis (U.S. Department of Commerce) BRP Blue Ribbon Panel Btu British thermal unit CAAA90 Clean Air Act Amendments of 1990 CARB California Air Resources Board CBECS EIA’s 1995 Commercial Buildings Energy Consumption Survey CCAP Climate Change Action Plan CCTI Climate Change Technology Initiative CDM Clean Development Mechanism CO Carbon monoxide DBAB Deutsche Banc Alex. Brown DOE U.S. Department of Energy DRI Standard & Poor’s DRI E85 Motor fuel containing 85 percent ethanol EIA Energy Information Administration EOR Enhanced oil recovery EPACT Energy Policy Act of 1992

294

International Energy Outlook - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2004 Preface This report presents international energy projections through 2025, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity and the environment. The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2004 are consistent with those published in EIA’s Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). IEO2004 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2004 projections are based on U.S. and foreign government laws in effect on October 1, 2003.

295

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Demand Module Industrial Demand Module This page inTenTionally lefT blank 53 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Industrial Demand Module The NEMS Industrial Demand Module (IDM) estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are subdivided further into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure. The non-manufacturing industries are modeled with less detail because processes are simpler and there is less available data. The petroleum refining

296

Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Outlook Outlook 2010 Restrospective Review July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank 3 U.S. Energy Information Administration | Annual Energy Outlook Retrospective Review While the integrated nature of NEMS may result in some feedback that slightly modifies the initial assumptions about world oil price and the macroeconomic growth environment, these feedbacks tend to be relatively small, so that the initial assumptions for world oil price and the macroeconomic growth environment largely determine the overall projection environ- ment. To the extent that this general environment deviates from the initial assumptions, the NEMS projection results will also deviate. Table 2 provides a summary of the percentage of years in

297

Conoco details energy outlook  

Science Conference Proceedings (OSTI)

This paper reports that the U.S., government should adopt policies that encourage U.S. petroleum companies to diversify crude oil sources around the world, says Conoco Inc. That's the key them underlying Conoco's latest world energy outlook through 2000. In its 1989 outlook, Conoco called on the U.S. government to open the Arctic National Wildlife Refuge Coastal Plain to exploration and development and provide a tax credit of $5/bbl of oil equivalent (BOE) for production from U.S. frontier areas as keys to reducing U.S. oil import dependence. Although Conoco included opening the ANWR Coastal Plain and more of the U.S. offshore among U.S. policy recommendations in its current outlook, the company placed the greatest emphasis on incentives for worldwide exploration.

Not Available

1992-06-22T23:59:59.000Z

298

EIA - Annual Energy Outlook 2008 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface Annual Energy Outlook 2008 with Projections to 2030 Preface The Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2030. The projections are based on results from EIA’s National Energy Modeling System (NEMS). EIA published an “early release” version of the AEO2008 reference case in December 2007; however, the Energy Independence and Security Act of 2007 (EISA2007), which was enacted later that month, will have a major impact on energy markets, and given the year-long life of AEO2008 and its use as a baseline for analyses of proposed policy changes, EIA decided to update the reference case to reflect the provisions of EISA2007.

299

EIA - Annual Energy Outlook 2009 - Contacts  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Annual Energy Outlook 2009 with Projections to 2030 For Further Information . . . The Annual Energy Outlook 2009 was prepared by the Energy Information Administration, under the direction of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; A. Michael Schaal (michael.schaal@eia.doe.gov, 202/586-5590), Director, Oil and Gas Division; Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor.

300

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last year’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Annual Energy Outlook 1998 Forecasts - Preface  

Gasoline and Diesel Fuel Update (EIA)

1998 With Projections to 2020 1998 With Projections to 2020 Annual Energy Outlook 1999 Report will be Available on December 9, 1998 Preface The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO98 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses three current energy issues—electricity restructuring, renewable portfolio standards, and carbon emissions. It is followed by the analysis

302

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

303

International energy outlook 2005  

Science Conference Proceedings (OSTI)

This report presents international energy projections through 2025, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. After a chapter entitled 'Highlights', the report begins with a review of world energy and an economic outlook. The IEO2005 projections cover a 24 year period. The next chapter is on world oil markets. Natural gas and coal reserves and resources, consumption and trade discussed. The chapter on electricity deals with primary fuel use for electricity generation, and regional developments. The final section is entitled 'Energy-related greenhouse gas emissions'.

NONE

2005-07-01T23:59:59.000Z

304

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

305

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F15. Delivered energy consumption in Other Non-OECD Asia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.3 Natural gas 0.4 0.4 0.6 0.7 0.8 0.9 1.1 3.7 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Electricity 1.1 1.3 1.5 1.8 2.1 2.4 2.8 3.2 Total 2.1 2.3 2.7 3.1 3.5 4.0 4.6 2.7 Commercial Liquids 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.7 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.2 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.1 0.1 -- Electricity 0.9 1.1 1.3 1.6 1.9 2.4 2.9 3.9 Total 1.3 1.4 1.7 2.0 2.4 2.9 3.4 3.3 Industrial Liquids 4.8 4.7 5.5 6.2 7.1 8.2 9.6 2.4 Natural gas 3.3 3.3 3.7 4.1 4.6 5.2

306

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F19. Delivered energy consumption in Other Central and South America by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.4 0.3 0.3 0.3 0.3 0.3 -0.1 Natural gas 0.4 0.5 0.6 0.7 0.8 1.0 1.1 3.2 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.9 Total 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.0 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.4 0.5 0.5 0.6 0.6 0.7 2.4 Total 0.5 0.5 0.6 0.7 0.8 0.8 0.9 2.2 Industrial Liquids 2.1 2.2 2.2 2.1 2.2 2.3 2.4 0.5 Natural gas 2.6 2.7

307

Supplement to the Annual Energy Outlook 1993  

Science Conference Proceedings (OSTI)

The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

Not Available

1993-02-17T23:59:59.000Z

308

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Annual Energy Outlook 2011 Energy Information Administration / Annual Energy Outlook 2011 3 6 Table A18. Carbon Dioxide Emissions by Sector and Source (Million Metric Tons, Unless Otherwise Noted) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020 2025 2030 2035 Residential Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 80 73 68 64 61 58 -1.2% Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 259 261 263 263 262 260 0.0% Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 0 -1.1% Electricity 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 820 757 778 833 878 916 0.4% Total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1220 1160 1092 1110 1161 1202 1234 0.2% Commercial Petroleum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 43 39 38 38 37 37 -0.5% Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 169 183 189 193 200 207 0.8% Coal . . . . . . . . . . . . . . . . . . . . . . . .

309

Climate, extreme heat, and electricity demand in California  

E-Print Network (OSTI)

1992. Global warming and electricity demand: A study ofValuing the Time-Varying Electricity Production of SolarCEC). 2002. 2002-2012 Electricity Outlook Report, P700- 01-

Miller, N.L.

2008-01-01T23:59:59.000Z

310

Short-term energy outlook: Annual supplement, 1987  

SciTech Connect

The Energy Information Administration (EIA) publishes forecasts of short-term energy supply, demand, and prices in the Short-Term Energy Outlook (Outlook). This volume, Short-Term Energy Outlook, Annual Supplement, (Supplement) discusses major changes in the forecasting methodology, analyzes previous forecast errors, and examines current issues that affect EIA's short-term energy forecasts. The principal users of the Supplement are managers and energy analysts in private industry and government. Chapter 2 evaluates the accuracy of previous short-term energy forecasts and the major assumptions underlying these forecasts published in the last 13 issues of the Outlook. Chapter 3 compares the EIA's present energy projections with past projections and with recent projections made by other forecasting groups. Chapter 4 analyzes the 1986 increase in residual fuel oil demand after 8 consecutive years of decline. Sectoral analysis shows where and why this increase occurred. Chapter 5 discusses the methodology, estimation, and forecasts of fossil fuel shares used in the generation of electricity. Chapter 6 presents an update of the methodology used to forecast natural gas demand, with an emphasis on sectoral disaggregation. Chapter 7 compares the current use of generation data as a representation of short-term electricity demand with proposed total and sectoral sales equations. 8 refs., 7 figs., 63 tabs.

1987-12-11T23:59:59.000Z

311

Annual Energy Outlook 2009 with Projections to 2030  

Science Conference Proceedings (OSTI)

The Annual Energy Outlook 2009 (AEO2009), prepared by the Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2030, based on results from EIAs National Energy Modeling System (NEMS). EIA published an early release version of the AEO2009 reference case in December 2008.

None

2009-03-01T23:59:59.000Z

312

EIA - Annual Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Home > Forecasts & Analysis > Annual Energy Outlook 2011 : Annual Energy Outlook 2011 with Projections to 2035

313

Kaons: Review and Outlook  

E-Print Network (OSTI)

This article presents a review of recent results and an outlook of kaon physics. After enjoying a renaissance, the discipline is now becoming and endangered species. Action will be needed to keep kaon physics at the heart of future FPCP meetings.

Augusto Ceccucci

2006-05-30T23:59:59.000Z

314

Hadronic Physics: an Outlook  

Science Conference Proceedings (OSTI)

A brief outlook, in two senses, is presented for hadronic physics. The likely near term future for experiment and lattice effort is sketched and I speculate on future directions in theory. I also look out at other fields, presenting a short review of QCD ideas in ''Beyond the Standard Model'' physics.

Swanson, Eric S. [Dept of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA 15260 (United States)

2010-08-05T23:59:59.000Z

315

International Energy Outlook 2011  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration International Energy Outlook 2013 DOE/EIA-0484(2013) ... 930.90 540.30 1982.00 2836.01 1193.30 1092.45 550.26 1983.00 3033.53

316

10-Year Outlook Executive Summary  

E-Print Network (OSTI)

The provincial government?s plan to phase out coal?fired generation in favour of cleaner forms of generation represents one of the most significant undertakings in the 100?year history of Ontario?s electricity sector. Aging generation facilities and the continued increase in demand for electricity add to the urgency of proceeding with new generating and transmission facilities over the next 10 years. Over the last 12 months 650 MW of new gas?fired generation has been put in place and 515 MW of nuclear generation and 370 MW of renewable generation is expected to be in service within the next 18 months. There are also a number of projects totalling more than 9,000 MW of additional capacity that are in various stages of discussion, development or negotiation. Timely progress to achieve this additional capacity must continue if Ontario is to ensure a reliable supply of electricity over the next decade and beyond. This 10?year Outlook from the Independent Electricity System Operator (IESO) provides an assessment of the demand?supply picture for the province over the next decade and provides a plan identifying the timing and requirements of system changes needed to meet the governments coal shutdown timeframe. Under the provisions of Bill 100, the Ontario Power

unknown authors

2005-01-01T23:59:59.000Z

317

Sorting in Patrick Geddes' Outlook Tower  

E-Print Network (OSTI)

i n g in P a t r i c k Outlook Tower Geddes' J Joyce Barleythree months at the Outlook 'lower in Edinburgh, sorting theand services. The Outlook Tower was a disused observatory

Earley, Joyce

1991-01-01T23:59:59.000Z

318

One: The California Long-Term Outlook  

E-Print Network (OSTI)

THE CALIFORNIA LONG-TERM OUTLOOK Tom K. Lieser, ExecutiveThe California Long-Term Outlook: Projections to 2020," TheThe California Long-Term Outlook: Projections to 2020," The

Lieser, Tom K

2000-01-01T23:59:59.000Z

319

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

Outlook for Labor Productivity Growth Outlook for Labor Productivity Growth Issues In Focus. Outlook for Labor Productivity Growth The AEO2004 reference case economic forecast is a projection of possible economic growth, from the short term to the longer term, in a consistent framework that stresses demand factors in the short term and supply factors in the long term [33]. Productivity is perhaps the most important concept for the determination of employment, inflation, and supply of output in the long term. Productivity is a measure of economic efficiency that shows how effectively economic inputs are converted into output. Advances in productivity—that is, the ability to produce more with the same or less input—are a significant source of increased potential national income. The U.S. economy has been able to produce more goods and services over time, not only by requiring a proportional increase of labor time but also by making production more efficient. To illustrate the importance of productivity improvements, on the eve of the American Revolution, U.S. gross domestic product (GDP) per capita stood at approximately $765 (in 1992 dollars) [34]. Incomes rose dramatically over the next two centuries, propelled upward by the Industrial Revolution, and by 2002 GDP per capita had grown to $30,000 (1992 dollars). Productivity improvements played a major role in the increase in per capita GDP growth.

320

Short-term energy outlook, July 1998  

Science Conference Proceedings (OSTI)

The Energy Information Administration (EIA) prepares The Short-Term Energy Outlook (energy supply, demand, and price projections) monthly for distribution on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. In addition, printed versions of the report are available to subscribers in January, April, July and October. The forecast period for this issue of the Outlook extends from July 1998 through December 1999. Values for second quarter of 1998 data, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the July 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. 28 figs., 19 tabs.

NONE

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

322

Assumptiions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . 99 Petroleum Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Coal Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Renewable Fuels Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Appendix A: Handling of Federal and Selected State Legislation

323

Winter Distillate and Natural Gas Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Winter Distillate and Natural Gas Outlook. Distillate Prices Increasing With Crude Oil. Distillate Outlook. When Will Crude Oil Prices Fall?

324

EIA Short -Term and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook, October 2008 NASEO 2008/09 Winter Fuels Outlook Conference October 7, 2008 Washington, DC Howard Gruenspecht Acting ...

325

10-Year Outlook Executive Summary  

E-Print Network (OSTI)

Ontarios electricity system faces significant challenges over the next 10 years. The uncertainty surrounding the return to service of Pickering A nuclear units, the lack of new generation investment and the commitment to shut down 7,500 MW of coal fired generation by December 31, 2007, all contribute to a potentially severe shortfall. New transmission, supply and demand side initiatives are urgently needed to address this gap and secure Ontarios energy future. The need is most pressing in the Toronto area, to deal with the immediate impact of the April 30, 2005 shutdown of the Lakeview Thermal Generating Station. Plans are being implemented to address this in the short term. In the longer term, additional generation is also required in the Toronto area to replace the Lakeview generating capacity and to meet load growth in the Greater Toronto Area (GTA). Each year the Independent Electricity Market Operator (IMO) publishes an integrated assessment of the security and adequacy of the Ontario electricity system over the next 10 years. This report presents the IMO assessment for the 10-year period from 2005 to 2014. It is based on the IMOs forecast of electricity demand, information provided by Ontario generators on the supply that will be available and the latest information on the configuration and capability of the transmission system. Electricity Supply Outlook Additional Ontario electricity supply and demand-side measures are required to maintain supply adequacy into the future and to reduce Ontarios dependency on supply from other jurisdictions.

unknown authors

2005-01-01T23:59:59.000Z

326

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 September 26, 2013 - 11:12am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on October 8 at the National Press Club in Washington, DC. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the event, visit the 2013 Winter Fuels Outlook Conference website.

327

Registration Open for Winter Fuels Outlook Conference on October 12, 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration Open for Winter Fuels Outlook Conference on October Registration Open for Winter Fuels Outlook Conference on October 12, 2011 Registration Open for Winter Fuels Outlook Conference on October 12, 2011 September 19, 2011 - 4:55pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, U.S. Energy Information Administration (EIA), and the National Association of State Energy Officials invite you to participate in the 2011 - 2012 Winter Fuels Outlook Conference. This important supply and demand forecast event will be held on Wednesday, October 12, 2011, from 7:30 a.m. - 3:30 p.m. at The Newseum, 555 Pennsylvania Avenue, N.W., Washington, DC 20001. Event Information Winter Fuels Conference Site Preliminary Agenda Online Registration Addthis Related Articles Registration Open for Winter Fuels Outlook Conference on October 10, 2012

328

An Outlook on Nuclear Physics  

E-Print Network (OSTI)

A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

A. B. Balantekin

2013-01-05T23:59:59.000Z

329

An Outlook on Nuclear Physics  

E-Print Network (OSTI)

A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

Balantekin, A B

2013-01-01T23:59:59.000Z

330

EIA - International Energy Outlook 2008  

Annual Energy Outlook 2012 (EIA)

by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2008 are consistent with those...

331

Petroleum Supply and Market Outlook  

U.S. Energy Information Administration (EIA)

Petroleum Supply and Market Outlook Briefing for the 7th Annual International Airport Operations/Jet Fuel Conference Orlando, Florida Mike Burdette

332

Petroleum Supply and Market Outlook  

U.S. Energy Information Administration (EIA)

2/9/2005: Petroleum Supply and Market Outlook. This presentation contains content that your browser may not be able to show properly.

333

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

334

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

335

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

336

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 (IEO2007) presents an assessment by the Energy Information Admin- istration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2007 are consistent with those published in EIA's Annual Energy Outlook 2007 (AEO2007), which was pre- pared using the National Energy Modeling System (NEMS). IEO2007 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). Projections in IEO2007 are divided according to Organi- zation for Economic Cooperation and Development members (OECD) and non-members (non-OECD). There are

337

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO), and the U.S. projections that appear in the IEO are consistent with those published in the AEO. World energy consumption in this year's IEO2000 is projected to

338

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 with projections to 2020 March 16, 2000 Jay E. Hakes Energy Information Administration Next slide Back to first slide View graphic version Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO),

339

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 (IEO2006) presents an assessment by the Energy Information Administra- tion (EIA) of the outlook for international energy mar- kets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA's Annual Energy Outlook 2006 (AEO2006), which was pre- pared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). IEO2006 focuses exclusively on marketed energy. Non- marketed energy sources, which continue to play an important role in some developing countries, are not included

340

Annual Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

9) 9) Annual Energy Outlook 1999 With Projections to 2020 December 1998 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222).

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric Industry Outlook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlook Outlook Challenges and Opportunities that Impact EEI Members and Their Federal Customers Steve Kiesner Director National Customer Markets Federal Utility Partnership Working Group May 22, 2013 San Francisco, CA Agenda  Necessary infrastructure investments to address:  Reliability  Environmental and other policy requirements  And continue the development of a grid for the 21 st Century  Our move to natural gas and what it means to customers  How technology is changing our world and those of our customers  Potential Federal-Utility Partnerships with Electrification as a transportation fuel 2 Infrastructure Investments Richard McMahon Vice President, Finance and Energy Supply Commission lays out U.S. energy efficiency roadmap through 2030

342

Annual Energy Outlook 1996  

Gasoline and Diesel Fuel Update (EIA)

96) 96) Distribution Category UC-950 Annual Energy Outlook 1996 With Projections to 2015 January 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook (AEO) is prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/ 586-1130),

343

Annual Energy Outlook 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Annual Energy Outlook 1997 With Projections to 2015 December 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook 1997 (AEO97) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441),

344

International energy outlook 1994  

SciTech Connect

The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

Not Available

1994-07-01T23:59:59.000Z

345

International energy outlook 2006  

SciTech Connect

This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

NONE

2006-06-15T23:59:59.000Z

346

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

347

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

348

Annual Energy Outlook 2009 with Projections to 2030-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Graphic Data Figure 1. Total liquid fuels demand by sector Figure 1 Data Figure 2. Total natural gas supply by source Figure 2 Data Figure 3. New light-duty vehicle sales shares by type Figure 3 Data Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015 Figure 4 Data Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015 Figure 5 Data Figure 6. Average fuel economy of new light-duty vehicles in the AEO2008 and AEO2009 projections, 1995-2030 Figure 6 Data Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range

349

Annual Energy Outlook 2009 Early Release Summary Presentation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 Annual Energy Outlook 2009 Early Release Energy Information Administration December 17, 2008 www.eia.doe.gov 2 EIA Annual Energy Outlook 2009 Reference Case Presentation -- December 17, 2008 The economy, oil prices, resources, policies, and behavior drive the AEO2009 reference case * Long-term economic growth averages about 2.5 percent per year between 2007 and 2030 * World crude oil prices recover from a near-term decline and reach $130 per barrel (in 2007 dollars) by 2030 * A robust domestic natural gas resource base allows for a steady expansion of production given projected growth in demand and prices * Recently-enacted policies and concerns over greenhouse gas (GHG) emissions, combined with high energy prices, moderate projected growth in energy consumption and

350

Energy Information Administration / Annual Energy Outlook 2008 Retrospective Review  

Gasoline and Diesel Fuel Update (EIA)

S e p t e mb e r 2 0 0 8 S e p t e mb e r 2 0 0 8 N e x t R e l e a s e D a t e : S e p t e mb e r 2 0 0 9 Energy Information Administration / Annual Energy Outlook 2008 Retrospective Review 1 Annual Energy Outlook Retrospective Review: Evaluation of Projections in Past Editions (1982-2008) The Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. The potential impacts of pending or proposed legislation, regulations, and

351

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

352

Short-term energy outlook, Quarterly projections. Third quarter 1993  

Science Conference Proceedings (OSTI)

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the third quarter of 1993 through the fourth quarter of 1994. Values for the second quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding.

NONE

1993-08-04T23:59:59.000Z

353

Short-term energy outlook: Quarterly projections. Second quarter 1995  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent projections with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the second quarter of 1995 through the fourth quarter of 1996. Values for the first quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the second quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service.

NONE

1995-05-02T23:59:59.000Z

354

Assumptions to the Annual Energy Outlook 1999 - Acronyms  

Gasoline and Diesel Fuel Update (EIA)

acronyms.gif (3143 bytes) acronyms.gif (3143 bytes) AEO Annual Energy Outlook AEO98 Annual Energy Outlook 1998 AEO99 Annual Energy Outlook 1999 AFV AFV Alternative-Fuel Vehicle AGA American Gas Association ANGTS Alaskan Natural Gas Transportation System BEA Bureau of Economic Analysis BSC Boiler/Steam/Cogeneration BTU British Thermal Unit CAAA90 Clean Air Act Amendments of 1990 CBECS Commercial Buildings Energy Consumption Surveys CCAP Climate Change Action Plan CDD Cooling Degree-Days CNG Compressed natural gas DOE U.S. Department of Energy DRB Demonstrated Reserve Base DRI Data Resources, Inc./McGraw Hill EER Energy Efficiency Ratio EIA Energy Information Administration EIS Environmental Impact Statement EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 EWG Exempt Wholesale Generator FAA Federal Aviation Administration

355

Automated Demand Response Technology Demonstration Project for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration Project for Small and Medium Commercial Buildings Title Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings...

356

Results and commissioning issues from an automated demand response pilot  

E-Print Network (OSTI)

of Fully Automated Demand Response in Large Facilities"Management and Demand Response in Commercial Buildings", L Band Commissioning Issues from an Automated Demand Response.

Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

2004-01-01T23:59:59.000Z

357

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network (OSTI)

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

358

Measurement and evaluation techniques for automated demand response demonstration  

E-Print Network (OSTI)

Development for Demand Response Calculation Findings andManagement and Demand Response in Commercial Buildings. of Fully Automated Demand Response in Large Facilities.

Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

2004-01-01T23:59:59.000Z

359

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

35% of the commercial electricity demand in CA. For thoseof displacement of electricity demand by heat-activatedApr. ) Electricity electricity demand electricity demand

Stadler, Michael

2010-01-01T23:59:59.000Z

360

International Energy Outlook 2006 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2006 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2006 (IEO2006) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA’s Annual Energy Outlook 2006 (AEO2006), which was prepared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Instructions for using HSPD-12 Authenticated Outlook Web Access...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

using HSPD-12 Authenticated Outlook Web Access (OWA) Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Provides instructions for remote Outlook access using...

362

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

2008-01-01T23:59:59.000Z

363

Global and U.S. Immigration: Patterns, Issues, and Outlook  

E-Print Network (OSTI)

U.S. Immigration: Patterns, Issues, and Outlook, 2008. No.Mexicos Deteriorating Oil Outlook: Implications and EnergyPatterns, Issues, and Outlook Philip Martin Professor of

Martin, Philip

2008-01-01T23:59:59.000Z

364

Progress and Outlook on China Industrial Energy Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy...

365

World coal outlook to the year 2000  

SciTech Connect

The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

1983-01-01T23:59:59.000Z

366

Annual Energy Outlook 2001 - Issues in Focus  

Gasoline and Diesel Fuel Update (EIA)

Issues in Focus Issues in Focus Macroeconomic Forecasting with the Revised National Income and Product Accounts (NIPA) Phasing Out MTBE in Gasoline World Oil Demand and Prices Distributed Electricity Generation Resources Natural Gas Supply Availability Restructuring of State Retail Markets for Electricity Carbon Dioxide Emissions in AEO2001 Macroeconomic Forecasting with the Revised National Income and Product Accounts (NIPA) The NIPA Comprehensive Revision Economic activity is a key determinant of growth in U.S. energy supply and demand. The derivation of the forecast of economic activity is therefore a critical step in developing the energy forecast presented in the Annual Energy Outlook 2001 (AEO2001). In turn, the forecast of economic activity is rooted fundamentally in the historical data series maintained by a

367

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Macroeconomic Activity Module Macroeconomic Activity Module This page inTenTionally lefT blank 17 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents interactions between the U.S. economy and energy markets. The rate of growth of the economy, measured by the growth in gross domestic product (GDP), is a key determinant of growth in the demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets by the aggregate economy, such as a slowdown in economic growth resulting from increasing energy prices, are also reflected

368

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

5 with Projections to 2025 5 with Projections to 2025 Report #: DOE/EIA-0383(2005) Release date full report: January 2005 Next release date full report: January 2006 Early Release Reference Case date: December 2005 The Annual Energy Outlook presents a midterm forecast and analysis of US energy supply, demand, and prices through 2025. The projections are based on results from the Energy Information Administration's National Energy Modeling System. AEO2005 includes a reference case and over 30 sensitivities. Data Tables Summary Tables Adobe Acrobat Logo Yearly Tables Excel logo Regional and other detailed tables Excel logo (Supplemental) Contents Overview Market Drivers Trends in Economic Activity Economic Growth Cases International Oil Markets Energy Demand Projections Buildings Sector

369

FIVE-YEAR FINANCIAL OUTLOOK  

E-Print Network (OSTI)

Outlook) for the City of San Diego which presented a comprehensive examination of the Citys long range fiscal condition. The Financial Outlook has proven to be an important planning tool for the City of San Diego. The Outlook guided the City in establishing the fiscal year 2008 annual budget and has served throughout the year as the basis for longer term fiscal decisionmaking. The Outlook has communicated the Citys fiscal priorities along with the Citys strengths and the challenges that remain in achieving a balanced General Fund budget and fiscal health. The updated Five-Year Financial Outlook (2009-2013 Outlook) includes revised revenue and expenditure projections for fiscal years 2009 through 2013 as well as additional fiscal commitments that have emerged since the 2008-2012 Outlook was issued. Similar to the 2008-2012 Outlook, the revised revenue and expenditure estimates in the 2009-2013 Outlook are based on a variety of assumptions in the context of current and projected economic conditions. The updated Outlook not only identifies revenue and expenditure trends but also discusses risks and opportunities that affect fiscal decisions and the Citys ability to accomplish its strategic goals over the next five-year period. Those goals include: Preservation of City services to the fullest extent possible. Fund the operations of new public facilities. Meet contractual obligations and fund mandated programs. Contribute the full payment of the Annual Required Contribution (ARC) for the Citys pension system. Establish and maintain adequate General Fund reserves according to City Charter Section 91 and the City Reserve Policy recently approved by the City Council. Address other significant financial obligations with a longer-term strategy.

Jerry Sanders; Jay M. Goldstone

2006-01-01T23:59:59.000Z

370

International Energy Outlook - Table of Contents  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook International Energy Outlook EIA Glossary International Energy Outlook 2004 Report #: DOE/EIA-0484(2004) Release date: April 2004 Next release date: July 2005 The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S.projections appearing in IEO2004 are consistent with those published in EIA's Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). Table of Contents Appendixes Highlights World Energy and Economic Outlook Outlook for Primary Energy Consumption Energy End Use Outlook for Carbon Dioxide Emissions World Economic Outlook Alternative Growth Case Trends in Energy Intensity

371

DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

DOBEIA-0202(83/4Q) DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections November 1983 Energy Information Administration Washington, D.C. t rt jrt .ort lort .lort lort lort lort <.ort ort Tt- .-m .erm -Term -Term Term Term Term Term Term Term Term Term Term Term Term Term Term Nrm ,iergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short Short Short Short-

372

DOE/EIA-0202(84/2QH Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

2QH 2QH Short-Term Energy Outlook Quarterly Projections May 1984 Published: June 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort .iort .iort- iort- iort- '.ort- ort- .m .erm Term Term Term Term Term Term Term Term Term Term Term Term i-Term rTerm -Term xrm uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Tern Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

373

DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections January 1985 Published: February 1985 Energy Information Administration Washington, D.C. t rt jrt .ort lort lort lort nort lort *.ort ort Tt .m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short

374

DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Short-Term Energy Outlook Quarterly Projections October 1984 Published: November 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort lort iort lort \ort ort Tt .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short- Short- Short Short Short Short Short Short

375

DOE/EIA-0202(84/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections February 1984 Published: March 1984 Energy Information Administration Washington, D.C. t rt jrt- .ort- iort- iort- .iort- iort- lort- Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term' Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

376

DOE/EIA-0202(85/2Q) Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Short-Term Energy Outlook amm Quarterly Projections April 1985 Published: May 1985 Energy Information Administration Washington, D C t rt jrt .ort lort .iort iort iort lort '.ort ort .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

377

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

B B World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal-computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product [GDP]) and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and

378

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

379

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product to the contributing authors listed previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad

380

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy previously, Mohsen Abrishami prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined prepared the commercial sector forecast. Mehrzad Soltani Nia helped prepare the industrial forecast

382

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fired electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 93 74 68 66 64 62 60 -1.5 United States a 37 20 17 18 18 18 18 -2.3 Canada 7 7 6 6 6 5 5 -1.0 Mexico/Chile 49 47 45 42 40 38 36 -1.0 OECD Europe 77 73 70 66 63 60 57 -1.0 OECD Asia 112 157 102 97 92 87 83 -1.0 Japan 92 137 83 79 75 71 68 -1.0 South Korea 18 17 16 15 15 14 13 -1.0 Australia/New Zealand 3 3 3 3 2 2 2 -1.0 Total OECD 282 303 239 229 219 209 200 -1.1 Non-OECD Non-OECD Europe and Eurasia

383

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2009-2040 (billion kilowatthours) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 894 899 932 978 1,032 1,054 1,030 1,066 0.6 United States a 799 807 820 885 912 908 875 903 0.4 Canada 86 86 99 81 99 117 118 118 1.0 Mexico/Chile 10 6 12 12 21 29 37 46 7.3 OECD Europe 840 867 892 929 1,045 1,065 1,077 1,073 0.7 OECD Asia 406 415 301 447 490 551 557 576 1.1 Japan 266 274 103 192 200 206 209 209 -0.9 South Korea 140 141 198 255 291 346 348 367 3.2 Australia/NewZealand 0 0 0 0 0 0 0 0 -- Total OECD 2,140 2,181 2,124 2,354 2,567 2,670 2,664 2,715 0.7 Non-OECD Non-OECD Europe and Eurasia 272 274 344 414 475 533 592 630 2.8 Russia

384

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2009-2040 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,511 1,563 1,686 1,793 1,888 1,987 2,114 2,233 1.2 United States a 1,222 1,266 1,357 1,404 1,431 1,468 1,528 1,570 0.7 Canada 170 162 171 199 223 240 255 271 1.7 Mexico/Chile 119 135 158 190 234 279 331 392 3.6 OECD Europe 1,024 1,082 1,086 1,123 1,144 1,215 1,277 1,348 0.7 OECD Asia 347 377 408 438 478 505 539 561 1.3 Japan 205 215 242 257 276 288 293 293 1.0 South Korea 72 90 91 98 110 117 136 148 1.7 Australia/NewZealand 70 71 75 83 91 101 110 119 1.7 Total OECD 2,882 3,022 3,180 3,353 3,510

385

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Home heating oil retail price includes taxes. 16 Source: EIA Short-Term Energy Outlook, October 2012 Short-Term Energy and Winter Fuels Outlook October 10, 2012.

386

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

387

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

388

Analysis of recent projections of electric power demand  

Science Conference Proceedings (OSTI)

This report reviews the changes and potential changes in the outlook for electric power demand since the publication of Review and Analysis of Electricity Supply Market Projections (B. Swezey, SERI/MR-360-3322, National Renewable Energy Laboratory). Forecasts of the following organizations were reviewed: DOE/Energy Information Administration, DOE/Policy Office, DRI/McGraw-Hill, North American Electric Reliability Council, and Gas Research Institute. Supply uncertainty was briefly reviewed to place the uncertainties of the demand outlook in perspective. Also discussed were opportunities for modular technologies, such as renewable energy technologies, to fill a potential gap in energy demand and supply.

Hudson, D.V. Jr.

1993-08-01T23:59:59.000Z

389

International Energy Outlook - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2004 World Energy and Economic Outlook The IEO2004 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia. Energy resources are thought to be adequate to support the growth expected through 2025. Figure 12. World Primary Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800 Figure Data Figure 13. World Energy Consumption by Region, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 14. World Primary Energy Consumption by Energy Source, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data

390

China's Energy and Carbon Emissions Outlook to 2050  

SciTech Connect

As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that China's 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

2011-02-15T23:59:59.000Z

391

Current trends in commercial cool storage. Final report. [Use of chilled water and ice storage to reduce demand charges and electric bills; 85 projects  

DOE Green Energy (OSTI)

The objectives of this study were to identify, by means of a phone-and-mail survey, recent installations of off-peak cool storage air conditioning systems in commercial buildings; to monitor new developments; and to indicate trends. This report contains descriptions of over 80 systems installed since 1981, plus findings and conclusions based on site-specific information. Analysis of the findings suggests that storage cooling systems in commercial buildings can, in many cases, offer technical and cost advantages over nonstorage systems. The detailed information should be of value to potential customers and HVAC engineers in making cooling equipment decisions that would be advantageous to customer, utility, and HVAC industry alike. 20 refs.

Hersh, H.N.

1985-07-01T23:59:59.000Z

392

U.S. Distillate Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Distillate Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, January 2001.

393

U.S. Crude Oil Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, December 2000.

394

U.S. Distillate Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Distillate Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, December 2000

395

U.S. Crude Oil Inventory Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil Inventory Outlook. Sources: History: EIA; Projections: Short-Term Energy Outlook, November 2000.

396

Pharmaceutical crops have a mixed outlook in California  

E-Print Network (OSTI)

crops have a mixed outlook in California by Michelle Marvieras environmental harm. The outlook for the production of

Marvier, Michelle

2007-01-01T23:59:59.000Z

397

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA)

DOE/EIA-0202(98/3Q) Distribution Category UC-950 Short-Term Energy Outlook July 1998 Energy Information Administration Office of Energy Markets and End Use

398

EIA - Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

& Analysis > AEO 2009 & Analysis > AEO 2009 Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th Updated Annual Energy Outlook 2009 Reference Case Service Report, April 2009 The Annual Energy Outlook 2009 (AEO2009) reference case was updated to reflect the provisions of the American Recovery and Reinvestment Act (ARRA) that were enacted in mid-February 2009. The reference case in the recently published AEO2009, which reflected laws and regulations in effect as of November 2008, does not include ARRA. The need to develop an updated reference case following the passage of ARRA also provided the Energy Information Administration (EIA) with an opportunity to update the

399

International Energy Outlook 2001 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of the EIA’s Annual Energy Outlook 2001 (AEO2001), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in the IEO2001 are consistent with those published in the AEO2001. IEO2001 is provided as a statistical service to energy managers and analysts, both in

400

Petroleum Supply and Market Outlook  

Reports and Publications (EIA)

A presentation to the 7th Annual International Airport Operations/Jet Fuel Conference, in Orlando, Florida, on February 3, 2005, giving EIAs outlook for petroleum supply and prices, with particular attention to jet fuel.

Information Center

2005-02-09T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

International Energy Outlook - Download Report  

Annual Energy Outlook 2012 (EIA)

PDF Highlights PDF World Energy and Economic Outlook PDF World Oil Markets PDF Natural Gas PDF Coal PDF Electricity PDF Environmental Issues and World Energy Use PDF Index PDF...

402

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

The World Oil Market The World Oil Market Oil prices are expected to remain relatively low, and resources are not expected to constrain substantial increases in oil demand through 2020. Oil usecontinues to dominate transportation energy markets. Oil Demand Growth in Industrialized Countries Oil Demand Growth in Nonindustrialized Countries Oil Demand and Transportation The Composition of World Oil Supply Worldwide Petroleum Trade in the Reference Case World Oil Price Projections Other Views of Prices and Production Policies To Lessen Environmental Damage from Transportation Fuel Use In the early 1990s, oil demand was relatively flat: oil consumption worldwide was only 1 million barrels per day higher in 1993 than it was in 1989. Since 1993, however, the world’s demand for oil has risen by almost

403

Annual Energy Outlook 1999 - Overview  

Gasoline and Diesel Fuel Update (EIA)

overview.gif (2907 bytes) overview.gif (2907 bytes) Key Issues A major issue in energy markets today is carbon emissions. Because the Kyoto Protocol has not been ratified by the United States and no specific policies for carbon reduction have been enacted, such policies are not included in the Annual Energy Outlook 1999 (AEO99), although the Protocol and EIA’s recent analysis of its potential impacts are discussed. Economic developments in Asia over the past 18 months have weakened worldwide oil demand and lowered world oil prices—a trend that is likely to continue for several years and, therefore, is included in the AEO99 analysis of oil markets and prices. As in AEO98, the projections in AEO99 reflect ongoing changes in the financial structure of the U.S. electricity industry and cost reductions that are becoming evident with increased competition. A transition to retail competitive pricing is assumed in five regions—California, New York, New England, the Mid-Atlantic Area Council (Pennsylvania, Delaware, New Jersey, and Maryland), and the Mid-America Interconnected Network (Illinois and parts of Wisconsin and Missouri). Provisions of the California legislation on stranded cost recovery and price caps are also included. In the other regions, stranded cost recovery is assumed to be phased out by 2008. No national renewable portfolio standard has been passed, but State standards and other programs intended to encourage renewables are included as enacted. The new standards for control of nitrogen oxide (NOx) emissions by electricity generators are also incorporated.

404

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network (OSTI)

ofthesmallcommercialpeakdemand. Themajorityofthelessthan200kWofpeakdemand,makeup20?25%of peakthesmallcommercial peakdemand. Atenpercentreduction

Dudley, June Han

2009-01-01T23:59:59.000Z

405

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Contacts The International Energy Outlook is prepared by the Office of Integrated Analysis and Forecasting (OIAF). General questions concerning the contents of the report should be referred to John Conti, Director, International, Economic and Greenhouse Gases Division (202/586-4430). Specific questions about the report should be referred to Linda E. Doman (202/586-1041 or linda.doman@eia.doe.gov) or the following analysts: Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202/586-1294) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Natural Gas Phyllis Martin (phyllis.martin@eia.doe.gov, 202/586-9592) Justine Bardin (justine.baren@eia.doe.gov 202/586-3508) Coal Michael Mellish (michael.mellish@eia.doe.gov,

406

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen (202/586-1441), Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred toLinda E. Doman (202/586-1041) or the following analysts: World Energy Consumption Arthur Andersen (art.andersen@eia.doe.gov, 202/586-1441) Linda E. Doman (linda.doman@eia.doe.gov, 202/586-1041) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Perry Lindstrom (perry.lindstrom@eia.doe.gov, 202/586-0934) Reformulated Gasoline

407

International Energy Outlook 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 3 May 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director,

408

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

409

International Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 8 September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office

410

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Graphic Data Graphic Data International Energy Outlook 2006 Figure 1. World Marketed Energy Consumption by Region, 1980-2030 Figure 1 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. World Delivered Energy Consumption by End-Use Sector, 2003-2030 Figure 2 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 3. World Marketed Energy Use by Energy Type, 1980-2030 Figure 3 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 4. Fuel Shares of World Marketed Energy Use, 2003, 2015, and 2030 Figure 4 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 5. World Energy Consumption for Electricity Generation by Fuel Type, 2003, 2015, and 2030 Figure 5 Data. Need help, contact the National Energy Information Center at 202-586-8800.

411

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

412

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is projected to continue. Although total world consumption of coal in 2001, at 5.26 billion short tons,12 was more than 27 percent higher than the total in 1980, it was 1 percent below the 1989 peak of 5.31 billion short tons (Figure 56). The International Energy Outlook 2003 (IEO2003) reference case projects some growth in coal use between 2001 and 2025, at an average annual rate of 1.5 percent (on a tonnage basis), but with considerable variation among regions.

413

International Energy Outlook 2004  

Gasoline and Diesel Fuel Update (EIA)

4) 4) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 4 April 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222),

414

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7) 7) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 7 May 2007 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office of

415

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Preface Highlights World Energy Consumption The World Oil Market (Errata as of May 13, 1998) Natural Gas Coal Nuclear Power Hydroelectric and Other Renewable Energy Electricity Appendix A-World Energy Consumption, Oil Production, and Carbon Emissions Tables (PDF) Click Here For the HTML Version of Appendix A, Tables A1-A13 Click Here For the HTML Version of Appendix A, Tables A14-A26 Click Here For the HTML Version of Appendix A, Tables A27-A39 Click Here For the HTML Version of Appendix A, Tables A40-A50 Appendix B-World Energy Projection System Appendix C-A Status Report on Developing Transportation for Caspian Basin Oil and Gas Production Preface The Energy Information Administration’s outlook for world energy trends is presented in this report. Model projections now extending to the year 2020 are reported, and regional trends are discussed.

416

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Energy Consumption by Region Three organizations provide forecasts comparable with the projections in IEO2006, which extend to 2030 for the first time. The International Energy Agency (IEA) pro- vides "business as usual" projections to 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy projections to 2025; and Petro- leum Industry Research Associates (PIRA) provides projections to 2020. For comparison, 2002 is used as the base year for all the projections. Comparisons between IEO2006 and IEO2005 extend only to 2025, the last year of the IEO2005 projections. Regional breakouts vary among the different projec- tions, complicating the comparisons. For example, IEO2006, PIRA, and IEA

417

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

contacts.gif (2957 bytes) contacts.gif (2957 bytes) The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen, Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: Report Contact World Energy Consumption Linda E. Doman - 202/586-1041 linda.doman@eia.doe.gov World Oil Markets G. Daniel Butler - 202/586-9503 gbutler@eia.doe.gov Stacy MacIntyre - 202/586-9795- (Consumption) stacy.macintyre@eia.doe.gov Natural Gas Linda E. Doman - 202/586-1041

418

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6) 6) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 6 June 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov,

419

Toward a national plan for the commercialization of solar energy: price/demand scenarios and projections of solar utilization under the National Energy Act  

DOE Green Energy (OSTI)

Three macroeconomic scenarios were developed as an economic backdrop for projecting solar technology market acceptance under various government policies and commercialization programs. These scenarios assume three levels of future world oil prices - $18, $25 and $32 per barrel (1976 $) in the year 2000. This range is intended to encompass the most likely set of energy futures. The scenarios are discussed in terms of their underlying assumptions and changes in fuel and resource consumption by sector of the economy. Estimates of the future utilization of solar technologies for the mid-price scenarios are given. These estimates are based on the solar subsidies and incentive programs in the National Energy Act.

Rebibo, K. K.

1979-05-01T23:59:59.000Z

420

Commercial | OpenEI  

Open Energy Info (EERE)

Commercial Commercial Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - 2009 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2009 The International Energy Outlook 2009 (IEO2009) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2009 are consistent with those published in EIA's Annual Energy Outlook 2009 (AEO2009), (March 2009). A revised, updated AEO2009 reference case projection was released on April 17, 2009. It reflects the impact of provisions in the American Recovery and Reinvestment Act of 2009 (ARRA2009), enacted in mid-February 2009, on U.S. energy markets. The revised AEO2009 reference case includes updates for the U.S. macroeconomic outlook, which has been changing at an unusually rapid rate in recent months. Throughout IEO2009, significant changes to the U.S. outlook relative to the published AEO2009 reference case are noted for the reader's reference. The complete revised AEO2009 reference case results for the United States can be viewed on the EIA web site: http://www.eia.gov/oiaf/aeo.

422

Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993  

SciTech Connect

The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

Not Available

1993-11-05T23:59:59.000Z

423

EIA - Annual Energy Outlook 2001  

Gasoline and Diesel Fuel Update (EIA)

Sector Sector U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

424

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

425

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

426

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

427

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

428

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

429

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

430

EIA - International Energy Outlook 2008 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2008 Highlights World marketed energy consumption is projected to increase by 50 percent from 2005 to 2030.Total energy demand in the non-OECD countries increases by 85 percent,compared with an increase of 19 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2005-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in Two Cases, 1980-2030 (nominal dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

431

EIA - International Energy Outlook 2007 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2007 Highlights World marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. Figure 1. World Marketed Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. Average Annual Growth in Delivered Energy Consumption by Region and End-use Sector, 2004-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. Industrial Sector Delivered Energy Consumption by Region, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

432

Short Term Energy Outlook, February 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook February 2003 Overview World Oil Markets. World oil markets will likely remain tight through most of 2003, as petroleum inventories and global spare production capacity continue to dwindle amid blasts of cold weather and constrained output from Venezuela. OPEC efforts to increase output to make up for lower Venezuela output has reduced global spare production capacity to only 2 million barrels per day, leaving little room to make up for unexpected supply or demand surprises. Meanwhile, the average West Texas Intermediate (WTI) crude oil price increased by $3.50 to $33 per barrel from December to January (Figure 1). For the year 2003, WTI oil prices are expected to remain over $30 per barrel, even though Venezuelan output appears to be moving toward normal sooner than expected. Also,

433

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

434

Assumptions to the Annual Energy Outlook 2013  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Module Energy Module This page inTenTionally lefT blank 21 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 International Energy Module The LFMM International Energy Module (IEM) simulates the interaction between U.S. and global petroleum markets. It uses assumptions of economic growth and expectations of future U.S. and world crude-like liquids production and consumption to estimate the effects of changes in U.S. liquid fuels markets on the international petroleum market. For each year of the forecast, the LFMM IEM computes BRENT and WTI prices, provides a supply curve of world crude-like liquids, and generates a worldwide oil supply- demand balance with regional detail. The IEM also provides, for each year of the projection period, endogenous and

435

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Economic growth Economic growth Macroeconomic projections in the Annual Energy Outlook (AEO) are trend projections, with no major shocks assumed and with potential growth determined by the economyâ€(tm)s supply capability. Growth in aggregate supply depends on increases in the labor force, growth of capital stocks, and improvements in productivity. Long-term demand growth depends on labor force growth,income growth, and population growth. AEO2014 uses the U.S. Census Bureauâ€(tm)s December 2012 middle population projection. The U.S. Census Bureau revised its population projections primarily to reflect lower assumptions regarding international net migration. In AEO2014, U.S. population is expected to grow at an annual rate of 0.7% from 2012 to 2040, or 0.2 percentage points lower than the 0.9% average

436

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Center for Strategic and International Studies Center for Strategic and International Studies Howard Gruenspecht, Acting Administrator September 19, 2011 | Washington, DC International Energy Outlook 2011 Key findings in the IEO2011 Reference case 2 Howard Gruenspecht CSIS, September 19, 2011 * World energy consumption increases by 53% between 2008 and 2035 with half of the increase attributed to China and India * Renewables are the world's fastest-growing energy source, at 2.8% per year; renewables share of world energy grows to roughly 15% in 2035 * Fossil fuels continue to supply almost 80% of world energy use in 2035 * Liquid fuels remain the largest energy source worldwide through 2035, but the oil share of total energy declines to 28% in 2035, as sustained high oil prices dampen demand and encourage fuel

437

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary Executive Summary Projections in the Annual Energy Outlook 2012 (AEO2012) Reference case focus on the factors that shape U.S. energy markets in the long term, under the assumption that current laws and regulations remain generally unchanged throughout the projection period. The AEO2012 Reference case provides the basis for examination and discussion of energy market trends and serves as a starting point for analysis of potential changes in U.S. energy policies, rules, or regulations or potential technology breakthroughs. Some of the highlights in the AEO2012 Reference case include: Projected growth of energy use slows over the projection period, reflecting an extended economic recovery and increasing energy efficiency in end-use applications Projected transportation energy demand grows at an annual rate of 0.2

438

EIA - International Energy Outlook 2009 - Highlights Section  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2009 Highlights World marketed energy consumption is projected to increase by 44 percent from 2006 to 2030. Total energy demand in the non-OECD countries increases by 73 percent, compared with an increase of 15 percent in the OECD countries. Figure 1. World Marketed Energy Consumption, 2006-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 2. World Marketed Energy Use by Fuel Type, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 3. World Oil Prices in the IEO2009 and IEO2008 Reference Cases, 1980-2030 (2007 dollars per barrel). Need help, contact the National Energy Information Center at 202-586-8800.

439

EIA - International Energy Outlook 2007 - Electricity Chapter  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2007 Chapter 6 - Electricity World electricity generation nearly doubles in the IEO2007 reference case from 2004 to 2030. In 2030, generation in the non-OECD countries is projected to exceed generation in the OECD countries by 30 percent. Figure Data Figure 61. World Electric Power Generation by Region, 1980-2030 (Billion Kilowatthours). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 62. Average Annual Change in End-Use Sector Electricity Demand, 2004-2030 (Percent per Year). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 63. World Electricity Generation by Fuel, 2004 and 2030 (Billion Kilowatthours). Need help, contact the National Energy at 202-586-8800.

440

Supplement to the annual energy outlook 1994  

Science Conference Proceedings (OSTI)

This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

NONE

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights Short-Term Energy Outlook ...

442

EIA - Annual Energy Outlook Retrospective Review  

U.S. Energy Information Administration (EIA)

Energy intensity (Energy consumption/real $ GDP) About the Annual Energy Outlook. Contact Information and Staff; ... Updated capital cost for ...

443

International Energy Outlook 2011 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural gas Unconventional Total Conventional Natural gas (trillion cubic feet) U.S. Energy Information Administration International Energy Outlook 2011

444

Cluster Expansion Methods - Progress and Outlook  

Science Conference Proceedings (OSTI)

Symposium, Computational Thermodynamics and Kinetics. Presentation Title, Cluster Expansion Methods - Progress and Outlook. Author(s), Axel van de Walle .

445

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 121.3 126.1 129.7 132.9 137.2 143.6 0.6 United States a 94.9 97.9 97.3 100.5 101.8 102.3 103.9 107.2 0.3 Canada 13.7 13.5 14.2 14.8 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.9 10.9 12.3 14.1 16.0 18.2 2.5 OECD Europe 80.0 82.5 82.1 85.5 88.6 90.9 92.8 94.6 0.5 OECD Asia 37.7 39.6 40.6 43.0 44.3 45.4 46.1 46.4 0.5 Japan 21.0 22.1 21.7 22.5 23.0 23.0 22.9 22.2 0.0 South Korea 10.1 10.8 11.8 13.0 13.8 14.7 15.3 15.9 1.3 Australia/NewZealand 6.7 6.7 7.0 7.4 7.5 7.7 8.0 8.2 0.7 Total OECD 234.7 242.3 244.1 254.6 262.7

446

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D4. World liquids consumption by region, High Oil Price case, 2009-2040 (million barrels per day) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 23.1 23.5 23.4 23.5 23.2 22.9 22.9 23.5 0.0 United States a 18.6 18.9 18.7 18.8 18.4 17.7 17.4 17.5 -0.3 Canada 2.2 2.2 2.2 2.1 2.1 2.1 2.2 2.4 0.2 Mexico/Chile 2.4 2.4 2.5 2.5 2.7 3.0 3.3 3.6 1.4 OECD Europe 15.0 14.8 13.2 13.1 13.1 13.2 13.3 13.4 -0.3 OECD Asia 7.7 7.7 8.0 7.7 7.6 7.6 7.6 7.4 -0.1 Japan 4.4 4.4 4.5 4.2 4.0 3.9 3.8 3.6 -0.7 South Korea 2.2 2.3 2.3 2.4 2.4 2.5 2.6 2.6 0.5 Australia/NewZealand 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 0.3 Total OECD 45.8 46.0 44.6 44.3 43.8 43.6 43.8 44.3 -0.1 Non-OECD Non-OECD Europe and Eurasia

447

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2009-2040 (trillion cubic feet) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.2 29.2 31.3 33.4 35.1 37.0 39.4 41.6 1.2 United States a 22.9 23.8 25.3 26.3 26.9 27.6 28.7 29.5 0.7 Canada 3.1 2.9 3.1 3.6 4.0 4.3 4.6 4.9 1.7 Mexico/Chile 2.2 2.5 2.9 3.5 4.3 5.1 6.1 7.2 3.6 OECD Europe 18.8 19.8 19.7 20.4 20.8 22.1 23.2 24.5 0.7 OECD Asia 6.1 6.7 7.2 7.8 8.5 9.0 9.5 9.9 1.3 Japan 3.7 3.8 4.3 4.6 4.9 5.1 5.2 5.2 1.0 South Korea 1.2 1.5 1.5 1.7 1.9 2.0 2.3 2.5 1.7 Australia/NewZealand 1.3 1.3 1.4 1.5 1.7 1.8 2.0 2.2 1.7 Total OECD 53.2 55.6 58.2 61.5 64.4 68.0 72.1 76.0 1.0 Non-OECD Non-OECD Europe and Eurasia 19.8 21.8

448

EIA - International Energy Outlook 2007-World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

and Economic Outlook and Economic Outlook International Energy Outlook 2007 Figure 8. World Marketed Energy Consumption, 1980-2030 Figure 8 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 9. World Marketed Energy Use: OECD and Non-OECD, 2004-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. World Marketed Energy Use by Fuel Type, 1980-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Coal Consumption by Region, 2004-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800.

449

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

450

EIA - Annual Energy Outlook 2008 (Early Release)  

Gasoline and Diesel Fuel Update (EIA)

Release) > Year-by-Year Reference Case Tables (2005-2030) Release) > Year-by-Year Reference Case Tables (2005-2030) Annual Energy Outlook 2008 with Projections to 2030 (Early Release) The early release version of the AEO2008 reference case does not include consideration of the H.R.6, "Energy Independence and Security Act of 2007," that was signed into law on December 19, 2007. EIA is compiling a revised reference case that includes the impact of H.R.6. Year-by-Year Reference Case Tables (2005-2030) Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption Table 5. Commercial Sector Indicators and Consumption

451

Short Term Energy Outlook, March 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook March 2003 Overview World Oil Markets. February crude oil prices moved higher than expected pushed by fears of a war in Iraq, low inventories, slow recovery in Venezuelan exports, continued cold weather and sharply higher natural gas prices in the United States. West Texas Intermediate prices averaged close to $36 for the month (Figure 1), a level not seen since October 1990. Oil inventories continued lower through the month resulting in a cumulative reduction in total commercial stocks of 101 million barrels since September 30, 2002, the beginning of the heating season. Total OECD inventories reached an estimated 2,424 million barrels at the end of February, which would be the lowest level since

452

North African producers cooperate to improve outlook  

Science Conference Proceedings (OSTI)

A new commercial outlook on the oil and gas business is starting to emanate from Algeria. Foreign companies are being lured back into the exploration business with new production-sharing contracts. And in the LNG business, where Algeria is on of the major producers, exports to the United States have been resumed at world market prices. Deliveries to Britain are due to resume later this year and new contracts have been signed for deliveries to Turkey and Greece, all at competitive market prices. Excluded from this turnaround in attitudes are Algeria's traditional customers for LNG in Europe. Sonatrach, the Algerian state energy company, is still insisting on prices that make imported LNG up to 30% more expensive than gas from other sources. As a result LNG liftings have declined and gas companies in France, Belgium, and Spain are in dispute with Sonatrach over prices.

Not Available

1988-06-20T23:59:59.000Z

453

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

Price, 2008 Sectoral Trends in Global Energy Use and Greenhouse GasTrends in Global Energy Use and Greenhouse Gas Emissions (Price

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

454

EIA - Annual Energy Outlook 2008 - Natural Gas Demand  

U.S. Energy Information Administration (EIA)

... (such as oil shale, CTL, and GTL). In the AEO2008 low price case, CTL production begins in 2011, using only U.S. facilities now under construction, ...

455

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

share (71%) from coal, hydro power represents 14%, naturalgenerated from hydro or nuclear power plants is set equal to

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

456

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

rural, k=Kerosene m=rural, k=biogas m =urban, k=LPG m=urban,k=LPG k=wood k=kerosene k=biogas k=electricity k=electricity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

457

India Energy Outlook: End Use Demand in India to 2020  

SciTech Connect

Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

2009-03-30T23:59:59.000Z

458

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

factor: first electricity distribution and transmission (Transmission and distribution losses Electricity deliveredTransmission and distribution loses Electricity delivered

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

459

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

MOSPI, 2008, a). quantities of fuel oil and diesel oil usequantity of transport activities (railways mostly). Oil is

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

460

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

and equity, 2005, the Energy and Resources Institute (Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

water (3%). Finally oil is a source of energy for theOil Diesel Oil LPG Electricity Source: CEA, 2006; MOSPI,countries, oil remains an important source of energy for

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

462

EIA - Annual Energy Outlook 2009 - Natural Gas Demand  

Annual Energy Outlook 2012 (EIA)

at 202-586-8800. figure data Figure 72. Liquids production from gasification and oil shale, 2007-2030 (thousand barrels per day). Need help, contact the National Energy...

463

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

U.S. Energy Information Administration (EIA)

earth and provides protection from harmful radiation. The Phase 2 reformulated gasoline (RFG) standards consist of 2

464

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

U.S. Energy Information Administration (EIA)

benzene extracted from the reformulated motor gasoline pool in their conventional motor gasoline. Importers lacking 1990 motor gasoline quality data with which to

465

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

kerosene Coal INDUSTRY electricity Coal oil gas COMMERCIALkerosene Coal INDUSTRY electricity Coal oil gas COMMERCIALin the industry sector and primary electricity represents

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

466

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

trends in the iron and steel industry Energy Policy 30 (user is the iron and steel industry representing almost halfTable 9). The Indian steel industry is slowly shifting from

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

467

EIA - 2010 International Energy Outlook - World Energy Demand...  

Gasoline and Diesel Fuel Update (EIA)

about energy security and greenhouse gas emissions support the development of new nuclear generating capacity. World average capacity utilization rates have continued to rise...

468

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

gas oil nuclear hydro Energy output Own Uses Transmissiongas oil nuclear hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

469

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fired generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 402 435 461 505 568 631 697 1.9 United States a 350 379 390 420 472 519 566 1.6 Canada 20 19 26 28 29 32 35 1.9 Mexico/Chile 31 36 45 56 68 80 95 3.8 OECD Europe 217 219 213 204 218 234 252 0.5 OECD Asia 128 134 140 144 148 157 163 0.8 Japan 83 90 96 97 100 101 101 0.7 South Korea 27 26 26 28 29 35 38 1.1 Australia/New Zealand 18 18 18 19 20 22 23 1.0 Total OECD 746 787 814

470

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2009-2040 (2005 dollars per person) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 32,959 33,559 36,264 39,848 43,145 46,824 51,175 56,306 1.7 United States a 41,478 42,130 45,224 49,521 53,259 57,343 62,044 67,452 1.6 Canada 34,582 35,285 37,485 40,040 41,910 43,909 46,715 50,028 1.2 Mexico/Chile 12,215 12,750 14,862 16,996 19,460 22,324 25,830 30,192 2.9 OECD Europe 25,770 26,269 27,363 29,924 32,694 35,369 38,368 41,753 1.6 OECD Asia 28,623 29,875 32,912 36,117 39,347 42,264 45,505 48,961 1.7 Japan 29,469 30,827 33,255

471

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A14. World population by region, Reference case, 2009-2040 (millions) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 470 475 499 523 547 569 591 612 0.8 United States a 308 310 325 340 356 372 388 404 0.9 Canada 34 34 36 38 40 42 44 46 1.0 Mexico/Chile 129 131 138 144 150 155 159 162 0.7 OECD Europe 553 556 570 580 588 594 598 601 0.3 OECD Asia 202 203 204 205 204 203 201 199 -0.1 Japan 128 128 127 125 122 119 117 114 -0.4 South Korea 48 48 49 50 50 50 50 49 0.1 Australia/NewZealand 26 27 28 30 32 33 34 35 0.9 Total OECD 1,226 1,234 1,273 1,307 1,339 1,366 1,390 1,411 0.4 Non-OECD Non-OECD Europe and Eurasia 338 338 342 342 342 340 337 334 0.0 Russia 141 140 142 141 139 136 134 131 -0.2 Other 197

472

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

O F = = | = = g u n e = O M N O O F = = | = = g u n e = O M N O w i t h P r o j e c t i o n s t o 2 0 3 5 A n n u a l E n e r g y Ou t l o o k 2 0 1 2 For further information . . . The Annual Energy Outlook 2012 was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.gov, 202/586-2222), Assistant Administrator of Energy Analysis; Paul D. Holtberg (paul.holtberg@eia. gov, 202/586-1284), Team Leader, Analysis Integration Team, Office of Integrated and International Energy Analysis; Joseph A. Beamon (joseph.beamon@eia.gov, 202/586-2025), Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis; Sam A. Napolitano (sam.napolitano@eia.gov, 202/586-0687), Director, Office of Integrated and International Energy Analysis; A. Michael

473

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 115 119 123 130 133 130 135 0.5 United States a 101 104 111 114 114 109 113 0.4 Canada 13 13 11 13 16 16 16 0.7 Mexico/Chile 1 2 2 3 4 5 6 5.1 OECD Europe 132 124 128 142 143 143 142 0.3 OECD Asia 67 45 65 71 79 80 82 0.7 Japan 49 20 34 35 36 37 37 -0.9 South Korea 18 25 32 36 43 43 45 3.2 Australia/New Zealand 0 0 0 0 0 0 0 -- Total OECD 314 288 316 343 355 352 359 0.5 Non-OECD Non-OECD Europe and Eurasia 42 49 58 65 73 80 85 2.4 Russia 24 28 35 40 45 50 55 2.8 Other 17 20 23 25 27 29 29 1.8 Non-OECD Asia 21

474

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 4 33 38 42 48 63 101 11.1 United States a 4 32 37 40 46 62 99 11.2 Canada 0 1 1 1 1 1 1 -- Mexico/Chile 0 0 0 0 0 1 1 -- OECD Europe 23 78 85 89 94 98 102 5.1 OECD Asia 5 12 22 33 39 50 50 8.1 Japan 4 7 14 23 29 39 39 8.1 South Korea 1 1 2 2 2 2 2 3.6 Australia/New Zealand 0 4 6 8 8 9 9 -- Total OECD 32 123 145 165 181 211 253 7.1 Non-OECD Non-OECD Europe and Eurasia 0 0 1 1 1 1 1 -- Russia 0 0 0 0 0 0 0 -- Other 0 0 1 1 1 1 1 -- Non-OECD Asia 1 31 76 94 107 120 129 17.2 China 1 26 67 79 90 100 105 17.0 India 0 3 7 13 14 17

475

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 38 40 41 42 43 45 47 0.7 United States a 35 38 39 39 40 41 43 0.7 Canada 2 2 2 2 2 2 2 0.6 Mexico/Chile 1 1 1 1 1 1 2 1.3 OECD Europe 73 75 76 77 78 79 80 0.3 OECD Asia 33 36 36 36 36 36 37 0.3 Japan 27 27 27 27 27 27 27 0.1 South Korea 4 6 6 6 6 6 6 1.2 Australia/New Zealand 2 3 3 3 3 3 3 1.4 Total OECD 144 151 153 155 158 160 163 0.4 Non-OECD Non-OECD Europe and Eurasia 4 4 4 4 4 4 5 0.2 Russia 1 1 1 1 1 1 1 0.3 Other 3 3 3 3 3 3 3 0.2 Non-OECD Asia 26 36 45 54 63 69 73 3.4 China 20 27 36 45 53 59 61 3.9 India 3 4 4 4

476

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

5 5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 170 177 181 190 201 214 228 1.0 United States a 78 78 79 79 79 80 81 0.1 Canada 75 78 80 85 93 101 109 1.3 Mexico/Chile 17 20 22 25 29 33 38 2.8 OECD Europe 151 155 169 176 183 189 195 0.9 OECD Asia 37 39 40 40 40 40 41 0.3 Japan 22 24 24 24 24 25 25 0.3 South Korea 2 2 2 2 2 2 2 0.3 Australia/New Zealand 13 13 13 13 14 14 14 0.3 Total OECD 358 371 389 405 424 443 464 0.9 Non-OECD Non-OECD Europe and Eurasia 87 91 99 103 110 118 125 1.2 Russia 47 49 54 58 62 66 69 1.3 Other 41 42 45 45 48 52 56 1.1 Non-OECD Asia

477

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections for Reference case projections for electricity capacity and generation by fuel This page inTenTionally lefT blank 259 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,248 1,316 1,324 1,379 1,456 1,546 1,669 1.0 United States a 1,033 1,080 1,068 1,098 1,147 1,206 1,293 0.8 Canada 137 144 152 163 174 185 198 1.2 Mexico/Chile 78 93 104 118 135 155 177 2.8 OECD Europe 946 1,028 1,096 1,133 1,159 1,185 1,211 0.8 OECD Asia 441 444 473 489 501 516 524 0.6 Japan 287 275 293 300 304 309 306 0.2 South Korea 85 93 100 107 114

478

Annual Energy Outlook with Projections to 2025 - Market Trends- Energy  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2005 Market Trends - Energy Demand Figure 42. Energy use per capita and per dollar of gross domestic product, 1970-2025 (index, 1970 = 1). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Average Energy Use per Person Increases in the Forecast Energy intensity, as measured by energy use per 2000 dollar of GDP, is projected to decline at an average annual rate of 1.6 percent, with efficiency gains and structural shifts in the economy offsetting growth in demand for energy services (Figure 42). The projected rate of decline falls between the average rate of 2.3 percent from 1970 through 1986, when energy prices increased in real terms, and the 0.7-percent rate from 1986 through

479

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

480

Energy Information Administration (EIA) - Annual Energy Outlook with  

Gasoline and Diesel Fuel Update (EIA)

with Projections to 2030 with Projections to 2030 Annual Energy Outlook 2007 with Projections to 2030 The Annual Energy Outlook 2007 presents a projection and analysis of US energy supply, demand, and prices through 2030. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2007 includes the reference case, additional cases examining energy markets, and complete documentation. The report is also released in print. Errata as of 10/15/07 Forecast Data Tables Reference Case Tables (links to individual excel and PDF files) High Economic Growth Case Tables (links to individual excel and PDF files) Low Economic Growth Case Tables (links to individual excel and PDF files) High Price Case Tables (links to individual excel and PDF files)

Note: This page contains sample records for the topic "outlook commercial demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

6) 6) February 2006 Annual Energy Outlook 2006 With Projections to 2030 February 2006 For Further Information . . . The Annual Energy Outlook 2006 (AEO2006) was prepared by the Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Acting Director, Oil and Gas Division and Senior Technical Advisor; and Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division. For ordering information and questions on other energy statistics available

482

EIA-Annual Energy Outlook 2008 (Early Release)  

Gasoline and Diesel Fuel Update (EIA)

with Projections to 2030 with Projections to 2030 Annual Energy Outlook 2008 (Early Release) The early release version of the AEO2008 reference case does not include consideration of the H.R.6, "Energy Independence and Security Act of 2007," that was signed into law on December 19, 2007. EIA is compiling a revised reference case that includes the impact of H.R.6. The Annual Energy Outlook presents a midterm projection and analysis of US energy supply, demand, and prices through 2030. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2008 Early Release includes the reference case. The full publication, to be released in early 2008, will include complete documentation and additional cases examining energy markets.

483

Annual Energy Outlook 2009: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

9) 9) March 2009 Annual Energy Outlook 2009 With Projections to 2030 For Further Information . . . The Annual Energy Outlook 2009 was prepared by the Energy Information Administration, under the direc- tion of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; A. Michael Schaal (michael.schaal@eia.doe.gov, 202/586-5590), Director, Oil and Gas Division; Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor. For ordering information and questions on other

484

Energy Information Administration (EIA) - Annual Energy Outlook with  

Gasoline and Diesel Fuel Update (EIA)

2006 with Projections to 2030 2006 with Projections to 2030 Annual Energy Outlook 2006 with Projections to 2030 The Annual Energy Outlook 2006 presents a forecast and analysis of US energy supply, demand, and prices through 2030. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2006 includes the reference case, additional cases examining energy markets, and complete documentation. Forecast Data Tables Reference Case Tables (links to individual excel and PDF files) High Macroeconomic Growth Case Tables (links to individual excel files) Low Macroeconomic Growth Case Tables (links to individual excel files) High Price Case Tables (links to individual excel files) Low Price Case Tables (links to individual excel files)

485

Energy Information Administration/Short-Term Energy Outlook - April 2005  

Gasoline and Diesel Fuel Update (EIA)

April 2005 April 2005 1 Short-Term Energy Outlook April 2005 2005 Summer Motor Gasoline Outlook (Figure 1) Gasoline prices in 2005 are projected to remain high, at an expected average of $2.28 per gallon for the April to September summer season, 38 cents above last summer. Similar high motor gasoline prices are expected through 2006. Monthly average prices are projected to peak at about $2.35 per gallon in May. Summer diesel fuel prices are expected to average $2.24 per gallon. As in 2004, the primary factor behind these price increases is crude oil costs. WTI, for example, is projected to average 37 cents per gallon higher than last summer. High world oil demand will continue to support crude oil prices and increase competition for

486

Annual Energy Outlook 2006 with Projections to 2030 - Contact Information  

Gasoline and Diesel Fuel Update (EIA)

For Further Information For Further Information Annual Energy Outlook 2006 with Projections to 2030 For Further Information . . . The Annual Energy Outlook 2006 (AEO2006) was prepared by the Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Acting Director, Oil and Gas Division and Senior Technical Advisor; and Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division.

487

Energy Information Administration/Short-Term Energy Outlook - April 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 April 2006 Short-Term Energy Outlook and Summer Fuels Outlook April 11, 2006 Release Contents Overview Global Petroleum Markets U.S. Petroleum Markets Motor Gasoline Diesel Fuel Natural Gas Markets Electricity Markets Coal Markets Overview Continued steady world oil demand growth, combined with only modest increases in world spare oil production capacity and the continuing risks of geopolitical instability, are expected to keep crude oil prices high through 2006. The price of West Texas Intermediate (WTI) crude oil is projected to average $65 per barrel in 2006 and $61 in 2007 (Figure 1. West Texas Intermediate Crude Oil Price). Retail regular gasoline prices are projected to average $2.50 per gallon in 2006 and $2.40 in

488

Annual Energy Outlook 2007: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2008 Annual Energy Outlook 2008 With Projections to 2030 DRAFT -- 6/24/2008 ***** NOT FOR RELEASE ***** For Further Information . . . The Annual Energy Outlook 2008 was prepared by the Energy Information Administration, under the direc- tion of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; A. Michael Schaal (michael.schaal@eia.doe.gov, 202/586-5590), Director, Oil and Gas Division; Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor.

489

Energy Information Administration (EIA) - Annual Energy Outlook 2007 -  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Annual Energy Outlook 2007 with Projections to 2030 For Further Information . . . The Annual Energy Outlook 2007 (AEO2007) was prepared by the Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.doe.gov, 202-586-2222), Director, Integrated Analysis and Forecasting; Paul D. Holtberg (paul.holtberg@eia.doe.gov, 202/586-1284), Director, Demand and Integration Division; Joseph A. Beamon (jbeamon@eia.doe.gov, 202/586-2025), Director, Coal and Electric Power Division; A. Michael Schaal (michael.schaal@eia.doe.gov, 202/586-5590), Director, Oil and Gas Division; Glen E. Sweetnam (glen.sweetnam@eia.doe.gov, 202/586-2188), Director, International, Economic, and Greenhouse Gases Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor.

490

Outlook for Charged Higgs Physics  

E-Print Network (OSTI)

Almost all extensions of the Standard Model predict the existence of charged Higgs bosons. This talk focuses on the minimal supersymmetric extension of the Standard Model (MSSM), which is relatively predictive. The outlook for detecting supersymmetric particles and Higgs bosons at the LHC are discussed, as are the prospects for finding indirect effects of supersymmetric Higgs bosons at low energies, e.g., in K decays. The outlook for discovering observable effects of CP-violating supersymmetric phases at high energies or in B decays is also mentioned.

John Ellis

2009-01-08T23:59:59.000Z

491

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Between 1995 and 2020, the world’s annual consumption of electricity is projected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours. The greatest increases are expected in developing Asia and in Central and South America. Primary Fuel Use The Financing of Electric Power Expansion Public Policy Reform in the Electricity Industry Regional Highlights Throughout the world, electricity is and will continue to be the fastest growing component of energy demand. Between 1995 and 2020, total world electricity demand is expected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours (Table 25). Demand growth will be slowest in the industrialized countries; but even in the advanced economies, which currently account for about 60 percent of world electricity use, absolute

492

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, total world consumption of marketed energy is projected In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. The IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-projects strong growth for worldwide energy demand from 2004 to 2030. Total world consumption of marketed energy is projected to increase from 447 quadrillion Btu in 2004 to 559 quadrillion Btu in 2015 and then to 702 quadrillion Btu in 2030-a 57-percent increase over the projection period (Table 1 and Figure 8). The largest projected increase in energy demand is for the non-OECD region. Generally, countries outside the OECD 3 have higher projected economic growth rates and more rapid population growth

493

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | International Energy Outlook 2013 Low Oil Price case projections Table E1. World total primary energy consumption by region, Low Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 122.3 128.2 132.1 135.5 140.0 146.7 0.7 United States a 94.9 97.9 97.9 101.6 102.9 103.6 105.3 108.8 0.4 Canada 13.7 13.5 14.4 15.2 16.2 17.1 17.8 18.6 1.1 Mexico/Chile 8.4 8.8 10.0 11.4 12.9 14.8 16.8 19.3 2.7 OECD Europe 80.0 82.5 83.1 88.0 91.8 94.7 97.4 100.0 0.6 OECD Asia 37.7 39.6 41.1 44.7 46.6 47.9 49.0 49.7 0.8 Japan 21.0 22.1 22.0 23.6 24.3 24.4 24.4 23.9 0.3 South Korea 10.1 10.8 12.1 13.6 14.7 15.7 16.5 17.4 1.6 Australia/NewZealand 6.7 6.7 7.0 7.5 7.6 7.9 8.1 8.4 0.8 Total OECD 234.7 242.3

494

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G5. World petroleum production by region and country, High Oil Price case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.8 35.0 33.9 34.2 36.5 39.3 42.8 45.3 0.9 Middle East 23.8 25.3 23.0 23.6 25.4 27.9 30.8 33.0 1.1 North Africa 3.8 2.4 3.3 3.0 3.1 3.2 3.6 3.7 -0.1 West Africa 4.4 4.3 4.7 4.7 5.0 5.1 5.3 5.3 0.6 South America 2.9 3.0 2.9 3.0 3.0 3.0 3.1 3.3 0.4 Non-OPEC 50.1 50.0 54.1 55.9 56.8 59.5 62.2 65.7 0.9 OECD 20.4 20.3 23.1 23.6 23.4 23.4 24.2 25.2 0.7 OECD Americas 15.2

495

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A10. World carbon dioxide emissions by region, Reference case, 2009-2040 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 6,448 6,657 6,480 6,627 6,762 6,880 7,070 7,283 0.3 United States a 5,418 5,608 5,381 5,454 5,501 5,523 5,607 5,691 0.0 Canada 548 546 551 574 593 609 628 654 0.6 Mexico/Chile 482 503 548 599 668 748 835 937 2.1 OECD Europe 4,147 4,223 4,054 4,097 4,097 4,151 4,202 4,257 0.0 OECD Asia 2,085 2,200 2,287 2,296 2,329 2,341 2,365 2,358 0.2 Japan 1,105 1,176 1,243 1,220 1,223 1,215 1,194 1,150 -0.1 South Korea 531 581 600 627 653 666 703 730 0.8 Australia/NewZealand 449 443 444 449 452 460 468 478 0.3 Total OECD 12,680

496

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections Reference case projections for natural gas production This page inTenTionally lefT blank 283 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for natural gas production Table I1. World total natural gas production by region, Reference case, 2010-2040 (trillion cubic feet) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.4 30.4 33.5 36.1 38.2 41.1 44.4 1.5 United States a 21.2 23.9 26.5 28.4 29.7 31.3 33.1 1.5 Canada 5.4 5.0 5.4 5.9 6.4 7.0 7.6 1.1 Mexico 1.8 1.5 1.6 1.6 2.1 2.8 3.5 2.3 Chile 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.7 OECD Europe 10.4 9.0 8.1 8.0 8.6 9.2 9.9 -0.2 North Europe 10.1 8.4 7.4 7.3 7.9 8.5 9.1 -0.3 South Europe 0.3 0.3 0.4 0.4 0.4 0.5 0.5 1.7 Southwest Europe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Turkey/Israel