Powered by Deep Web Technologies
Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High-Resolution Separations Technologies  

Science Conference Proceedings (OSTI)

... gas chromatography mass spectrometry (GC/MS) provides relatively high efficiency separations, the analysis of some complex, natural-matrix ...

2012-10-09T23:59:59.000Z

2

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

DOE Green Energy (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

3

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

DOE Green Energy (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

4

Application of discrete element method to the analysis of free-flow outlet of coal from high coals at underground coal mining  

Science Conference Proceedings (OSTI)

The mathematical model is developed on the basis of the Discrete Elements Method for investigation of processes of gravitational flow of the granular materials. The problem about free-flow outlet of coal from high coals in sublevel caving systems is ... Keywords: discrete element modeling, granular medium, numerical simulation, powered support, rock massif, underground coal mining

Vladimir I. Klishin; Sergey V. Klishin

2010-05-01T23:59:59.000Z

5

Production test IP-338-A, Supp. A, DR-Reactor heat decay test at high outlet water temperatures  

SciTech Connect

This test is identical to the original except that it authorizes the performance of a trial reduction in reactor flow during a prior reactor shutdown. This trial flow reduction will be performed in the same manner as proposed for the actual test, with one exception. This is, that based upon the results of this preliminary test some changes in the timing of the different steps may be indicated. Such changes can readily be handled by making each step dependent upon the observed reactor outlet temperature during the test performance. The other significant change in the production test is the increase in the allowable bulk outlet temperature from Ti + 40 {plus_minus} 3{degrees}C{sup *}. This change is needed to obtain a reasonable extrapolation of the results of tests No. 1 and No.2 to 90{degrees}C, and is justified from a hazards standpoint by the excellent flow control achieved during test No. 1 and by the trial test that will be run prior to the performance of the actual test No. 2. Other aspects of the test basis and justification are presented in the original production test.

Jones, S.S.

1962-05-18T23:59:59.000Z

6

High speed flow cytometric separation of viable cells  

SciTech Connect

Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

Sasaki, Dennis T. (Mountain View, CA); Van den Engh, Gerrit J. (Seattle, WA); Buckie, Anne-Marie (Margate, GB)

1995-01-01T23:59:59.000Z

7

High speed flow cytometric separation of viable cells  

DOE Patents (OSTI)

Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

1995-11-14T23:59:59.000Z

8

Compact high resolution isobar separator for study of exotic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact high resolution isobar separator for study of exotic decays A. Piechaczek 1 , V. Shchepunov 1 , H. K. Carter 1 J. C. Batchelder 1 , E. F. Zganjar 2 1 UNIRIB, Oak Ridge...

9

Compact high resolution isobar separator for study of exotic decays  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact high resolution isobar separator for study of Compact high resolution isobar separator for study of exotic decays A. Piechaczek 1 , V. Shchepunov 1 , H. K. Carter 1 J. C. Batchelder 1 , E. F. Zganjar 2 1 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN 37830 2 Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 A compact isobar separator, based on the Multi-Pass-Time-of-Flight (MTOF) principle, is developed [1]. A mass resolving power (MRP) as spectrometer of 110,000 (FWHM) is achieved in Time-of-Flight spectra of N 2 molecules (no physical ion separation) after 300 laps or ToF = 9.7 ms. Operated as a separator [2], molecules of N 2 and CO with ∆M/M = 1/2500 or 10.433 MeV are separated with a Bradbury Nielsen electrostatic ion gate, and the MRP (FWHM) is about 40,000 after 120 laps. In the separator as well as in

10

Separator Design for Use in High GVF Multiphase Flow  

E-Print Network (OSTI)

The requirement of bringing an outside coolant source to run through the seals of a multiphase pump has always been a costly endeavor. Using a separator to extract liquid from the exhaust of the pump to use as a coolant is often more expensive than providing an outside source of coolant. This research proposes a cost effective separator design which efficiently separates the liquid from gas, while maintaining a high enough residence time to remove any gas entrainment, and separates only the seal flush requirement by letting any excess liquids carryover with the gas. Conventional multiphase separators operate by substantially decreasing the velocity of the mixture, which reduces the drag force put forth by the gasses and allows gravity to force the liquids downward. Gas-Liquid Cylindrical Cyclones (GLCCs) operate by increasing the velocity of the mixture, using radial force to separate liquids and gasses. This technique requires a smaller diameter vessel to achieve separation. The separator in this research uses gravity as the separation force while maintaining a pipe diameter similar to the GLCC. This way, only standard pipe and pipe fittings are used. The effectiveness of this design is measured two ways. First, efficiency is studied at varying gas volume fractions (GVFs), velocities, pressures, and pipe diameters. Second, the length of air entrainment (LAE) is measured at the same varying conditions. The efficiency and air entrainment studies provide design recommendations to accommodate seal flush requirements and size limitations. The following investigation also offers further areas of research to improve the understanding and modeling of using standard pipe and pipe fittings to create more effective design equations.

Cihak, Daniel

2012-08-01T23:59:59.000Z

11

Amorphous Alloy Membranes for High Temperature Hydrogen Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

for High for High Temperature Hydrogen Separations Background Coal and biomass are readily available in the United States and can be mixed for thermal processing to produce hydrogen and power. The produced hydrogen can be sent directly to a fuel cell for highly efficient and environmentally clean power generation. For coal and biomass to become economically viable sources of hydrogen, more efficient production processes need to be developed. To meet this

12

In-Plant Testing of High-Efficiency Hydraulic Separators  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

2006-06-30T23:59:59.000Z

13

IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

2006-05-22T23:59:59.000Z

14

A High Pressure Carbon Dioxide Separation Process for IGCC Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Carbon Dioxide Separation Process for IGCC Plants High Pressure Carbon Dioxide Separation Process for IGCC Plants 1 A High Pressure Carbon Dioxide Separation Process for IGCC Plants S.S. Tam 1 , M.E. Stanton 1 , S. Ghose 1 , G. Deppe 1 , D.F. Spencer 2 , R.P. Currier 3 , J.S. Young 3 , G.K. Anderson 3 , L.A. Le 3 , and D.J. Devlin 3 1 Nexant, Inc. (A Bechtel Technology & Consulting Company) 45 Fremont St., 7 th Fl., San Francisco, CA 94506 2 SIMTECHE 13474 Tierra Heights Road, Redding, CA 96003 3 Los Alamos National Laboratory P.O. Box 1663 (MS J567), Los Alamos, NM 87545 1.0 INTRODUCTION Under separate contracts from the U.S. Department of Energy, Office of Fossil Energy (DOE- FE), Los Alamos National Laboratory, and a team of SIMTECHE and Nexant (a Bechtel Technology and Consulting Company) are jointly working to develop the proprietary process for

15

Separation of High Order Harmonics with Fluoride Windows  

SciTech Connect

The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

2010-08-02T23:59:59.000Z

16

Metal-Organic Frameworks for Highly Selective Separations  

Science Conference Proceedings (OSTI)

This grant was focused on the study of metal-organic frameworks with these specific objectives. (1) To examine the use of MOFs with well-defined open metal sites for binding of gases and small organics. (2) To develop a strategy for producing MOFs that combine large pore size with high surface area for their use in gas adsorption and separation of polycyclic organic compounds. (3) To functionalize MOFs for the storage of inert gases such as methane. A brief outline of our progress towards these objectives is presented here as it forms part of the basis for the ideas to be developed under the present proposal.

Omar M. Yaghi

2009-09-28T23:59:59.000Z

17

High-Voltage Power Supply System for Laser Isotope Separation  

SciTech Connect

This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs.

Ketaily, E.C.; Buckner, R.P.; Uhrik, R.L.

1979-06-26T23:59:59.000Z

18

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

19

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

DOE Green Energy (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10¢/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nation’s energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

20

Modeling high gradient magnetic separation from biological fluids.  

SciTech Connect

A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support material. This support material proved to separate CO{sub 2} when combined with O{sub 2} at a flux of 0.194 ml/min {center_dot} cm{sup 2} at 850 C. It was also observed that, because LSCF is a mixed conductor (conductor of both electrons and oxygen ions), the support was able to provide its own oxygen to facilitate separation of CO{sub 2}. Without feeding O{sub 2}, the LSCF dual phase membrane produced a maximum CO{sub 2} flux of 0.246 ml/min {center_dot} cm{sup 2} at 900 C.

Jerry Lin

2007-06-30T23:59:59.000Z

22

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Jerry Y.S. Lin Jerry Y.S. Lin Chemical Engineering Arizona State University Tempe, AZ 85287 Jerry.lin@asu.edu Pre-Combustion Carbon Dioxide Capture by a New Dual-Phase Ceramic-Carbonate Membrane Reactor 2 Background 3 CO 2 Capture Methods and Efficiency Improvement Coal, Natural gas, Biomass CO 2 separation Power plant CO 2 compression, conditioning for sequestration Gasification Reforming Shift CO 2 Separation Power plant Power plant Air separation N 2 /O 2 CO 2 Post- combustion H 2 /CO H 2 /CO H 2 CO 2 H 2 O/N 2 /O 2 CO 2 H 2 Pre- combustion Air N 2 O 2 or O 2 /CO 2 CO 2 Oxyfuel Combustion Air separation Air Air separation Air Air separation Air Air Air Air Air separation Air Air separation Air N 2 Air separation Air O 2 or O 2 /CO 2 N 2 Air separation Air N 2 Air O 2 or O 2 /CO 2 N 2 Air Air separation N 2 Air 4 Water-Gas-Shift Reaction and Membrane Reactor Reforming

23

Dual Phase Membrane for High Temperature CO2 Separation  

SciTech Connect

Dual-phase membranes consisting of stainless steel supports infiltrated with molten carbonate have been shown to be selective to CO{sub 2} at high temperatures (400-650 C). However, over time at high temperatures, the formation of iron oxides on the surface of the stainless steel supports render the membranes ineffective. This report details synthesis and characteristics of dual-phase carbonate membrane with an oxidation resistant perovskite type ceramic (lanthanum-strontium-cobaltite-iron; LSCF) support. Porous LSCF supports were prepared from its powder synthesized by the citrate method. Both steady state permeation and mercury porosimetry confirmed that the LSCF membrane sintered at 900 C has pores large enough to absorb molten carbonate, yet small enough to retain the molten carbonate under high pressure conditions. Results of XRD analysis have shown that LSCF and the molten carbonate mixture do not react with each other at temperatures below 700 C. Four-point method conductivity tests indicate that the support material has sufficiently high electronic conductivity for this application. Li-Na-K carbonate was coated to the porous LSCF support by a liquid infiltration method. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. Preliminary high temperature permeation experiments indicate that the membrane does separate CO{sub 2} in the presence of O{sub 2}, with a maximum flux of 0.623 ml/cm{sup 2} {center_dot} min obtained at 850 C.

Jerry Y.S. Lin; Matthew Anderson

2006-09-29T23:59:59.000Z

24

Application of high temperature superconductors to high-gradient magnetic separation  

Science Conference Proceedings (OSTI)

High Gradient Magnetic Separation (HGMS) is a powerful technique which can be used to separate widely dispersed contaminants from a host material, This technology can separate magnetic solids from other solids, liquids or gases. As the name implies HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles. HGMS separators usually consist of a high-field solenoid magnet, the bore of which contains a fine-structured, ferromagnetic matrix material. The matrix material locally distorts the magnetic field and creates large field gradients in the vicinity of the matrix elements. These elements then become trapping sites for magnetic particles and are the basis for the magnetic separation. In this paper we discuss the design and construction of a prototype HGMS unit using a magnet made with high temperature superconductors (HTS). The prototype consists of an outer vacuum vessel which contains the HTS solenoid magnet The magnet is surrounded by a thermal radiation shield and multilayer insulation (MLI) blankets. The magnet, thermal shield and current leads all operate in a vacuum and are cooled by a cryocooler. High temperature superconducting current leads are used to reduce the heat leak from the ambient environment to the HTS magnet.

Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Worl, L.W.; Schake, A.R.; Padilla, D.D.

1994-06-01T23:59:59.000Z

25

Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen  

SciTech Connect

The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by the introduction of carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the gains were often at the expense of analysis speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 98.4% H2. Such compositions raise the mobilities of all ions and thus resolving power, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases of resolving power and ensuing peak resolution are especially significant at the greatest H2 fractions - above {approx}80 - 90%. Higher resolution can be exchanged for acceleration of the analyses by up to {approx}20 times. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes.

Shvartsburg, Alexandre A.; Smith, Richard D.

2011-11-10T23:59:59.000Z

26

DUAL PHASE MEMBRANE FOR HIGH TEMPERATURE CO2 SEPARATION  

SciTech Connect

This project is intended to expand upon the previous year's research en route to the development of a sustainable dual phase membrane for CO{sub 2} separation. It was found that the pores within the supports had to be less than 9 {micro}m in order to maintain the stability of the dual phase membrane. Pores larger than 9 {micro}m would be unable to hold the molten carbonate phase in place, rendering the membrane ineffective. Calculations show that 80% of the pore volume of the 0.5 media grade metal support was filled with the molten carbonate. Information obtained from EDS and SEM confirmed that the molten carbonate completely infiltrated the pores on both the contact and non-contact size of the metal support. Permeation tests for CO{sub 2} and N{sub 2} at 450-750 C show very low permeance of those two gases through the dual phase membrane, which was expected due to the lack of ionization of those two gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased quite rapidly, while predictions showed that permeance should have continued to increase. XRD data obtained form the surface of the membrane indicated the formation of lithium iron oxides on the support. This layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture, limiting the formation of the ionic species. These results indicate that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation has created the need for an oxidation resistant support, which can be gained by the use of a ceramic-type membrane. Future research efforts will be directed towards preparation of a new ceramic-carbonate dual phase membrane. The membrane will based on an oxide ceramic support that has an oxidation resistance better than the metal support and high electronic conductivity (1200-1500 S/cm) in the interested temperature range (400-600 C).

Jerry Y.S. Lin; Seungjoon Chung; Matthew Anderson

2005-12-01T23:59:59.000Z

27

Dual-phase membrane for High temperature CO2 separation  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CO 2 High temp. membrane for CO 2 removal High Temperature CO 2 Selective Membranes Syngas gas CO 2 enriched gas CO 2 High pressure H 2 0 100 200 300 400 500 600 700 1 10 100...

28

High-power semiconductor separate-confinement double heterostructure lasers  

Science Conference Proceedings (OSTI)

The review is devoted to high-power semiconductor lasers. Historical reference is presented, physical and technological foundations are considered, and the concept of high-power semiconductor lasers is formulated. Fundamental and technological reasons limiting the optical power of a semiconductor laser are determined. The results of investigations of cw and pulsed high-power semiconductor lasers are presented. Main attention is paid to inspection of the results of experimental studies of single high-power semiconductor lasers. The review is mainly based on the data obtained in the laboratory of semiconductor luminescence and injection emitters at the A.F. Ioffe Physicotechnical Institute. (review)

Tarasov, I S [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

2010-10-15T23:59:59.000Z

29

Phase Separation and Intermetallic Formation in "High-entropy" Alloys  

Science Conference Proceedings (OSTI)

In AlCoCrFeNi HEA, high-temperature neutron diffraction indicates A2-B2 phase ... Shared Research Equipment (ShaRE) and Spallation Neutron Source (SNS) ...

30

Reduction and Separation of High Iron Content Manganese Ore and ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

31

Recovery and separation of high-value plastics from discarded household appliances  

DOE Green Energy (OSTI)

Argonne National Laboratory is conducting research to develop a cost- effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated individual high purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high- impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal-recovery operations. The process consists of size-reduction steps for the commingled plastics, followed by a series of gravity-separation techniques to separate plastic materials of different densities. Individual plastics of similar densities, such as ABS and HIPS, are further separated by using a chemical solution. By controlling the surface tension, the density, and the temperature of the chemical solution we are able to selectively float/separate plastics that have different surface energies. This separation technique has proven to be highly effective in recovering high-purity plastics materials from discarded household appliances. A conceptual design of a continuous process to recover high-value plastics from discarded appliances is also discussed. In addition to plastics separation research, Argonne National Laboratory is conducting research to develop cost-effective techniques for improving the mechanical properties of plastics recovered from appliances.

Karvelas, D.E.; Jody, B.J.; Poykala, J.A. Jr.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Systems Div.; Arman, B. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Praxair, Inc., Tarrytown, NY (United States)

1996-03-01T23:59:59.000Z

32

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates and then characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane fabrication; Characterization of composite membrane; and Development of theoretical model for hydrogen gas separation. The experimental procedures are described.

Ilias, S.; King, F.G.; Su, N.

1994-10-01T23:59:59.000Z

33

Ion current detector for high pressure ion sources for monitoring separations  

DOE Patents (OSTI)

The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

1996-08-13T23:59:59.000Z

34

Ion current detector for high pressure ion sources for monitoring separations  

DOE Patents (OSTI)

The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

Smith, Richard D. (Richland, WA); Wahl, Jon H. (Richland, WA); Hofstadler, Steven A. (Richland, WA)

1996-01-01T23:59:59.000Z

35

Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules  

SciTech Connect

Four porous isostructural mixed-metal-organic frameworks (M'MOFs) have been synthesized and structurally characterized. The pores within these M'MOFs are systematically tuned by the interplay of both the metalloligands and organic ligands which have enabled us not only to direct their highly selective separation of chiral alcohols 1-phenylethanol (PEA), 2-butanol (BUT), and 2-pentanol (2-PEN) with the highest ee up to 82.4% but also to lead highly selective separation of achiral C{sub 2}H{sub 2}/C{sub 2}H{sub 4} separation. The potential application of these M'MOFs for the fixed bed pressure swing adsorption (PSA) separation of C{sub 2}H{sub 2}/C{sub 2}H{sub 4} has been further examined and compared by the transient breakthrough simulations in which the purity requirement of 40 ppm in the outlet gas can be readily fulfilled by the fixed bed M'MOF-4a adsorber at ambient conditions.

Madhab, Das [University of Texas at San Antonio (UTSA); He, Yabing [University of Texas at San Antonio (UTSA); Kim, Jaheon [Soongsil University, Korea; Guo, Qunsheng [University of Texas at San Antonio (UTSA); Zhao, Cong-Gui [University of Texas at San Antonio (UTSA); Hong, Kunlun [ORNL; Xiang, Sheng-Chang [University of Texas at San Antonio (UTSA); Zhang, Zhangjing [University of Texas at San Antonio (UTSA); Thomas, K Mark [University of Newcastle upon Tyne; Krishna, Rajamani [Universitate Amsterdam; Chen, Banglin [University of Texas at San Antonio (UTSA)

2012-01-01T23:59:59.000Z

36

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility  

E-Print Network (OSTI)

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field about the ion geometry, potentially enabling a new approach to molecular structure characterization

Clemmer, David E.

37

Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry  

SciTech Connect

Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

2010-10-01T23:59:59.000Z

38

Separation of strontium-90 from Hanford high-level radioactive waste  

SciTech Connect

Current guidelines for disposing of high-level radioactive wastes stored in underground tanks at the US Department of Energy`s Hanford Site call for vitrifying high-level waste (HLW) in borosilicate glass and disposing the glass canisters in a deep geologic repository. Disposition of the low-level waste (LLW) is yet to be determined, but it will likely be immobilized in a glass matrix and disposed of on site. To lower the radiological risk associated with the LLW form, methods are being developed to separate {sup 90}Sr from the bulk waste material so this isotope can be routed to the HLW stream. A solvent extraction method is being investigated to separate {sup 90}Sr from acid-dissolved Hanford tank wastes. Results of experiments with actual tank waste indicate that this method can be used to achieve separation of {sup 90}Sr from the bulk waste components. Greater than 99% of the {sup 90}Sr was removed from an acidic dissolved sludge solution by extraction with di-tbutylcyclohexano-18-crown-6 in 1-octanol (the SREX process). The major sludge components were not extracted.

Lumetta, G.J.; Wagner, M.J.; Jones, E.O.

1993-10-01T23:59:59.000Z

39

Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications  

DOE Green Energy (OSTI)

Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1, and the H2/CO2 separation selectivity was 47. Above 673 K, the silylated membrane catalyzed reverse water gas shift reaction and still separated H2 with high selectivity; and it was thermally stable. However, silylation decreased H2 permeance more than one order of magnitude. Increasing the membrane feed pressure increased the H2 flux and the H2 mole fraction in the permeate stream for both H2/CO2 and H2/CH4 mixtures. The H2 separation performance of the silylated B-ZSM-5 membranes depended on the initial membrane quality and acidity, as well as the silane precursors. Another approach used in this study is optimizing the synthesis of small-pore SAPO-34 (CHA) membranes and/or modifying SAPO-34 membranes by silylation or ion exchange. For SAPO-34 membranes, strong CO2 adsorption inhibited H2 adsorption and decreased H2 permeances, especially at low temperatures. At 253 K, CO2/H2 separation selectivities of a SAPO-34 membrane were greater than 100 with CO2 permeances of about 3 x 10-8 mol{center_dot}m-2{center_dot}s-1{center_dot}Pa-1. The high reverse-selectivity of the SAPO-34 membranes can minimize H2 recompression because H2 remained in the retentate stream at a higher pressure. The CO2/H2 separation selectivity exhibited a maximum with CO2 feed concentration possibly caused by a maximum in the CO2/H2 sorption selectivity with increased CO2 partial pressure. The SAPO-34 membrane separated H2 from CH4 because CH4 is close to the SAPO-34 pore size so its diffusivity (ABSTRACT TRUNCATED)

Mei Hong; Richard Noble; John Falconer

2007-09-24T23:59:59.000Z

40

Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production  

DOE Green Energy (OSTI)

The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of the separators. The project identified an experimental methodology for quantifying the impact of gas contaminants on PdCu alloy membrane performance as well as an atomistic modeling approach to screen metal alloys for their resistance to irreversible sulfur corrosion. Initial mathematical descriptions of the effect of species such as CO and H{sub 2}S were developed, but require further experimental work to refine. At the end of the project, an improvement to the experimental approach for acquiring the necessary data for the permeability model was demonstrated in preliminary tests on an enhanced PdCu separator. All of the key DOE 2010 technical targets were met or exceeded except for the hydrogen flux. The highest flux observed for the project, 125 ft{sup 3}ft{sup -2}h{sup -1}, was obtained on a single tube separator with the aforementioned enhanced PdCu separator with a hydrogen feed pressure of 185 psig at 500 C.

Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) for highly selective separations  

SciTech Connect

Metal-organic and zeolite imidazolate frameworks (MOFs and ZIFs) have been investigated for the realization as separation media with high selectivity. These structures are held together with strong bonds, making them architecturally, chemically, and thermally stable. Therefore, employing well designed building units, it is possible to discover promising materials for gas and vapor separation. This grant was focused on the study of MOFs and ZIFs with these specific objectives: (i) to develop a strategy for producing MOFs and ZIFs that combine high surface areas with active sites for their use in gas adsorption and separation of small organic compounds, (ii) to introduce active sites in the framework by a post-synthetic modification and metalation of MOFs and ZIFs, and (iii) to design and synthesize MOFs with extremely high surface areas and large pore volumes to accommodate large amounts of guest molecules. By the systematic study, this effort demonstrated how to introduce active functional groups in the frameworks, and this is also the origin of a new strategy, which is termed isoreticular functionalization and metalation. However, a large pore volume is still a prerequisite feature. One of the solutions to overcome this challenge is an isoreticular expansion of a MOF�������¢����������������s structure. With triangular organic linker and square building units, we demonstrated that MOF-399 has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and it has the highest porosity (94%) and lowest density (0.126 g cm-3) of any MOF reported to date. MOFs are not just low density materials; the guest-free form of MOF-210 demonstrates an ultrahigh porosity, whose BET surface area was estimated to be 6240 m2 g-1 by N2 adsorption measurements.

Omar M. Yaghi

2012-09-17T23:59:59.000Z

42

High-Performance Palladium Based Membrane for Hydrogen Separation and Purification  

Science Conference Proceedings (OSTI)

The mission of the DOE's Fuel Cell Technologies'�Hydrogen Fuels R&D effort is to research, develop, and validate technologies for producing, storing, and delivering hydrogen in an efficient, clean, safe, reliable, and affordable manner. A key program technical milestone for hydrogen technology readiness is to produce hydrogen from diverse, domestic resources at $2.00-$3.00 per gallon of gasoline equivalent (gge) delivered, untaxed. Low-cost, high-temperature hydrogen separation membranes represent a key enabling technology for small-scale distributed hydrogen production units. Availability of such membranes with high selectivity and high permeability for hydrogen will allow their integration with hydrocarbon reforming and water gas shift reactions, potentially reducing the cost of hydrogen produced. Pd-metal-based dense membranes are known for their excellent hydrogen selectivity and permeability characteristics, however, utilization of these membranes has so far been limited to small scale niche markets for hydrogen purification primarily due to the relatively high cost of Pd-alloy tubes compared to pressure swing adsorption (PSA) units. This project was aimed at development of thin-film Pd-alloy membranes deposited on Pall Corporation's DOE-based AccuSep® porous metal tube substrates to form a composite hydrogen separation membrane for these applications. Pall's composite membrane development addressed the typical limitations of composite structures by developing robust membranes capable of withstanding thermal and mechanical stresses resulting from high temperature (400C), high pressure (400 psi steam methane reformer and 1000 psi coal) operations and thermal cycling involved in conventional hydrogen production. In addition, the Pd-alloy membrane composition was optimized to be able to offer the most stability in the typical synthesis gas environments produced by reforming of natural gas and bio-derived liquid fuels (BILI) validating the technical effectiveness and economic feasibility of the technology demonstrated. Results from this research added technology and product design information that offers the potential to significantly advance the commercial viability of hydrogen production.

Scott Hopkins

2012-01-31T23:59:59.000Z

43

Separation of Highly Complex Mixtures by Two-Dimension Liquid Chromatography  

SciTech Connect

This report summarizes the progress made on the title project during the grant period. We developed a new classification of two-dimensional separations based on the observation that separations can be made in time or in space. Thus, two-dimensional separations can be made in time×time, space×space, space×time, or time×space. The two successive separations must use two different modes of chromatography that afford uncorrelated or weakly correlated patterns of retention factors for the components of the samples analyzed. Our attention was mainly focused on the separation of protein digests, particularly, on those of the digests of myoglobin and bovine serum albumin as model systems and extremely efficient temporal separations were developed. We also designed and constructed new instruments to carry out space×space separations (True Bidimensional Chromatography, HPLC2 or spacial separations) and time×space separations (a new hybrid combination of a temporal and a spacial separation that we designed).

Georges Guiochon

2009-12-11T23:59:59.000Z

44

Low-Rank Separated Representation Surrogates of High-Dimensional Stochastic Functions: Application in Bayesian Inference  

E-Print Network (OSTI)

This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.

AbdoulAhad Validi

2013-06-23T23:59:59.000Z

45

Low-Rank Separated Representation Surrogates of High-Dimensional Stochastic Functions: Application in Bayesian Inference  

E-Print Network (OSTI)

This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector valued sep...

Validi, AbdoulAhad

2013-01-01T23:59:59.000Z

46

Development of Brazing Technology for Use in High- Temperature Gas Separation Equipment  

DOE Green Energy (OSTI)

The development of high-temperature electrochemical devices such as oxygen and hydrogen separators, fuel gas reformers, solid oxide fuel cells, and chemical sensors is part of a rapidly expanding segment of the solid state technology market. These devices employ an ionic conducting ceramic as the active membrane that establishes the electrochemical potential of the device, either under voltage (i.e. to carry out gas separation) or under chemical gradient (to develop an electrical potential and thereby generate electrical power). Because the device operates under an ionic gradient that develops across the electrolyte, hermiticity across this layer is paramount. That is, not only must this thin ceramic membrane be dense with no interconnected porosity, but it must be connected to the rest of the device, typically constructed from a heat resistant alloy, with a high-temperature, gas-tight seal. A significant engineering challenge in fabricating these devices is how to effectively join the thin electrochemically active membrane to the metallic body of the device such that the resulting seal is hermetic, rugged, and stable during continuous high temperature operation. Active metal brazing is the typical method of joining ceramic and metal engineering components. It employs a braze alloy that contains one or more reactive elements, often titanium, which will chemically reduce the ceramic faying surface and greatly improve its wetting behavior and adherence with the braze. However, recent studies of these brazes for potential use in fabricating high-temperature electrochemical devices revealed problems with interfacial oxidation and subsequent joint failure [1,2]. Specifically, it was found that the introduction of the ceramic electrolyte and/or heat resistant metal substrate dramatically affects the inherent oxidation behavior of the braze, often in a deleterious manner. These conclusions pointed to the need for an oxidation resistant, high-temperature ceramic-to-metal braze and consequently lead to the development of the novel reactive air brazing (RAB) concept. The goal in RAB is to reactively modify one or both oxide faying surfaces with an oxide compound dissolved in a molten noble metal alloy such that the newly formed surface is readily wetted by the remaining liquid filler material. In many respects, this concept is similar to active metal brazing, except that joining can be conducted in air and the final joint will be resistant to oxidation at high temperature. Potentially, there are a number of metal oxide-noble metal systems that can be considered for RAB, including Ag-CuO, Ag-V2O5, and Pt-Nb2O5. Our current interest is in determining whether the Ag-CuO system is suitable for air brazing functional ceramic-to-metal joints such as those needed in practical electrochemical devices. In a series of studies, the wetting behavior of the Ag-CuO braze was investigated with respect to a number of potential hydrogen separation, oxygen separation, and fuel cell electrolyte membrane materials and heat resistant metal systems, including: alumina, (La0.6Sr0.4)(Co0.2Fe0.8)O3, (La0.8Sr0.2)FeO3, YSZ, fecralloy, and Crofer-22APU. Selected findings from these studies as well as from our work on joint strength and durability during high-temperature exposure testing will be discussed.

Weil, K.S.; Hardy, J.S.; Kim, J.Y.

2003-04-23T23:59:59.000Z

47

Apparatus for separating and recovering hydrogen isotopes  

DOE Patents (OSTI)

An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

Heung, Leung K. (Aiken, SC)

1994-01-01T23:59:59.000Z

48

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

DOE Green Energy (OSTI)

This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

Curtis Smith; Scott Beck; Bill Galyean

2005-09-01T23:59:59.000Z

49

HIGH POWER TEST OF RF SEPARATOR FOR 12 GEV UPGRADE OF CEBAF AT JLAB  

Science Conference Proceedings (OSTI)

CEBAF at JLab is in the process of an energy upgrade from 6 GeV to 12 GeV. The existing setup of the RF separator cavities in the 5th pass will not be adequate to extract the highest energy (11 GeV) beam to any two existing halls (A, B or C) while simultaneously delivering to the new hall D in the case of the proposed 12 GeV upgrade of the machine. To restore this capability, we are exploring the possibility of extension of existing normal conducting 499 MHz TEM-type rf separator cavities. Detailed numerical studies suggest that six 2-cell normal conducting structures meet the requirements; each 2-cell structure will require up to 4 kW RF input power in contrast with the current nominal operating power of 1.0 to 2.0 kW. A high power test of 4 kW confirms that the cavity meet the requirement.

S. Ahmed, M. Wissmann, J. Mammosser, C. Hovater, M. Spata, G. Krafft, J. Delayen

2012-07-01T23:59:59.000Z

50

Method for the separation of high impact polystyrene (HIPS) and acrylonitrile butadiene styrene (ABS) plastics  

DOE Patents (OSTI)

An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.

Jody, Bassam J. (Chicago, IL); Arman, Bayram (Amherst, NY); Karvelas, Dimitrios E. (Downers Grove, IL); Pomykala, Jr., Joseph A. (Crest Hill, IL); Daniels, Edward J. (Oak Lawn, IL)

1997-01-01T23:59:59.000Z

51

Force interaction of high pressure glow discharge with fluid flow for active separation control  

SciTech Connect

Radio frequency based discharges at atmospheric pressures are the focus of increased interest in aerodynamics because of the wide range of potential applications including, specifically, actuation in flows at moderate speeds. Recent literature describing promising experimental observations, especially on separation control, has spurred efforts in the development of parallel theoretical modeling to lift limitations in the current understanding of the actuation mechanism. The present effort demonstrates higher fidelity first-principle models in a multidimensional finite-element framework to predict surface discharge-induced momentum exchange. The complete problem of a dielectric barrier discharge at high pressure with axially displaced electrodes is simulated in a self-consistent manner. Model predictions for charge densities, the electric field, and gas velocity distributions are shown to mimic trends reported in the experimental literature. Results show that a residual of electrons remains deposited on the dielectric surface downstream of the exposed powered electrode for the entire duration of the cycle and causes a net electric force in the direction from the electrode to the downstream surface. For the first time, results document the mitigation process of a separation bubble formed due to flow past a flat plate inclined at 12 degree sign angle of attack. This effort sets the basis for extending the formulation further to include polyphase power input in multidimensional settings, and to apply the simulation method to flows past common aerodynamic configurations.

Roy, Subrata; Gaitonde, Datta V. [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States); Computational Sciences Branch, Air Vehicles Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States)

2006-02-15T23:59:59.000Z

52

Extreme Chromatography: Faster, Hotter, SmallerChapter 5 High-efficiency Liquid Chromatography Separations Achieved by Monolithic Silica Columns  

Science Conference Proceedings (OSTI)

Extreme Chromatography: Faster, Hotter, Smaller Chapter 5 High-efficiency Liquid Chromatography Separations Achieved by Monolithic Silica Columns Methods and Analyses eChapters Methods - Analyses Books AOCS Press Downloada

53

Char separator  

DOE Patents (OSTI)

Particulates removed from the flue gases produced in a fluidized-bed furnace are separated into high-and low-density portions. The low-density portion is predominantly char, and it is returned to the furnace or burned in a separate carbon burnup cell. The high-density portion, which is predominantly limestone products and ash, is discarded or reprocessed. According to another version, the material drained from the bed is separated, the resulting high-and low-density portions being treated in a manner similar to that in which the flue-gas particulates are treated.

Matthews, Francis T. (Poquonock, CT)

1979-01-01T23:59:59.000Z

54

Remote-Controllable Power Outlet System for Home Power Management  

Science Conference Proceedings (OSTI)

In this paper we describe the Wireless Power-Controlled Outlet Module (WPCOM) with a scalable mechanism for home power management which we have developed. The WPCOM integrates the multiple AC power sockets and a simple low-power microcontroller into ...

Chia-Hung Lien; Ying-Wen Bai; Ming-Bo Lin

2007-11-01T23:59:59.000Z

55

Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor  

Science Conference Proceedings (OSTI)

This paper presents an overview of the engineering methods, models, and results used in an evaluation for locating a hydrogen production facility near a proposed next-generation nuclear power plant. Standard probabilistic safety assessment methodologies were used to answer the risk-related questions for a combined nuclear and chemical facility: what can go wrong? how likely is it to happen? and what are the consequences of it happening? As part of answering these questions, a model was developed suitable for determining the distances separating a hydrogen-production process and nuclear plant structures. The objective of the model-development and analysis is to answer key safety questions relating to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic efficiency standpoint, close proximity of the two facilities is beneficial. Safety and regulatory implications, however, force the separation to be increased, perhaps substantially. The likelihood of obtaining a permit to construct and build such as facility in the United States without answering these safety questions is uncertain. The quantitative analysis performed and described in this paper offers a scoping mechanism to determine key parameters relating to the development of a nuclear-based hydrogen production facility. The calculations indicate that when the facilities are less than 100 m apart, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications (blast-deflection barriers, for example) could significantly reduce risk and should be further explored as design of the hydrogen production facility evolves.

Curtis Smith; Scott Beck; William Galyean

2006-06-01T23:59:59.000Z

56

MHK Projects/Wax Lake Outlet | Open Energy Information  

Open Energy Info (EERE)

Wax Lake Outlet Wax Lake Outlet < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6455,"lon":-91.394,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

57

Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers  

DOE Patents (OSTI)

A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

Pinnau, Ingo (Palo Alto, CA); Lokhandwala, Kaaeid (Menlo Park, CA); Nguyen, Phuong (Fremont, CA); Segelke, Scott (Mountain View, CA)

1997-11-18T23:59:59.000Z

58

Palladium/Copper Alloy Composite Membranes for High Temperature Hydrogen Separation  

DOE Green Energy (OSTI)

This report summarizes progress made during the a three year University Coal Research grant (DEFG26-03NT41792) at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2006. We made excellent progress toward our goal of contributing to the development of high productivity, sulfur tolerant composite metal membranes for hydrogen production and membrane reactors. Composite Pd and Pd alloy metal membranes with thin metal films (1-7 {micro}m) were prepared on porous stainless steel and ceramic supports that meet or exceed the DOE 2010 and 2015 pure hydrogen flux targets at differential pressure of only 20 psi. For example, a 2 {micro}m pure Pd membrane on a Pall AccuSep{reg_sign} substrate achieved an ideal H{sub 2}/N{sub 2} separation factor of over 6000, with a pure hydrogen flux of 210 SCFH/ft{sup 2} at only 20 psig feed pressure. Similar performance was achieved with a Pd{sub 80}Au{sub 20} composite membrane on a similar stainless steel substrate. Extrapolating the pure hydrogen flux of this PdAu membrane to the DOE Fossil Energy target conditions of 150 psia feed pressure and 50 psia permeate pressure gives a value of 508 SCFH/ft{sup 2}, exceeding the 2015 target. At these thicknesses, it is the support cost that will dominate the cost of a large scale module. In a direct comparison of FCC phase PdCu and PdAu alloys on identical supports, we showed that a Pd{sub 85}Au{sub 15} (mass %) alloy membrane is not inhibited by CO, CO{sub 2}, or steam present in a water-gas shift feed mixture at 400 C, has better resistance to sulfur than a Pd{sub 94}Cu{sub 6} membrane, and has over twice the hydrogen permeance.

J. Douglas Way; Paul M. Thoen

2006-08-31T23:59:59.000Z

59

Hydrogen Selective Inorganic membranes for Gas Separations under High Pressure Intermediate Temperature Hydrocarbonic Envrionment  

DOE Green Energy (OSTI)

In this project, we have successfully developed a full scale commercially ready carbon molecular sieve (CMS) based membrane for applications in H{sub 2} recovery from refinery waste and other aggressive gas streams. Field tests at a refinery pilot plant and a coal gasification facility have successfully demonstrated its ability to recovery hydrogen from hydrotreating and raw syngas respectively. High purity H{sub 2} and excellent stability of the membrane permeance and selectivity were obtained in testing conducted over >500 hours at each site. The results from these field tests as well as laboratory testing conclude that the membranes can be operated at high pressures (up to 1,000 psig) and temperatures (up to 300 C) in presence of aggressive contaminants, such as sulfur and nitrogen containing species (H{sub 2}S, CO{sub 2}, NH{sub 3}, etc), condensable hydrocarbons, tar-like species, heavy metals, etc. with no observable effect on membrane performance. By comparison, similar operating conditions and/or environments would rapidly destroy competing membranes, such as polymeric, palladium, zeolitic, etc. Significant cost savings can be achieved through recovering H{sub 2} from refinery waste gas using this newly developed CMS membrane. Annual savings of $2 to 4MM/year (per 20,000 scfd of waste gas) can be realized by recovering the H{sub 2} for reuse (versus fuel). Projecting these values over the entire US market, potential H{sub 2} savings from refinery waste gases on the order of 750 to 1,000MM scfd and $750 to $1,000MM per year are possible. In addition to the cost savings, potential energy savings are projected to be ca. 150 to 220 tBTU/yr and CO{sub 2} gas emission reductions are projected to be ca. 5,000 to 6,500MMtons/year. The full scale membrane bundle developed as part of this project, i.e., 85 x 30 inch ceramic membrane tubes packaged into a full ceramic potting, is an important accomplishment. No comparable commercial scale product exists in the inorganic membrane field. Further, this newly developed full scale bundle concept can be extended to other thin film inorganic membrane technology (Pd, zeolite, etc), providing a potential commercialization pathway for these membrane materials that demonstrate high potential in a variety of separation applications yet remain a laboratory 'novelty' for lack of a full scale support. Overall, the project has been highly successful and all of the project objectives have been met. We have developed the first of its kind commercial scale carbon molecular sieve membrane and demonstrated its performance in field testing under aggressive operating conditions and in the presence of chemical contaminants that would rapidly destroy alternative organic and inorganic membranes. This innovative membrane permits H{sub 2} recovery from gas streams that up until now have not been successfully treated with membrane or conventional technology. Our end user participant is currently pursuing the field demonstration of this membrane for hydrogen recovery at its refinery site.

Rich Ciora; Paul KT Liu

2012-06-27T23:59:59.000Z

60

High flux ceramic membrane for hydrogen separation. Final technical progress report  

DOE Green Energy (OSTI)

Fuel cells that convert hydrogen to electricity will play an increasingly important role in the generation of future electric power for stationary and transportation sector applications. However, more economic methods to produce hydrogen from fossil fuels are needed. This project addresses the need to develop low cost ceramic membranes for hydrogen separation from reformed fuels.

K. Durai-Swamy

1999-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

AC Electrokinetic separation and detection of nanoparticles and DNA nanoparticulates under high conductance conditions  

E-Print Network (OSTI)

to 10,000Hz range and 10 volts peak-to-peak, the separation1000Hz to 10,000Hz, at 10 volts peak to peak (pk- pk). Theperformed at 10 kHz AC at 10 volts peak to peak (pk-pk). The

Krishnan, Rajaram

2010-01-01T23:59:59.000Z

62

Separation of polar shale oil compounds using high-speed liquid chromatography. [Compounds known to exist in shale oil  

DOE Green Energy (OSTI)

Methods for separation of potentially toxic compounds from shale oil and its waste products by high-speed liquid chromatography (HSLC) are discussed. The following classes of compounds were selected for study: aromatic and polynuclear aromatic hydrocarbons, thiophenes, and indoles. No attempt was made to identify or quantitate compounds in shale oil, but it was demonstrated that HSLC can be a rapid and sensitive method for the separation of polar compounds from classes recognized to be present in shale oil and its waste products. Specific compounds studied were: phenanthrene, naphthalene, anthracene, pyrene, triphenylene, chrysene, benzo(a)pyrene, 1,2,3,4-dibenzanthracene, and 1,2,5,6-dibenzanthracene. (JGB)

Riley, R.G.

1976-11-01T23:59:59.000Z

63

High-Resolution Differential Ion Mobility Separations Using Planar Analyzers at Elevated Dispersion Fields  

SciTech Connect

Analyses of complex or isomeric mixtures increasingly involve ion mobility spectrometry/ mass spectrometry (IMS/MS). The IMS methods are grouped into conventional, based on the absolute ion mobility, and differential or field asymmetric waveform IMS (FAIMS), based on the mobility difference in strong and weak electric fields. The key attraction of FAIMS is substantial orthogonality to MS, and several FAIMS/MS platforms have been commercialized. However, the utility of FAIMS had been constrained by limited resolving power, typically R ~ 10 - 20. Recently, the use of helium/nitrogen mixtures comprising up to 75% He has enabled R > 100, with broad resolution gains allowing separation of previously “co-eluting” isomers. These performance metrics open major new FAIMS applications in proteomic and other biological analyses. Here, we show that raising the separation field by ~35% over the previous 21 kV/cm provides similar or better resolution at 50% He, while avoiding problems due to elevated gas pressure in the MS manifold upon excessive He intake. In particular, a resolving power of >200 has been achieved for multiply-charged peptides. The field heating of ions under these conditions appears to exceed that at higher He content but weaker separation field, inducing greater izomerization of fragile species.

Shvartsburg, Alexandre A.; Prior, David C.; Tang, Keqi; Smith, Richard D.

2010-09-15T23:59:59.000Z

64

Technologies for Upgrading Light Water Reactor Outlet Temperature  

SciTech Connect

Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

2013-07-01T23:59:59.000Z

65

High-Dimensional Gaussian Graphical Model Selection: Walk Summability and Local Separation Criterion  

E-Print Network (OSTI)

We consider the problem of high-dimensional Gaussian graphical model selection. We identify a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on thresholding of empirical ...

Willsky, Alan S.

66

Integrated High Temperature Coal-to-Hydrogen System with CO2 Separation  

DOE Green Energy (OSTI)

A significant barrier to the commercialization of coal-to-hydrogen technologies is high capital cost. The purity requirements for H{sub 2} fuels are generally met by using a series of unit clean-up operations for residual CO removal, sulfur removal, CO{sub 2} removal and final gas polishing to achieve pure H{sub 2}. A substantial reduction in cost can be attained by reducing the number of process operations for H{sub 2} cleanup, and process efficiency can be increased by conducting syngas cleanup at higher temperatures. The objective of this program was to develop the scientific basis for a single high-temperature syngas-cleanup module to produce a pure stream of H{sub 2} from a coal-based system. The approach was to evaluate the feasibility of a 'one box' process that combines a shift reactor with a high-temperature CO{sub 2}-selective membrane to convert CO to CO{sub 2}, remove sulfur compounds, and remove CO{sub 2} in a simple, compact, fully integrated system. A system-level design was produced for a shift reactor that incorporates a high-temperature membrane. The membrane performance targets were determined. System level benefits were evaluated for a coal-to-hydrogen system that would incorporate membranes with properties that would meet the performance targets. The scientific basis for high temperature CO{sub 2}-selective membranes was evaluated by developing and validating a model for high temperature surface flow membranes. Synthesis approaches were pursued for producing membranes that integrated control of pore size with materials adsorption properties. Room temperature reverse-selectivity for CO{sub 2} was observed and performance at higher temperatures was evaluated. Implications for future membrane development are discussed.

James A. Ruud; Anthony Ku; Vidya Ramaswamy; Wei Wei; Patrick Willson

2007-05-31T23:59:59.000Z

67

Preparation and characterization of composite membrane for high temperature gas separation. Quarterly technical report, September 1--November 30, 1994  

DOE Green Energy (OSTI)

To develop a new class of permselective inorganic membranes, the authors have identified electroless plating as a potential route to deposit a thin metal film on a porous substrate. Electroless plating is a controlled autocatalytic deposition of continuous film on the surface of a substrate by the interactions of a metal salt and a chemical reducing agent. This method can give thin films of metals, alloys and composites on both conducting and nonconducting surfaces. The objective of this project is to develop thin film palladium membranes for separation of hydrogen in high temperature applications. The authors plan to use electroless plating to deposit thin palladium films on microporous ceramic and silver substrates. They plan to characterize the membrane in terms of permeability and selectivity for gas separation. To accomplish the research objective, the project requires three tasks: Development of a process for composite membrane formation; Characterization of fabricated composite membrane; and Development of theoretical model for hydrogen gas separation. During this quarter, the authors attempted to measure the diffusivity and permeability of hydrogen gas through the palladium composite membrane. While running the diffusion measurements at elevated temperature and pressure, leakage of hydrogen was observed. This is a serious problem and it needs to be resolved. Currently, they are working on this problem. During this quarter, they also designed a diffusion cell to test thin-film palladium membrane in tubular structure. The diffusion cell is being fabricated and assembled by a local machine shop.

Ilias, S.; King, F.G.

1994-12-31T23:59:59.000Z

68

Water Outlet Control Mechanism for Fuel Cell System Operation ...  

Self-Regulating Water Separation System for Fuel Cells Innovators at NASA’s Johnson Space ... Solar Thermal; Startup ... The system uses the flow energy of the fuel ...

69

Separating and Stabilizing Phosphate from High-Level Radioactive Waste: Process Development and Spectroscopic Monitoring  

SciTech Connect

Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

Lumetta, Gregg J.; Braley, Jenifer C.; Peterson, James M.; Bryan, Samuel A.; Levitskaia, Tatiana G.

2012-05-09T23:59:59.000Z

70

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION  

DOE Green Energy (OSTI)

This report summarizes progress made during the first year of research funding from DOE Grant No. DE-FG26-03NT41792 at the Colorado School of Mines. The period of performance was September 1, 2003 through August of 2004. Composite membranes, consisting of a thin Pd alloy film supported on a porous substrate have been investigated as a means of reducing the membrane cost and improving H{sub 2} flux. An electroless plating technique was utilized to deposit subsequent layers of palladium and copper over zirconia and alumina-based microfilters. The composite membranes thus made were annealed and tested at temperatures ranging from 250 to 500 C, under very high feed pressures (up to 450 psig) using pure gases and gaseous mixtures containing H{sub 2}, CO, CO{sub 2}, H{sub 2}O and H{sub 2}S, with the purpose of determining the effects these variables had on the H{sub 2} permeation rate, selectivity and percent recovery. The inhibition caused by CO/CO{sub 2} gases on a 7 {micro}m thick Pd-Cu composite membrane was less than 17% over a wide range of compositions at 350 C. H{sub 2}S caused a strong inhibition of the H{sub 2} flux of the same Pd-Cu composite membrane, which is accentuated at levels of 100 ppm or higher. The membrane was exposed to 50 ppm three times without permanent damage. At higher H{sub 2}S levels, above 100 ppm the membrane suffered some physical degradation and its performances was severely affected. The use of sweep gases improved the hydrogen flux and recovery of a Pd-Cu composite membrane. Recently, we have been able to dramatically reduce the thickness of these Pd alloy membranes to approximately one micron. This is significant because at this thickness, it is the cost of the porous support that controls the materials cost of a composite Pd alloy membrane, not the palladium inventory. Very recent results show that the productivity of our membranes is very high, essentially meeting the DOE pure hydrogen flux target value set by the DOE Hydrogen Program. These results were obtained when a 1.3-micron-thick Pd{sub 95}Cu{sub 5} (composition given in mass %) alloy film was coated on a Pall Corporation Membralox{reg_sign} T1-70 tubular ceramic substrate. The flux of this membrane would be even higher if the alloy composition was 40 wt. % Cu.

J. Douglas Way

2004-08-31T23:59:59.000Z

71

Preparation and characterization of composite membrane for high temperature gas separation  

DOE Green Energy (OSTI)

A new class of perm-selective inorganic membrane was developed by electroless deposition of palladium thin-film on a microporous {alpha}-alumina ceramic substrate ({phi}39 mm x 2 mm thickness, nominal pore size 150 nm and open porosity {approx} 42 %). The new membrane was characterized by Scanning Electron Micrography (SEM), Energy Dispersive X-ray Analysis (EDX) and conducting permeability experiments with hydrogen, helium, argon and carbon dioxide at temperatures from 473 K to 673 K and feed pressures from 136 kPa to 274 kPa. The results indicate that the membrane has both high permeability and selectivity for hydrogen. The hydrogen transport through the Pd-composite membrane closely followed Sievert's law. A theoretical model is presented to describe the performance of a single-stage permeation process. The model uses a unified mathematical formulation and calculation methods for two flow patterns (cocurrent and countercurrent) with two permeable components and a nonpermeable fraction in the feed and a sweep stream in the permeate. The countercurrent flow pattern is always better than the cocurrent flow pattern with respect to stage cut and membrane area. The effect of flow configuration decreases with increasing membrane selectivity or with decreasing permeate/feed ratio.

Ilias, S.; King, F.G.

1998-03-26T23:59:59.000Z

72

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

73

PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS  

DOE Green Energy (OSTI)

For hydrogen from coal gasification to be used economically, processing approaches that produce a high purity gas must be developed. Palladium and its alloys, nickel, platinum and the metals in Groups 3 to 5 of the Periodic Table are all permeable to hydrogen. Hydrogen permeable metal membranes made of palladium and its alloys are the most widely studied due to their high hydrogen permeability, chemical compatibility with many hydrocarbon containing gas streams, and infinite hydrogen selectivity. Our Pd composite membranes have demonstrated stable operation at 450 C for over 70 days. Coal derived synthesis gas will contain up to 15000 ppm H{sub 2}S as well as CO, CO{sub 2}, N{sub 2} and other gases. Highly selectivity membranes are necessary to reduce the H{sub 2}S concentration to acceptable levels for solid oxide and other fuel cell systems. Pure Pd-membranes are poisoned by sulfur, and suffer from mechanical problems caused by thermal cycling and hydrogen embrittlement. Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H{sub 2} separation. These membranes consist of a thin ({le} 5 {micro}m) film of metal deposited on the inner surface of a porous metal or ceramic tube. With support from this DOE Grant, we have fabricated thin, high flux Pd-Cu alloy composite membranes using a sequential electroless plating approach. Thin, Pd{sub 60}Cu{sub 40} films exhibit a hydrogen flux more than ten times larger than commercial polymer membranes for H{sub 2} separation, resist poisoning by H{sub 2}S and other sulfur compounds typical of coal gas, and exceed the DOE Fossil Energy target hydrogen flux of 80 ml/cm{sup 2} {center_dot} min = 0.6 mol/m{sup 2} {center_dot} s for a feed pressure of 40 psig. Similar Pd-membranes have been operated at temperatures as high as 750 C. We have developed practical electroless plating procedures for fabrication of thin Pd-Cu composite membranes at any scale.

J. Douglas Way

2003-01-01T23:59:59.000Z

74

Method and System for the Production of Hydrogen at Reduced VHTR Outlet Temperatures  

DOE Green Energy (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. The integrated system of a Very High Temperature Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) hydrogen production plant is being investigated and this system, as it is currently envisioned, will produce hydrogen by utilizing a highly efficient VHTR with a VHTR outlet temperature of 900°C to supply the necessary energy and electricity to the HTSE unit. Though the combined system may produce hydrogen and electricity with high efficiency, the choices of materials that are suitable for use at 900°C are limited due to high-temperature strength, corrosion, and durability (creep) considerations. The lack of materials that are ASME (American Society of Mechanical Engineers) code-certified at these temperatures is also a problem, and is a barrier to commercial deployment. If the current system concept can be modified to produce hydrogen with comparable efficiency at lower temperatures, then the technical barriers related to materials selection and use might be eliminated, and the integrated system may have a much greater probability of succeeding at the commercial scale. This paper describes a means to reduce the outlet temperature of the VHTR to approximately 700°C while still maintaining plant high efficiency.

Chang H. Oh; Eung S. Kim

2009-10-01T23:59:59.000Z

75

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

76

Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography  

Science Conference Proceedings (OSTI)

This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

Morris, J.B.

1993-07-01T23:59:59.000Z

77

Integrated reactor and centrifugal separator and uses thereof  

DOE Patents (OSTI)

An apparatus for providing reaction of fluids and separation of products with increased residence time. The apparatus includes a stationary shell, a rotating hollow cylindrical component disposed in the stationary shell, a residence-time increasing device external to the stationary shell, a standpipe for introducing fluid into an interior cavity of the hollow cylindrical component from the residence-time increasing device, a first outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a less dense phase fluid, and a second outlet in fluid flow communication with the interior cavity of the hollow cylindrical component for a more dense phase fluid.

Birdwell, Jr., Joseph F (Knoxville, TN); Jennings, Harold L. (Clinton, TN); McFarlane, Joanna (Oak Ridge, TN); Tsouris, Constantino (Oak Ridge, TN)

2012-01-17T23:59:59.000Z

78

Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane  

SciTech Connect

Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

2013-09-02T23:59:59.000Z

79

Sound power and pressure level measurements in the inlet and outlet of an HRSG duct  

Science Conference Proceedings (OSTI)

The ever-increasing size of cogeneration facilities has mandated the need for noise abatement in the design stage. Many noise projection models are available to the industry for predicting noise levels in an adjacent to new installations. However, the models all require accurate source noise information if valid noise predictions are to be expected. As a consequence of designing one of the world`s largest cogeneration installations involving eight Model W-701 turbine units and their Heat Recovery Steam Generators (HRSGs), it became apparent that the attention between the exhaust of the Generators (HRSGs), it became apparent that the attention between the exhaust of the turbine and the outlet of the HRSGs was not well known. Not having this information posed potentially expensive noise abatement modifications during the design and construction phases. In order to verify the adequacy of scaling studies from a W-501 turbine and HRSG to the W-701 system, a comprehensive field test of an existing W-501 installation was conducted. This paper describes the design of an acoustic intensity and sound pressure probe to operate inside the high-temperature ductwork, the access engineering required, data acquisition, and final results concerning noise attenuation across the HRSG.

Jungbauer, D.E.; Unruh, J.F.; Pantermuehl, P.J. [Southwest Research Institute, San Antonio, TX (United States); Rose, S. [Enron Power Corp., Houston, TX (United States)

1995-04-01T23:59:59.000Z

80

CENTRIFUGAL SEPARATORS  

DOE Patents (OSTI)

A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

Skarstrom, C.

1959-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1,1978--February 28, 1979  

SciTech Connect

Information is presented concerning coolant mixing in bundle geometry and subchannel geometry; outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.; Golay, M.W.; Wolf, L.

1979-01-01T23:59:59.000Z

82

ISOTOPE SEPARATORS  

DOE Patents (OSTI)

An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

Bacon, C.G.

1958-08-26T23:59:59.000Z

83

Gas-separation process  

DOE Patents (OSTI)

A process for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA); Baker, Richard W. (Palo Alto, CA)

1994-01-01T23:59:59.000Z

84

NETL: Control Technology: ElectroCore Separator  

NLE Websites -- All DOE Office Websites (Extended Search)

ElectroCore Separator ElectroCore Separator LSR Technologies and its subcontractors designed and installed a 8,500 m3/hr (5,000 acfm) Advanced ElectroCore system and a dry sulfur scrubber to test it using an exhaust gas slipstream at Alabama Power Company's Gaston Steam Plant. Shakedown is scheduled for August 15, 2001. The exhaust gas will be from Unit #4 of a 270 MWe sub-critical, pulverized coal boiler burning a low-sulfur bituminous coal. The Advanced ElectroCore system will consist of a conventional upstream ESP, a dry SO2 scrubber, a particle precharger and an Advanced ElectroCore separator. Particle concentrations and size distributions will be measured at the ESP inlet, at the dry scrubber outlet and at the ElectroCore outlet. The concentration of 12 common HAPs will be measured at these locations as well. For purposes of project organization and monitoring, the work will be divided into nine (9) tasks described below.

85

Passive gas separator and accumulator device  

DOE Patents (OSTI)

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

Choe, H.; Fallas, T.T.

1994-08-02T23:59:59.000Z

86

Chromatographic hydrogen isotope separation  

DOE Patents (OSTI)

Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

Aldridge, Frederick T. (Livermore, CA)

1981-01-01T23:59:59.000Z

87

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

88

Particle separation  

DOE Patents (OSTI)

Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

Moosmuller, Hans (Reno, NV); Chakrabarty, Rajan K. (Reno, NV); Arnott, W. Patrick (Reno, NV)

2011-04-26T23:59:59.000Z

89

Acoustic Camera Evaluation of Juvenile Salmonid Approach and Fate at Surface Flow Outlets of Two Hydropower Dams  

DOE Green Energy (OSTI)

The objective of this study was to estimate and compare fate probabilities for juvenile salmon approaching two surface flow outlets (SFOs) to identify effective design characteristics. The SFOs differed principally in forebay location, depth, discharge, and water velocity over a sharp-crested weir. Both outlets were about 20 ft wide. The 22-ft deep Bonneville Powerhouse 2 Corner Collector (B2CC) was located in the southwest corner of the forebay and passed 5,000 ft3/s of water at normal-pool elevation. In contrast, The Dalles Dam ice and trash sluiceway outlet above Main Unit 1-3 (TDITC) was not located in a forebay corner, was only 7-ft deep, and discharged about 933 ft3/s at normal-pool elevation. The linear velocity of water over the weir was about 15 ft/s at the B2CC and 5 ft/s at the TDITC. We used a Dual-Frequency Identification Sonar (DIDSON) to record movements of fish within about 65 ft of the B2CC and within 35 ft of the TDITC. We actively tracked fish by manually adjusting pan and tilt rotator angles to keep targets in view. Contrary to expectations, active tracking did not provide a predominance of long tracks that clearly indicated fish fate because most tracks were incomplete. Active tracking did increase error in fish-position estimation, which complicated data processing, so we plan to sample multiple fixed zones in the future. The probability of fish entering each SFO was estimated by a Markov chain analysis, which did not require complete fish tracks. At the B2CC, we tracked 7,943 juvenile salmonids and most of them entered the B2CC. Fish moving south 40 to 60 ft upstream of the dam face were more likely to enter the eddy at the south end of the powerhouse than to enter the B2CC. At the TDITC, we tracked 2,821 smolts. Fish movement was complex with active swimming toward and away from the entrance. The high entrance probability zone (EPZ), where over 90% of tracked fish entered the SFO, extended 32 ft out at the B2CC and only 8 ft out at the TDITC. Greater discharge at the B2CC pushed the entrainment zone (EZ - where flow exceeded 7 ft/s) upstream from the entrance so that fish were entrained before they began to struggle against the flow. The high EPZ also was extended by flow along the powerhouse face at both sites, but more at the B2CC (about 450 ft) than at the TDITC (about 50 ft). Fish entering the large south eddy that circulated past the B2CC entrance were provided multiple opportunities to discover and enter. In contrast, fish moving past the sampled TDITC entrance either entered adjacent sluiceway openings or moved west to the spillway because there was no eddy to provide additional opportunities. Information from our study should be useful to fisheries managers and engineers seeking to transfer SFO technologies from one site to another. There are two important components to designing SFOs, the location within the forebay to take advantage of forebay circulation and specific entrance characteristics such as discharge and depth which affect the size and shape of the EZ and the high EPZ. Providing SFOs with an EZ extending upstream of structure could reduce entrance rejection, decrease forebay residence time and risk of predation, and increase passage of schools of smolts.

Ploskey, Gene R.; Johnson, Gary E.; Weiland, Mark A.; Khan, Fenton; Mueller, Robert P.; Serkowski, John A.; Rakowski, Cynthia L.; Hedgepeth, J.; Skalski, John R.; Ebberts, Blaine D.; Klatte, Bernard A.

2006-08-04T23:59:59.000Z

90

Gas-separation process  

DOE Patents (OSTI)

A process is described for separating condensable organic components from gas streams. The process makes use of a membrane made from a polymer material that is glassy and that has an unusually high free volume within the polymer material. 6 figures.

Toy, L.G.; Pinnau, I.; Baker, R.W.

1994-01-25T23:59:59.000Z

91

Hydrogen isotope separation  

DOE Patents (OSTI)

A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

Bartlit, John R. (Los Alamos, NM); Denton, William H. (Abingdon, GB3); Sherman, Robert H. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

92

Passive gas separator and accumulator device  

DOE Patents (OSTI)

A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter uses the principle that surface tension in the filter pores prevents gas bubbles from passing through; the gas collects in the interior of the filter to form larger bubbles in the center of the device. The device is suited for microgravity since the swirlers induce a centrifugal force which forces liquid from the inner region through the pores and the device outlet while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen enclosed by the filter. The screen has pores larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the filter. The device is initially filled with a gas other than that which is to be separated; this results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region with a ruptured disc which can be ruptured when the device is activated for use.

Choe, Hwang; Fallas, T.T.

1993-11-29T23:59:59.000Z

93

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

94

The estimation of wind pressures at ventilation inlets and outlets on buildings  

Science Conference Proceedings (OSTI)

Two example calculations illustrate the application of information provided in chapter 14 of the 1989 ASHRAE Fundamentals to the estimation of wind pressures at ventilation inlets and outlets on the exteriors of buildings. Wind pressures are calculated using the local estimated reference mean wind speeds at the building site and pressure coefficients selected from figures provided in Chapter 14 of the handbook. Calculations include estimation of wind speeds at building sites located significant distance from airport weather data recording stations in a variety of terrains using the power law mean wind speed profile equation. Wind frequency data are used to calculate the relative probability of occurrence of wind speed and direction events. Wind tunnel studies are recommended as the best source of wind pressure coefficients for applications where consequences of wind effects could be critical.

Aynsley, R.M (Georgia Inst. of Technology, Atlanta, GA (US))

1989-01-01T23:59:59.000Z

95

Laser isotope separation  

DOE Patents (OSTI)

A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

1975-11-26T23:59:59.000Z

96

Efficient separations & processing crosscutting program  

Science Conference Proceedings (OSTI)

The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

NONE

1996-08-01T23:59:59.000Z

97

Low Cost Geothermal Separators BLISS Boundary Layer Inline Separator Scrubber  

DOE Green Energy (OSTI)

A new compact, low cost, and high performance separator is being developed to help reduce the installed and O and M cost of geothermal power generation. This device has been given the acronym ''BLISS'' that stands for ''Boundary Layer Inline Separator Scrubber''. The device is the first of a series of separators, and in the case of injectates, scrubbers to address the cost-reduction needs of the industry. The BLISS is a multi-positional centrifugal separator primarily designed to be simply installed between pipe supports, in a horizontal position. This lower profile reduces the height safety concern for workers, and significantly reduces the total installation cost. The vessel can demand as little as one-quarter (25%) the amount of steel traditionally required to fabricate many large vertical separators. The compact nature and high separating efficiency of this device are directly attributable to a high centrifugal force coupled with boundary layer control. The pseudo isokinetic flow design imparts a self-cleaning and scale resistant feature. This polishing separator is designed to remove moderate amounts of liquid and entrained solids.

Jung, Douglas; Wai, King

2000-05-26T23:59:59.000Z

98

Innovative Separations Technologies  

Science Conference Proceedings (OSTI)

Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

J. Tripp; N. Soelberg; R. Wigeland

2011-05-01T23:59:59.000Z

99

The Segregation of Aerosols by Cloud-Nucleating Activity. Part I: Design, Construction, and Testing of A High-Flux Thermal Diffusion Cloud Chamber for Mass Separation  

Science Conference Proceedings (OSTI)

We describe a thermal diffusion cloud chamber operated in series with an aerodynamic dichotomous separator that can segregate aerosol particles by their abilities to nucleate cloud droplets. The apparatus takes advantage of compensating gradients ...

Lee Harrison; Halstead Harrison

1985-04-01T23:59:59.000Z

100

Outfall Site and Type Selection for a New Surface Flow Outlet to Pass Juvenile Salmonids at Bonneville Dam’s Second Powerhouse, Columbia River  

DOE Green Energy (OSTI)

A site near the downstream tip of Cascades Island with a mid-level chute outfall type was selected for the high flow (> 28.3 m3/s) outfall of the new surface flow outlet for juvenile salmonids at Bonneville Dam’s Second Powerhouse (B2). The new passage route and outfall are a result of modifications to the original ice and trash sluice chute to increase discharge capacity and improve passage conditions, including a new outfall type and site. Technical guidelines on high flow outfall location and design were established concurrently with the outfall development process. Critical design parameters for the new B2 outfall included discharge of 150 m3/s, jet entry velocities approaching 15.2 m/s, and a tailwater elevation range of 6.1 m. For outfall siting, the selection process began with identification of nine initial alternatives. Screening, evaluation, and selection stages narrowed the list to two outfall sites – “Range D” 122 m directly downstream from the existing sluice chute outfall and “Range F” 760 m downstream near the end of Cascades Island. For outfall type, the selection process was initiated with conceptualization of 13 alternatives. Following successive screening, evaluation, consolidation, and selection stages, two outfall types became finalists – “Adjustable Cantilever” and “Mid-Level Cantilever.” The four combinations of outfall site/type were evaluated in 1:30 and 1:100 scale physical hydraulic models and a Mid-Level Cantilever at the tip of Cascades Island in Range F was selected. During further engineering after our study, the cantilever was replaced with a monolith structure to reduce construction costs, resulting in a mid-level chute outfall that was installed in 2004. Post-construction evaluations indicated survival rates around 100% through the B2CC were the highest of all passage routes at Bonneville Dam. The B2CC surface flow outlet with its high flow outfall provided a major improvement to juvenile salmonid passage at Bonneville Dam.

Johnson, Gary E.; Ebberts, Blaine D.; Giorgi, Albert E.; Kuhn, Karen; Lee, Randall T.; Plump, John H.; Stensby, David A.; Sweeney, Charles E.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007  

DOE Green Energy (OSTI)

This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

2009-04-01T23:59:59.000Z

102

Fluidic assembly for an ultra-high-speed chromosome flow sorter  

DOE Patents (OSTI)

A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

Gray, Joe W. (Livermore, CA); Alger, Terry W. (Livermore, CA); Lord, David E. (Livermore, CA)

1982-01-01T23:59:59.000Z

103

Spheroid-Encapsulated Ionic Liquids for Gas Separation Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Spheroid-Encapsulated Ionic Liquids for Gas Separation Opportunity An innovative approach has been developed allowing the use of high viscosity for gas separations. The method...

104

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature  

Science Conference Proceedings (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

105

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

106

Actinide separations conference  

Science Conference Proceedings (OSTI)

This report contains the abstracts for 55 presentations given at the fourteenth annual Actinide Separations Conference. (JDL)

Not Available

1990-01-01T23:59:59.000Z

107

Apparatus for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Haverhill, MA)

2001-01-01T23:59:59.000Z

108

Isotope separation by photochromatography  

DOE Patents (OSTI)

An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

Suslick, Kenneth S. (Stanford, CA)

1977-01-01T23:59:59.000Z

109

DNA Separation Using Photoelectrophoretic Traps  

SciTech Connect

In our recent publications we presented a design that allows formation of highly localized and optically controlled electrophoretic traps. 1,2 We demonstrated that electrophoretic traps can be utilized for biomolecule photoconcentration, optically directed transport, and separation by size. 1,2 In the current publication we suggest a hybrid design for biomolecule separation which implements electrophoretic traps in tandem with well-established electrophoretic techniques. We perform Monte Carlo simulations that demonstrate that the resolution of well-established electrophoretic techniques can be greatly enhanced by introducing photoelectrophoretic traps.

Braiman, Avital [ORNL; Thundat, Thomas George [ORNL; Rudakov, Fedor M [ORNL

2011-01-01T23:59:59.000Z

110

Anti-stratification battery separator  

Science Conference Proceedings (OSTI)

This patent describes a separator for an electric storage battery comprising a thin microporous sheet for suppressing dendrite growth between adjacent plates of the battery. The sheet has top, bottom and lateral edges defining the principal face of the separator and ribs formed on the surface of the face. The improvement described here comprises: the ribs each (1) having a concave shape, (2) being superposed one over another and (3) extending laterally across the face substantially from one the lateral edge to the other the lateral edge for reducing the accumulation of highly concentrated electrolyte at the bottom of the battery during recharge.

Stahura, D.W.; Smith, V.V. Jr.

1986-10-28T23:59:59.000Z

111

Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes  

DOE Green Energy (OSTI)

High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

2007-04-01T23:59:59.000Z

112

New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator  

Science Conference Proceedings (OSTI)

BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the battery’s components to free up more space within the cell for storage.

None

2010-07-01T23:59:59.000Z

113

HYDROGEN SEPARATION MEMBRANES  

DOE Green Energy (OSTI)

A likely membrane for future testing of high-temperature hydrogen separation from a gasification product stream was targeted as an inorganic analog of a dense-metal membrane, where the hydrogen would dissolve into and diffuse through the membrane structure. An amorphous membrane such as zinc sulfide appeared to be promising. Previously, ZnS film coating tests had been performed using an electron-beam vacuum coating instrument, with zinc films successfully applied to glass substrates. The coatings appeared relatively stable in air and in a simple simulated gasification atmosphere at elevated temperature. Because the electron-beam coating instrument suffered irreparable breakdown, several alternative methods were tested in an effort to produce a nitrogen-impermeable, hydrogen-permeable membrane on porous sintered steel substrates. None of the preparation methods proved successful in sealing the porous substrate against nitrogen gas. To provide a nitrogen-impermeable ZnS material to test for hydrogen permeability, two ZnS infrared sample windows were purchased. These relatively thick ''membranes'' did not show measurable permeation of hydrogen, either due to lack of absorption or a negligible permeation rate due to their thickness. To determine if hydrogen was indeed adsorbed, thermogravimetric and differential thermal analyses tests were performed on samples of ZnS powder. A significant uptake of hydrogen gas occurred, corresponding to a maximum of 1 mole H{sub 2} per 1 mole ZnS at a temperature of 175 C. The hydrogen remained in the material at ambient temperature in a hydrogen atmosphere, but approximately 50% would be removed in argon. Reheating in a hydrogen atmosphere resulted in no additional hydrogen uptake. Differential scanning calorimetry indicated that the hydrogen uptake was probably due to the formation of a zinc-sulfur-hydrogen species resulting in the formation of hydrogen sulfide. The zinc sulfide was found to be unstable above approximately 200 C, probably with the reduction to metallic zinc with the evolution of hydrogen sulfide. The work has shown that ZnS is not a viable candidate for a high-temperature hydrogen separation membrane.

Donald P. McCollor; John P. Kay

1999-08-01T23:59:59.000Z

114

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, Richard C. (East Hartford, CT)

1986-09-02T23:59:59.000Z

115

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, R.C.

1984-10-17T23:59:59.000Z

116

Relational separation logic  

Science Conference Proceedings (OSTI)

In this paper, we present a Hoare-style logic for specifying and verifying how two pointer programs are related. Our logic lifts the main features of separation logic, from an assertion to a relation, and from a property about a single program to a relationship ... Keywords: Program verification, Relational reasoning, Schorr—Waite graph marking algorithm, Separation logic

Hongseok Yang

2007-05-01T23:59:59.000Z

117

Method for separating isotopes  

DOE Patents (OSTI)

Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

Jepson, B.E.

1975-10-21T23:59:59.000Z

118

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

McVey, W.H.; Reas, W.H.

1959-03-10T23:59:59.000Z

119

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane useful for gas separation, particularly separation of C.sub.2+ hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula: ##STR1## wherein R.sub.1 is chosen from the group consisting of C.sub.1 -C.sub.4 alkyl and phenyl, and wherein R.sub.2 is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) ›PMP!. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations.

Pinnau, Ingo (Palo Alto, CA); Morisato, Atsushi (Tokyo, JP)

1998-01-13T23:59:59.000Z

120

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

122

Substituted polyacetylene separation membrane  

DOE Patents (OSTI)

A separation membrane is described which is useful for gas separation, particularly separation of C{sub 2+} hydrocarbons from natural gas. The invention encompasses the membrane itself, methods of making it and processes for using it. The membrane comprises a polymer having repeating units of a hydrocarbon-based, disubstituted polyacetylene, having the general formula shown in the accompanying diagram, wherein R{sub 1} is chosen from the group consisting of C{sub 1}-C{sub 4} alkyl and phenyl, and wherein R{sub 2} is chosen from the group consisting of hydrogen and phenyl. In the most preferred embodiment, the membrane comprises poly(4-methyl-2-pentyne) [PMP]. The membrane exhibits good chemical resistance and has super-glassy properties with regard to separating certain large, condensable permeant species from smaller, less-condensable permeant species. The membranes may also be useful in other fluid separations. 4 figs.

Pinnau, I.; Morisato, Atsushi

1998-01-13T23:59:59.000Z

123

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave guide resonator structure is described for use in separating particles of equal momentum but differing in mass and having energies exceeding one billion electron volts. The particles are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high-energy accelerator. In this wave guide construction, the particles undergo preferential deflection as a result of the presence of an electric field. The boundary conditions established in the resonator are such as to eliminate an interfering magnetic component, and to otherwise phase the electric field to obtain a traveling wave such as one which moves at the same speed as the unwanted particle. The latter undergoes continuous deflection over the whole length of the device and is, therefore, eliminated while the wanted particle is deflected in opposite directions over the length of the resonator and is thus able to enter an exit aperture. (AEC)

Blewett, J.P.

1962-01-01T23:59:59.000Z

124

RESONATOR PARTICLE SEPARATOR  

DOE Patents (OSTI)

A wave-guide resonator structure is designed for use in separating particles of equal momentum but differing in mass, having energies exceeding one billion eiectron volts. The particles referred to are those of sub-atomic size and are generally produced as a result of the bombardment of a target by a beam such as protons produced in a high energy accelerator. In the resonator a travelling electric wave is produced which travels at the same rate of speed as the unwanted particle which is thus deflected continuously over the length of the resonator. The wanted particle is slightly out of phase with the travelling wave so that over the whole length of the resonator it has a net deflection of substantially zero. The travelling wave is established in a wave guide of rectangular cross section in which stubs are provided to store magnetic wave energy leaving the electric wave energy in the main structure to obtain the desired travelling wave and deflection. The stubs are of such shape and spacing to establish a critical mathemitical relationship. (AEC)

Blewett, J.P.; Kiesling, J.D.

1963-06-11T23:59:59.000Z

125

Gas Separations using Ceramic Membranes  

DOE Green Energy (OSTI)

This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

Paul KT Liu

2005-01-13T23:59:59.000Z

126

Separation by solvent extraction  

DOE Patents (OSTI)

17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

Holt, Jr., Charles H. (Kennewick, WA)

1976-04-06T23:59:59.000Z

127

Optimal distance separating halfspace  

E-Print Network (OSTI)

Plastria & Carrizosa / Optimal distance separating halfspace. 2. 1 Gauge Distance to a Hyperplane. Let ? be a gauge on Rd with unit ball B, i.e. B is a compact ...

128

Molten salt electrolyte separator  

DOE Patents (OSTI)

A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

Kaun, Thomas D. (New Lenox, IL)

1996-01-01T23:59:59.000Z

129

successfully demonstrated the separation  

NLE Websites -- All DOE Office Websites (Extended Search)

successfully demonstrated the separation and capture of 90 percent successfully demonstrated the separation and capture of 90 percent of the c arbon dioxide (CO 2 ) from a pulve rized coal plant. In t he ARRA-funded project, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris(tm) membrane system, which uses a CO 2 -selective polymeric membrane material and module to capture CO 2 from a plant's flue gas. Since the Polaris(tm) membranes

130

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

131

High temperature membranes for H{sub 2}S and SO{sub 2} separations. Quarterly progress report, October 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Membrane testing in the full-cell environment has been successful in H{sub 2}S removal applications, but largely ineffective for obtaining high current efficiencies due to hydrogen leakage through the membrane. A preprocessed zirconia membrane successful in past experiments was utilized in continued efforts to truncate hydrogen cross-over. An alternative material forming a stabilized conductive cathode under 100 ppmv H{sub 2}S conditions is possible with Co. Development of a Co cathode identical in porosity and pore size to aforementioned nickel cathodes was successfully fabricated and utilized experimentally this quarter.

Winnick, J.

1993-12-31T23:59:59.000Z

132

SEPARATION OF FLUID MIXTURES  

DOE Patents (OSTI)

An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

1958-10-28T23:59:59.000Z

133

WET FLUORIDE SEPARATION METHOD  

DOE Patents (OSTI)

The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1958-11-25T23:59:59.000Z

134

Continuous flow separation techniques for microchemical synthesis  

E-Print Network (OSTI)

Performing multistep microchemical synthesis requires many techniques from combining micromixers in series to the development of continuous microfluidic separation tools. Safety, high heat and mass transfer rates, and cost ...

Kralj, Jason G

2006-01-01T23:59:59.000Z

135

SEPARATION BY ADSORPTION  

DOE Patents (OSTI)

Separation of Pu from fission products by adsorption on hydrous aluminum silicate is described. The Pu in a HNO/sub 3/ solution is oxidized to the hexavalent state and contacted with the silicate which adsorbs fission products. (T.R.H.)

Lowe, C.S.

1959-06-16T23:59:59.000Z

136

NEAMS safeguards and separations  

Science Conference Proceedings (OSTI)

This presentation provides a program management update on the Safeguards and Separations Integrated Performance and Safety Code (IPSC) program in the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS). It provides an overview of FY11 work packages at multiple DOE Labs and includes material on challenge problem definitions for the IPSC effort.

Sadasivan, Pratap [Los Alamos National Laboratory; De Paoli, David W [ORNL

2011-01-25T23:59:59.000Z

137

Molten salt electrolyte separator  

DOE Patents (OSTI)

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

138

Sulfur Tolerant Pd/Cu and Pd/Au Alloy Membranes for H2 Separation with High Pressure CO2 for Sequestration  

DOE Green Energy (OSTI)

The effect of H{sub 2}S poisoning on Pd, Pd/Cu, and Pd/Au alloy composite membranes prepared by the electroless deposition method on porous Inconel supports was investigated to provide a fundamental understanding of the durability and preparation of sulfur tolerant membranes. X-ray photoelectron spectroscopy (XPS) studies showed that the exposure of pure Pd to 50 ppm H{sub 2}S/H{sub 2} mixtures caused bulk sulfide formation at lower temperatures and surface sulfide formation at higher temperatures. Lower temperatures, longer exposure times, and higher H{sub 2}S concentrations resulted in a higher degree of sulfidation. In a Pd membrane, the bulk sulfide formation caused a drastic irrecoverable H{sub 2} permeance decline and an irreparable loss in selectivity. Pd/Cu and Pd/Au alloy membranes exhibited permeance declines due to surface sulfide formation upon exposure to 50 ppm H{sub 2}S/H{sub 2} gas mixtures. However in contrast to the pure Pd membrane, the permeances of the Pd/Cu and Pd/Au alloy membranes were mostly recovered in pure H{sub 2} and the selectivity of the Pd alloy layers remained essentially intact throughout the characterization in H{sub 2}, He and H{sub 2}S/H{sub 2} mixtures which lasted several thousand hours. The amount of irreversible sulfur poisoning decreased with increasing temperature due to the exothermicity of H{sub 2}S adsorption. Longer exposure times increased the amount of irreversible poisoning of the Pd/Cu membrane but not the Pd/Au membrane. Pd/Au coupon studies of the galvanic displacement method showed that higher Au{sup 3+} concentrations, lower pH values, higher bath temperatures and stirring the bath at a rate of 200 rpm yielded faster displacement rates, more uniform depositions, and a higher Au content within the layers. While 400 C was found to be sufficient to form a Pd/Au alloy on the surface, high temperature X-ray diffraction (HTXRD) studies showed that even after annealing between 500-600 C, the Pd/Cu alloys could have part or all of the surface in the less sulfur resistant {beta} phase.

Yi Hua Ma; Natalie Pomerantz; Chao-Huang Chen

2008-09-30T23:59:59.000Z

139

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

140

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature  

SciTech Connect

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

142

STEAM SEPARATION TECHNOLOGY UNDER THE EURATOM PROGRAM. Quarterly Progress Report, January 1, 1963-March 31, 1963  

SciTech Connect

For purposes of analysis and experiment the centrifugal type downflow separator was divided into the inlet nozzle, separating zone, and outlet nozzle. The analysis and experiments have resulted in a new outlet design, a method of determining separating length, and a more effective inlet nozzle. The results have caused a reduction in pressure loss from 5 ft of water for the reference design to 1.5 ft of water for the new design at a flow rate of 1400 gpm. A reactor core riser and downcomer region was mocked-up in the large air-water tank. Void fraction in the downcomer region was measured as a function of water velocity, water temperature, inlet gas flow rate, and riser geometry. Results show that the void fraction in the downcomer is essentially zero until a threshold downcomer velocity is reached. The void fraction then rises rapidly with increasing water velocity to approximately l1% and then appears to remain constant. Test data from this experiment are being correlated using a dimensional analysis technique. An initial prediction equation was developed. (auth)

1963-04-10T23:59:59.000Z

143

Steam separator latch assembly  

SciTech Connect

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

1994-01-01T23:59:59.000Z

144

Steam separator latch assembly  

DOE Patents (OSTI)

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

Challberg, R.C.; Kobsa, I.R.

1994-02-01T23:59:59.000Z

145

Advanced Separation Consortium  

Science Conference Proceedings (OSTI)

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

146

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

Lyon, W.L.

1962-04-17T23:59:59.000Z

147

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

148

Cell separator and cell  

SciTech Connect

There is disclosed a novel cell separator made of a grafted membrane comprising a polyethylene film which is graft copolymerized with a monomer having an ion exchange group, characterized in that said membrane has an area which is not grafted at all or an area of low degree grafting. By making use of this membrane, a small size and thin cell having excellent performance as well as satisfactory mechanical strength can be produced at low cost with great advantages.

Ishigaki, I.; Machi, S.; Murata, K.; Okada, T.; Senoo, K.; Sugo, T.; Tanso, S.

1981-09-01T23:59:59.000Z

149

Separation of sulfur isotopes  

DOE Patents (OSTI)

Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

DeWitt, Robert (Centerville, OH); Jepson, Bernhart E. (Dayton, OH); Schwind, Roger A. (Centerville, OH)

1976-06-22T23:59:59.000Z

150

Power Production from Geothermal Brine with the Rotary Separator Turbine  

SciTech Connect

The rotary separator turbine is a new turbine device that operates with gas-liquid mixtures. This device achieves complete gas-liquid separation, generates power from the liquid and repressurizes the liquid. The use of the rotary separator turbine for geothermal power generation was investigated on this program. A pilot scale unit was designed and tested. Tests were conducted with a clean water/steam mixture and with geothermal brine/steam flows at East Mesa, California; Raft River, Idaho; and Roosevelt Hot Springs, Utah. The test results were used to calculate the performance advantage of a rotary separator turbine power system compared to a flash steam power system and a binary power system. The calculated performance advantages were then used to estimate market potential for wellhead and central station Biphase units. The measured performance in the laboratory and in the field agreed to within {+-} 10% of the predicted values. The design goal of 20 kWe was generated both in the laboratory and from brine. Separated steam quality was measured to be greater than 99.96% at all three geothermal resources and in the laboratory. Brine pressure leaving the test unit was greater than reinjection pressure requirements. Maximum brine outlet pressure of 90 psig was demonstrated. The measured performance values would result in a 34% increase in electric power production above a single stage flash steam system. Increasing the size from the pilot size unit (20kWe) to a wellhead unit (2000 kWe) gave a calculated performance advantage of 40%. Based on these favorable results, design, construction and testing of a full-size well-head unit was initiated.

Cerini, Donald J.; Hays, Lance G.

1980-12-01T23:59:59.000Z

151

NETL: Gasification Systems - Gas Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

152

Method for improved gas-solids separation  

DOE Patents (OSTI)

Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from where it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs.

Kusik, C.L.; He, B.X.

1990-11-13T23:59:59.000Z

153

Method for improved gas-solids separation  

DOE Patents (OSTI)

Methods are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from when it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel.

Kusik, Charles L. (Lincoln, MA); He, Bo X. (Newton, MA)

1990-01-01T23:59:59.000Z

154

Innovative oxygen separation membrane prototype  

SciTech Connect

Improvements are still needed to gas separation processes to gain industry acceptance of coal gasification systems. The Ion Transport Membrane (ITM) technology, being developed by the US Department of Energy and its partners, offers an opportunity to lower overall plant cost and improve efficiency compared to cryogenic distillation and pressure swing adsorption methods. The technology is based on a novel class of perovskite ceramic oxides which can selectively separate oxygen ions from a stream of air at high temperature and pressure. Those ions are transported across the ITM leaving non-permeate air which can be integrated with a fuel-fired gas system, enabling co-production of power and steam along with the concentrated, high-purity oxygen. The project is at the second phase, to scale up the ITM Oxygen ceramic devices to demonstrate the technology at the 1-5 tpd capability in the Subscale Engineering Prototype. A third phase to demonstrate commercial viability extends to the end of the decade. 2 figs.

NONE

2006-08-15T23:59:59.000Z

155

SEPARATION OF PLUTONIUM  

DOE Patents (OSTI)

A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

Maddock, A.G.; Smith, F.

1959-08-25T23:59:59.000Z

156

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

157

NIOBIUM-TANTALUM SEPARATION  

DOE Patents (OSTI)

The usual method for the separation of tantalum and niobium consists of a selective solvent extraction from an aqueous hydrofluoric acid solution of the metals. A difficulty encountered in this process is the fact that the corrosion problems associated with hydrofluoric acid are serious. It has been found that the corrosion caused by the hydrofluoric acid may be substantially reduced by adding to the acidic solution an amine, such as phenyl diethanolamine or aniline, and adjusting pH value to between 4 and 6.

Wilhelm, H.A.; Foos, R.A.

1959-01-27T23:59:59.000Z

158

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

1959-07-14T23:59:59.000Z

159

Explosively separable casing  

DOE Patents (OSTI)

An explosively separable casing including a cylindrical afterbody and a circular cover for one end of the afterbody is disclosed. The afterbody has a cylindrical tongue extending longitudinally from one end which is matingly received in a corresponding groove in the cover. The groove is sized to provide a pocket between the end of the tongue and the remainder of the groove so that an explosive can be located therein. A seal is also provided between the tongue and the groove for sealing the pocket from the atmosphere. A frangible holding device is utilized to hold the cover to the afterbody. When the explosive is ignited, the increase in pressure in the pocket causes the cover to be accelerated away from the afterbody. Preferably, the inner wall of the afterbody is in the same plane as the inner wall of the tongue to provide a maximum space for storage in the afterbody and the side wall of the cover is thicker than the side wall of the afterbody so as to provide a sufficiently strong surrounding portion for the pocket in which the explosion takes place. The detonator for the explosive is also located on the cover and is carried away with the cover during separation. The seal is preferably located at the longitudinal end of the tongue and has a chevron cross section.

Jacobson, Albin K. (Albuquerque, NM); Rychnovsky, Raymond E. (Livermore, CA); Visbeck, Cornelius N. (Livermore, CA)

1985-01-01T23:59:59.000Z

160

Gas separation with glass membranes  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is seeking to develop high temperature, high pressure inorganic membrane technology to perform a variety of gas separation processes to improve the efficiency and economics of advanced power generation systems such as direct coal-fueled turbines (DCFT) and the integrated gasification combined cycle process (IGCC). The temperatures encountered in these power generation systems are far above the temperature range for organic membrane materials. Inorganic materials such as ceramics are therefore the most likely membrane materials for use at high temperatures. This project focussed on silica glass fiber membranes made by PPG Industries (Pittsburgh, PA). The goals were both experimental and theoretical. The first objective was to develop a rational theory for the performance of these membranes. With existing theories as a starting point, a new theory was devised to explain the unusual molecular sieving'' behavior exhibited by these glass membranes. An apparatus was then devised for making permeation performance measurements at conditions of interest to DOE (temperatures to 2000[degrees]F; pressures to 1000 psia). With this apparatus, gas mixtures could be made typical of coal combustion or coal gasification processes, these gases could be passed into a membrane test cell, and the separation performance determined. Data were obtained for H[sub 2]/CO,N[sub 2]/CO[sub 2], 0[sub 2]/N[sub 2], and NH[sub 3]/N[sub 2] mixtures and for a variety of pure component gases (He, H[sub 2], CO[sub 2], N[sub 2], CO, NH[sub 3]). The most challenging part of the project turned out to be the sealing of the membrane at high temperatures and pressures. The report concludes with an overview of the practical potential of these membranes and of inorganic membranes in general of DOE and other applications.

Roberts, D.L.; Abraham, L.C.; Blum, Y.; Way, J.D.

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electokinetic high pressure hydraulic system  

DOE Patents (OSTI)

A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

162

Eccentric superconducting RF cavity separator structure  

DOE Patents (OSTI)

Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

Aggus, John R. (Shoreham, NY); Giordano, Salvatore T. (Port Jefferson, NY); Halama, Henry J. (Shoreham, NY)

1976-01-01T23:59:59.000Z

163

Enantioselective Liquid-Liquid Extraction Centrifugal Contactor Separators  

E-Print Network (OSTI)

the use of centrifugal contactor separators (CCS) as a highly efficient method for continuous extraction.1 for the mixing and separation of the two phases in each stage in the cascade is the Annular Centrifugal Contactor,17 also known as the Centrifugal Contactor Separator (CCS) or CINC.18 The schematic representation

Groningen, Rijksuniversiteit

164

Method for packed column separations and purifications  

DOE Patents (OSTI)

The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

Holman, David A. (Richland, WA); Bruckner-Lea, Cynthia J. (Richland, WA); Brockman, Fred J. (Kennewick, WA); Chandler, Darrell P. (Richland, WA)

2006-08-15T23:59:59.000Z

165

METHOD OF SEPARATING PLUTONIUM  

DOE Patents (OSTI)

Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

Brown, H.S.; Hill, O.F.

1958-02-01T23:59:59.000Z

166

DRY FLUORINE SEPARATION METHOD  

DOE Patents (OSTI)

Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

1959-05-19T23:59:59.000Z

167

Copper Palladium Hydrogen Separation Membranes  

This patent-pending technology, “Cu-Pd Hydrogen Separation Membranes with Reduced Palladium Content and Improved Performance,” consists of copper-palladium alloy compositions for hydrogen separation membranes that use less palladium and have a ...

168

Separability of Tripartite Quantum Systems  

E-Print Network (OSTI)

We investigate the separability of arbitrary dimensional tripartite sys- tems. By introducing a new operator related to transformations on the subsystems a necessary condition for the separability of tripartite systems is presented.

Ming Li; Shao-Ming Fei; Zhi-Xi Wang

2008-09-05T23:59:59.000Z

169

Photoelectrochemical Separation and Imaging Device  

Disclosure Number 200301283 ... The invention relates to the separation and detection of biomolecules and other charged species using ...

170

Corrosion of Membrane Materials for Hydrogen Separation from ...  

Science Conference Proceedings (OSTI)

Abstract Scope, To produce high purity hydrogen fuel from coal, hydrogen can be extracted from syngas using gas separation membranes. No membrane ...

171

Cu-Pd Hydrogen Separation Membranes with Reduced Palladium ...  

hydrogen production from fossil fuels. Membranes already exist that can be used to separate hydrogen and carbon dioxide, producing high purity H 2

172

Norman Ramsey and the Separated Oscillatory Fields Method  

Office of Scientific and Technical Information (OSTI)

with the collaboration of his students, he was the principal inventor of the atomic hydrogen maser. The separated oscillatory field method provides extremely high resolution in...

173

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

174

Image separation using particle filters  

Science Conference Proceedings (OSTI)

In this work, we will analyze the problem of source separation in the case of superpositions of different source images, which need to be extracted from a set of noisy observations. This problem occurs, for example, in the field of astrophysics, where ... Keywords: Bayesian source separation, Image separation, Non-stationary noise, Particle filtering, Sequential Monte Carlo

Mauro Costagli; Ercan Engin Kuruo?lu

2007-09-01T23:59:59.000Z

175

Method for separating boron isotopes  

SciTech Connect

A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

Rockwood, Stephen D. (Los Alamos, NM)

1978-01-01T23:59:59.000Z

176

Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008  

DOE Green Energy (OSTI)

The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Deng, Zhiqun; Fu, Tao; Monter, Tyrell J.; Johnson, Gary E.; Khan, Fenton; Wilberding, Matthew C.; Cushing, Aaron W.; Zimmerman, Shon A.; Faber, Derrek M.; Durham, Robin E.; Townsend, Richard L.; Skalski, John R.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.

2009-12-01T23:59:59.000Z

177

Photovoltaics: Separating Multiple Excitons  

Science Conference Proceedings (OSTI)

Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

Nozik, A. J.

2012-05-01T23:59:59.000Z

178

Fluidic assembly for an ultra-high-speed chromosome flow sorter  

DOE Patents (OSTI)

A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

Gray, J.W.; Alger, T.W.; Lord, D.E.

1978-11-26T23:59:59.000Z

179

Research on separators for alkaline zinc batteries. Final report  

Science Conference Proceedings (OSTI)

This project is concerned with the research and development of a hybrid separator as an improved battery separator in alkaline zinc secondary batteries. Particular emphasis has been directed toward mitigating the failure of zinc electrodes by controlling the permselectivity of the separator. Hybrid separators were synthesized and fabricated. These separators consist of a microporous film, radiation-grafted with a monomer containing ion-exchange groups. The new separator incorporates the favorable aspects of both ion-exchange membranes and microporous separators. Such a hybrid separator should ideally be highly specific for fast transport of electrolyte while inhibiting zincate diffusion. Hybrid separators with a wide range of percent graft (0 to 60%) were made by varying the monomer concentration and radiation time. The grafting of these ionic groups imparts the ion selectivity of the separators. The electrolyte uptake of hybrid separators is ca. 60 wt %. The higher the percent graft of the separator, the higher the water uptake and the lower the KOH uptake that are observed. The permeabilities of zincate ions were measured for a series of hybrid separators.

Yeo, R.S.

1984-10-01T23:59:59.000Z

180

Separation of magnetic field lines  

SciTech Connect

The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

Boozer, Allen H. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life,it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy & Environmental Research Center and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30 -50{Angstrom}) or in the molecular sieving region of mass transport phenomena (<5{Angstrom}). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. The objective of this study was to determine the selectivity of the ceramic membranes for removing undesirable gases while allowing the desired gases to be concentrated in the permeate stream.

Swanson, M.L.

1996-11-01T23:59:59.000Z

182

Gas separation membrane module assembly  

SciTech Connect

A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

Wynn, Nicholas P (Palo Alto, CA); Fulton, Donald A. (Fairfield, CA)

2009-03-31T23:59:59.000Z

183

Separate Training Influences Relative Validity  

E-Print Network (OSTI)

concurrent inhibitory training of B were to alter respondingComparative Psychology Separate Training Influences RelativeDuring relative validity training, X was reinforced when

Mehta, Rick; Dumont, Jamie-Lynne; Combiadakis, Sharon; Williams, Douglas A.

2004-01-01T23:59:59.000Z

184

Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor  

Science Conference Proceedings (OSTI)

The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

2010-08-10T23:59:59.000Z

185

Separators for absorbed electrolyte recombinant batteries  

SciTech Connect

Starved electrolyte gas recombinant batteries are a fast growing segment of the lead-acid market. There is a great deal of development being carried out using the recombinant technology. New batteries of this design have been commercialized this year and more will probably be introduced next year. All of these batteries are sealed so that they can operate above atmospheric pressure, and all of them contain a highly porous, and partially saturated glass microfiber separator. The separator is white, pliable, and ribless. The separator is the key element of these batteries since it permits gas recombination to take place. The recombination of gas within the battery makes it possible to seal the battery. The operation of these batteries is discussed.

Wandzy, K.J.; Taylor, G.W.

1986-07-01T23:59:59.000Z

186

The multi layered approach for AGM separators  

Science Conference Proceedings (OSTI)

The present absorbent glass mat separate is an offspring of the filtration medium and special paper industries. In these industries, the traditional method of manufacturing micro-glass mats, was to blend two or more types of fibers together in an aqueous acidic solution and deposit this blend onto a moving endless wire or onto a roto-former, another version of an endless wire. The sheet acquires consistency as the water is withdrawn, it is then pressed and dried against heated drums. The methods of fiber dispersion and deposition can be changed so that the different constituent fiber types of an AGM separator are processed separately in distinct and separate layers. This fiber segregation results in changes to some key characteristics of the separator and brings some very definite advantages to the VRLA battery performance. Various key characteristics of the battery are enhanced, such as its ability to deliver higher currents at the higher discharge rates. This paper sets out some basic principles for the manufacturer of wet laid microglass fiber mats. Also important AGM characteristics, such as wicking, porosity/pore size and stratification are analyzed in light of the multilayered AGM design. These characteristics are radically modified and as a consequence the VRLA battery high rate and cycling performances are equally affected.

Ferreira, A.L. [AMER-SIL S.A., Luxembourg (Luxembourg)

1999-05-01T23:59:59.000Z

187

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, W.R.; Storz, L.J.

1991-03-26T23:59:59.000Z

188

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant. 1 tab.

Cieslak, W.R.; Storz, L.J.

1989-06-12T23:59:59.000Z

189

Three phase downhole separator process  

DOE Patents (OSTI)

Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

Cognata, Louis John (Baytown, TX)

2008-06-24T23:59:59.000Z

190

Set separation Neural Network paradigms  

E-Print Network (OSTI)

for forecasting financial time series 29 f´evrier 2008 Designing a neural network for forecasting financial time for forecasting financial time series #12;Neural Net The inputs Set separation Neural Network paradigms From network for forecasting financial time series #12;Neural Net The inputs Set separation Neural Network

Chen, Yiling

191

Separator material for electrochemical cells  

DOE Patents (OSTI)

An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.

Cieslak, Wendy R. (1166 Laurel Loop NE., Albuquerque, NM 87122); Storz, Leonard J. (2215 Ambassador NE., Albuquerque, NM 87112)

1991-01-01T23:59:59.000Z

192

Hydrogen separation using silica membranes  

Science Conference Proceedings (OSTI)

Silica membranes were synthesized on tubular supports of alumina by dipping in silica colloidal solutions. The quality and the performance of the silica membranes were tested by experiments on single gas permeation and gas separation of mixed N2, ... Keywords: Knudsen diffusion, colloidal solution, gas permeation, hydrogen separation, silica membranes

Salvador Alfaroa; Miguel A. Valenzuelaa; Pedro Bosch

2008-11-01T23:59:59.000Z

193

METHOD OF SEPARATING URANIUM SUSPENSIONS  

DOE Patents (OSTI)

A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

Wigner, E.P.; McAdams, W.A.

1958-08-26T23:59:59.000Z

194

Particle separating apparatus and method  

DOE Patents (OSTI)

A disposable first tube (68) extends axially through, and is detachably connected to, an annular main body (10'). An input piezo electric element (38) is attached to a first end of the tubular main body (10'). A second, sensor piezo electric element (40) is attached to the opposite end of the main body (10'). A nozzle (20') having a nozzle passageway (110) and a discharge opening (112) is detachably secured to an outlet end of the first tube (68). A second tube (102) within the first tube (68) delivers a core liquid to the nozzle passageway (110). A sheath liquid is delivered through a space in the first tube (68) surrounding the second tube (102). The nozzle passageway (110) forms the core and sheath liquids into a small diameter jet stream. Electrical energy is delivered to the input piezo electric element (38), to vibrate the nozzle (20') and break the jet stream into droplets. The sensor element (40) determines the amplitude of vibration at the nozzle (20') and delivers this information to a control circuit that adjusts the electrical energy input to the input piezo electric element (38) for maintaining a desired amplitude of vibration at the nozzle (20'). The frequency of vibration is determined by the length of the main body (10') between the two piezo electric elements (38, 40). The first and second tubes (68, 102) are disposable and are replaced after a use rather than being cleaned and sterilized.

Van den Engh, Gerrit J. (Seattle, WA)

1999-01-01T23:59:59.000Z

195

Particle separating apparatus and method  

DOE Patents (OSTI)

A disposable first tube (68) extends axially through, and is detachably connected to, an annular main body (10'). An input piezo electric element (38) is attached to a first end of the tubular main body (10'). A second, sensor piezo electric element (40) is attached to the opposite end of the main body (10'). A nozzle (20') having a nozzle passageway (110) and a discharge opening (112) is detachably secured to an outlet end of the first tube (68). A second tube (102) within the first tube (68) delivers a core liquid to the nozzle passageway (110). A sheath liquid is delivered through a space in the first tube (68) surrounding the second tube (102). The nozzle passageway (110) forms the core and sheath liquids into a small diameter jet stream. Electrical energy is delivered to the input piezo electric element (38), to vibrate the nozzle (20') and break the jet stream into droplets. The sensor element (40) determines the amplitude of vibration at the nozzle (20') and delivers this information to a control circuit that adjusts the electrical energy input to the input piezo electric element (38) for maintaining a desired amplitude of vibration at the nozzle (20'). The frequency of vibration is determined by the length of the main body (10') between the two piezo electric elements (38, 40). The first and second tubes (68, 102) are disposable and are replaced after a use rather than being cleaned and sterilized.

Van den Engh, Gerrit J. (9756 49th Ave. NE., Seattle, WA 98195)

1998-01-01T23:59:59.000Z

196

Supported Ionic Liquid Membranes for Gas Separation  

SciTech Connect

Ionic liquids have been rapidly gaining attention for various applications including solvent separation and gas capture. These substances are noted for extremely low vapor pressure and high CO2 solubility making them ideal as transport or capture media for CO2 abatement in power generation applications. Ionic liquids, combined with various supports to form membranes, have been proven selective in CO2 separation. Several ionic liquids and a variety of polymer supports have been studied over a temperature range from 37°C to 300°C and have been optimized for stability. The membranes have demonstrated high permeability and high selectivity since the supported ionic liquid membranes incorporate functionality capable of chemically complexing CO2. A study aimed at improving supported ionic liquid membranes will examine their durability with greater transmembrane pressures and the effects on CO2 permeance, CO2/H2 selectivity and thermal stability.

Myers, C.R.; Ilconich, J.B.; Pennline, H.W.; Luebke, D.R.

2007-08-01T23:59:59.000Z

197

Novel, Ceramic Membrane System For Hydrogen Separation  

Science Conference Proceedings (OSTI)

Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

Elangovan, S.

2012-12-31T23:59:59.000Z

198

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

199

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

200

Fluorine separation and generation device  

DOE Patents (OSTI)

A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

The Regents of the University of California (Oakland, CA)

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Device for separating a mixture  

SciTech Connect

A device is described for separating a mixture of, for example, oil and water consists of a number of elements treating the mixture in stages, said elements being arranged in overlying position in order to manufacture a compact device.

Koot, T.A.; Verpalen, W.A.

1981-05-05T23:59:59.000Z

202

Microdialysis unit for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Richland, WA)

1999-01-01T23:59:59.000Z

203

Hydrogen isotope separation from water  

DOE Patents (OSTI)

A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

Jensen, R.J.

1975-09-01T23:59:59.000Z

204

Entanglement transformations using separable operations  

E-Print Network (OSTI)

We study conditions for the deterministic transformation $\\ket{\\psi}\\longrightarrow\\ket{\\phi}$ of a bipartite entangled state by a separable operation. If the separable operation is a local operation with classical communication (LOCC), Nielsen's majorization theorem provides necessary and sufficient conditions. For the general case we derive a necessary condition in terms of products of Schmidt coefficients, which is equivalent to the Nielsen condition when either of the two factor spaces is of dimension 2, but is otherwise weaker. One implication is that no separable operation can reverse a deterministic map produced by another separable operation, if one excludes the case where the Schmidt coefficients of $\\ket{\\psi}$ and are the same as those of $\\ket{\\phi}$. The question of sufficient conditions in the general separable case remains open. When the Schmidt coefficients of $\\ket{\\psi}$ are the same as those of $\\ket{\\phi}$, we show that the Kraus operators of the separable transformation restricted to the supports of $\\ket{\\psi}$ on the factor spaces are proportional to unitaries. When that proportionality holds and the factor spaces have equal dimension, we find conditions for the deterministic transformation of a collection of several full Schmidt rank pure states $\\ket{\\psi_j}$ to pure states $\\ket{\\phi_j}$.

Vlad Gheorghiu; Robert B. Griffiths

2007-05-02T23:59:59.000Z

205

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

206

Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

the same amount of electricity or more. Power generation with nuclear and renewable energy, such as wind, solar, geo- thermal, tidal, and hydroelectric, must be expanded as...

207

Aquagel electrode separator for use in batteries and supercapacitors  

DOE Patents (OSTI)

An electrode separator for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1995-01-01T23:59:59.000Z

208

Aquagel electrode separator for use in batteries and supercapacitors  

DOE Patents (OSTI)

An electrode separator is described for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof. 9 figures.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1995-03-28T23:59:59.000Z

209

Tritium removal and separation technology developments  

Science Conference Proceedings (OSTI)

Recent increased interest from regulators and the public has led more organizations to consider the environmental impact and safety considerations of tritium handling. Examples include the significance of the tritium isotope separation system on ITER licensing, remediation of ground water from power utilities and government facilities and concerns of high tritium concentrations within operational CANDU reactors. GE Healthcare, formerly Amersham pic, has been producing tritium-labelled chemicals since the late 1940's. GE's manufacturing site located near Cardiff, UK has installed a tritium waste treatment and enrichment facility to radically reduce tritium discharges to the environment. This facility employs a continuous processing plant that recovers tritium from a complex mixture of tritiated organic and aqueous waste compounds. Two isotope separation techniques are used to achieve a final pure tritium product, which is used in the manufacturing of labelled compounds. Building upon this experience, together with Special Separations Applications Inc. (SSAI), GE has developed a large-scale diffusion-based isotope separation process as an alternative to conventional cryogenic distillation. Having a tritium inventory an order of magnitude lower than conventional cryogenic distillation, this process is attractive for heavy water detritiation, applicable to single and multi-unit CANDU reactors and research reactors as well as fusion applications. Additionally, the new process has advantages of being cryogen-free, less complex, simple to operate and having improved conventional and radiological safety. (authors)

Bonnett, I. [General Electric, Hitachi Nuclear Energy Canada Inc., 1160 Monaghan Rd, Peterborough, ON K9J 7B5 (Canada); Busigin, A. [Special Separations Applications, Inc., 55 Water Street East, Brockville, ON K6V 1A3 (Canada); Shapiro, A. [General Electric GE, Global Research Center, 1 Research Circle, Niskayuna, NY 12309 (United States)

2008-07-15T23:59:59.000Z

210

Chemical Looping Air Separation Unit and Methods of Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Looping Air Separation Unit and Methods of Use Looping Air Separation Unit and Methods of Use Contact NETL Technology Transfer Group techtransfer@netl.doe.gov October 2012 Opportunity Research is currently active on the patent-pending technology "Chemical Looping Air Separation Unit and Methods of Use" that combines the best attributes of chemical looping and oxy-fuel combustion technologies. Following patent approval, the technology will be available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Significance * Combines chemical looping and oxy-fuel technologies * Separates oxygen from air at high efficiencies * Removes CO

211

T Plant, Chemical Separation Building | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project » Signature Manhattan Project » Signature Facilities » T Plant, Chemical Separation Building T Plant, Chemical Separation Building Photos of T-plant's construction and T-Plant's Chemical Separation Building Photos of T-plant's construction and T-Plant's Chemical Separation Building Completed in December 1944, T Plant was the world's first large-scale plutonium separation facility. Only about one atom in every 4,000 within the uranium slugs was converted to plutonium in the three Hanford production reactors, and these atoms had to be separated from the remaining uranium and other fission products that had been created. The highly radioactive uranium slugs were dropped into water pools behind the piles and then moved by remote-controlled rail cars to a storage facility five miles away. When short-lived radioactivity had sufficiently

212

Ion Beam Layer Separation of Cadmium Zinc Telluride  

Science Conference Proceedings (OSTI)

We have investigated the approach of ion induced layer separation process for layer splitting from Cadmium Zinc Telluride (CZT) bulk single crystal and transferring and bonding the separated layers with Silicon (Si) wafers. Layer separation experiments have been carried out at UES using 1 MeV H{sup +} ions from the high energy accelerator (1.7 MV Tandetron). Ion dose and annealing temperature for complete separation of 1 cmx1 cm size layers have been optimized. Bonding of CZT with Si was accomplished using various IR transmitting chalcogenide glasses. Cracking of separated CZT films was occurring for chalcogenide glass bonded films. Optimization of thermal treatment has led to the minimization of such cracks. Detailed characterizations of the separated films will be presented.

Bhattacharya, Rabi S.; He, P.; Xu, Y. [UES, Inc. 4401 Dayton-Xenia Road, Dayton, OH 45432 (United States); Goorsky, M. [University of California at Los Angeles, 10920 Wilshire Blvd, Suite 107, Los Angeles CA 90024 (United States)

2008-11-03T23:59:59.000Z

213

Development of an Electrochemical Separator and Compressor  

DOE Green Energy (OSTI)

Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this technology.

Trent Molter

2011-04-28T23:59:59.000Z

214

Why have we stopped research on liquid centrifugal separation  

SciTech Connect

Using high-temperature high-speed liquid centrifuges for lanthanides and actinides separation was originally proposed as a physical separation method in the Los Alamos ADTT/ATW concept [C. Bowman, LA-UR-92-1065 (1992)]. The authors investigated centrifugal separation in a concerted effort of experiments, theoretical analysis and numerical simulations. They discovered that owing to the ionic-composition-dependence of the sedimentation coefficients for the fission products and actinides, separation by grouping of molecular densities would not work in general in the molten salt environment. Alternatively the lanthanides and actinides could be transferred to a liquid metal carrier (e.g. bismuth) via reductive extraction and then separated by liquid centrifuges, but the material and technical challenges are severe. Meanwhile the authors have established that the reductive extraction procedure itself can be used for desired separations. Unlike conventional aqueous-based reprocessing technologies, reductive extraction separation uses only reagent (Li) that reconstitutes carrier salts (LiF-BeF{sub 2}) and a processing medium (Bi) that can be continuously recycled and reused, with a nearly-pure fission products waste stream. The processing units are compact and reliable, and can be built at relatively low cost while maintaining high throughput. Therefore the research effort on developing liquid centrifuges for separations in ADTT/ATW was terminated in late 1995. This paper will discuss the various aspects involved in reaching this decision.

Li, N.

1996-05-28T23:59:59.000Z

215

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

216

Spheroid-Encapsulated Ionic Liquids for Gas Separation  

  An innovative approach has been developed allowing the use of high viscosity for gas separations. The method involves the encapsulation of ionic liquids (ILs) into polymer spheroids, taking advantage of the gas-absorbing properties and ...

217

TRITIUM BARRIER MATERIALS AND SEPARATION SYSTEMS FOR THE NGNP  

DOE Green Energy (OSTI)

Contamination of downstream hydrogen production plants or other users of high-temperature heat is a concern of the Next Generation Nuclear Plant (NGNP) Project. Due to the high operating temperatures of the NGNP (850-900 C outlet temperature), tritium produced in the nuclear reactor can permeate through heat exchangers to reach the hydrogen production plant, where it can become incorporated into process chemicals or the hydrogen product. The concentration limit for tritium in the hydrogen product has not been established, but it is expected that any future limit on tritium concentration will be no higher than the air and water effluent limits established by the NRC and the EPA. A literature survey of tritium permeation barriers, capture systems, and mitigation measures is presented and technologies are identified that may reduce the movement of tritium to the downstream plant. Among tritium permeation barriers, oxide layers produced in-situ may provide the most suitable barriers, though it may be possible to use aluminized surfaces also. For tritium capture systems, the use of getters is recommended, and high-temperature hydride forming materials such as Ti, Zr, and Y are suggested. Tritium may also be converted to HTO in order to capture it on molecular sieves or getter materials. Counter-flow of hydrogen may reduce the flux of tritium through heat exchangers. Recommendations for research and development work are provided.

Sherman, S; Thad Adams, T

2008-07-17T23:59:59.000Z

218

Actinide separations by supported liquid membranes  

SciTech Connect

The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution.

Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

1984-01-01T23:59:59.000Z

219

METHOD OF SEPARATING HYDROGEN ISOTOPES  

DOE Patents (OSTI)

The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

Salmon, O.N.

1958-12-01T23:59:59.000Z

220

Separations innovative concepts: Project summary  

Science Conference Proceedings (OSTI)

This project summary includes the results of 10 innovations that were funded under the US Department's Innovative Concept Programs. The concepts address innovations that can substantially reduce the energy used in industrial separations. Each paper describes the proposed concept, and discusses the concept's potential energy savings, market applications, technical feasibility, prior work and state of the art, and future development needs.

Lee, V.E. (ed.)

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

33rd Actinide Separations Conference  

SciTech Connect

Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

McDonald, L M; Wilk, P A

2009-05-04T23:59:59.000Z

222

Conic separation of finite sets  

E-Print Network (OSTI)

Cancer. 95.54. 87.14. 95.86. Heart. 85.19. 80.33. 83.00. Pima. 76.30. 60.13 ... iii) An interesting subject of future research is the robustness of the separation by ...

223

Separation and purification of xenon  

DOE Patents (OSTI)

Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

Schlea, deceased, Carl Solomon (LATE OF Aiken, SC)

1978-03-14T23:59:59.000Z

224

Development of Inorganic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

This paper presents information and data relative to recent advances in the development at Oak Ridge National Laboratory of porous inorganic membranes for high-temperature hydrogen separation. The Inorganic Membrane Technology Laboratory, which was formerly an organizational element of Bechtel Jacobs Company, LLC, was formally transferred to Oak Ridge National Laboratory on August 1, 2002, as a result of agreements reached between Bechtel Jacobs Company, the management and integration contractor at the East Tennessee Technology Park (formerly the Oak Ridge Gaseous Diffusion Plant or Oak Ridge K-25 Site); UT-Battelle, the management and operating contractor of Oak Ridge National Laboratory; and the U.S. Department of Energy (DOE) Oak Ridge Operations Office. Research emphasis during the last year has been directed toward the development of high-permeance (high-flux) and high-separation-factor metal-supported membranes. Performance data for these membranes are presented and are compared with performance data for membranes previously produced under this program and for membranes produced by other researchers. New insights into diffusion mechanisms are included in the discussion. Fifteen products, many of which are the results of research sponsored by the DOE Fossil Energy Advanced Research Materials Program, have been declared unclassified and have been approved for commercial production.

Bischoff, B.L.; Judkins, R.R.

2003-04-23T23:59:59.000Z

225

Blind Source Separation Techniques for  

E-Print Network (OSTI)

Blind Source Separation techniques, based both on Independent Component Analysis and on second order statistics, are presented and compared for extracting partially hidden texts and textures in document images. Barely perceivable features may occur, for instance, in ancient documents previously erased and then re-written (palimpsests), or for transparency or seeping of ink from the reverse side, or from watermarks in the paper. Detecting these features can be of great importance to scholars and historians. In our approach, the document is modeled as the superposition of a number of source patterns, and a simplified linear mixture model is introduced for describing the relationship between these sources and multispectral views of the document itself. The problem of detecting the patterns that are barely perceivable in the visible color image is thus formulated as the one of separating the various patterns in the mixtures. Some examples from an extensive experimentation with real ancient documents are shown and commented.

Detecting Hidden Texts; Anna Tonazzini; Emanuele Salerno; Matteo Mochi; Luigi Bedini

2004-01-01T23:59:59.000Z

226

Molecular separation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

Villa-Aleman, Eliel (3108 Roses Run, Aiken, SC 29803)

1996-01-01T23:59:59.000Z

227

Convex polytopes and quantum separability  

Science Conference Proceedings (OSTI)

We advance a perspective of the entanglement issue that appeals to the Schlienz-Mahler measure [Phys. Rev. A 52, 4396 (1995)]. Related to it, we propose a criterium based on the consideration of convex subsets of quantum states. This criterium generalizes a property of product states to convex subsets (of the set of quantum states) that is able to uncover an interesting geometrical property of the separability property.

Holik, F.; Plastino, A. [Departamento de Matematica - Ciclo Basico Comun, Universidad de Buenos Aires - Pabellon III, Ciudad Universitaria, Buenos Aires, Argentina and CONICET (Argentina); National University La Plata and CONICET IFLP-CCT, C.C. 727 - 1900 La Plata (Argentina)

2011-12-15T23:59:59.000Z

228

Method to blend separator powders  

DOE Patents (OSTI)

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

229

Supported liquid membrane electrochemical separators  

DOE Patents (OSTI)

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

230

Ionic (Proton) Transport Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

(Proton) (Proton) Transport Hydrogen Separation Systems Summary Session Participants -- Ionic Transport Balachandran, Balu Cornelius, Chris Fleming, Greg Glass, Robert Hartvigsen, Joseph Higgins, Richard King, David Paster, Mark Paul, Dilo Robbins, John Samells, Anthony Schwartz, Michael Schinski, Bill Smith, Ronald Van Bibber, Lawrence Zalesky, Rick Argonne National Laboratory Sandia National Laboratory Air Liquide Lawrence Livermore National Laboratory Cerametec, Inc. CeraMem Corporation Battelle, PNNL DOE Science Applications International Corporation ExxonMobil Eltron Research, Inc. ITN Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures Performance Goals 4-5 years (5 years upper limit) (100,000 hrs is 12 years) High durability 250-350

231

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents (OSTI)

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, Sudhir S. (Hoffman Estates, IL); Chang, Y. Alice (Westmont, IL); Gatsis, John G. (Des Plaines, IL); Funk, Edward W. (Highland Park, IL)

1988-01-01T23:59:59.000Z

232

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1977-01-01T23:59:59.000Z

233

Laser isotope separation by multiple photon absorption  

DOE Patents (OSTI)

Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

Robinson, C. Paul (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Jensen, Reed J. (Los Alamos, NM); Lyman, John L. (Los Alamos, NM); Aldridge, III, Jack P. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

234

Membrane separation of hydrocarbons using cycloparaffinic solvents  

DOE Patents (OSTI)

Heavy crude oils which contain metal contaminants such as nickel, vanadium and iron may be separated from light hydrocarbon oils by passing a solution of the crude oil dissolved in a cycloparaffinic hydrocarbon solvent containing from about 5 to about 8 carbon atoms by passing through a polymeric membrane which is capable of maintaining its integrity in the presence of hydrocarbon compounds. The light hydrocarbon oils which possess relatively low molecular weights will be recovered as the permeate while the heavy oils which possess relatively high molecular weights as well as the metal contaminants will be recovered as the retentate.

Kulkarni, S.S.; Chang, Y.A.; Gatsis, J.G.; Funk, E.W.

1988-06-14T23:59:59.000Z

235

Separation of Hydrogen Isotopes by Thermal Diffusion  

SciTech Connect

At high hot wall temperatures the gas phase thermal diffusion column acts as an atomic rather than a molecular separator. A modified theory was developed to describe the process. Equivalent transport equations were derived for the two nuclides in a binary atomic mixture. The equations are identical in form to those normally encountered in thermal diffusion column theory. Experiments to test the theory were carried out with two 3-meter columns. Experimental results with deuterium-tritium mixtures were found to be in satisfactory agreement with theory, and it was concluded that the theory was sufficiently accurate for design purposes.

Rutherford, W. M.; Lindsay, C. N.

1985-09-01T23:59:59.000Z

236

Separation of Tritium from Wastewater  

Science Conference Proceedings (OSTI)

A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 {micro}C{sub 1} tritium/liter water standard mixture showed reductions to 25 {micro}C{sub 1}/L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 {micro}C{sub 1}/L to 0.07 {micro}C{sub 1}/L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 {micro}C{sub 1}/L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest.

JEPPSON, D.W.

2000-01-25T23:59:59.000Z

237

AMMONIA DISTILLATION FOR DEUTERIUM SEPARATION  

SciTech Connect

The relative volatility or separation factor for deuterium enrichment in ammonia distillation was measured at several pressures and deuterium concentrations. The knowledge of this ingormation is very helpful in predicting costs of heawy water production by the ammonia distillation process. It hss been stated by others, that the ammonia distillation process of heawy water production would be competitive with other developed methods only if the actusl separation factor was at least 1.062 at low deuterium concentration. Ungortunately, the measurements do not indicate that the separation factor at low deuterium composition differs greatly from the vapor pressure pre diction ( alpha = 1.042). Deutero-ammonia was synthesized by isotopic exchange between natural ammonia and heavy water. Equilibrium determinations were made using an Othmer still, modified for low temperature operation, and a concentric tube fractionating column. The arnmonia samples were analyzed for deuterium content by converting them to water by flow torough hot copper oxide, followed by a differential density determination using the falling drop method. ( auth)

Petersen, G.T.; Benedict, M.

1960-05-16T23:59:59.000Z

238

Anisotropic membranes for gas separation  

DOE Patents (OSTI)

A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.

Gollan, A.Z.

1987-07-21T23:59:59.000Z

239

Heat Transfer Enhancement in Separated and Vortex Flows  

SciTech Connect

This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.

Richard J. Goldstein

2004-05-27T23:59:59.000Z

240

Apparatus and method for separating constituents  

DOE Patents (OSTI)

A centrifugal separator apparatus and method for improving the efficiency of the separation of constituents in a fluid stream. A cyclone separator includes an assembly for separately discharging both constituents through the same end of the separator housing. A rotary separator includes a rotary housing having a baffle disposed therein for minimizing the differential rotational velocities of the constituents in the housing, thereby decreasing turbulence, and increasing efficiency. The intensity of the centrifugal force and the time which the constituents reside within the housing can be independently controlled to improve efficiency of separation.

Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SEPARATION OF PROTACTINIUM FROM CONTAMINANTS  

DOE Patents (OSTI)

The separation of protactinium by volatilization method is described. According to the invention, neutron irradiated finely divided thorium is reacted with aluminum trichloride or a mixture of aluminum trichloride and chlorine gas at a temperature of preferably between about 200 and 400 deg C. Following the chlorinating step the protactinium chloride along with aluminum chloride is selectively distilled from the mixture at a temperature of approximately 100 deg C. The protactinium chloride may be recovered from the mixture by treatment with sodium hydroxide, which converts the aluminum chloride to a soluble salt and forms insoluble protactinium hydroxide.

Malm, J.G.; Fried, S.

1959-07-01T23:59:59.000Z

242

Separation of actinides from lanthanides  

DOE Patents (OSTI)

An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

1988-03-31T23:59:59.000Z

243

SEPARATION OF URANIUM FROM THORIUM  

DOE Patents (OSTI)

A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

Hellman, N.N.

1959-07-01T23:59:59.000Z

244

SEPARATION OF THORIUM FROM URANIUM  

DOE Patents (OSTI)

A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

Bane, R.W.

1959-09-01T23:59:59.000Z

245

Ultracentrifuge for separating fluid mixtures  

DOE Patents (OSTI)

1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

Lowry, Ralph A. (Charlottesville, VA)

1976-01-01T23:59:59.000Z

246

Separations and safeguards model integration.  

Science Conference Proceedings (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

247

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Feldman, Barry J. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

248

Isotope separation apparatus and method  

DOE Patents (OSTI)

The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

Cotter, Theodore P. (Los Alamos, NM)

1982-12-28T23:59:59.000Z

249

Gas separation with glass membranes. Final report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is seeking to develop high temperature, high pressure inorganic membrane technology to perform a variety of gas separation processes to improve the efficiency and economics of advanced power generation systems such as direct coal-fueled turbines (DCFT) and the integrated gasification combined cycle process (IGCC). The temperatures encountered in these power generation systems are far above the temperature range for organic membrane materials. Inorganic materials such as ceramics are therefore the most likely membrane materials for use at high temperatures. This project focussed on silica glass fiber membranes made by PPG Industries (Pittsburgh, PA). The goals were both experimental and theoretical. The first objective was to develop a rational theory for the performance of these membranes. With existing theories as a starting point, a new theory was devised to explain the unusual ``molecular sieving`` behavior exhibited by these glass membranes. An apparatus was then devised for making permeation performance measurements at conditions of interest to DOE (temperatures to 2000{degrees}F; pressures to 1000 psia). With this apparatus, gas mixtures could be made typical of coal combustion or coal gasification processes, these gases could be passed into a membrane test cell, and the separation performance determined. Data were obtained for H{sub 2}/CO,N{sub 2}/CO{sub 2}, 0{sub 2}/N{sub 2}, and NH{sub 3}/N{sub 2} mixtures and for a variety of pure component gases (He, H{sub 2}, CO{sub 2}, N{sub 2}, CO, NH{sub 3}). The most challenging part of the project turned out to be the sealing of the membrane at high temperatures and pressures. The report concludes with an overview of the practical potential of these membranes and of inorganic membranes in general of DOE and other applications.

Roberts, D.L.; Abraham, L.C.; Blum, Y.; Way, J.D.

1992-05-01T23:59:59.000Z

250

High flux reactor  

DOE Patents (OSTI)

A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

251

Engine having a high pressure hydraulic system and low pressure lubricating system  

DOE Patents (OSTI)

An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2000-01-01T23:59:59.000Z

252

Characterization of Fish Passage Conditions through a Francis Turbine, Spillway, and Regulating Outlet at Detroit Dam, Oregon, Using Sensor Fish, 2009  

Science Conference Proceedings (OSTI)

Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike, collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.

Duncan, Joanne P.; Carlson, Thomas J.

2011-05-06T23:59:59.000Z

253

Characterization of Fish Passage Conditions through a Francis Turbine and Regulating Outlet at Cougar Dam, Oregon, Using Sensor Fish, 2009–2010  

Science Conference Proceedings (OSTI)

Fish passage conditions through a Francis turbine and a regulating outlet (RO) at Cougar Dam on the south fork of the McKenzie River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions encountered during passage via specific routes. The RO investigation was performed in December 2009 and the turbine evaluation in January 2010, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision, strike, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Cougar Dam indicates that the RO passage route through the 3.7-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine passage. Compared to mainstem Columbia River passage routes, none of the Cougar Dam passage routes as tested are safe for juvenile salmonid passage.

Duncan, Joanne P.

2011-05-23T23:59:59.000Z

254

Astrophysical image separation by blind time--frequency source separation methods  

Science Conference Proceedings (OSTI)

In this paper, two prevalent blind time-frequency (TF) source separation methods in the literature are adapted to astrophysical image mixtures and four algorithms are developed to separate them into their astrophysical components. The components considered ... Keywords: Astrophysical image separation, Blind time--frequency source separation methods, Cosmic microwave background radiation, Joint diagonalization, Source separation

Mehmet Tankut Özgen; Ercan Engin Kuruo?lu; Diego Herranz

2009-03-01T23:59:59.000Z

255

Process for strontium-82 separation  

DOE Patents (OSTI)

The process is for the selective separation of Sr-82 and Sr-85 from a proton-irradiated Mo target. It includes dissolving the Mo in H2O2 to form a solution which is then passed through a cationic resin, whereby Mo, Nb, Tc, Se, V, As, Ge, Zr, Rb ions remain in the solution, while Rb, Zn, Be, Co, Fe, Mn, Cr, Sr, Y, Zr ions are adsorbed. The resin is contacted with an acid solution to remove the adsorbed ions, forming a second solution. The second solution is evaporated and the residue dissolved in a dilute acid to form a third solution. After adjusting the acid molarity, the third solution is passed through a second cationic resin; this resin is contacted first with a dilute sulfuric acid solution and then with a dilute acid solution to remove the adsorbed Sr ions. Zr, Rb, and Y radioisotopes can also be recovered with additional steps.

Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

1991-12-31T23:59:59.000Z

256

Olefin separation membrane and process  

DOE Patents (OSTI)

A membrane and process are disclosed for separating unsaturated hydrocarbons from fluid mixtures. The membrane and process differ from previously known membranes and processes, in that the feed and permeate streams can both be dry, the membrane need not be water or solvent swollen, and the membrane is characterized by a selectivity for an unsaturated hydrocarbon over a saturated hydrocarbon having the same number of carbon atoms of at least about 20, and a pressure-normalized flux of said unsaturated hydrocarbon of at least about 5{times}10{sup {minus}6}cm{sup 3}(STP)/cm{sup 2}{center_dot}s{center_dot}cmHg, said flux and selectivity being measured with a gas mixture containing said unsaturated and saturated hydrocarbons, and in a substantially dry environment. 4 figs.

Pinnau, I.; Toy, L.G.; Casillas, C.

1997-09-23T23:59:59.000Z

257

SEPARATION PROCESS FOR THORIUM SALTS  

DOE Patents (OSTI)

A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

1957-12-01T23:59:59.000Z

258

Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1994--January 31, 1995  

SciTech Connect

This multifarious research program is dedicated to the development of capillary electrokinetic separation techniques and associated optical methods of detection. Currently, research is directed at three general objectives. First, fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on achieving rapid separations and understanding separation systems that include highly-ordered assemblies as running buffer additives. Second, instrumentation and methodologies associated with these capillary separation techniques are being advanced. Third, applications of these separation and detection systems should fill current voids in the capabilities of capillary separation techniques. In particular, it should be possible to perform rapid, highly efficient, and selective separations of hydrophobic compounds (e.g., higher MW polycyclic aromatic hydrocarbons (PAHs) and fullerenes), certain optical isomers, DNA fragments, and various pollutants including certain heavy metals.

Sepaniak, M.J.

1995-05-01T23:59:59.000Z

259

high  

Gasoline and Diesel Fuel Update (EIA)

0 0 Summary Our short-term outlook for a wide array of energy prices has been adjusted upward as international and domestic energy supply conditions have tightened. We think that crude oil prices are as likely as not to end the year $2 to $3 per barrel higher than our previous projections. Thus, we think that the probability of West Texas Intermediate costing an average of $30 per barrel or more at midwinter is about 50 percent. On their current track, heating oil prices are likely to be about 30 percent above year-ago levels in the fourth quarter. Prices for Q1 2001 seem more likely now to match or exceed the high level seen in Q1 2000. Tight oil markets this year and an inherent propensity for high gas utilization in incremental power supply have resulted in rising North American natural gas

260

Pulsed CO laser for isotope separation of uranium  

SciTech Connect

This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

Baranov, Igor Y.; Koptev, Andrey V. [Rocket-Space Technics Department, Baltic State Technical University, 1, 1st Krasnoarmeyskaya st.,St. Petersburg, 190005 (Russian Federation)

2012-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Image Source Separation Using Color Channel Dependencies  

Science Conference Proceedings (OSTI)

We investigate the problem of source separation in images in the Bayesian framework using the color channel dependencies. As a case in point we consider the source separation of color images which have dependence between its components. A Markov Random ...

Koray Kayabol; Ercan E. Kuruoglu; Bulent Sankur

2009-03-01T23:59:59.000Z

262

Ceramic-zeolite Composite Membranes and Use for Separation of Vapor-gas Mixtures  

Having both high selectivity and high permeability, the zeolite membranes have great potential for highly selective separation of vapor/gas and gas/gas mixtures and for catalytic membrane reactor applications. However, it is very difficult to prepare ...

263

A characterization of separable conjugate spaces  

E-Print Network (OSTI)

Necessary and sufficient conditions for a separable Banach space to be a dual space are proved. Some applications are discussed

Rossi, Stefano

2010-01-01T23:59:59.000Z

264

Molecular Transport/Microporous Hydrogen Separation Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Microporous Hydrogen Separation Systems Participants Acquaviva, Jim: Armstrong, Tim: Asaro, Marianne: Berchtold, Kathryn: Bischoff, Brian: Cornelius, Chris: Huang,...

265

Device for hydrogen separation and method  

DOE Patents (OSTI)

A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.

Paglieri, Stephen N. (White Rock, NM); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

2009-11-03T23:59:59.000Z

266

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

Postma, A.K.

1984-09-07T23:59:59.000Z

267

Permeable polyaniline articles for gas separation  

DOE Patents (OSTI)

Immersion precipitation of solutions having 15%-30% (w/w) and various molecular weights of the emeraldine base form of polyaniline in polar aprotic solvents are shown to form integrally skinned asymmetric membranes and fibers having skin layers <1 .mu.m thick which exhibit improved rates of gas transport while preserving good selectivity. These membranes can be further transformed by an acid doping process after fabrication to achieve excellent permeation rates and high selectivities for particular gas separations. Prior to the use of concentrated EB solutions, the formation of integrally skinned asymmetric membranes was not possible, since films and fibers made from <5% w/w polyaniline solutions were found to disintegrate during the IP process.

Wang, Hsing-Lin (Los Alamos, NM); Mattes, Benjamin R. (Santa Fe, NM)

2009-07-21T23:59:59.000Z

268

Studies of phase separable soluble polymers  

E-Print Network (OSTI)

The technique of phase labeling has the ability to greatly enhance synthetic protocol by simplifying purification and increasing efficiency. Traditional insoluble supports offer efficient and simple recovery of the Â?phase taggedÂ? material but suffer from problems inherent to their heterogeneous nature. A solution to these problems has been to utilize phase separable soluble polymers in the design of Â?smartÂ? responsive systems that offer the option of homogenous reaction conditions with heterogeneous separation conditions. The subject of this dissertation focuses on the application of soluble polymeric phase tags in systems where the miscibility between solid-liquid and liquid-liquid systems is thermally induced. Low molecular weight poly(ethylene glycol) (PEG) oligomers were investigated as phase anchors for SCS palladacycle catalysts. The oligomeric PEG chains were sufficient to engender polar phase solubility in a heptane-DMA thermomorphic system. Microwave irradiation of these thermomorphic mixtures of palladium complexes and substrates was a viable scheme to recycle and significantly shorten reaction times for simple Heck reactions of aryl iodides. Soluble polymeric supports possessing a lower critical solution temperature (LCST) were utilized in the sequestration of the S-triazine herbicide, atrazine, from contaminated water samples. The ability of poly(N-isopropylacrylamide) to sequester hydrophobic guests like atrazine was examined. A functionalized PNIPAM derivative containing secondary cyclic amines exhibited superior sequestration ability that was credited to the covalent binding of the atrazine. In order to facilitate the design of tailored, thermally responsive, smart polymers, a high throughput temperature gradient microfluidic device was used to obtain LCST data in a fast, accurate manner. The specific ion effects of various alkali metal halide salts on the LCST of PNIPAM were investigated. The high precision in the measurements enabled more subtle effects such as changes in solvent isotope, polymer microstructure, molecular weight, and importance of end group effects on the LCST of poly(N-alkylacrylamide)s to be evaluated.

Furyk, Steven Michael

2003-05-01T23:59:59.000Z

269

high  

Gasoline and Diesel Fuel Update (EIA)

0 0 Highlights International Oil Markets Prices. We have raised our world oil price projection by about $2 per barrel for this month because of assumed greater compliance by OPEC to targeted cuts, especially for the second quarter of 2000 (Figure 1). The expected decline in world petroleum inventories continues (Figure 2), and, given the generally stiff resolve of OPEC members to maintain production cuts, any sign of a turnaround in stocks may be postponed until later this year than previously assumed (Q3 instead of Q2). Our current estimate for the average import cost this past January is now $25 per barrel, a nearly $15-per-barrel increase from January 1999. Crude oil prices are expected to remain at relatively high levels for the first half of 2000, but

270

Source separation of household waste: A case study in China  

SciTech Connect

A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

Zhuang Ying; Wu Songwei; Wang Yunlong [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Wu Weixiang [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: weixiang@zju.edu.cn; Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

2008-07-01T23:59:59.000Z

271

Efficient Separations and Processing Crosscutting Program. Technology summary  

Science Conference Proceedings (OSTI)

The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems.

NONE

1995-06-01T23:59:59.000Z

272

Process for strontium-82 separation  

DOE Green Energy (OSTI)

A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.

Heaton, Richard C. (Los Alamos, NM); Jamriska, Sr., David J. (Los Alamos, NM); Taylor, Wayne A. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

273

Process for strontium-82 separation  

DOE Patents (OSTI)

A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.

Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.

1992-12-01T23:59:59.000Z

274

Centrifugal separator devices, systems and related methods  

SciTech Connect

Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Macaluso, Lawrence L. (Carson City, NV)

2012-03-20T23:59:59.000Z

275

What Defines a Separate Hydrothermal System  

DOE Green Energy (OSTI)

Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

Lawless, J.V.; Bogie, I.; Bignall, G.

1995-01-01T23:59:59.000Z

276

Combined electrophoretic-separation and electrospray method and system  

DOE Patents (OSTI)

A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

Smith, R.D.; Olivares, J.A.

1989-06-27T23:59:59.000Z

277

Combined electrophoretic-separation and electrospray method and system  

DOE Patents (OSTI)

A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

Smith, Richard D. (Richland, WA); Olivares, Jose A. (Kennewick, WA)

1989-01-01T23:59:59.000Z

278

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents (OSTI)

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

279

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

280

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preparative-scale isoelectric trapping separations in a multicompartmental electrolyzer: implementation and monitoring  

E-Print Network (OSTI)

Preparative-scale protein separations have always been critical to the advancement of the life sciences. Among preparative-scale separation techniques, isoelectric trapping (IET) promises efficient separations and high production rates. This dissertation focuses on the improvement of two aspects of preparative-scale IET protein separations: the instrumentation used and the monitoring of the separation. The first aspect (preparative-scale) is the IET device: the improvement of a multicompartmental electrolyzer (MCE) to increase the efficiency and production rate of IET separations. The redesign focused on three major areas: (1) the sealing system, (2) the configuration of the liquid flow path, and (3) the cooling system. The second aspect (analytical-scale) is the monitoring of the IET separation: the design and manufacture of durable surface-modified capillaries which provide controlled, variable anodic and cathodic electroosmotic flow (EOF) to help develop, plan, and monitor the IET separations.

Sinajon, Joseph Brian Montejo

2007-08-01T23:59:59.000Z

282

Development of mixed-conducting ceramic membrane for hydrogen separation.  

SciTech Connect

The Office of Fossil Energy of the US Department of Energy is formulating ''Vision 21,'' a program aimed at developing technologies for highly efficient power and coproduction plants that discharge almost no pollutants and close the carbon cycle. An integrated gasification combined cycle (IGCC) system is a likely modular component of a Vision 21 coproduction plant. IGCC technology is ideally suited for the coproduction of electricity and high-quality transportation fuel and/or a host of high-value chemicals. As part of the IGCC system, high-temperature membranes for separating hydrogen from coal gasification and other partial-oxidation-product streams are being considered. Thin and dense ceramic membranes fabricated from mixed protonic and electronic conductors provide a simple, efficient means for separating hydrogen from gas streams. Dense mixed-conducting ceramic membranes effect transport via ion- and electron-conducting mechanisms. Because these membranes have no interconnected porosity, selectively for hydrogen is nearly 100%. Hydrogen separation is achieved in a nongalvanic mode, i.e., without the need for electrodes and external power supply to drive the separation. BaCeO{sub 3}-based materials exhibit protonic conductivity that is significantly higher than its electronic conductivity. To enhance the electronic conductivity and increase hydrogen permeation, we have fabricated BaCeO{sub 3}-containing cermet membranes and used them in a nongalvanic mode to separate hydrogen from gas streams containing H{sub 2}, CO, CO{sub 2} and trace amounts of H{sub 2}S. Material selection, fabrication, performance as well as technical/technological challenges of the ceramic membranes for hydrogen separation are discussed in this talk.

Balachandran, U.; Dorris, S. E.; Lee, T. H.

1999-08-20T23:59:59.000Z

283

Cyclone reactor with internal separation and axial recirculation  

DOE Patents (OSTI)

A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA)

1989-01-01T23:59:59.000Z

284

Cyclone reactor with internal separation and axial recirculation  

DOE Patents (OSTI)

A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

Becker, F.E.; Smolensky, L.A.

1988-07-19T23:59:59.000Z

285

ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS  

Science Conference Proceedings (OSTI)

A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned “on” or “off.” It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this approach for materials accountability will be discussed.

Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

2010-08-11T23:59:59.000Z

286

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

SciTech Connect

The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at â?¥95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOEâ??s goals prior to down-selection for larger-scale (â??100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (â??1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex situ (laboratory) air regeneration at 450 °C could restore separator performance by burning out such deposits. Gasifier testing revealed that high molecular weight hydrocarbons have the potential to retard H2 separation. Unconverted coal tars with carbon numbers greater than 14 have a boiling point such that they can act as a reversible poison to the Pd-Cu membranes even at temperatures above 500 °C. The use of real-time, physics-based, performance models revealed the effect of these coal tars. It is believed that this project provided the first evidence for the impact of coal tars on H{sub 2} separator performance. Final down-selection of candidate alloys for non-membrane materials of construction proceeded by evaluating the alloys in both UTRC laboratory tests and testing downstream of an actual gasifier at the National Carbon Capture Center (NCCC). The overall alloy ratings were calculated by multiplying the projected cost of a 100 lb day{sup -1} H{sub 2} separator outer shell by the projected oxide scale thickness for 5 years of operation. The alloy with the lowest resulting rating parameter was stainless steel 309 (SS-309) followed by stainless steel 310 (SS-310). However, it was noted that approximately half of the alloys showed susceptibility to pitting and localized corrosion. SS-309 was one of the alloys that exhibited heavy localized attack after 2000 hours of laboratory testing. As this localized corrosion can potentially lead to accelerated end of life, it was determined that SS-310 would be the best alloy selection for this application as it does not show signs of localized pitting corrosion.

Sean Emerson; Neal Magdefrau; Ying She; Catherine Thibaud-Erkey

2012-10-31T23:59:59.000Z

287

Advanced Palladium Membrane Scale-up for Hydrogen Separation  

Science Conference Proceedings (OSTI)

The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at â?¥95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOEâ??s goals prior to down-selection for larger-scale (â??100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (â??1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex situ (laboratory) air regeneration at 450 °C could restore separator performance by burning out such deposits. Gasifier testing revealed that high molecular weight hydrocarbons have the potential to retard H2 separation. Unconverted coal tars with carbon numbers greater than 14 have a boiling point such that they can act as a reversible poison to the Pd-Cu membranes even at temperatures above 500 °C. The use of real-time, physics-based, performance models revealed the effect of these coal tars. It is believed that this project provided the first evidence for the impact of coal tars on H{sub 2} separator performance. Final down-selection of candidate alloys for non-membrane materials of construction proceeded by evaluating the alloys in both UTRC laboratory tests and testing downstream of an actual gasifier at the National Carbon Capture Center (NCCC). The overall alloy ratings were calculated by multiplying the projected cost of a 100 lb day{sup -1} H{sub 2} separator outer shell by the projected oxide scale thickness for 5 years of operation. The alloy with the lowest resulting rating parameter was stainless steel 309 (SS-309) followed by stainless steel 310 (SS-310). However, it was noted that approximately half of the alloys showed susceptibility to pitting and localized corrosion. SS-309 was one of the alloys that exhibited heavy localized attack after 2000 hours of laboratory testing. As this localized corrosion can potentially lead to accelerated end of life, it was determined that SS-310 would be the best alloy selection for this application as it does not show signs of localized pitting corrosion.

Sean Emerson; Neal Magdefrau; Ying She; Catherine Thibaud-Erkey

2012-10-31T23:59:59.000Z

288

Gas separations using ceramic membranes. Final report, September 1988--February 1993  

DOE Green Energy (OSTI)

This study covers a comprehensive evaluation of existing ceramic membranes for high temperature gas separations. Methodology has been established for microporous characterization stability and gas separation efficiency. A mathematical model was developed to predict gas separations with existing membranes. Silica and zeolitic modifications of existing membranes were pursued to enhance its separation efficiency. Some of which demonstrate unique separations properties. Use of the dense-silica membranes for hydrogen enrichment was identified as a promising candidate for future development. In addition, the decomposition of trace ammonia contaminant via a catalytic membrane reactor appears feasible. A further economic analysis is required to assess its commercial viability.

Lin, C.L.; Wu, J.C.S.; Gallaher, G.R.; Smith, G.W.; Flowers, D.L.; Gerdes, T.E.; Liu, P.K.T.

1993-02-01T23:59:59.000Z

289

Headquarters Separation Clearance Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Separation Clearance Process Separation Clearance Process Headquarters Separation Clearance Process When a DOE employee leaves the agency, either by resignation, transfer to another agency, termination or retirement, there is an important process to follow. There is important information that you need to know about your pay and benefits prior to leaving the agency. To set up an appointment to discuss further options, contact your servicing Human Resources Specialist. If you have made the decision to leave DOE, please notify your Administrative Officer as soon as possible so that they can assist you in completing this process in a timely manner. The Headquarters Separation Clearance Form 3293.1 must be completed prior to your separation in order for your clearance to be completed. At the time of your separation,

290

New High Performance Hybrid Magnet Plates for DNA Separation and  

These plates are designed to be used in conjunction with most industry standard micro-titer plate ... common carbon steel alloys and more exotic materials such as ...

291

Separation of High Order Harmonics with Fluoride Windows  

E-Print Network (OSTI)

Harmonics with Fluoride Windows T. K. Allison, 1,2? J. vanpropagation in a ?uoride window while still preserving theirfor MgF 2 , CaF 2 , and LiF windows for the third, ?fth, and

Allison, Tom

2010-01-01T23:59:59.000Z

292

Lower Cost, Nanoporous Block Copolymer Battery Separator ...  

A Berkeley Lab team led by Nitash Balsara has developed an inexpensive and easily controlled process yielding a nanoporous polymer separator that performs just as ...

293

Separating lignite hydrogenation sludge by vacuum distillation  

SciTech Connect

Vacuum distillation was studied as a means to separate coal hydrogenation sludge. Additives containing mainly aromatic hydrocarbons intensified the process. 4 refs., 2 figs., 5 tabs.

Gorlov, E.G.; Grobanova, L.T.; Belyavtseva, N.V. [Rossiskaya Akademiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

294

Available Technologies: Fluorine Separation and Generation Device  

... and Constantin Stefan of Berkeley Lab have developed a solid state electrolytic cell to separate fluorine from fluorine/fluoride gases or liquids, ...

295

Centrifugal separators and related devices and methods  

Science Conference Proceedings (OSTI)

Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

Meikrantz, David H. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Garn, Troy G. (Idaho Falls, ID); Macaluso, Lawrence L. (Carson City, NV); Todd, Terry A. (Aberdeen, ID)

2012-03-06T23:59:59.000Z

296

ADSORPTION SEPARATION PROCESSES FOR IONIC LIQUID CATALYTIC ...  

Presently disclosed are methods and apparatus for separation of reaction products from reaction mixtures in an ionic liquid catalysis process, particularly in ...

297

Optimization Online - Blind Source Separation using Relative ...  

E-Print Network (OSTI)

Sep 19, 2005 ... Abstract: We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its ...

298

Battery separators: Past, present and future  

Science Conference Proceedings (OSTI)

The separator is an essential component of state of the art battery technology. It not only must meet the essential function as a current insulator to the electrodes of different polarity, but must also meet the requirements demanded by the steadily changing manufacturing technology. Improved battery energy density, higher reserve capacity and cold cranking performance as well as increased battery productivity have required changes in separators which will be addressed in this presentation. Some of the more important separator characteristics are discussed as well as separator market.

Strzempko, S.J.; Choi, W.M. [Grace Battery Separators, Cambridge, MA (United States)

1993-03-01T23:59:59.000Z

299

Lower Cost, Nanoporous Block Copolymer Battery Separator ...  

Although the polyolefin polymer material often used for lithium battery separators costs approximately $1.30/kg, the difficult process used to make it ...

300

Liquid phase thermal swing chemical air separation  

DOE Patents (OSTI)

A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

Erickson, D.C.

1988-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Process to remove actinides from soil using magnetic separation  

DOE Patents (OSTI)

A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

Avens, Larry R. (Los Alamos, NM); Hill, Dallas D. (Los Alamos, NM); Prenger, F. Coyne (Los Alamos, NM); Stewart, Walter F. (Las Cruces, NM); Tolt, Thomas L. (Los Alamos, NM); Worl, Laura A. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

302

Ionic Liquid Membranes for Carbon Dioxide Separation  

SciTech Connect

Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on amine interactions. The hypothesis is that the performance at the elevated temperatures could be improved by allowing a facilitated transport mechanism to become dominant. Several amine-based ionic liquids were tested on the cross-linked nylon support. It was found that using the amine-based ionic liquid did improve selectivity and permeability at higher temperature. The hypothesis was confirmed, and it was determined that the type of amine used also played a role in facilitated transport. Given the appropriate aminated ionic liquid with the cross-linked nylon support, it is possible to have a membrane capable of separating CO2 at IGCC conditions. With this being the case, the research has expanded to include separation of other constituents besides CO2 (CO, H2S, etc.) and if they play a role in membrane poisoning or degradation. This communication will discuss the operation of the recently fabricated ionic liquid membranes and the impact of gaseous components other than CO2 on their performance and stability.

Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

2008-07-12T23:59:59.000Z

303

Pyrochemical separations chemistry of plutonium  

Science Conference Proceedings (OSTI)

The recovery and purification of plutonium involves interesting chemistry. Currently in use are several high temperature processes based on redox reactions. These processes include direct oxide reduction which uses calcium to reduce the oxide to the free metal and electrorefining which is used as a final purification step. The chemical research group at Rocky Flats is currently investigating the use of an aluminum/magnesium alloy to remove the ionic plutonium from the salts used in the above named processes. The results of this study along with an overview of pyrochemical plutonium processing chemistry will be presented.

Bynum, R.V.; Navratil, J.D.

1986-01-01T23:59:59.000Z

304

SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS  

SciTech Connect

Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

2012-09-25T23:59:59.000Z

305

Separations technology development to support accelerator-driven transmutation concepts  

SciTech Connect

This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems.

Venneri, F.; Arthur, E.; Bowman, C. [and others

1996-10-01T23:59:59.000Z

306

Evaluation of Fiber Separators for Use in Thermal Batteries  

SciTech Connect

Fiberglass tape and borosilicate filter discs impregnated with molten LiCl-KCl eutectic were examined for potential use as separators for high-temperature LiSi/LiCl-KCl/FeS{sub 2} thermal batteries. Test discs were punched from these materials and evaluated at 400 C in single cells at a steady-state current of 63 mA/cm{sup 2}. The performance generally improved with electrolyte loading for most of the materials. Better results were obtained with the filter discs than with the tape. The best overall results were obtained with Whatman GF/A discs. Active lives for cells with these separators were about 85% of the standard cells with pressed-powder separators. More work with other materials and electrolytes over a wider temperature range is underway, along with 5-cell-battery tests.

GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

1999-09-08T23:59:59.000Z

307

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

Christopher E. Hull

2005-01-20T23:59:59.000Z

308

Separation of alcohol-water mixtures using salts  

DOE Green Energy (OSTI)

Use of a salt (KF or Na/sub 2/SO/sub 4/) to induce phase separation of alcohol-water mixtures was investigated in three process flowsheets to compare operating and capital costs with a conventional distillation process. The process feed was the Clostridia fermentation product, composed of 98 wt % water and 2 wt % solvents (70% 1-butanol, 27% 2-propanol, and 3% ethanol). The design basis was 150 x 10/sup 6/ kg/y of solvents. Phase equilibria and tieline data were obtained from literature and experiments. Three separation-process designs were developed and compared by an incremental economic analysis (+-30%) with the conventional separation technique using distillation alone. The cost of salt recovery for recycle was found to be the critical feature. High capital and operating costs make recovery of salt by precipitation uneconomical; however, a separation scheme using multiple-effect evaporation for salt recovery has comparable incremental capital costs ($1.72 x 10/sup 6/ vs $1.76 x 10/sup 6/) and lower incremental operating costs ($2.14 x 10/sup 6//y vs $4.83 x 10/sup 6//y) than the conventional separation process.

Card, J. C.; Farrell, L. M.

1982-04-01T23:59:59.000Z

309

Separators for valve regulated lead acid batteries  

Science Conference Proceedings (OSTI)

This paper reviews some aspects of the past history of the valve regulated lead acid (VRLA) battery in relationship to microglass separators that have been used from the conception of VRLA technology. It also focuses on some aspects of compression properties of the separator.

Zguris, G.C. [Hollingsworth & Vose Co., West Groton, MT (United States)

1995-01-01T23:59:59.000Z

310

The type discipline of behavioral separation  

Science Conference Proceedings (OSTI)

We introduce the concept of behavioral separation as a general principle for disciplining interference in higher-order imperative concurrent programs, and present a type-based approach that systematically develops the concept in the context of an ML-like ... Keywords: behavioral types, concurrency, higher order programming, interference, separation

Luís Caires; João C. Seco

2013-01-01T23:59:59.000Z

311

Device for hydrogen separation and method  

A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or ...

312

Separation of convex polyhedral sets with uncertain data  

E-Print Network (OSTI)

?? &' 2. ( hold. Such a hyperplane $ is called the separating hyperplane of the sets ! " . Sets ! " # ?? are called strongly separable if they are weakly separable ...

313

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

1990-01-01T23:59:59.000Z

314

Supercritical separation process for complex organic mixtures  

DOE Patents (OSTI)

A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

Chum, H.L.; Filardo, G.

1990-10-23T23:59:59.000Z

315

Gas separation using ultrasound and light absorption  

SciTech Connect

An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

Sinha, Dipen N. (Los Alamos, NM)

2012-07-31T23:59:59.000Z

316

Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations  

Science Conference Proceedings (OSTI)

Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the performance of an adsorptive separation unit for propane/propylene separation compared with traditional zeolite adsorbents. The enhanced transport will allow for more efficient utilization of a given adsorbent inventory by reducing process cycle time, allowing a faster production rate with a fixed amount of adsorbent or smaller adsorbent inventory at a fixed production rate. Smaller adsorbent inventory would also lead to significant savings in the capital cost due to smaller footprint of the equipment. Energy consumption calculation, based on the pulse test results for rived NaX zeolite adsorbent, of a hypothetical moderate-scale SMB propane/propylene separation plant that processes 6000 BPSD refinery grade propylene (70% propylene) will consume about 60-80% less energy (both re-boiler and condenser duties) compared to a C3 splitter that process the same amount of feed. This energy saving also translates to a reduction of 30,000-35,000 tons of CO2 emission per year at this moderate processing rate. The enhancement of mass transport achievable by introduction of controlled mesoporosity to the zeolite also opens the door for the technology to be applied to several other adsorption separation processes such as the separation of xylene isomers by SMB, small- and large scale production of O2/N2 from air by pressure swing adsorption, the separation of CO2 from natural gas at natural gas wellheads, and the purification of ultra-high purity H2 from the off gas produced by steam-methane-reforming.

Kunhao Li, Michael Beaver

2012-01-18T23:59:59.000Z

317

Method and apparatus for improved gas-solids separation  

DOE Patents (OSTI)

The present New Source Performance Standards (NSPS) for utility boilers limit particulate emissions to 0.03 pound of total suspended particles per million BTU of heat input. To meet NSPS the particulate removal efficiency of a control device must be 99.0 to 99.9%, depending upon the heating value of the coal. Methods and apparatus are disclosed for the removal of particulate solids from a gas stream at high separation efficiency, including the removal of submicron size particles. The apparatus includes a cyclone separator type of device which contains an axially mounted perforated cylindrical hollow rotor. The rotor is rotated at high velocity in the same direction as the flow of an input particle-laden gas stream to thereby cause enhanced separation of particulate matter from the gas stream in the cylindrical annular space between the rotor and the sidewall of the cyclone vessel. Substantially particle-free gas passes through the perforated surface of the spinning rotor and into the hollow rotor, from whence it is discharged out of the top of the apparatus. Separated particulates are removed from the bottom of the vessel. 4 figs., 5 tabs.

Kusik, C.L.; He, Bo X.

1989-08-04T23:59:59.000Z

318

Hybrid Membranes for Light Gas Separations  

E-Print Network (OSTI)

Membrane separations provide a potentially attractive technology over conventional processes due to their advantages, such as low capital cost and energy consumption. The goal of this thesis is to design hybrid membranes that facilitate specific gas separations, especially olefin/paraffin separations. This thesis focuses on the designing dendrimer-based hybrid membranes on mesoporous alumina for reverse-selective separations, synthesizing Cu(I)-dendrimer hybrid membrane to facilitate olefin/paraffin separations, particularly ethylene/methane separation, and investigating the influence of solvent, stabilizing ligands on facilitated transport membrane. Reverse-selective gas separations have attracted considerable attention in removing the heavier/larger molecules from gas mixtures. In this study, dendrimer-based chemistry was proved to be an effective method by altering dendrimer structures and generations. G6-PIP, G4-AMP and G3-XDA are capable to fill the alumina mesopores and slight selectivity are observed. Facilitated transport membranes were made to increase the olefin/paraffin selectivity based on their chemical interaction with olefin molecules. Two approaches were explored, the first was to combine facilitator Cu(I) with dendrimer hybrid membrane to increase olefin permeance and olefin/paraffin selectivity simultaneously, and second was to facilitate transport membrane functionality by altering solvents and stabilizing ligands. Promising results were found by these two approaches, which were: 1) olefin/paraffin selectivity slightly increased by introducing facilitator Cu(I), 2) the interaction between Cu(I) and dendrimer functional groups are better known.

Liu, Ting

2012-05-01T23:59:59.000Z

319

Methods for separating a fluid, and devices capable of separating a fluid  

DOE Patents (OSTI)

Methods and apparatus for separating fluids are disclosed. We have discovered that, surprisingly, providing an open pore structure between a wick and an open flow channel resulted in superior separation performance. A novel and compact integrated device components for conducting separations are also described.

TeGrotenhuis, Ward E; Humble, Paul H; Caldwell, Dustin D

2013-05-14T23:59:59.000Z

320

Methods of separating particulate residue streams  

SciTech Connect

A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

2011-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Separator plate for a fuel cell  

DOE Patents (OSTI)

A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

1996-04-02T23:59:59.000Z

322

Method of separating thorium from plutonium  

DOE Patents (OSTI)

A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, David G. (Los Alamos, NM); Blum, Thomas W. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

323

Method of separating thorium from plutonium  

DOE Patents (OSTI)

A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, D.G.; Blum, T.W.

1984-07-10T23:59:59.000Z

324

Membrane separation advances in FE hydrogen program  

Science Conference Proceedings (OSTI)

Since its inception in Fiscal Year 2003 the US Office of Fossil Energy (FE) Hydrogen from Coal Program has sponsored more than 60 projects and made advances in the science of separating out pure hydrogen from syngas produced through coal gasification. The Program is focusing on advanced hydrogen separation technologies, which include membranes, and combining the WGS reaction and hydrogen separation in a single operation known as process intensification. The article explains the technologies and describes some key FE membrane projects. More details are available from http://www.fossil.energy.gov. 1 fig.

NONE

2007-12-31T23:59:59.000Z

325

Separation of polar gases from nonpolar gases  

DOE Patents (OSTI)

The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

Kulprathipanja, S.

1986-08-19T23:59:59.000Z

326

Nuclear Separations Technologies Workshop Report 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i NUCLEAR SEPARATIONS TECHNOLOGIES WORKSHOP REPORT November 7, 2011 FINAL TABLE OF CONTENTS Acronyms and Initialisms............................................................................................................ iii Executive Summary ...................................................................................................................... 1 1. Introduction ............................................................................................................................. 9 1.1 Overview .......................................................................................................................... 9 1.2 Background .................................................................................................................... 10

327

Size adjustable separation of biologically active molecules  

E-Print Network (OSTI)

Separation of biologically active molecules (BAM's) is a problem for the pharmaceutical and biotechnology industries. Current technologies addressing this problem require too many techniques, toxic additives, and time to ...

Gutierrez, Mauricio R. (Mauricio Roberto)

2004-01-01T23:59:59.000Z

328

On the Steadiness of Separating Meandering Currents  

Science Conference Proceedings (OSTI)

The existence of inertial steady currents that separate from a coast and meander afterward is investigated. By integrating the zonal momentum equation over a suitable area, it is shown that retroflecting currents cannot be steady in a reduced ...

Peter Jan van Leeuwen; Will P. M. de Ruijter

2009-02-01T23:59:59.000Z

329

Separation Design Group LLC | Open Energy Information  

Open Energy Info (EERE)

Separation Design Group LLC Separation Design Group LLC Jump to: navigation, search Name Separation Design Group LLC Place Waynesburg, Pennsylvania Zip 15370 Product Separation Design Group is a research and product development firm established in 2003. Coordinates 39.896456°, -80.185769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.896456,"lon":-80.185769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

331

Plutonium and americium separation from salts  

DOE Patents (OSTI)

Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

Hagan, Paul G. (Northglenn, CO); Miner, Frend J. (Boulder, CO)

1976-01-01T23:59:59.000Z

332

Feedback control of separation in unsteady flows  

E-Print Network (OSTI)

Prandtl (1904) showed that in a steady flow past a bluff body, streamlines separate from the boundary where the skin friction (or wall shear) vanishes and admits a negative gradient. Despite initial suggestions, however, ...

Alam, Mohammad-Reza

2005-01-01T23:59:59.000Z

333

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

334

Separator plate for lead-acid battery  

SciTech Connect

A separator plate for the negative electrode of a lead-acid battery comprising a molded, synthetic plastic wall or planar member of generally rectangular configuration. A pair of like separator plates are vertically oriented in the battery casing to sandwich the negative electrode therebetween including juxtaposed retention mats common in such a negative electrode assembly. The sandwich provides a clear-through channel along opposite extremities of the electrode for flow of electrolyte. The sandwich assembly is maintained by means of cooperating locking and sealing formations integral with the separator plates of the assembly. Wrapping of the positive electrode thereby is rendered unnecessary when assembling the battery and enables automated assembly of the battery using the separator plate sandwich.

Wozniak, E.

1985-11-12T23:59:59.000Z

335

Materials for Hydrogen Production, Separation, and Storage  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Materials in Clean Power Systems VII: Clean Coal-, Hydrogen ... and Fuel Cells: Materials for Hydrogen Production, Separation, and Storage .... Mixed Conducting Molten Salt Electrolyte for Na/NiCl2 Cell: Tannaz Javadi1; ...

336

SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE  

DOE Patents (OSTI)

An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

Watt, G.W.

1958-08-19T23:59:59.000Z

337

Zirconium and hafnium separation at Y-12  

NLE Websites -- All DOE Office Websites (Extended Search)

and hafnium separation at Y-12 When then Captain Hyman G. Rickover completed his nuclear reactor training at the Clinton Laboratories in 1947, he quickly saw the advantage of using...

338

Separation of carbon nanotubes in density gradients  

DOE Patents (OSTI)

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2012-02-07T23:59:59.000Z

339

Separation of carbon nanotubes in density gradients  

DOE Patents (OSTI)

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2010-02-16T23:59:59.000Z

340

NETL: Syngas Processing Systems - Molecular Separations Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro-Defect Free Ultra Thin Films Project Number: DE-SC00000868 Eltron Research and Development, Inc., in a Phase II SBIR project, is developing a...

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lawrence Livermore announces voluntary separation program  

NLE Websites -- All DOE Office Websites (Extended Search)

| NR-13-05-02 Lawrence Livermore announces voluntary separation program Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly Lawrence Livermore National...

342

Separating signal and noise in climate warming  

NLE Websites -- All DOE Office Websites (Extended Search)

11162011 | NR-11-11-03 Separating signal and noise in climate warming Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A National Oceanic and Atmospheric...

343

Separations Needs for the Alternate Chemical Cycles  

DOE Green Energy (OSTI)

The bulk of the efforts for the development of a hydrogen production plant supported by the Nuclear Hydrogen Initiative (NHI) have been directed towards the sulfur-iodine (S-I) thermochemical cycle. However, it was judged prudent to re-investigate alternate chemical cycles in light of new developments and technical accomplishments derived from the current S-I work. This work analyzes the available data for the promising alternate chemical cycles to provide an understanding of their inherent chemical separations needs. None of the cycles analyzed have separations that are potential “show stoppers”; although some of the indicated separations will be challenging to perform. The majority of the separations involve processes that are either more achievable or more developed

Frederick F. Stewart

2007-05-01T23:59:59.000Z

344

Limits for entanglement distribution with separable states  

E-Print Network (OSTI)

Entanglement distribution with separable states has recently attracted considerable attention. Recent results suggest that quantum discord - a measure for quantum correlations beyond entanglement - is responsible for this counterintuitive phenomenon. In this work we study this question from a different perspective, and find minimal requirements for a separable state to be useful for entanglement distribution. Surprisingly, we find that the presence of quantum discord is not sufficient to ensure entanglement distribution: there exist states with nonzero quantum discord which nevertheless cannot be used for entanglement distribution. As a result, we show that entanglement distribution is not possible with rank two separable states. Our work sheds new light on the task of entanglement distribution with separable states, and reveals a new classification of quantum states with respect to their usefulness for this task.

Alexander Streltsov; Hermann Kampermann; Dagmar Bruß

2013-09-04T23:59:59.000Z

345

Hybrid membrane--PSA system for separating oxygen from air  

Science Conference Proceedings (OSTI)

A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

2011-01-25T23:59:59.000Z

346

Electrochemical cell and separator plate thereof  

DOE Patents (OSTI)

A fuel cell includes a separator plate having first and second flow channels extending therethrough contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are suplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material.

Baker, Bernard S. (Brookfield Center, CT); Dharia, Dilip J. (Danbury, CT)

1979-01-01T23:59:59.000Z

347

Electrochemical cell and separator plate thereof  

DOE Patents (OSTI)

A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.

Baker, B.S.; Dharia, D.J.

1979-10-02T23:59:59.000Z

348

Electrolytic cell. [For separating anolyte and catholyte  

DOE Patents (OSTI)

An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

Bullock, J.S.; Hale, B.D.

1984-09-14T23:59:59.000Z

349

SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN  

SciTech Connect

This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

2012-11-26T23:59:59.000Z

350

Advanced High-Temperature, High-Pressure Transport Reactor Gasification  

DOE Green Energy (OSTI)

The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

Michael L. Swanson

2005-08-30T23:59:59.000Z

351

Method and Apparatus for separation of heavy and tritiated water  

DOE Patents (OSTI)

An object of the present invention is to provide a method for separating and recovering hydrogen isotopes that avoids the disadvantages of the prior art, is more simple, and allows for continuous hydrogen isotope separation and recovery. The disclosed invention does not require the use of isotope exchange reaction catalysts and/or hydrogen sulfide gas. The present invention achieves the advantages of the thermal diffusion and the chemical exchange processes. The disclosed invention provides a method for separating and recovering hydrogen isotopes from a fluid containing the hydrogen isotopes by providing counter-current cold and hot streams of the fluid containing the hydrogen isotopes separated by a proton exchange membrane made of thermally insulating and chemically transparent material that allows exchange of heavy and light hydrogen isotopes there through. The heavier isotopes migrate to the cold stream producing a deuterium and tritium-enriched fluid, while lighter isotopes migrate to the hot stream producing a lighter isotope-enriched fluid. The heavy and light isotopes are withdrawn from the cold and hot streams respectively. According to the present invention, the fluid is water or hydrogen gas, and the desired hydrogen isotope species are deuterium and/or tritium. Further, according to the present invention, the streams of said high and low temperature fluids are interconnected at their respective top and bottom ends forming a continuous loop, and a feed stream is provided at an intermediate portion of either hot or cold stream to feed the process.

Lee, Myung, W.

2000-02-28T23:59:59.000Z

352

ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established by Virginia Tech and West Virginia University to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be carried out at CAST will be longer-term, high-risk, basic research, and will be carried out in four broad areas: (a) Solid-solid separation; (b) Solid-liquid separation; (c) Chemical/Biological extraction; and (d) Sensor and control development. This Technical Progress Report describes progress made on the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual subproject Technical Progress Reports are attached as Appendices.

Christopher E. Hull

2005-01-30T23:59:59.000Z

353

Magnetic separation as a plutonium residue enrichment process  

Science Conference Proceedings (OSTI)

We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

1989-01-01T23:59:59.000Z

354

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1991-01-01T23:59:59.000Z

355

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

356

Hydrogen isotope separation utilizing bulk getters  

DOE Patents (OSTI)

Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

Knize, R.J.; Cecchi, J.L.

1991-08-20T23:59:59.000Z

357

Separation of strontium from fecal matter  

DOE Patents (OSTI)

The present invention relates to a method of separating strontium, and, more particularly, to a method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. Radioactive strontium is a radionuclide which represents a hazard to man because of its long half-life and, if ingested, its tendency to be retained in the human body. In the event that radionuclides such as strontium or various actinides are ingested, it is desirable to monitor the discharge or release of these radionuclides from the human body through analysis of fecal matter. In laboratories and other facilities where potential for radionuclide contamination exists, fecal analysis for strontium is routinely conducted for individuals who are terminating from their position or are suspected of having been contaminated with radionuclides. Methods for separating and analyzing radioactive actinides from a biomass sample are well known and have been extensively developed for the US Department of Energy. These methods, described in the Department`s internal procedure, USDOE, RESL/ID, A-16, 1981, as well as in US Patent 5,190,881, involve the use of an iron phosphate precipitation step to separate actinides from a solution, or supernate. However, there are no established procedures for the separation of strontium from a biomass sample wherein an iron phosphate precipitation step is involved.

Kester, D.K.

1994-12-31T23:59:59.000Z

358

Laser Isotope Separation Employing Condensation Repression  

SciTech Connect

Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

Eerkens, Jeff W.; Miller, William H.

2004-09-15T23:59:59.000Z

359

CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES  

SciTech Connect

This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

Hugh W. Rimmer

2004-05-12T23:59:59.000Z

360

Method for sequential injection of liquid samples for radioisotope separations  

DOE Patents (OSTI)

The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.

Egorov, Oleg B. (Richland, WA); Grate, Jay W. (West Richland, WA); Bray, Lane A. (Richland, WA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Vortex Contactor for Carbon Dioxide Separations  

NLE Websites -- All DOE Office Websites (Extended Search)

Vortex Contactor for Carbon Dioxide Separations Vortex Contactor for Carbon Dioxide Separations Kevin T. Raterman (ratekt@inel.gov; 208-526-5444) Michael McKellar (mgq@inel.gov; 208-526-1346) Anna Podgorney (poloak@inel.gov; 208-526-0064) Douglas Stacey (stacde@inel.gov; 208-526-3938) Terry Turner (tdt@inel.gov; 208-526-8623) Idaho National Engineering and Environmental Laboratory P.O. Box 1625 Idaho Falls, Idaho 83415-2110 Brian Stokes (bxs9@pge.com; 415-972-5591) John Vranicar (jjv2@pge.com; 415-972-5591) Pacific Gas & Electric Company 123 Mission Street San Francisco, CA 94105 Introduction Many analysts 1,2,3 identify carbon dioxide (CO 2 ) capture and separation as a major roadblock in efforts to cost effectively mitigate greenhouse gas emissions via sequestration. An assessment 4 conducted by the International Energy Agency (IEA)

362

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

363

Integrated vacuum absorption steam cycle gas separation  

Science Conference Proceedings (OSTI)

Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

2011-11-22T23:59:59.000Z

364

PROCESS FOR SEPARATION OF HEAVY METALS  

DOE Patents (OSTI)

A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

Duffield, R.B.

1958-04-29T23:59:59.000Z

365

SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF  

DOE Patents (OSTI)

The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

Crandall, H.W.; Thomas, J.R.

1959-06-30T23:59:59.000Z

366

Underwater tanker ballast water/oil separation  

SciTech Connect

The invention contemplates tranferring ballast water contaminated with entrained or emulsified oil to an underwater disengagement zone operating on the water displacement principle, as exemplified by an underwater storage tank having an upwardly convex shell with an opening in its bottom through which water can move into and out of the shell as the volume of oil enclosed within the storage zone fluctuates. The ballast mixture of water and oil is introduced into the disengagement zone, where it separates under the influence of gravity into separate oil and water phases. The oil layer rises to a point from which it can be recovered, while the separated water flows out of the open bottom of the zone into the body of water. (2 claims)

McCabe, J.S.

1973-10-02T23:59:59.000Z

367

Development of mixed-conducting ceramics for gas separation applications.  

DOE Green Energy (OSTI)

Mixed-conducting oxides are used in many applications, including fuel cells, gas separation membranes, sensors, and electrocatalysis. This paper describes mixed-conducting ceramic membranes that are being developed to selectively remove oxygen and hydrogen from gas streams in a nongalvanic mode of operation (i.e., with no electrodes or external power supply). Because of its high combined electronic/ionic conductivity and significant oxygen permeability, the mixed-conducting Sr-Fe-Co oxide (SFC) has been developed for high-purity oxygen separation and/or partial oxidation of methane to synthesis gas, i.e., syngas, a mixture of carbon monoxide and hydrogen. The electronic and ionic conductivities of SFC were found to be comparable in magnitude and are presented as a function of temperature. The oxygen flux through dense SFC tubes during separation of oxygen from air is compared with the oxygen flux during methane conversion. Unlike SFC, in which the ionic and electronic conductivities are nearly equivalent, BaCe{sub 0.80}Y{sub 0.20}O{sub 3} (BCY) exhibits protonic conductivity that is significantly higher than its electronic conductivity. To enhance the electronic conductivity and increase hydrogen permeation, metal powder was combined with the BCY to form a cermet membrane. Nongalvanic permeation of hydrogen through the cermet membrane was demonstrated and characterized as a function of membrane thickness. A sintering aid was developed to avoid interconnected porosity in and improve the mechanical properties of the cermet membrane.

Balachandran, U.

1998-12-02T23:59:59.000Z

368

Magnetic Separations with Magnetite: Theory, Operation, and Limitations  

Science Conference Proceedings (OSTI)

This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

G. B. Cotten

2000-08-01T23:59:59.000Z

369

SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS  

DOE Patents (OSTI)

The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

Nicholls, C.M.; Wells, I.; Spence, R.

1959-10-13T23:59:59.000Z

370

Separation of metals by supported liquid membranes  

DOE Patents (OSTI)

A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

Takigawa, D.Y.

1990-12-31T23:59:59.000Z

371

Separation of metals by supported liquid membrane  

DOE Patents (OSTI)

A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

Takigawa, Doreen Y. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

372

Separation of metal ions from aqueous solutions  

DOE Patents (OSTI)

This invention is comprised of a process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flowing cell containing flowing bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flowing cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flowing cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

Almon, A.

1991-12-31T23:59:59.000Z

373

Separation of strontium from fecal matter  

DOE Patents (OSTI)

A method of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

Kester, Dianne K. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

374

Coexistence of Strategic Vertical Separation and Integration  

E-Print Network (OSTI)

This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two-part tariff, exclusive dealership) contract with its retailer. Equilibrium coexistence emerges when observable and non-renegotiable contracts are offered to downstream Cournot oligopolists that supply close substitutes. The scope for equilibrium coexistence diminishes when assumptions on contract observability and commitment are relaxed.

Jos Jansen; Jos Jansen; Coexistence Strategic; Vertical Separation; Jos Jansen

2003-01-01T23:59:59.000Z

375

PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES  

DOE Patents (OSTI)

A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

Wahl, A.C.

1957-11-12T23:59:59.000Z

376

Laser-assisted isotope separation of tritium  

DOE Patents (OSTI)

Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

Herman, Irving P. (Castro Valley, CA); Marling, Jack B. (Livermore, CA)

1983-01-01T23:59:59.000Z

377

SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION  

DOE Patents (OSTI)

A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

Bohlmann, E.G.

1959-07-28T23:59:59.000Z

378

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

379

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

Kuklo, T.C.

1999-08-24T23:59:59.000Z

380

Novel Metallic Membranes for Hydrogen Separation  

DOE Green Energy (OSTI)

To reduce dependence on oil and emission of greenhouse gases, hydrogen is favored as an energy carrier for the near future. Hydrogen can be converted to electrical energy utilizing fuel cells and turbines. One way to produce hydrogen is to gasify coal which is abundant in the U.S. The coal gasification produces syngas from which hydrogen is then separated. Designing metallic alloys for hydrogen separation membranes which will work in a syngas environment poses significant challenges. In this presentation, a review of technical targets, metallic membrane development activities at NETL and challenges that are facing the development of new technologies will be given.

Dogan, Omer

2011-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Separation of strontium from fecal matter  

DOE Patents (OSTI)

A method is presented of separating strontium from a sample of biomass potentially contaminated with various radionuclides. After the sample is reduced, dissociated, and carried on a first precipitate of actinides, the first precipitate is removed to leave a supernate. Next, oxalic acid is added to the supernate to cause a second precipitate of strontium and calcium. Then, after separating the second precipitate, nitric acid is added to the second precipitate to cause a third precipitate of strontium. The calcium remains in solution and is discarded to leave essentially the precipitate of strontium.

Kester, D.K.

1995-01-03T23:59:59.000Z

382

Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery  

E-Print Network (OSTI)

This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

Kim, Jun Young

383

Method for separating disparate components in a fluid stream  

DOE Patents (OSTI)

The invention provides a method of separating a mixed component waste stream in a centrifugal separator. The mixed component waste stream is introduced into the separator and is centrifugally separated within a spinning rotor. A dual vortex separation occurs due to the phase density differences, with the phases exiting the rotor distinct from one another. In a preferred embodiment, aqueous solutions of organics can be separated with up to 100% efficiency. The relatively more dense water phase is centrifugally separated through a radially outer aperture in the separator, while the relatively less dense organic phase is separated through a radially inner aperture.

Meikrantz, David H. (Idaho Falls, ID)

1990-01-01T23:59:59.000Z

384

POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING  

SciTech Connect

Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would suffer from low throughput capacities and high maintenance requirements. In general, surface area-based separators (e.g., shaking tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a high maintenance requirement if it is scaled-up to a commercial unit. The bench-scale continuous TES unit developed at NETL, on the other hand, separates positively and negatively charged particles by splitting the gaseous stream containing these particles in an electric field by means of a flow splitter, so that the oppositely charged particles can be directed into different compartments. This device is fundamentally different from the laboratory unit in that the former is a surface area-based separator, while the latter is a volume-based separator. The bench-scale unit is referred to as an entrained flow separator by the in-house researchers at NETL. Thus, the entrained flow TES unit is a significant improvement over the laboratory unit with regard to throughput capacity. In the present work, the entrained flow separator concept will be utilized for developing a proof-of concept (POC) separator that can be scaled-up to commercial size units. To accomplish this, it is necessary to develop a bench-scale separator that can achieve high Btu recoveries while maintaining the high degree of separation efficiencies. It is the objective of the present investigation to develop an efficient separator by studying the mechanisms of triboelectrification and investigating better ways of separating the charged particles. An important criterion for developing efficient separators is that they not only provide high separation efficiencies but also have high throughput capacities, which are essential ingredients for successful commercialization.

R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

2001-04-30T23:59:59.000Z

385

Separating hydrogen from coal gasification gases with alumina membranes  

DOE Green Energy (OSTI)

Synthesis gas produced in coal gasification processes contains hydrogen, along with carbon monoxide, carbon dioxide, hydrogen sulfide, water, nitrogen, and other gases, depending on the particular gasification process. Development of membrane technology to separate the hydrogen from the raw gas at the high operating temperatures and pressures near exit gas conditions would improve the efficiency of the process. Tubular porous alumina membranes with mean pore radii ranging from about 9 to 22 {Angstrom} have been fabricated and characterized. Based on hydrostatic tests, the burst strength of the membranes ranged from 800 to 1600 psig, with a mean value of about 1300 psig. These membranes were evaluated for separating hydrogen and other gases. Tests of membrane permeabilities were made with helium, nitrogen, and carbon dioxide. Measurements were made at room temperature in the pressure range of 15 to 589 psi. Selected membranes were tested further with mixed gases simulating a coal gasification product gas. 5 refs., 7 figs.

Egan, B.Z. (Oak Ridge National Lab., TN (USA)); Fain, D.E.; Roettger, G.E.; White, D.E. (Oak Ridge K-25 Site, TN (USA))

1991-01-01T23:59:59.000Z

386

Energetics and Kinetics of Primary Charge Separation in Bacterial Photosynthesis  

E-Print Network (OSTI)

We report the results of Molecular Dynamics (MD) simulations and formal modeling of the free energy surfaces and reaction rates of primary charge separation in the reaction center of \\textit{Rhodobacter sphaeroides}. Two simulation protocols were used to produce MD trajectories. Standard force field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time-scale of primary charge separation ...

LeBard, David N; Matyushov, Dmitry V

2008-01-01T23:59:59.000Z

387

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

388

Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons  

DOE Patents (OSTI)

An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

2001-01-01T23:59:59.000Z

389

PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS  

DOE Patents (OSTI)

The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

Spedding, F.H.; Butler, T.A.; Johns, I.B.

1959-03-10T23:59:59.000Z

390

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

Edlund, D.J.; Newbold, D.D.; Frost, C.B.

1997-07-08T23:59:59.000Z

391

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

1997-01-01T23:59:59.000Z

392

Separator-spacer for electrochemical systems  

DOE Patents (OSTI)

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Grimes, Patrick G. (Westfield, NJ); Einstein, Harry (Springfield, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Bellows, Richard J. (Westfield, NJ)

1983-08-02T23:59:59.000Z

393

Apparatus for centrifugal separation of coal particles  

SciTech Connect

A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.

Dickie, William (New Eagle, PA); Cavallaro, Joseph A. (Mt. Keesport, PA); Killmeyer, Richard P. (Pleasant Hills, PA)

1991-01-01T23:59:59.000Z

394

Structured Menu Presentation Using Spatial Sound Separation  

Science Conference Proceedings (OSTI)

This paper describes a technique to support user interaction in a hierarchical menu, based on spatial sound separation. A complex menu structure is represented in space using a limited number of sound positions obtained by stereo panning or 3-D audio ...

Gaëtan Lorho; Jarmo Hiipakka; Juha Marila

2002-09-01T23:59:59.000Z

395

Frontiers in thermoacoustic refrigeration and mixture separation  

E-Print Network (OSTI)

pulse-tube refrigerator shown in Figure 1 dissipates acoustic power by design because power must flowFrontiers in thermoacoustic refrigeration and mixture separation S. Backhaus1 , D. Geller2 , B oscillating thermodynamics in a gas in a sealed system. Since then, many related engines and refrigerators

396

Inviscid Current Separation from Rounded Capes  

Science Conference Proceedings (OSTI)

Laboratory experiments have suggested that the separation of a coastal surface current from a cape of radius of curvature ? in a system rotating with Coriolis parameters f occurs when ? < u/f, where u is the characteristic flow speed of the ...

Barry A. Klinger

1994-08-01T23:59:59.000Z

397

Optimizing the efficiency of cylindrical cyclone gas/liquid separators for field applications  

E-Print Network (OSTI)

Problems associated with the use of compact cylindrical cyclone gas/liquid (CCGL) separators can be attributed to two physical phenomena: gas carry-under and liquid carryover (LCO). Inadequate understanding of the complex multiphase hydrodynamic flow pattern inside the cylindrical separator has inhibited complete confidence in its design and use, hence the need for more research. While many works have been done with a fixed inlet slot to predict the operational efficiency of the cyclone separator, very little is known about how separator performance can be influenced due to changes in fluid properties. During the operations of the CCGL separator the complex flow situations arising from severe foaming within the separator has not been addressed. Also the effects of emulsion formation under three phase flow conditions on the properties of cyclone separators are yet to be studied. An understanding of liquid holdup and hydrodynamic nature of flow in a compact separator under zero net liquid flow (ZNLF) and zero net gas flow (ZNGF) conditions is necessary in many field applications, especially for the prediction of LCO and in the design of the CCGL separators. Also, ZNLF holdup is an important parameter in predicting bottom-hole pressures in pumping oil wells. This research investigated the effects of fluid properties such as density, foam and emulsion formation on ZNLF, zero net gas flow ZNGF, and LCO in compact cyclone separators; this was achieved by replacing water, which is the conventional fluid used as the liquid medium in many previous research efforts with a foamy oil while maintaining air as the gas phase. Variable-inlet-slots that regulate the artificial gravity environment created by the separator were used to check for improved separator performance. Also experiments to check separator response to a range of water-cut in three-phase flow were performed. All experiments were carried out under low constant separator pressures. The ZNLF holdup is observed to decrease as the density of the fluid medium decreases. Varying the inlet slot configurations and recombination points does not have any effect on the ZNLF holdup when changes in density of the liquid phase occur. Comparisons with previous work show that there exists a wide variation in the LCO operational envelope when severe foaming occurs in the CCGL separator. At high watercut (greater than 30%), the separator LCO performance was observed to be normal. However, at water-cut below 30%, LCO was initiated much earlier; this is attributed to severe foaming in the CCGL separator.

Adebare, Adedeji

2006-08-01T23:59:59.000Z

398

Size separation in vibrated granular matter  

E-Print Network (OSTI)

We review recent developments in size separation in vibrated granular materials. Motivated by a need in industry to efficiently handle granular materials and a desire to make fundamental advances in non-equilibrium physics, experimental and theoretical investigations have shown size separation to be a complex phenomena. Large particles in a vibrated granular system invariably rise to the top. However, they may also sink to the bottom, or show other patterns depending on subtle variations in physical conditions. While size ratio is a dominant factor, particle specific properties such as density, inelasticity and friction can play an important role. The nature of the energy input, boundary conditions and interstitial air have been also shown to be significant factors in determining spatial distributions. The presence of convection can enhance mixing or lead to size separation. Experimental techniques including direct visualization and magnetic resonance imaging are being used to investigate these properties. Molecular dynamics and Monte Carlo simulation techniques have been developed to probe size separation. Analytical methods such as kinetic theory are being used to study the interplay between particle size and density in the vibro-fluidized regime, and geometric models have been proposed to describe size separation for deep beds. Besides discussing these studies, we will also review the impact of inelastic collision and friction on the density and velocity distributions to gain a deeper appreciation of the non-equilibrium nature of the system. While a substantial number of studies have been accomplished, considerable work is still required to achieve a firm description of the phenomena.

A. Kudrolli

2004-02-06T23:59:59.000Z

399

K-25 Structural Separation and Demolition  

SciTech Connect

The K-25 building is a former gaseous diffusion plant, built in 1944-1945 as part of the United States Manhattan Project. The structure was the largest structure under one roof, surpassed only by the Pentagon. Together the three wings represent about 17.8 hectare (44 acres) under roof and are generally about 18.3 meters (60 ft.) high on the outside face and approximately 12.2 meters (40 ft.) high on the inside face. The entire structure was built in the shape of a 'U', with a lateral distance of approximately one mile. It was constructed in individual building units with each unit connected using expansion joint-type connection. A single unit is approximately 24.4 meters (80 ft.) across and 122 meters (400 ft.) deep. The northern structure is connected to the eastern and western structures at the upper level floors. The four-level, U-shaped building is a steel-frame structure with corrugated cement-asbestos siding. The cell level is an elevated concrete structure supported by reinforced concrete columns located in the basement, or vault area. The vault area can be accessed at grade level from the outside perimeter. Inside the courtyard, the grade level has been raised to provide entry to the second or cell floor level. An engineering evaluation of the structure was performed to determine the condition of the structure and possibility of unplanned collapse of any portion of the structure. The evaluation included physical inspections, calculations for wind, pre-demolition loads, and evaluation of failure modes. The results of the evaluation have provided guidance for the demolition plan and the development of criteria for protection of personnel performing pre-demolition activities. Challenges include degradation of the structure that necessitated repair, dealing with changes in the code revisions from both the American Concrete Institute (ACI) and the American Institute of Steel Construction (AISC), access to areas of the structure that were not necessarily designed for access, and acceleration of the building degradation due to the pre-demolition activities. When a full building is evaluated, 50 percent of wind and applied forces are dissipated in 3 units and 80 percent is dissipated in 12 units. The forces are basically linear for the first 6 units once the building is opened at the start of demolition. Some column buckling, based on current codes, was noted in the analysis that would have to be mitigated to ensure a controlled demolition. Loading for the removal of the equipment required structural engineering evaluation of the certainty of the load and the application of the load. Corbels are being evaluated through an inspection program and criteria for repair based on current loading and anticipated additional live loads. Access issues continue to be a challenge and have created the need for a significant fall protection program. Other areas of access require different approaches and engineering solutions, sometime considering ultimate strength design versus standard yield stress design. An evaluation of separating a wing into two sections to allow for worker re-entry to perform pre-demolition activities during the demolition off shift was conducted. The evaluation has shown that because of both design and history of the K-25 and K-27 Buildings, significant care and attention is needed to demolish these structures from a structural perspective. When the project schedule issues are overlaid, that may demand workers in other parts of the structure after demolition has begun, the structural issues become severe, demanding exacting analysis and significant controls to ensure the safety of the workers both in and outside the building performing the demolition work.

Cater, Frank [Bechtel Jacobs Company, LLC, East Tennessee Technology Park, Post Office Box 4699, Oak Ridge, TN 37831 (United States)

2008-01-15T23:59:59.000Z

400

Towards a fully printable battery : robocast deposition of separators.  

Science Conference Proceedings (OSTI)

The development of thin batteries has presented several interesting problems which are not seen in traditional battery sizes. As the size of a battery reaches a minimum, the usable capacity of the battery decreases due to the fact that the major constituent of the battery becomes the package and separator. As the size decreases, the volumetric contribution from the package and separator increases. This can result in a reduction of capacity from these types of batteries of nearly all of the available power. The development of a method for directly printing the battery layers, including the package, in place would help to alleviate this problem. The technology used in this paper to directly print battery components is known as robocasting and is capable of direct writing of slurries in complex geometries. This method is also capable of conformally printing on three dimensional surfaces, opening up the possibility of novel batteries based on tailoring battery footprints to conform to the available substrate geometry. Interfacial resistance can also be reduced by using the direct write method. Each layer is printed in place on the battery stack instead of being stacked one at a time. This ensures an intimate contact and seal at every interface within the cell. By limiting the resistance at these interfaces, we effectively help increase the useable capacity of our battery through increase transport capability. We have developed methodology for printing several different separator materials for use in a lithium cell. When combined with a printable cathode comprised of LiFePO{sub 4} (as seen in Figure 1) and a lithium anode, our battery is capable of delivering a theoretical capacity of 170 mAh g{sup -1}. This capacity is diminished by transport phenomena within the cell which limit the transport rate of the lithium ions during the discharge cycle. The material set chosen for the printable separator closely resemble those used in commercially available separators in order to keep the transport rates high within the cell during charge and discharge. In order to evaluate the effect of each layer being printed using the robocasting technique, coin cells using printed separator materials were assembled and cycled vs. Li/Li{sup +}. This allows for the standardization of a test procedure in order to evaluate each layer of a printed cell one layer at a time. A typical charge/discharge curve can be seen in Figure 2 using a printed LiFePO{sub 4} cathode and a printed separator with a commercial Celgard separator. This experiment was run to evaluate the loss in capacity and slowdown of transport within the cell due to the addition of the printed separator. This cell was cycled multiple times and showed a capacity of 75 mAh/g. The ability for this cell to cycle with good capacity indicates that a fully printable separator material is viable for use in a full lithium cell due to the retention of capacity. Most of the fully printed cathode and separator cells exhibit working capacities between 65 and 95 mAh/g up to this point. This capacity should increase as the efficiency of the printed separator increases. The ability to deposit each layer within the cell allows for intimate contact of each layer and ensures for a reduction of interfacial impedance of each layer within the cell. The overall effect of printing multiple layers within the cell will be an overall increase in the ionic conductivity during charge and discharge cycles. Several different polymer membranes have been investigated for use as a printed separator. The disadvantage of using polymer separators or solid electrolyte batteries is that they have relatively low conductivities at room temperature (10{sup -6} - 10{sup -8} S cm{sup -1}). This is orders of magnitude lower than the typically accepted 10{sup -3} S cm{sup -1} needed for proper ionic transport during battery discharge Because of their low conductivity, typical polymer separators such as polyethylene oxide (PEO) have a normal operational temperature well above ambient. At elevated temperature the conductivity of the

Atanassov, Plamen Borissov (University of New Mexico); Fenton, Kyle Ross (University of New Mexico); Apblett, Christopher Alan

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

402

Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic...

403

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy...

404

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network (OSTI)

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators.

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

405

Extreme Chromatography: Faster, Hotter, SmallerChapter 3 Chiral Separations  

Science Conference Proceedings (OSTI)

Extreme Chromatography: Faster, Hotter, Smaller Chapter 3 Chiral Separations Methods and Analyses eChapters Methods - Analyses Books Downloadable pdf of Chapter 3 Chiral Separations from ...

406

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

407

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

408

Graphene as the Ultimate Membrane for Gas Separation Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphene as the Ultimate Membrane for Gas Separation Graphene as the Ultimate Membrane for Gas Separation GraphenePore.jpg Key Challenges: Investigate the permeability and...

409

New Mexico - East Natural Gas, Wet After Lease Separation Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - East Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

410

Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

411

Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

412

Separations and Actinide Science -- 2005 Roadmap  

SciTech Connect

The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

2005-09-01T23:59:59.000Z

413

Norman Ramsey and the Separated Oscillatory Fields Method  

Office of Scientific and Technical Information (OSTI)

Norman Ramsey and the Norman Ramsey and the Separated Oscillatory Fields Method Resources with Additional Information Norman F. Ramsey Photo Credit: Courtesy of Fermilab Norman F. Ramsey was born in Washington, D.C. and 'was educated in the United States and England; he earned five degrees in physics including the Ph.D. (Columbia 1940) and the D.Sc. (Cambridge, 1964). Ramsey's scientific research focused on the properties of molecules, atoms, nuclei and elementary particles and includes key contributions to the knowledge of magnetic moments, the structural shape of nuclear particles, the nature of nuclear forces, the thermodynamics of energized populations of atoms and molecules (e.g. those in masers and lasers) and spectroscopy. Ramsey not only contributed basic advances in the theoretical understanding of the physics involved in his research, he also made pioneering advances in the methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of exciting resonances and, with the collaboration of his students, he was the principal inventor of the atomic hydrogen maser. The separated oscillatory field method provides extremely high resolution in atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks; likewise the atomic hydrogen maser made even higher levels of spectroscopic resolution possible and it also functions as the basis for atomic clocks having the highest levels of stability for periods extending to several hours.'1

414

Primary charge separation in isolated photosystem II reaction centers  

DOE Green Energy (OSTI)

Primary charge-separation in isolated bacterial reaction center (RC) complex occurs in 2.8 ps at room temperature and 0.7--1.2 ps at 10 K. Because of similarities between the bacterial and photosystem II (PSII) RCs, it has been of considerable interest to obtain analogous charge-separation rates in the higher plant system. Our previous femtosecond transient absorption studies used PSII RC material stabilized with PEG or by exchanging dodecyl maltoside (DM) for Triton in the isolation procedure. These materials gave charge-separation 1/e times of 3.0 {plus_minus} 0.6 ps at 4{degree}C and 1.4{plus_minus} 0.2 ps at 15 K based on the risetime of transient absorption kinetics at 820 nm. These values were thought to represent the time required for formation of the P680{sup +}-Pheo{sup {minus}} state. Recent results of Hastings et al. obtained at high data acquisition rates and low flash intensities, suggest that the Pheo{sup {minus}} state may form more slowly. In light of this work, we have carried out additional time domain studies of both electron transport and energy transfer phenomena in stabilized DM PSII RCs at room temperature. We used a 1-kHz repetition rate femtosecond transient absorption spectrometer with a 200 fs instrumental time resolution and compared the results with those obtained by others using frequency domain hole-burning techniques.

Seibert, M.; Toon, S. [National Renewable Energy Lab., Golden, CO (United States); Govindjee [Illinois Univ., Urbana, IL (United States); O`Neil, M.P.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

1992-08-24T23:59:59.000Z

415

Chemical separations schemes for partitioning and transmutation systems.  

SciTech Connect

In the initial phase of the U.S. Accelerator Transmutation of Waste (ATW) program, a single-tier system was foreseen in which the transuranics and long-lived fission products (specifically, {sup 99}Tc and {sup 129}I) recovered from spent LWR oxide fuel would be sent directly to an accelerator-driven transmuter reactor [1]. Because the quantity of fuel to be processed annually was so large (almost 1,500 tons per year), an aqueous solvent extraction process was chosen for LWR fuel processing. Without the need to separate transuranics from one another for feed to the transmuter, it became appropriate to develop an advanced aqueous separations method that became known as UREX. The UREX process employs an added reagent (acetohydroxamic acid) that suppresses the extraction of plutonium and promotes the extraction of technetium together with uranium. Technetium can then be efficiently removed from the uranium; the recovered uranium, being highly decontaminated, can be disposed of as a low-level waste or stored in an unshielded facility for future use. Plutonium and the other transuranic elements, plus the remaining fission products, are directed to the liquid waste stream. This stream is calcined, converting the transuranics and fission products to their oxides. The resulting oxide powder, now representing only about four percent of the original mass of the spent fuel, is reduced to metallic form by means of a pyrometallurgical process. Subsequently, the transuranics are separated from the fission products in another pyro-metallurgical step involving molten salt electrorefining.

Laidler, J.

2002-05-02T23:59:59.000Z

416

Supercritical fluid phase separations induced by chemical reactions  

DOE Green Energy (OSTI)

Our statistical mechanical studies predict that a chemically reactive system containing species composed of C, H, N, O atoms can exhibit a phase separation into a N{sub 2}-rich and a N{sub 2}-poor phase. The preset work is concerned with the effect of the fluid phase separation upon addition of F atoms in the system. Our study shows that F atoms mainly appear as a constituent of HF in a N{sub 2}-poor fluid phase up to a certain pressure beyond which they occur as CF{sub 4} in a N{sub 2}-rich phase and that the phase separation may be abrupt in thermodynamic sense. The pressure at the phase boundary can occur at about 30 GPa at 3000 K and about 10 GPa to 20 GPa at 1000 K.Some of these ranges maybe accessible by present-day experimental high-pressure techniques. We discuss implications of this study to detonation physics.

Ree, F.H.; Viecelli, J.A.; van Thiel, M.

1997-11-01T23:59:59.000Z

417

Citrate based ``TALSPEAK`` lanthanide-actinide separation process  

SciTech Connect

The potential hazard posed to future generations by long-lived radionuclides such as the transuranic elements (TRU) is perceived as a major problem associated with the use of nuclear power. TRU wastes have to remain isolated from the environment for ``geological`` periods of time. The costs of building, maintaining, and operating a ``geological TRU repository`` can be very high. Therefore, there are significant economical advantages in segregating the relatively low volume of TRU wastes from other nuclear wastes. The chemical behavior of lanthanides and actinides, 4f and 5f elements respectively, is rather similar. As a consequence, the separation of these two groups is difficult. The ``TALSPEAK`` process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Complexes) is one of the few means available to separate the trivalent actinides from the lanthanides. The method is based on the preferential complexation of the trivalent actinides by an aminopolyacetic acid. Cold experiments showed that by using citric acid the deleterious effects produced by impurities such as zirconium are greatly reduced.

Del Cul, G.D.; Bond, W.D.; Toth, L.M.; Davis, G.D.; Dai, S.; Metcalf, D.H.

1994-09-01T23:59:59.000Z

418

Crosscutting Technology Development at the Center for Advanced Separation Technologies  

SciTech Connect

The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

Christopher Hull

2009-10-31T23:59:59.000Z

419

UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES  

SciTech Connect

The objective of the present study is to assess the potential usefulness of membrane separation processes for removing CO{sub 2} and H{sub 2}S from low-quality natural gas containing substantial amounts of both these ''acid'' gases, e.g., up to 40 mole-% CO{sub 2} and 10 mole-% H{sub 2}S. The membrane processes must be capable of upgrading the crude natural gas to pipeline specifications ({le} 2 mole-% CO{sub 2}, {le} 4 ppm H{sub 2}S). Moreover, these processes must also be economically competitive with the conventional separation techniques, such as gas absorption, utilized for this purpose by the gas industry.

S.A.Stern; P.A. Rice; J. Hao

2000-03-01T23:59:59.000Z

420

SEPARATION OF METAL SALTS BY ADSORPTION  

DOE Patents (OSTI)

It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

Gruen, D.M.

1959-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PROCESS FOR THE SEPARATION OF HEAVY METALS  

DOE Patents (OSTI)

A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

Gofman, J.W.; Connick, R.E.; Wahl, A.C.

1959-01-27T23:59:59.000Z

422

SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM  

DOE Patents (OSTI)

This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

Musgrave, W.K.R.

1959-06-30T23:59:59.000Z

423

SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS  

DOE Patents (OSTI)

>The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

Callis, C.F.; Moore, R.L.

1959-09-01T23:59:59.000Z

424

Catalytic reactive separation system for energy-efficient production of cumene  

DOE Patents (OSTI)

The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

Buelna, Genoveva (Nuevo Laredo, MX); Nenoff, Tina M. (Albuquerque, NM)

2009-07-28T23:59:59.000Z

425

Development of mixed-conducting oxides for gas separation  

DOE Green Energy (OSTI)

Mixed-conducting oxides have been used in many applications, including fuel cells, gas separation membranes, sensors, and electrocatalysis. The authors are developing a mixed-conducting, dense ceramic membrane for selectively transporting oxygen and hydrogen. Ceramic membranes made of Sr-Fe-Co oxide, which has high combined electronic and oxygen ionic conductions, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, CO + H{sub 2}). The authors have measured the steady-state oxygen permeability of SrFeCo{sub 0.5}O{sub x} as a function of oxygen-partial-pressure gradient and temperature. At 900{degrees}C, oxygen permeability was {approx}2.5 scc{center_dot}cm{sup {minus}2}{center_dot}min{sup {minus}1} for a 2.9-mm-thick membrane and this value increases as membrane thickness decreases. The authors have fabricated tubular SrFeCo{sub 0.5}O{sub x} membranes and operated them at 900{degrees}C for >1000 h during conversion of methane into syngas. The hydrogen ion (proton) transport properties of yttria-doped BaCeO{sub 3} were investigated by impedance spectroscopy and open-cell voltage measurements. High proton conductivity and a high protonic transference number make yttria-doped BaCeO{sub 3} a potential membrane for hydrogen separation.

Balachandran, U.; Ma, B.; Maiya, P.S. [and others

1997-08-01T23:59:59.000Z

426

Program on Technology Innovation: Graphite Waste Separation  

Science Conference Proceedings (OSTI)

The graphite moderators of retired gas-cooled nuclear reactors present a difficult challenge during demolition activities. There is a widespread view that disposal would be greatly facilitated if carbon-14 could be removed from the graphite blocks. As part of the EPRI graphite initiative on the technical issues involved in the management and disposal of irradiated nuclear graphite, this report describes an engineering feasibility study of graphite radioisotope separation technology. The report evaluates ...

2008-03-10T23:59:59.000Z

427

Flow simulation in industrial cyclone separator  

Science Conference Proceedings (OSTI)

The problem of ash settling on super-heater tube bank, due to improper velocity distribution, in the cyclone separator used at Circulating Fluidized Bed Combustion (CFBC) has been investigated by means of computational fluid dynamic techniques. With ... Keywords: CAD model, CFD - finite volume technique, Circulating fluidized bed combustion, Flow recirculation - geometry modification, Particle Trajectories, Partition plates, Pressure based algorithms, Pressure drop, Recycle cyclone collector, Structured multi-block grids

C. Bhasker

2010-02-01T23:59:59.000Z

428

SEPARATION OF URANIUM AND PLUTONIUM OXIDES  

DOE Patents (OSTI)

ABS>A method of separating a mixture of UO/sub 2/ and PuO/sub 2/ is given which comprises immersing the mixture in a fused NaCl-KCl bath, chlorinating with chlorine or phosgene, and preferentially electrolytically or chemically reducing the UO/sub 2/Cl/sub 2/ so produced to UO/sub 2/ and filtering it out. (AEC)

Benedict, G.E.; Lyon, W.L.

1961-12-01T23:59:59.000Z

429

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

430

SEPARATION OF METAL VALUES FROM NUCLEAR REACTOR  

DOE Patents (OSTI)

A method is given for separating beryllium fluoride and an alkali metal fluoride from a mixture containing same and rare earth fluorides. The method comprises contacting said mixture with a liquid hydrogen fluoride solvent containing no more than about 30 per cent water by weight and saturated with a fluoride salt characterized by its solubility in anhydrous hydrogen fluoride for a period of time sufficient to dissolve said beryllium fluoride in said solvent. (AEC)

Campbell, D.O.; Cathers, G.I.

1962-06-19T23:59:59.000Z

431

FLUORINE PROCESS FOR SEPARATION OF MATERIALS  

DOE Patents (OSTI)

A process is described for separating plutoniunn from neutron-irradiated uranium, which consists of reacting the irradiated uranium mass with HF to form the tetrafluorides of U, Pu, and Np, and then reacting this mixture of tetrafluorides with fiuorine at temperature between 140 and 315 d C. This causes volatile hexafluorides of U and Np to form while at the temperature employed the Pu tetrafluoride is unaffected and remains as a residue.

Seaborg, G.T.; Brown, H.S.

1958-05-01T23:59:59.000Z

432

Bulk separation of carbon dioxide from natural gas  

SciTech Connect

In the bulk separation of carbon dioxide from feedstocks containing same in admixture with relatively nonsorbable gases using a zeolitic molecular sieve to adsorb selectively the carbon dioxide, higher product purity is attained by terminating the adsorption stroke using the feedstock while the bed still has capacity to adsorb more carbon dioxide at the same conditions, then purging the void space hydrocarbons from the bed using product carbon dioxide at a high partial pressure, and finally desorbing the bed by pressure reduction. (3 claims)

Collins, J.J.

1973-08-14T23:59:59.000Z

433

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

434

Combined current collector and electrode separator  

DOE Patents (OSTI)

This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.

Gerenser, R.J.; Littauer, E.L.

1983-08-23T23:59:59.000Z

435

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

436

Separations Technology for Clean Water and Energy  

Science Conference Proceedings (OSTI)

Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

Jarvinen, Gordon D [Los Alamos National Laboratory

2012-06-22T23:59:59.000Z

437

UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example  

SciTech Connect

The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

Schwantes, Jon M.

2009-06-01T23:59:59.000Z

438

NETL: Syngas Processing Systems - Molecular Separations Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

membranes to become economically viable by providing a means to produce high quality thin film membranes that consistently possess a high flux for carbon dioxide with a low...

439

A New Hydrophobic Catalyst for Tritium Separation from Nuclear Effluents  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

I. Popescu; Gh. Ionita; I. Stefanescu; A. Kitamoto

440

Ionic Liquids as New Solvents for Improved Separation of ...  

•Graphite reactor, plutonium (Pu) pilot plant, proved the feasibility of Pu separation for the atomic bomb.

Note: This page contains sample records for the topic "outlet separator high" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.