Powered by Deep Web Technologies
Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

2

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

3

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

DOE Green Energy (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

4

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

DOE Green Energy (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

5

Gas turbine plant emissions  

SciTech Connect

Many cogeneration facilities use gas turbines combined with heat recovery boilers, and the number is increasing. At the start of 1986, over 75% of filings for new cogeneration plants included plans to burn natural gas. Depending on the geographic region, gas turbines are still one of the most popular prime movers. Emissions of pollutants from these turbines pose potential risks to the environment, particularly in geographical areas that already have high concentrations of cogeneration facilities. Although environmental regulations have concentrated on nitrogen oxides (NO/sub x/) in the past, it is now necessary to evaluate emission controls for other pollutants as well.

Davidson, L.N.; Gullett, D.E.

1987-03-01T23:59:59.000Z

6

,"California Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

7

,"Texas Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

8

Unusual plant features gas turbines  

SciTech Connect

Gas turbines were chosen by Phillips Petroleum Co. to operate the first gas-injection plant in the world to use gas-type turbines to drive reciprocating compressors. The plant is located in Lake Maracaibo, Venezuela. Gas turbines were chosen because of their inherent reliability as prime movers and for their lack of vibration. Reciprocating compressors were decided upon because of their great flexibility. Now, for the first time, the advantages of both gas turbines and reciprocating compressors are coupled on a very large scale. In this installation, the turbines will operate at about 5,000 rpm, while the compressors will run at only 270 rpm. Speed will be reduced through the giant gear boxes. The compressor platform rests on seventy- eight 36-in. piles in 100 ft of water. Piles were driven 180 ft below water level. To dehydrate the gas, Phillips will install a triethylene glycol unit. Two nearby flow stations will gather associated gas produced at the field and will pipe the gas underwater to the gas injection platform. Lamar Field is in the S. central area of Lake Maracaibo. To date, it has produced a 150 million bbl in 10 yr. Studies have indicated that a combination of waterflooding and repressuring by gas injection could double final recovery. Waterflooding began in 1963.

Franco, A.

1967-08-01T23:59:59.000Z

9

Natural Gas Processing Plant- Sulfur (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

10

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature  

Science Conference Proceedings (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

11

Sauget Plant Flare Gas Reduction Project  

E-Print Network (OSTI)

Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams.

Ratkowski, D. P.

2007-01-01T23:59:59.000Z

12

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rulison Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

13

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release Date:","81...

14

,"Natural Gas Plant Liquids Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2011,"6301979" ,"Release...

15

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

16

,"New Mexico Natural Gas Plant Processing"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Processing",3,"Annual",2011,"6301967" ,"Release Date:","1031...

17

Proceedings: EPRI Manufactured Gas Plants 2003 Forum  

SciTech Connect

The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

None

2004-02-01T23:59:59.000Z

18

Improving steam turbine-gas turbine plants  

SciTech Connect

Leningrad Polytechnic Institute investigated the main characteristics of combined plants according to their structure, determined by very important parameters. The following parameters were selected: utilization factor (ratio of heat added to the steam-water working medium from the heat of the exhaust gases to the entire amount of heat added to the steam-water working medium) and fuel consumption factor (ratio of heat from fuel added to the steam-water working medium to the entire consumption of heat in the combined plant). It is concluded that steam turbine-gas turbine plants working at comparatively low gas temperatures (about 800/sup 0/C) must be constructed as plants of maximum capacity, i.e., with large steam flows. Gas turbine-steam turbine plants with high-temperature gas turbines operating at a high utilization factor (approaching binary plants) ensure a qualitative rise in efficiency and have high flexibility characteristics. They are the most promising power plants. A long-term plan for development of combined plants on the basis of standard steam turbine and gas turbine equipment, the production of which is planned in the USSR and in Comecon countries, is required. This plan must be closely connected with solution of the problem of using coals for gas turbine plants.

Kirillov, I.I.; Arsen' ev, L.V.; Khodak, E.A.; Romakhova, G.A.

1979-01-01T23:59:59.000Z

19

New type gas-injection plant readied  

SciTech Connect

A unique gas-injection plant is about to go on stream in Venezuela's Lake Maracaibo. The $10-million installation, designed for unattended operation, is a joint venture of Phillips Petroleum Co., as operator for itself, and Cia. Shell de Venezuela. The plant, housed on a 120 by 130-ft platform, will be the first in the world to use gas turbines to drive reciprocating compressors. The 130 MMscfd facility will use 2 General Electric 15,000-hp gas turbines with gear reducers to drive a pair of 4-stage Cooper- Bessemer LM-8 compressors. No previous attempt has ever been made to drive this type of unit by gas turbines. Phillips says the gas turbines were selected because of inherent flexibility reliability as prime movers, and lack of vibration--an important advantage in offshore gas plants.

Franco, A.

1967-07-17T23:59:59.000Z

20

Gas turbine-steam power plant  

SciTech Connect

The pressure vessel of the gas turbine-steam power plant is provided with a recuperator and a heat exchanger in order to reduce the temperature of the hot flue gas before separating out gas-entrained particles. The dust separator is connected to the recuperator on a secondary side so that the hot gas can be reheated for delivery to the gas turbine. By cooling the flue gas before entering the separator, use can be made of electrostatic dust filters or cloth filters.

Aguet, E.

1984-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Federal Offshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

22

California State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

23

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

24

California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

25

California - Coastal Region Onshore Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

26

Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

27

Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1...

28

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

29

Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

30

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

31

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

32

South Dakota Natural Gas Lease and Plant Fuel Consumption (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel...

33

Microsoft Word - RBL-RUL_Gas-Plant  

Office of Legacy Management (LM)

Page 1 Project Rio Blanco Monitoring Results For Separated Water at a Natural Gas Plant, Parachute, Colorado U.S. Department of Energy Office of Legacy Management Grand Junction,...

34

Optimize control of natural gas plants  

SciTech Connect

Multivariable constraint control (MCS) has a very beneficial and profitable impact on the operation of natural gas plants. The applications described operate completely within a distributed control system (DCS) or programmable logic controllers (PLCs). That makes MCS accessible to almost all gas plant operators. The technology's relative ease of use, low maintenance effort and software sensor,'' make it possible to operate these control applications without increasing technical support staff. MCS improves not only profitability but also regulatory compliance of gas plants. It has been applied to fractionation units, cryogenic units, amine treaters, sulfur recovery units and utilities. The application typically pay for the cost of software and engineering in less than one month. If a DCS is installed within such a project the advanced control applications can generate a payout in less than one year. In the case here (an application on the deethanizers of a 500 MMscfd gas plant) product revenue increased by over $2 million/yr.

Treiber, S.; Walker, J.; Tremblay, M. de (Treiber Controls Inc., Toronto, Ontario (Canada)); Delgadillo, R.L.; Velasquez, R.N.; Valarde, M.J.G. (PEMEX, Villahermosa (Mexico))

1994-04-01T23:59:59.000Z

35

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

2 3 "Operator Company:" "PART 3. CONTACTS" "Section A: Contact information during an emergency (such as a hurricane):" "Processing Plant Operations Contact:",,,...

36

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

37

Closed Dual Fluid Gas Turbine Power Plant Without Emission Of Co  

E-Print Network (OSTI)

. This paper describes a construction and characteristics of a coal-gas-burning high eciency power plant which emits no carbon dioxide (CO 2 ) into the atmosphere. In the plant, CO 2 gas and superheated steam are used as the main and sub working uid, respectively, of a closed dual uid gas turbine power generation system. It is assumed that a coal gas whose principal compositions are CO, H2 , CO2 and CH4 is burnt in a combustor using oxygen, and that CO 2 gas and superheated steam are used as the main and sub working uid of a turbine, respectively. Consequently, the constituent gases of the combustion gas become CO2 and H2O. Thus, CO2 gas included in the exhaust gas can be easily separated at the condenser outlet from the condensate (H2O). Most of recovered CO 2 is recycled as the main working uid of the turbine. In the plant, high-temperature turbine exhaust gas is utilized in a waste heat boiler to produce superheated steam which is injected into the combustor in order to improve...

Into The Atmosphere; P. S. Pak; K. Nakamura; Y. Suzuki

1989-01-01T23:59:59.000Z

38

Tennessee Natural Gas Plant Processing  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 View History Natural Gas Processed (Million Cubic Feet) 6,146 6,200 1989-2011 Total Liquids Extracted (Thousand Barrels) 347 356 2010-2011 Extraction Loss...

39

Model predictive control of a wet limestone flue gas desulfurization pilot plant  

SciTech Connect

A model predictive control (MPC) strategy based on a dynamic matrix (DMC) is designed and applied to a wet limestone flue gas desulfurization (WLFGD) pilot plant to evaluate what enhancement in control performance can be achieved with respect to a conventional decentralized feedback control strategy. The results reveal that MPC can significantly improve both reference tracking and disturbance rejection. For disturbance rejection, the main control objective in WLFGD plants, selection of tuning parameters and sample time, is of paramount importance due to the fast effect of the main disturbance (inlet SO{sub 2} load to the absorber) on the most important controlled variable (outlet flue gas SO{sub 2} concentration). The proposed MPC strategy can be easily applied to full-scale WLFGD plants.

Perales, A.L.V.; Ollero, P.; Ortiz, F.J.G.; Gomez-Barea, A. [University of Seville, Seville (Spain). Dept. of Chemical & Environmental Engineering

2009-06-15T23:59:59.000Z

40

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

42

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

43

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

44

Heat Exchanger Design for Solar Gas-Turbine Power Plant.  

E-Print Network (OSTI)

?? The aim of this project is to select appropriate heat exchangers out of available gas-gas heat exchangers for used in a proposed power plant.… (more)

Yakah, Noah

2012-01-01T23:59:59.000Z

45

Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

46

Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

47

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

48

California (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

49

Louisiana - North Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

50

Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

51

Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

52

New Mexico - East Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

53

New Mexico - West Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

54

Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

55

Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

56

Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

57

Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

58

Texas State Offshore Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

59

Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

60

Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Signature Metabolites at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of research to demonstrate the biodegradation component of natural attenuation at former manufactured gas plant (MGP) sites. Researchers developed a target compound list of signature metabolites, biochemical intermediates of mono- and polycyclic aromatic hydrocarbon (MAH and PAH) biodegradation. They identified and tested appropriate methods of chemical analysis for these metabolites in MGP groundwater and sediments. Emphasis was placed on identifying natural microbiological ...

2008-10-14T23:59:59.000Z

62

Gas turbine power plant with supersonic shock compression ramps  

SciTech Connect

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

2008-10-14T23:59:59.000Z

63

Gas consumption shrinks in commercial laundry plant  

SciTech Connect

The submerged-exhaust water-heating system with heat-recovery economizer operates above 90% efficiency compared to the 60% efficiency of the plant's old system. The system will require 3,936 therms/week compared to 5,887 with the old generator. Bubbles from the submerged downcomer tube rise through the surrounding bath, transferring heat through the gas-liquid interface as they rise to the surface. Heat transfer to the liquid bath is immediate and efficiency is high.

1981-09-01T23:59:59.000Z

64

Multivariable model predictive control for a gas turbine power plant  

Science Conference Proceedings (OSTI)

In this brief, constrained multi variable model predictive control (MPC) strategy is investigated for a GE9001E gas turbine power plant. So the rotor speed and exhaust gas temperature are controlled manipulating the fuel command and compressor inlet ... Keywords: ARX, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-05-01T23:59:59.000Z

65

Power plants with topping gas turbines and coal gasification planning of new plants and upgrading of existing plants  

Science Conference Proceedings (OSTI)

This paper reports on existing and new power plants improved environmentally and economically by integrating gas turbines in the plant process. The rate of additional firing has an influence on the overall plant efficiency. The influence of the additional firing of natural gas-fired power plants is compared to that of power plants with integrated coal gasification. The differences are explained. The result of the examination lead to recommendations for the design of new plants and for upgrading of existing plants. The advantages of topping gas turbines are shown by examples of new power plants and upgraded plants.

Schoedel, J.; Mertens, K. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

66

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

67

Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

68

Louisiana--North Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

69

Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

70

Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

71

Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

72

New Mexico--West Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

73

Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

74

New Mexico--East Natural Gas Plant Liquids, Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

75

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

76

Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

77

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

78

Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

79

Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California Natural Gas Lease and Plant Fuel Consumption (Million...  

Annual Energy Outlook 2012 (EIA)

and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

82

Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

83

Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

84

,"Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",20...

85

,"Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011 ,"Release...

86

EIA-816 MONTHLY NATURAL GAS PLANT LIQUIDS REPORT INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

EIA-816, Monthly Natural Gas Plant Liquids Report Page 3 Inputs During Month Report only inputs of normal butane being converted by an isomerization process into ...

87

/Gas Plant Operators Monthly Petroleum Product Sales Report. As  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... (CNG Transmission) Dominion Transmission . DCP Midstream Partners.

88

EIA-782A EXCLUSIONARY LIST INSTRUCTIONS /Gas Plant Operators ...  

U.S. Energy Information Administration (EIA)

sales to refiners and gas plant operators represented on the list. When using this list, ... CNG Transmission (Dominion Field Serv.) Coastal Markets Limited .

89

,"North Dakota Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

90

,"Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet)",1,"Annual",2012...

91

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

92

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

93

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

94

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

95

,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","92013" ,"Release...

96

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

97

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

98

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

99

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

100

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

102

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

103

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

104

Mississippi (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

105

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

106

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

107

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

108

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

109

,"New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

110

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

111

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

112

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

113

,"Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

114

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

115

,"Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

116

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

117

,"Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

118

,"West Virginia Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

119

,"U.S. Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

120

,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

122

,"Louisiana--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

123

,"Alabama (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

124

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

125

,"Mississippi (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

126

,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

127

,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million...

128

,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

129

,"Federal Offshore--California Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

130

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

131

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

132

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

133

,"California--State Offshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

134

,"California--Coastal Region Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

135

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

136

,"California (with State Offshore) Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

137

,"Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

138

Optical Gas Sensors for Advanced Coal-Fired Power Plants  

Science Conference Proceedings (OSTI)

Presentation Title, Optical Gas Sensors for Advanced Coal-Fired Power Plants. Author(s), Paul Ohodnicki, Congjun Wang, Douglas Kauffman, Kristi Kauffman, ...

139

,"Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

140

,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

142

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

The EIA-757 survey has a baseline portion, Schedule A, to track the country's population of natural gas plants, and an emergency activation portion, ...

143

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

144

,"Texas (with State Offshore) Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Proved Reserves (Million...

145

,"Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)",1,"Annual",2011...

146

,"Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Plant Liquids, Proved Reserves (Million...

147

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

148

Optimization system for operation of gas cogeneration power plant  

Science Conference Proceedings (OSTI)

The paper presents a distributed control system for the realization of cogenerative supply of electricity and heat and, in given case, for their combination with waste heat recovery, particularly in combined (gas-steam) cycle industrial power plants. ... Keywords: cogenerative gas power plant, control of distributed parameter systems, optimization, process control

Ion Miciu

2008-09-01T23:59:59.000Z

149

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

150

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

151

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

152

First U. S. sulfreen unit in Dakota gas plant  

SciTech Connect

This article describes the first natural gas processing plant in the U.S. that uses Sulfreen as the optimum process for tail gas cleanup. A minimum overall recovery of 98.9% is expected. The Sulfreen process appears to be a viable tail gas treater for Claus units in the U.S., providing high overall recoveries and process reliability. The North Dakota plant joins more than 30 other units operating in Canada, Greece, China and throughout Europe.

Davis, G.W.

1985-02-25T23:59:59.000Z

153

Assessment of Natural Gas Combined Cycle (NGCC) Plants with  

E-Print Network (OSTI)

Assessment of Natural Gas Combined Cycle (NGCC) Plants with CO2 Capture and Storage Mike Gravely.5 Million Annual Budget FY 10/11 · $62.5 million electric · $24 million natural gas · Program Research Areas:45 Bevilacqua-Knight, Inc's Role and Reference Documents Rich Myhre ­ Bevilacqua-Knight, Inc 3:05 Pacific Gas

154

Gas turbine power plant with supersonic gas compressor - Energy ...  

A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on ...

155

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Direct coal-fired gas turbines for combined cycle plants  

SciTech Connect

The combustion/emissions control island of the CFTCC plant produces cleaned coal combustion gases for expansion in the gas turbine. The gases are cleaned to protect the turbine from flow-path degeneration due to coal contaminants and to reduce environmental emissions to comparable or lower levels than alternate clean coal power plant tedmologies. An advantage of the CFTCC system over other clean coal technologies using gas turbines results from the CFTCC system having been designed as an adaptation to coal of a natural gas-fired combined cycle plant. Gas turbines are built for compactness and simplicity. The RQL combustor is designed using gas turbine combustion technology rather than process plant reactor technology used in other pressurized coal systems. The result is simpler and more compact combustion equipment than for alternate technologies. The natural effect is lower cost and improved reliability. In addition to new power generation plants, CFTCC technology will provide relatively compact and gas turbine compatible coal combustion/emissions control islands that can adapt existing natural gas-fired combined cycle plants to coal when gas prices rise to the point where conversion is economically attractive. Because of the simplicity, compactness, and compatibility of the RQL combustion/emission control island compared to other coal technologies, it could be a primary candidate for such conversions.

Rothrock, J.; Wenglarz, R.; Hart, P.; Mongia, H.

1993-11-01T23:59:59.000Z

157

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

158

Energy Saving in Ammonia Plant by Using Gas Turbine  

E-Print Network (OSTI)

An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore, if the thermal energy of this gas is utilized effectively, the gas turbine could be superior to effectively, the gas turbine could be superior to other thermal engines in view of total energy effectiveness. As a typical example of the above use of the gas turbine, its application in the ammonia plant has now been realized. In addition to the use of the gas turbine as the driver for the process air compressor which was driven by the steam turbine, its exhaust gas is introduced to the ammonia reformer. It leads to the saving of the reformer fuel, and subsequently the energy saving of the reformer section in the plant of about 20% has been achieved. This paper describes the outline of the project, energy saving effectiveness and investigation for the application of the gas turbine in the ammonia plant.

Uji, S.; Ikeda, M.

1981-01-01T23:59:59.000Z

159

Gas Fired Power Plants: Investment Timing, Operating Flexibility and Abandonment  

E-Print Network (OSTI)

Many firms are considering investment in gas fired power plants. We consider a firm holding a license, i.e. an option, to build a gas fired power plant. The operating cash flows from the plant depend on the spark spread, defined as the difference between the unit price of electricity and cost of gas. The plant produces electricity when the spark spread exceeds emission costs, otherwise the plant is ramped down and held idle. The owner has also an option to abandon the plant and realize the salvage value of the equipment. We compute optimal entry and exit threshold values for the spark spread. Also the effects of emission costs on the value of installing CO2 capture technology are analyzed.

Stein-erik Fleten; Erkka Näsäkkälä

2003-01-01T23:59:59.000Z

160

Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

162

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

163

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

164

U.S. Natural Gas Plant Liquids, Reserves Revision Decreases ...  

Gasoline and Diesel Fuel Update (EIA)

Decreases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

165

Mississippi Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

166

California Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) California Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

167

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

168

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

169

U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million...  

Gasoline and Diesel Fuel Update (EIA)

Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

170

U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million...  

Annual Energy Outlook 2012 (EIA)

Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

171

North Dakota Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

172

U.S. Natural Gas Plant Liquids, Reserves Extensions (Million...  

Annual Energy Outlook 2012 (EIA)

Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

173

Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Wyoming Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

174

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

175

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

176

Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Alaska Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

177

Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Utah Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

178

Louisiana Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Louisiana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

179

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

180

Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

182

New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

183

Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

184

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) Arkansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

185

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

186

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

187

West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids, Proved Reserves (Million Barrels) West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

188

U.S. Natural Gas Plant Liquids, Reserves Revision Increases ...  

Annual Energy Outlook 2012 (EIA)

Increases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

189

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

190

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

191

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

192

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

193

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

194

Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

195

California Natural Gas Plant Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

196

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

197

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 583:

198

East Coast (PADD 1) Gas Plant Production of Normal Butane ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

199

Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

200

New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

202

Texas--State Offshore Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

203

Gas Turbine Plant Modeling for Dynamic Simulation.  

E-Print Network (OSTI)

?? Gas turbines have become effective in industrial applications for electric and thermal energy production partly due to their quick response to load variations. A… (more)

Endale Turie, Samson

2012-01-01T23:59:59.000Z

204

Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

205

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

206

Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance  

SciTech Connect

A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

Andrew Seltzer; Zhen Fan

2011-03-01T23:59:59.000Z

207

An Evaluation of Gas Turbines for APFBC Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS EVALUATION OF GAS TURBINES FOR APFBC POWER PLANTS Donald L. Bonk U.S. DOE National Energy Technology Laboratory Morgantown, West Virginia eMail: dbonk@netl.doe.gov phone: (304) 285-4889 Richard E. Weinstein, P.E. Parsons Infrastructure & Technology Group Inc. Reading, Pennsylvania eMail: richard.e.weinstein@parsons.com phone: (610) 855-2699 Abstract This paper describes a concept screening evaluation of gas turbines from several manufacturers that assessed the merits of their respective gas turbines for advanced circulating pressurized fluidized bed combustion combined cycle (APFBC) applications. The following gas turbines were evaluated for the modifications expected for APFBC service: 2 x Rolls-Royce Industrial Trent aeroderivative gas turbine configurations; a 3 x Pratt & Whitney Turbo Power FT8 Twin-

208

An expert system prototype for designing natural gas cogeneration plants  

Science Conference Proceedings (OSTI)

Cogeneration plants are units that simultaneously produce electricity and useful heat from the same fuel. In such plants different components (prime movers, pumps, steam generators, etc.) are combined in order to meet electricity and useful heat loads ... Keywords: Cogeneration, Engineering design, Expert systems, Natural gas

José Alexandre Matelli; Edson Bazzo; Jonny Carlos da Silva

2009-05-01T23:59:59.000Z

209

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-02-01T23:59:59.000Z

210

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

211

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

212

Profitability Comparison Between Gas Turbines and Gas Engine in Biomass-Based Power Plants Using Binary Particle Swarm Optimization  

Science Conference Proceedings (OSTI)

This paper employs a binary discrete version of the classical Particle Swarm Optimization to compare the maximum net present value achieved by a gas turbines biomass plant and a gas engine biomass plant. The proposed algorithm determines the optimal ...

P. Reche López; M. Gómez González; N. Ruiz Reyes; F. Jurado

2007-06-01T23:59:59.000Z

213

Gas Centrifuge Enrichment Plant Safeguards System Modeling  

SciTech Connect

The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

Elayat, H A; O'Connell, W J; Boyer, B D

2006-06-05T23:59:59.000Z

214

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

215

Natural Gas Plant Stocks of Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5,419 6,722 6,801 5,826 6,210 6,249 1993-2013 PADD 1 122 121 115 189 246 248 1993-2013 East Coast 1993-2010 Appalachian No. 1 122 121 115 189 246 248 1993-2013 PADD 2 959 891 880 1,129 1,104 1,041 1993-2013 Ind., Ill. and Ky. 311 300 298 308 262 260 1993-2013 Minn., Wis., N. Dak., S. Dak. 56 64 58 60 51 64 1993-2013 Okla., Kans., Mo. 592 527 524 761 791 717 1993-2013 PADD 3 3,810 5,007 5,032 3,817 4,246 4,272 1993-2013

216

Extensive expansion at Karsto gas plant under way  

SciTech Connect

By 2000, the gas and condensate plant at Karsto, Norway, will have been expanded extensively: gas-processing capacity will increase to 2.2 bscfd from current 775 MMscfd; and production capacity for LPG, naphtha, and condensate will reach approximately 10 million metric tons/year (mty). Prompting this expansion is the landing of Karsto in 2000 of a 42-in., rich-gas pipeline from Haltenbanken, offshore mid-Norway, and installation of the 42-in. Europipe II dry-gas pipeline from Karsto to Germany. In the same period, several spin-off projects adding value to the overall concept may be constructed. These could include a 350-mw power plant and ethane-shipment facilities. Total investment at Karsto in the next 3--4 years will reach approximately $1.1 billion (US). Civil work began in June 1997; the detail engineering contract was awarded in August 1997. The paper describes the project.

Svenes, S. [Den Norske Stats Oljeselskap AS, Haugesund (Norway)

1998-07-27T23:59:59.000Z

217

Demonstration plant for IGCC using the U-GAS process  

SciTech Connect

Tampella, Ltd., in cooperation with the Institute of Gas Technology (IGT), is developing the gasification technology for U-GAS{reg_sign} to produce electricity from coal using the integrated gasification combined-cycle (IGCC). The concept of IGCC is to join the clean burning gasification island with a more efficient gas and stream turbine island to produce electric power with minimal environmental impact. IGT has developed the U-GAS process to produce a low- or medium-Btu gas from different types of coal feedstocks. The process uses a combination of fluidized=bed gasification and ash agglomeration in a single-stage reactor. A 30-tons/day-capacity pilot plant located in Chicago has been used to develop the process. Feedstocks ranging from relatively unreactive metallurgical coke to highly reactive peat have been gasified successfully in the this pilot plant, indicating its ability to handle a feedstock with widely varying properties. A new 10 megawatt pilot plant has been designed and is under construction in Tampere, Finland, as the first step toward the commercialization of this technology. Tampella is planning to design and deliver a commercial-scale IGCC demonstration plant by 1994. 7 refs., 5 figs.

Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Salo, K. [Tampella Power, Tampere (Finland)

1991-12-01T23:59:59.000Z

218

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

DOE Green Energy (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

219

A Wood-Fired Gas Turbine Plant  

E-Print Network (OSTI)

This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 501-k). A Westinghouse 3,000-kW generator is used on the prototype facility with a Philadelphia gear system reducing the 14,000-rpm turbine output speed to the 3,600-rpm generator operating speed. Fuel is fed into the combustor by a rotary valve system. The swirling effect of the cyclone combustor ensures that residence time is adequate to completely burn all solid particles in the combustor ahead of the cyclone filter. Burning of particles on the metal walls of the cyclone filter could cause overheating and deterioration of the walls. This wood-fired gas turbine unit could provide a low cost source of power for areas where conventional methods are now prohibitive and provide a means for recovering energy from a source that now poses disposal problems.

Powell, S. H.; Hamrick, J. T.

1986-06-01T23:59:59.000Z

220

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

222

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

223

Efficient gas stream cooling in Second-Generation PFBC plants  

SciTech Connect

The coal-fueled Advanced or Second-Generation Pressurized Fluidized Bed Combustor concept (APFBC) is an efficient combined cycle in which coal is carbonized (partially gasified) to fuel a gas turbine, gas turbine exhaust heats feedwater for the steam cycle, and carbonizer char is used to generate steam for a steam turbine while heating combustion air for the gas turbine. The system can be described as an energy cascade in which chemical energy in solid coal is converted to gaseous form and flows to the gas turbine followed by the steam turbine, where it is converted to electrical power. Likewise, chemical energy in the char flows to both turbines generating electrical power in parallel. The fuel gas and vitiated air (PFBC exhaust) streams must be cleaned of entrained particulates by high-temperature equipment representing significant extensions of current technology. The energy recovery in the APFBC cycle allows these streams to be cooled to lower temperatures without significantly reducing the efficiency of the plant. Cooling these streams would allow the use of lower-temperature gas cleanup equipment that more closely approaches commercially available equipment, reducing cost and technological risk, and providing an earlier path to commercialization. This paper describes the performance effects of cooling the two hottest APFBC process gas streams: carbonizer fuel gas and vitiated air. Each cooling variation is described in terms of energy utilization, cycle efficiency, and cost implications.

White, J.S.; Horazak, D.A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

1994-07-01T23:59:59.000Z

224

Water Extraction from Coal-Fired Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

225

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

226

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

227

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

228

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

229

Texas - RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

230

U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) U.S. Federal Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

231

Texas - RRC District 7C Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 7C Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

232

Texas - RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

233

Techno-socio-economic study of bio-gas plants  

Science Conference Proceedings (OSTI)

This study covers technological, social and economic aspects of the biogas program in Chitawan, Nepal. Many interesting facts are revealed which may be useful for future planning of Nepalese biogas programs. Concerning the social aspects, only big farmers (having more than 4 bighas of land and more than 10 domestic animals) were found to have biogas plants. No farmer who had a biogas plant was illiterate. As for the technical aspects of the total gas ovens used in the area, 66% were of BTI design. Most of the ovens were of 0.45-m/sup 3/ capacity. The life of BTI ovens was found to be shorter than the life of ovens of other companies. BTI ovens are not useful when farmers have to use a big pot for cooking. All farmers of the area were found to be convinced of the utility of the biogas plant. With regard to the economic aspects of using biogas plants, farmers were able to save 53% of the total expenditure which they had been spending for fuel. Wood consumption was reduced to 50% by using biogas. The internal rate of return of a 2.8-m/sup 3/ biogas plant was found to be 14% assuming that the plant would last for 20 years. Most of the farmers in the area did not have biogas plants. The main reason given was that there were not enough capital and cattle to begin such an operation.

Not Available

1981-01-01T23:59:59.000Z

234

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of ...  

U.S. Energy Information Administration (EIA)

Weekly U.S. Refiner, Blender, and Gas Plant Net Production of Propane and Propylene (Thousand Barrels per Day)

235

Analysis of Natural Gas Fuel Cell Plant Configurations  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Natur Analysis of Natur al Gas Fuel Cell Plant Configur ations March 24, 2011 DOE/NETL-2011/1486 Analysis of Natur al Gas Fuel Cell Plant Configur ations Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

236

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

237

Sediment Capping Resource Guide for Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report describes tools and techniques applicable to design and implementation of sediment capping remedies at former manufactured gas plant (MGP) sites. It includes a number of practical case studies describing cap designs and cap construction experience. The report is intended as a sediment capping resource guide to be used with EPRI's 2007 Handbook of Remedial Alternatives for MGP Sites with Contaminated Sediments (EPRI report 1012592).

2008-11-18T23:59:59.000Z

238

Groundwater Closure Strategy for Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

Utilities responsible for Manufactured Gas Plant (MGP) remediation must navigate numerous challenges in order to attain regulatory closure. Typically, the first strategic focus is on source remediation: to locate, treat or remove MGP residuals that constitute ongoing sources of impacts to receptors (e.g., direct contact, soil vapor, or groundwater). Often the last compliance piece that must fall into place is compliance with regulatory criteria for groundwater. The state-specific regulatory closure ...

2012-12-12T23:59:59.000Z

239

Solvent Extraction for Remediation of Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

EPRI has assessed the feasibility of using a solvent extraction process to remove coal tar from the subsurface or to treat contaminated soil excavated from manufactured gas plant (MGP) sites. The assessment indicates that in situ solvent extraction may recover a significant amount of tar from the subsurface within a reasonable timeframe, provided subsurface conditions are conducive to process implementation. This work will help utilities searching for cost-effective technologies to remediate MGP sites.

1993-02-18T23:59:59.000Z

240

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Hot gas cleanup and gas turbine aspects of an advanced PFBC power plant  

SciTech Connect

The overall objective of the second-generation PFBC development program is to advance this concept to a commercial status. Three major objectives of the current Phase 2 program activities are to: Separately test key components of the second-generation PFBC power plant at sub-scale to ascertain their performance characteristics, Revise the commercial plant performance and economic predictions where necessary, Prepare for a 1.6 MWe equivalent Phase 3 integrated subsystem test of the key components. The key components of the plant, with respect to development risk, are the carbonizer, the circulating PFBC unit, the ceramic barrier filter, and the topping combustor. This paper reports on the development and testing of one key component -- the ceramic barrier filter for the carbonizer fuel gas. The objective of the Phase 2 carbonizer ceramic barrier filter testing has been to confirm filter performance and operability in the carbonizer fuel gas environment.

Robertson, A. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Bruck, G.J.; Smeltzer, E.E. (Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center)

1992-01-01T23:59:59.000Z

242

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

243

Gas turbine electric plant construction cost and annual production expenses. First annual publication, 1972  

SciTech Connect

By the end of 1972, gas turbine power plants owned and operated by U.S. utilities had a capacity of 27,918 MW. Data from the 1972 annual reports filed with the Federal Power Commission by utility systems are presented which show the plant cost, generating expenses, capacity and generation, and plant and equipment characteristics of 299 gas turbine plants. (LCL)

1972-01-01T23:59:59.000Z

244

pH Adjustment of Power Plant Cooling Water with Flue Gas/Fly Ash  

to fossil fuel burning power plants to control mineral precipitation in cooling water. Flue gas, which is 10% CO2, could be diverted into a plant’s cooling water

245

New generation enrichment monitoring technology for gas centrifuge enrichment plants  

SciTech Connect

The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian, S. [Los Alamos National Laboratory; Boyer, Brian, D. [Los Alamos National Laboratory; Hill, Thomas, R. [Los Alamos National Laboratory; Macarthur, Duncan, W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin, E. [Los Alamos National Laboratory; Sheppard, Gregory, A. [Los Alamos National Laboratory; Swinhoe, Martyn, T. [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

246

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network (OSTI)

Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

Keinan, Alon

247

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

248

Demonstration plant engineering and design. Phase I. The pipeline gas demonstration plant. Volume 9. Plant Section 800: product gas compression and drying  

SciTech Connect

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. This design effort has been completed. A report of the design effort is being issued in 24 volumes. This is Volume 9 which reports the design of Plant Section 800 - Product Gas Compression and Drying. Plant Section 800 compresses, cools, and drys the SNG product to conditions and specifications required for pipeline use. A conventional triethylene glycol (TEG) gas drying unit is employed to reduce the moisture content of the SNG to less than 7 pounds per million standard cubic feet. The product SNG has a minimum pressure of 800 psig and a maximum temperature of 100/sup 0/F. This section also includes the product gas analysis, metering, and totalizing instruments. It is designed to remove 3144 pounds of water from 19 million SCFC of SNG product. Volume 9 contains the following design information: process operation; design basis; heat and material balance; stream compositions; utility, chemical and catalyst summary; major equipment and machinery list; major equipment and machinery requisitions; instrument list; instrument requisitions; line lists; process flow diagram; engineering flow diagrams; and section plot plan.

Not Available

1981-01-01T23:59:59.000Z

249

Material Consolidation, Rendering, and Disposal Studies of Gas Holders at Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents results of full-scale field implementation studies conducted in conjunction with an evaluation of EPRI-sponsored bench-scale mixing tests. The study was designed to complement bench-scale mixing studies that correlated those results to full-scale remedial actions at former manufactured gas plant (MGP) sites. The field implementation study included a review of potentially applicable remedial approaches, site characterization, bench-scale treatability tests, and results of site remedia...

2001-12-13T23:59:59.000Z

250

Comparison of intergrated coal gasification combined cycle power plants with current and advanced gas turbines  

Science Conference Proceedings (OSTI)

Two recent conceptual design studies examined ''grass roots'' integrated gasification-combined cycle (IGCC) plants for the Albany Station site of Niagara Mohawk Power Corporation. One of these studies was based on the Texaco Gasifier and the other was developed around the British Gas Co.-Lurgi slagging gasifier. Both gasifiers were operated in the ''oxygen-blown'' mode, producing medium Btu fuel gas. The studies also evaluated plant performance with both current and advanced gas turbines. Coalto-busbar efficiencies of approximately 35 percent were calculated for Texaco IGCC plants using current technology gas turbines. Efficiencies of approximately 39 percent were obtained for the same plant when using advanced technology gas turbines.

Banda, B.M.; Evans, T.F.; McCone, A.I.; Westisik, J.H.

1984-08-01T23:59:59.000Z

251

Constrained model predictive control implementation for a heavy-duty gas turbine power plant  

Science Conference Proceedings (OSTI)

In this paper, model predictive control (MPC) strategy is implemented to a GE9001E gas turbine power plant. A linear model is developed for the gas turbine using conventional mathematical models and ARX identification procedure. Also a process control ... Keywords: ARX, PID, gas turbine, identification, modeling, multivariable control, power plant, predictive control

Hadi Ghorbani; Ali Ghaffari; Mehdi Rahnama

2008-06-01T23:59:59.000Z

252

Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a  

E-Print Network (OSTI)

Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

253

Small-Scale, Biomass-Fired Gas Turbine Plants Suitable for Distributed and Mobile Power Generation  

Science Conference Proceedings (OSTI)

This study evaluated the cost-effectiveness of small-scale, biomass-fired gas turbine plants that use an indirectly-fired gas turbine cycle. Such plants were originally thought to have several advantages for distributed generation, including portability. However, detailed analysis of two designs revealed several problems that would have to be resolved to make the plants feasible and also determined that a steam turbine cycle with the same net output was more economic than the gas turbine cycle. The incre...

2007-01-19T23:59:59.000Z

254

Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

255

Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

256

Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

257

Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

258

Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

259

Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

260

Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

262

Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

263

Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

264

Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

265

Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids, Proved Reserves (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

266

Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant  

E-Print Network (OSTI)

of a Biogas Power Plant Author: W. Bauer Author Affiliation: Department and greenhouse gas analysis for a 1.45 MW (0.71 MW electrical) biogas power plant

Bauer, Wolfgang

267

Co-Removal of Mercury from Coal-Fired Power Plant Flue Gas with...  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion conditions, and air pollution control devices upstream of a power plant FGD system have an impact on the types and concentration of flue gas mercury at the...

268

U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Plant Liquids Proved Reserves...

269

Second law analysis of a natural gas-fired steam boiler and cogeneration plant.  

E-Print Network (OSTI)

??A second law thermodynamic analysis of a natural gas-fired steam boiler and cogeneration plant at Rice University was conducted. The analysis included many components of… (more)

Conklin, Eric D

2010-01-01T23:59:59.000Z

270

,"Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 1 Natural Gas Plant Liquids, Proved Reserves (Million...

271

,"Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million...

272

,"Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million...

273

,"Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million...

274

,"Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million...

275

,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

276

,"Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 9 Natural Gas Plant Liquids, Proved Reserves (Million...

277

,"Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 8A Natural Gas Plant Liquids, Proved Reserves (Million...

278

,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

279

,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

280

,"Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 7C Natural Gas Plant Liquids, Proved Reserves (Million...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--RRC District 10 Natural Gas Plant Liquids, Proved Reserves (Million...

282

"NATURAL GAS PROCESSING PLANT SURVEY"  

U.S. Energy Information Administration (EIA) Indexed Site

1.5 hours" 1.5 hours" "NATURAL GAS PROCESSING PLANT SURVEY" "FORM EIA-757" "Schedule B: Emergency Status Report" "This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the confidentiality of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction."

283

Anti-polluting power plant using compressors and gas turbines  

SciTech Connect

An electric power generating plant includes at least two compressors having matched operating characteristics, alternators and turbines and boilers having combustion chambers connected to the turbines. The compressors, alternators and turbines are operatively interconnected such that during no power demand periods the compressors are driven in a series arrangement by the alternators, functioning as electric motors, to store a supply of pressurized air in an air storage tank, and during normal and peak power demand periods the turbines, supplied by the combustion chambers of the boilers, drive the compressors, functioning in parallel relationship, which feed respective ones of the boilers with enriched air and a gas recycled after expansion by one of the turbines. During the normal and peak power demand periods pressurized air previously stored in the air storage tank by the compressors is fed to the combustion chamber of one of the boilers.

Rigollot, G.A.

1977-09-20T23:59:59.000Z

284

High temperature nuclear gas turbine  

SciTech Connect

Significance of gas turbine cycle, process of the development of gas turbines, cycle and efficiency of high-temperature gas turbines, history of gas turbine plants and application of nuclear gas turbines are described. The gas turbines are directly operated by the heat from nuclear plants. The gas turbines are classified into two types, namely open cycle and closed cycle types from the point of thermal cycle, and into two types of internal combustion and external combustion from the point of heating method. The hightemperature gas turbines are tbe type of internal combustion closed cycle. Principle of the gas turbines of closed cycle and open cycle types is based on Brayton, Sirling, and Ericsson cycles. Etficiency of the turbines is decided only by pressure ratio, and is independent of gas temperature. An example of the turbine cycle for the nuclear plant Gestacht II is explained. The thermal efficiency of that plant attains 37%. Over the gas temperature of about 750 deg C, the thermal efficiency of the gas turbine cycle is better than that of steam turbine cycle. As the nuclear fuel, coated particle fuel is used, and this can attain higher temperature of core outlet gas. Direct coupling of the nuclear power plants and the high temperature gas turbines has possibility of the higher thermal efficiency. (JA)

Kurosawa, A.

1973-01-01T23:59:59.000Z

285

WTE plant planned for Palermo (Sicily, Italy) (Translation of Italian text by Lucia Rigamonti)  

E-Print Network (OSTI)

(Bellolampo) as a new sorting plant and the present landfill that receives the MSW produced in Palermo characteristics of the WTE plant at normal operating conditions. Tab. 1: Characterization, proximate and ultimate heating value (LHV) kJ kg-1 11,515 Furnace thermal power MWth 73.5 Gas temperature at furnace outlet °C

Columbia University

286

Radiolytic gas production from concrete containing Savannah River Plant waste  

DOE Green Energy (OSTI)

To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by /sup 60/Co gamma rays and /sup 244/Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at <140 psi. From these results, estimates of pressure in conceptual containers (cylinders 2 feet ID by 10 feet tall, 90% full) of SRP waste concrete were made. During the first 300 years of storage when radiolysis will mainly be from beta-gamma radiation (from /sup 137/Cs and /sup 90/Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be <60 psi. After decay of these fission products, alpha radiolysis from /sup 238/Pu and /sup 239/Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi.

Bibler, N.E.

1978-01-01T23:59:59.000Z

287

Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Lower 48 States Natural Gas Liquids Proved...

288

Miscellaneous States Natural Gas Plant Liquids, Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Miscellaneous Natural Gas Liquids Proved...

289

Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Montana Natural Gas Liquids Proved Reserves...

290

Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Florida Natural Gas Liquids Proved Reserves...

291

Colorado Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Colorado Natural Gas Liquids Proved Reserves...

292

North Dakota Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 North Dakota Natural Gas Liquids Proved Reserves...

293

West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 West Virginia Natural Gas Liquids Proved...

294

Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Kansas Natural Gas Liquids Proved Reserves...

295

New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 New Mexico Natural Gas Liquids Proved Reserves...

296

Michigan Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Michigan Natural Gas Liquids Proved Reserves...

297

Kentucky Natural Gas Plant Liquids, Proved Reserves (Million...  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Kentucky Natural Gas Liquids Proved Reserves...

298

Arkansas Natural Gas Plant Liquids, Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Arkansas Natural Gas Liquids Proved Reserves...

299

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

300

Extraction Loss of Natural Gas at Processing Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals from Gas Wells Gross Withdrawals from Oil Wells Gross Withdrawals from Shale Gas Wells Gross Withdrawals from Coalbed Wells Repressuring Vented and Flared...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Case history of industrial plant steam system layup for direct-fired gas operations  

Science Conference Proceedings (OSTI)

This paper presents the facts of an industrial plant steam system layup for direct fired gas operations. Fuel price savings indicated that gas firing a paper dryer, the largest steam user in the plant, would pay for itself in one year. Conversion work is detailed. Primary gas distribution was achieved by using one line of the steam loop. Machine water heating, power venting, space heating, and air makeup heating, among other conversions, are also specified.

Stacy, G.N.

1983-06-01T23:59:59.000Z

302

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

303

Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's 2,943 2,465 2,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

304

California Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) California Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056 13,521 13,972 13,722 2010's 13,244 12,095 12,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

305

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

306

North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381 14,182 26,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

307

Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860 360,535 332,405 360,110 355,589 373,350 387,349 401,503 424,042 2010's 433,622 481,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

308

New Measures to Safeguard Gas Centrifuge Enrichment Plants  

SciTech Connect

As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

2011-01-01T23:59:59.000Z

309

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

310

Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180 53,590 67,607 2010's 82,637 90,801 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

311

Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

312

Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

313

Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

314

Medium-Term Risk Management for a Gas-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium-Term Risk Management for a Gas-Fired Power Plant Medium-Term Risk Management for a Gas-Fired Power Plant Speaker(s): Afzal Siddiqui Date: October 11, 2012 - 12:00pm Location: 90-1099 Seminar Host/Point of Contact: Chris Marnay Electricity sectors in many countries have been deregulated with the aim of introducing competition. However, as a result, electricity prices have become highly volatile. Stochastic programming provides an appropriate method to characterise the uncertainty and to derive decisions while taking risk management into account. We consider the medium-term risk management problem of a UK gas-fired power plant that faces stochastic electricity and gas prices. In particular, the power plant makes daily decisions about electricity sales to and gas purchases from spot markets over a monthly

315

Gas turbine effects on integrated-gasification-combined-cycle power plant operations  

SciTech Connect

This study used detailed thermodynamic modeling procedures to assess the influence of different gas turbine characteristics and steam cycle conditions on the design and off-design performance of integrated gasification-combined-cycle (IGCC) power plants. IGCC plant simulation models for a base case plant with Texaco gasifiers and both radiant and convective syngas coolers were developed, and three different types of gas turbines were evaluated as well as non-reheat and reheat steam systems. Results indicated that improving the gas turbine heat rate significantly improves the heat rate of the IGCC power plant. In addition results indicated that using a reheat steam system with current gas turbines improves IGCC performance, though as gas turbine efficiency increases, the impact of using a reheat steam system decreases. Increasing gas turbine temperatures from 1985{degree}F to 2500{degree}F was also found to have the potential to reduce overall IGCC system heat rates by approximately 700 BTU/kWh. The methodologies and models developed for this work are extremely useful tools for investigating the impact of specific gas turbine and steam cycle conditions on the overall performance of IGCC power plants. Moreover, they can assist utilities during the preliminary engineering phase of an IGCC project in evaluating the cost effectiveness of using specific gas turbines and steam cycles in the overall plant design. 45 refs., 20 figs., 10 tabs.

Eustis, F.H. (Stanford Univ., CA (USA). High Temperature Gasdynamics Lab.)

1990-03-01T23:59:59.000Z

316

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

Science Conference Proceedings (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

317

A Case Study on the Use of Innovative Methods for Comprehensive Site Characterization at Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report is a case study on using innovative technologies for investigating former manufactured gas plant sites.

2002-06-25T23:59:59.000Z

318

Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 Federal Offshore, Gulf of Mexico, Louisiana & Alabama Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

319

Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 3 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 231 1980's 216 230 265 285 270 260 237 241 208 213 1990's 181 208 211 253 254 272 289 286 246 226 2000's 209 226 241 207 221 226 234 271 196 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

320

Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) Texas - RRC District 4 Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 248 1980's 252 260 289 292 295 269 281 277 260 260 1990's 279 273 272 278 290 287 323 347 363 422 2000's 406 378 370 287 326 309 333 327 310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation  

SciTech Connect

In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

1990-01-01T23:59:59.000Z

322

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

Science Conference Proceedings (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlowe, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

323

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Dexin Wang Dexin Wang Principal Investigator Gas Technology Institute 1700 South Mount Prospect Rd Des Plaines, Il 60018 847-768-0533 dexin.wang@gastechnology.org TransporT MeMbrane Condenser for WaTer and energy reCovery froM poWer planT flue gas proMIs/projeCT no.: nT0005350 Background One area of the U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program's research is being performed to develop advanced technologies to reuse power plant cooling water and associated waste heat and to investigate methods to recover water from power plant flue gas. Considering the quantity of water withdrawn and consumed by power plants, any recovery or reuse of this water can significantly reduce the plant's water requirements. Coal occurs naturally with water present (3-60 weight %), and the combustion

324

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

325

Membrane Process to Sequester CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

MeMbrane Process to sequester co MeMbrane Process to sequester co 2 froM Power Plant flue Gas Background Carbon dioxide emissions from coal-fired power plants are believed to contribute significantly to global warming climate change. The direct approach to address this problem is to capture the carbon dioxide in flue gas and sequester it underground. However, the high cost of separating and capturing CO 2 with conventional technologies prevents the adoption of this approach. This project investigates the technical and economic feasibility of a new membrane process to capture CO 2 from power plant flue gas. Description Direct CO 2 capture from power plant flue gas has been the subject of many studies. Currently, CO 2 capture with amine absorption seems to be the leading candidate technology-although membrane processes have been suggested. The principal

326

U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels...  

Gasoline and Diesel Fuel Update (EIA)

Sales (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 906 448...

327

U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries...  

Gasoline and Diesel Fuel Update (EIA)

New Field Discoveries (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

328

U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, New Reservoir Discoveries in Old Fields (Million Barrels) U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1...

329

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

330

,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks...  

U.S. Energy Information Administration (EIA) Indexed Site

S1","MDGSXUS1","MRESXUS1","MPRSXUS1" "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)","U.S. Reformulated Motor...

331

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene ...  

U.S. Energy Information Administration (EIA)

East Coast (PADD 1) Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 ...

332

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 7,016: 5,987: ...

333

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Normal Butane-Butylene (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; ...

334

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

335

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

336

Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

337

Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

338

Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

339

Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

340

Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

342

Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

343

Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

344

Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

345

Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

346

Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

347

Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

348

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed Extraction Loss Dry Production Imports By Pipeline LNG Imports Exports...

349

EIA-782A REFINERS’/GAS PLANT OPERATORS’ MONTHLY ...  

U.S. Energy Information Administration (EIA)

interested in receiving this free software, contact the Electronic Data Collection Support Staff at (202) 586-9659. Mail forms to: Oil & Gas ...

350

Developing a water treatment system for Subsea Gas processing plant.  

E-Print Network (OSTI)

??The petroleum industry is currently moving to meet the ever-rising demand for oil and gas production. As onshore fields become depleted and decline in production,… (more)

Honer Badi M Nazhat, Dana

2006-01-01T23:59:59.000Z

351

Lease and Plant Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated electric ... Gas volumes delivered for vehicle fuel are included in the State monthly totals from January 2011 ...

352

Natural gas processing plant data now available - Today in ...  

U.S. Energy Information Administration (EIA)

This past summer, EIA activated the baseline survey (EIA-757, Schedule A), the results of which are published in EIA's Natural Gas Annual Respondent Query System.

353

Natural Gas Processing Plants in the United States: 2010 Update...  

Annual Energy Outlook 2012 (EIA)

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and...

354

NATURAL GAS PROCESSING PLANT SURVEY FORM EIA-757 INSTRUCTIONS ...  

U.S. Energy Information Administration (EIA)

Schedule B is the “Emergency Status Report,” which will only be activated during an emergency situation that impacts the supply of natural gas to ...

355

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

356

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

357

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, RTI to Design and Build Gas Cleanup System for IGCC Power DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove trace elements such as mercury and arsenic, capture the greenhouse gas carbon dioxide (CO2), and extract more than 99.9 percent of the sulfur from the syngas. A novel process to convert the extracted sulfur to a pure elemental sulfur product will also be tested. This project supports DOE's vision of coal power plants with near-zero

358

Producer gas power plants can cut the oil bills of the developing countries  

SciTech Connect

As a power-generation fuel substitute in developing countries, producer gas from coal, biomass, or waste could reduce oil-import bills while assuring a steady fuel supply. An international working group formed at the Royal Swedish Academy of Sciences is assisting developing countries in setting up simple producer-gas plants consisting of a downdraft gasifier, cyclone, filter, and cooler. Sweden gained expertise in this technology during World War II and now manufactures much of the equipment needed for producer-gas facilities. Depending on oil price, a dual-fuel power plant (15% diesel oil, 85% producer gas) could compete economically with a diesel-only plant, assuming extra labor requirements of 20 min/hr of operation for the gas-fired facility.

Not Available

1982-02-01T23:59:59.000Z

359

Impact of different plants on the gas profile of a landfill cover  

SciTech Connect

Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

2011-05-15T23:59:59.000Z

360

1 2Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90 % capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the

Sarah Bashadi; Howard Herzog; Dava J. Newman; Sarah Bashadi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

362

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

363

Field Test of Manufactured Gas Plant Remediation Technologies: Material Removal and Handling  

Science Conference Proceedings (OSTI)

Common manufactured gas plant (MGP) site structures are often sources of contamination and present a number of unique material removal and handling challenges. This report provides results from a field-scale study involving the excavation of the contents of a subgrade gas holder tank. Specifically discussed are the material handling activities needed to prepare MGP impacted soils and debris for remediation processes.

1996-02-02T23:59:59.000Z

364

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

365

Proceedings of symposium on operation and maintenance of synthetic gas plants  

SciTech Connect

The Symposium on Operation and Maintenance of Synthetic Gas Plants sponsored by the Gas Processors Association and the American Petroleum Institute (Division of Refining) was held at the Statler Hilton Hotel, Dallas, Texas, October 10, 1973. Four papers have been entered individually into EDB. (LTN)

1973-01-01T23:59:59.000Z

366

Simulated coal gas MCFC power plant system verification  

DOE Green Energy (OSTI)

This technical progress report summarizes the objectives and progress on the following tasks associated with the project: Commercialization; Power plant development; Manufacturing facilities development; Testing facility development; Stack research; and Advanced research and technology development. The project will demonstrate a 250 kW molten carbonate fuel cell power plant based on the IMHEX stack design concept.

NONE

1998-01-01T23:59:59.000Z

367

Field Studies of Soil Vapor Intrusion at a Vacant Manufactured Gas Plant (MGP) Site in Wisconsin  

Science Conference Proceedings (OSTI)

A comprehensive two-phase field-based research program was completed at a former manufactured gas plant (MGP) site located in Wisconsin during the summer of 2008. The purpose of this ongoing research study is to develop improved approaches and methodologies for characterizing the potential for vapor intrusion (VI) at MGP sites. This report describes the methods, results, and limited data interpretation of Phase I (Passive Soil Gas Survey) and Phase II (Soil, Groundwater, and Soil Gas Sampling) at the vac...

2009-06-30T23:59:59.000Z

368

Simulated coal gas MCFC power plant systems verification. Technical progress report  

DOE Green Energy (OSTI)

The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

NONE

1998-04-01T23:59:59.000Z

369

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

370

Membrane Process to Capture CO2 from Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process to Capture CO Membrane Process to Capture CO 2 from Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Innovations for Existing Plants (IEP) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

371

Reliability and Availability of Gas Turbines and Combined-Cycle Plants  

Science Conference Proceedings (OSTI)

High reliability, availability, and maintainability (RAM) of gas turbine plants are important attributes affecting the cost of generating electricity. RAM performance is a key indicator of the certainty that the power plant can deliver the electricity required to the grid when needed. Furthermore, events affecting reliability, availability, and starting reliability directly influence the profitability of the plant, equity return to the owner, and ultimately the price consumers pay for generation. Changes...

2008-12-01T23:59:59.000Z

372

Application of microturbines to control emissions from associated gas  

SciTech Connect

A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

Schmidt, Darren D.

2013-04-16T23:59:59.000Z

373

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network (OSTI)

Aalborg Universitet Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil &, B. (2013). Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas, 2013 #12;Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

Yang, Zhenyu

374

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

375

Michigan Natural Gas Plant Processing - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processed (Million Cubic Feet) 33,213: 29,436: 30,008: 23,819: 22,405: 21,518: 1967-2011: Total Liquids Extracted (Thousand Barrels) 2,335: 2,547: 2,840 ...

376

Off-site regeneration of gas-plant molecular sieves  

SciTech Connect

The use of regenerated molecular sieve, significantly reduces the operating costs associated with adsorption, dehydration, and processing gas-treating equipment. Laboratory analysis have proven an effective tool in predicting the regenerability of sieve and the expected effectiveness of the regeneration. 2 figures, 1 table.

Moses, J.R. (Catalyst Recovery Canada, Ltd., Calgary, Alberta); Auger, L.E.

1983-03-01T23:59:59.000Z

377

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

378

California--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0...

379

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

380

Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study  

SciTech Connect

Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

1992-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

DOE Green Energy (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

382

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

383

Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

Sims, A.V.

1983-06-01T23:59:59.000Z

384

Valuing Gas Power Plants with CO2 Capture and Tradable Quotas  

E-Print Network (OSTI)

We analyze investment in a gas fired power plant in a regime with tradable quotas for CO 2 emissions and with an option to install CO 2 capture technology. Such equipment is very costly and we find that high subsidies are required to entice the investors to install it, even when the captured CO 2 can be sold for enhanced oil recovery. Investment valuation is based on market prices of long term prices of energy forward contracts. The plant's operating flexibility and the investment delay opportunity under gas and electricity price uncertainty is taken into account. Based on prices from the Scandinavian electricity market and the UK natural gas market we find that the power plant investment should be delayed.

Thomas Dobbe; Stein-erik Fleten; Sjur Sigmo; T Power Plant Lifetime [years

2003-01-01T23:59:59.000Z

385

Geochemistry, Fate, and Three-Dimensional Transport Modeling of Subsurface Cyanide Contamination at a Manufactured Gas Plant  

Science Conference Proceedings (OSTI)

This report documents the geochemistry, fate, and three-dimensional transport modeling of subsurface cyanide contamination at a manufactured gas plant.

2001-01-26T23:59:59.000Z

386

Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant  

Science Conference Proceedings (OSTI)

Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} control in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.

Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.; Gil, F.M. [University of Seville, Seville (Spain)

2008-12-15T23:59:59.000Z

387

Generation Maintenance Application Center: Fuel Gas System for Combustion Turbine Combined Cycle Plant Maintenance Guide  

Science Conference Proceedings (OSTI)

This guide provides information to assist personnel involved with the maintenance of the fuel gas system at a gas turbine combined cycle facility, including good maintenance practices, preventive maintenance techniques and troubleshooting guidance. BackgroundCombustion turbine combined cycle (CTCC) facilities utilize various components that can be unique to this particular type of power plant. As such, owners and operators of CTCC facilities may find ...

2013-05-15T23:59:59.000Z

388

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

389

A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study from Norway on Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume Quiviger and Howard Herzog (hjherzog@mit.edu; +1-617-253-0688) Massachusetts Institute of Technology (MIT) Room E40-471 1 Amherst Street Cambridge, MA 02139 INTRODUCTION On Thursday March 9, 2000, Norwegian Prime Minister Kjell Magne Bondevik's minority government resigned over a disagreement with the opposition about a controversial proposal to build two gas-fired power plants. The government had been rejecting the building of the proposed plants for months. Bondevik and his coalition government wanted to hold off construction until new technology, such as carbon sequestration, allowed building more environmentally friendly plants. They argued that their position was supported by European

390

Combined plant having steam turbine and gas turbine connected by single shaft  

SciTech Connect

A combined plant including a gas turbine, a steam turbine and a waste heat recovery boiler using exhaust gases of the gas turbine as a heat source for producing steam serving as a drive source of the steam turbine further includes an ancillary steam source separate from and independent of the waste heat recovery boiler. At the time of startup of the plant, steam from the ancillary steam source is introduced into the steam turbine until the conditions for feeding air to the waste heat recovery boiler are set, to thereby avoid overheating of the steam turbine due to a windage loss.

Okabe, A.; Kashiwahara, K.; Urushidani, H.

1985-05-28T23:59:59.000Z

391

Advanced combustion technologies for gas turbine power plants  

DOE Green Energy (OSTI)

Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

Vandsburger, U. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Mechanical Engineering; Roe, L.A. [Arkansas Univ., Fayetteville, AR (United States). Dept. of Mechanical Engineering; Desu, S.B. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

1995-12-31T23:59:59.000Z

392

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect

This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

Wayne Moe

2013-05-01T23:59:59.000Z

393

Target strength of Sargassum plant with vesicles containing gas  

Science Conference Proceedings (OSTI)

Information about the target strength (TS) of a vesicle is important to estimate the acoustic scattering of Sargassum plants. Experimental TS (TSe) of a vesicle was obtained at 70 and 200 kHz using quantitative echosounders in a freshwater tank (10×10×15 m). The TSe of ten vesicles examined here were ?56.88–51.68 dB at 70 kHz and ?60.30–?50.90 dB at 200 kHz. The TSe?s of small vesicles were 2.56??3.70 dB higher at 70 kHz than at 200 kHz

2006-01-01T23:59:59.000Z

394

Gas Turbine Cogeneration Plant for the Dade County Government Center  

E-Print Network (OSTI)

A government complex consisting of a number of State, County, and City buildings is currently under construction in the downtown area of Miami, Florida. Thermo Electron Corporation and Rolls- Royce Inc. are providing a unique fuel saving cogeneration system to supply the air conditioning and electrical power requirements of the complex. This $30 million cogeneration plant will occupy a portion of a multiple-use building which will also house offices, indoor parking facilities, and additional building support systems. Locating such a powerplant in downtown Miami presents significant construction scheduling, environmental, and engineering challenges. Issues such as space limitations, emissions, noise pollution, and maintenance have been carefully addressed and successfully resolved.

Michalowski, R. W.; Malloy, M. K.

1985-05-01T23:59:59.000Z

395

Outlook for third Malaysian LNG plant brighter with big gas find  

Science Conference Proceedings (OSTI)

Prospects for a third liquefied natural gas export complex in Malaysia are brighter than ever. A unit of Occidental Petroleum Corp. has drilled its fourth and biggest natural gas strike into a carbonate reef on Block SK-8 off Sarawak, East Malaysia, turning up still more potential reserves for the country's proposed third LNG plant. The find brings to a combined total of 5 tcf of gas in place in the four SK-8 fields for which Oxy has disclosed test results. Well details are given. The LNG project under study would make Malaysia the largest supplier of LNG to the rapidly expanding East Asian market, Oxy said.

Not Available

1993-05-03T23:59:59.000Z

396

MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS  

Science Conference Proceedings (OSTI)

The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

2009-03-31T23:59:59.000Z

397

Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems  

Science Conference Proceedings (OSTI)

The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

2004-08-30T23:59:59.000Z

398

,"South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

399

,"Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

400

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simulated coal gas MCFC power plant system verification. Final report  

DOE Green Energy (OSTI)

The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

NONE

1998-07-30T23:59:59.000Z

402

Application of Dense Non-Aqueous Phase Liquid Containment Barriers at Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report documents the status and use of containment technologies at former manufactured gas plant (MGP) sites and provides a framework for a rigorous evaluation of containment technologies and applicability. It identifies the performance parameters that, through additional bench- or field-scale research, would promote increased understanding of the use and limitations of containment technologies at MGP sites.

2007-02-22T23:59:59.000Z

403

Remediation Strategies for Source Materials and Contaminated Media at Manufactured Gas Plant (MGP) Sites  

Science Conference Proceedings (OSTI)

This report contains information on remediation technologies that can be used to manage source material and contaminated media at manufactured gas plant (MGP) sites. It describes each technology, discusses its advantages and limitations, and defines the key factors that should be taken into account before selecting the technology for use at a given site.

1995-01-28T23:59:59.000Z

404

DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant  

Science Conference Proceedings (OSTI)

DADICC is the abbreviated name for an intelligent system able to detect on-line and diagnose anomalies as soon as possible in the dynamic evolution of the behaviour of a power plant based on a combined cycle gas turbine. In order to reach this objective, ... Keywords: Anomaly detection, Diagnosis, Expert system, Multi-agent system, Neural network, Normal behaviour

Antonio Arranz; Alberto Cruz; Miguel A. Sanz-Bobi; Pablo Ruíz; Josué Coutiño

2008-05-01T23:59:59.000Z

405

*Revisions to POS List, i.e. updates, additions and/or deletions NILAND GAS TURBINE PLANT, DOCKET NO.O6-SPPE-1  

E-Print Network (OSTI)

*Revisions to POS List, i.e. updates, additions and/or deletions NILAND GAS TURBINE PLANT, DOCKET OF CALIFORNIA SMALL POWER PLANT EXEMPTION FOR THE NILAND GAS TURBINE PLANT DOCKET NO. 06-SPPE-1 (Imperial_hahn@urscorp.com #12;*Revisions to POS List, i.e. updates, additions and/or deletions NILAND GAS TURBINE PLANT, DOCKET

406

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas Liquids 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 Pentanes Plus 9,772 10,464 10,689 11,270 11,542 11,167 1981-2013 Liquefied Petroleum Gases 64,284 66,268 64,249 67,770 70,834 70,029 1981-2013 Ethane 27,647 28,274 26,311 27,829 30,063 30,015 1981-2013 Propane 23,332 24,191 24,157 25,425 25,974 25,545 1981-2013 Normal Butane 5,876 6,383 6,543 6,399 6,508 6,893 1981-2013 Isobutane 7,429 7,420 7,238 8,117 8,289 7,576 1981-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

407

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Natural Gas Liquids 650,794 652,822 697,124 757,019 808,865 881,306 1981-2012 Pentanes Plus 95,899 96,530 98,904 101,155 106,284 116,002 1981-2012 Liquefied Petroleum Gases 554,895 556,292 598,220 655,864 702,581 765,304 1981-2012 Ethane 258,682 256,713 280,590 317,180 337,972 356,592 1981-2012 Propane 185,099 187,340 199,398 213,782 230,227 260,704 1981-2012 Normal Butane 46,833 48,976 49,528 56,655 57,399 65,555 1981-2012 Isobutane 64,281 63,263 68,704 68,247 76,983 82,453 1981-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

408

Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Arkansas Natural Gas Consumption by End Use Lease and Plant

409

Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,956 1,503 2,113 1970's 633 2,115 1,978 2,435 4,193 7,240 9,150 7,585 8,325 14,123 1980's 7,594 511 5,965 4,538 8,375 9,001 13,289 17,671 16,889 16,211 1990's 19,719 13,738 12,611 12,526 13,273 27,012 27,119 24,619 27,466 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Utah Natural Gas Consumption by End Use Lease and Plant

410

Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kentucky Natural Gas Consumption by End Use Lease and Plant

411

Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Michigan Natural Gas Consumption by End Use Lease and Plant

412

West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,052 2,276 0 1970's 2,551 3,043 3,808 2,160 1,909 1,791 1,490 1,527 1,233 1,218 1980's 2,482 2,515 6,426 5,826 7,232 7,190 6,658 8,835 8,343 7,882 1990's 9,631 7,744 8,097 7,065 8,087 8,045 6,554 7,210 6,893 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption West Virginia Natural Gas Consumption by End Use Lease and Plant

413

Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Montana Natural Gas Consumption by End Use Lease and Plant

414

Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Ohio Natural Gas Consumption by End Use Lease and Plant

415

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

416

Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream  

DOE Green Energy (OSTI)

International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

Maston, V.A.

1997-12-01T23:59:59.000Z

417

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

418

New concept: deepwater NGL/LPG plant. [Natural gas liquids and liquefied petroleum gas  

SciTech Connect

Floating platforms for processing natural gas liquids and liquefied petroleum gas (NGL/LPG) need to be stable for the processing and transfer of the products. Floating platforms are economically more attractive for producing marginal fields in deeper waters. Most of the proposed designs for crude oil and natural gas production have been tension-leg platforms, but 3 Norwegian companies are offering a converted ship as an alternative. The 3 companies will used a ship fitted with pontoons that can be raised and lowered to increase the vessel's stability. The NGL/LPG system was designed for a North Sea oil field. The feasibility study which the 3 companies completed was for a liquefaction and storage ship with a capacity of 75,000 cu m. The joint venture feels a ship has several advantages: large payload capacity; large storage capacity; ample deck space for equipment; easy to maintain; can be drydocked if necessary; and has a lower building cost. The 2 key elements to the system are the stabilization system and the turret platform.

1978-12-01T23:59:59.000Z

419

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

420

Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report  

Science Conference Proceedings (OSTI)

Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

Gillow, J.B.; Francis, A.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

422

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL  

E-Print Network (OSTI)

EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

423

U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption U.S. Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

424

Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Alaska Natural Gas Consumption by End Use

425

New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,793 46,331 45,309 1970's 47,998 46,114 48,803 52,553 43,452 38,604 49,160 43,751 37,880 50,798 1980's 36,859 22,685 55,722 47,630 50,662 46,709 35,615 48,138 41,706 42,224 1990's 65,889 44,766 53,697 49,658 54,786 52,589 81,751 64,458 59,654 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use

426

North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption North Dakota Natural Gas Consumption by End Use

427

Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Kansas Natural Gas Consumption by End Use

428

Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use

429

Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Colorado Natural Gas Consumption by End Use

430

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

431

Natural Gas Processing Plants in the United States: 2010 Update / Table 1  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Processing Plant Capacity by State 1. Natural Gas Processing Plant Capacity by State Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State 2009 Percent of U.S. Total 2009 Percent of U.S. Total 2004 2009 Capacity (Percent) Number of Plants Texas 19,740 25.5 163 33.1 95 121 24.7 -3 Louisiana 18,535 23.9 60 12.2 271 309 12.3 -1 Wyoming 7,273 9.4 37 7.5 154 197 5.1 -8 Colorado 3,791 4.9 44 8.9 49 86 81.1 1 Oklahoma 3,740 4.8 58 11.8 58 64 8.8 -1 New Mexico 3,022 3.9 24 4.9 137 126 -11.8 -1 Mississippi 2,273 2.9 4 0.8 262 568 44.6 -2 Illinois 2,102 2.7 2 0.4 1101 1,051 -4.6 0 Kansas 1,250 1.6 6 1.2 353 208 -64.6 -4 Alabama 1,248 1.6 12 2.4 87 104 -4.7 -3 Utah 1,185 1.5 12 2.4 61 99 22.2 -4 Michigan 977 1.3 10 2.0 30 98 102.2 -6 California 876 1.1 20 4.1 43 44 -15.5 -4 Arkansas 710 0.9 4 0.8 10 178

432

Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas  

DOE Patents (OSTI)

Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

2012-11-06T23:59:59.000Z

433

Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants  

SciTech Connect

Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

2008-07-15T23:59:59.000Z

434

6000 tpd SRC-I Demonstration Plant gas systems. Design baseline package, Volume 8. [DEA process  

SciTech Connect

Volume 8 contains the design of the fuel gas desulfurization process (DEA) and of the liquefied petroleum gases (LPG) section of the plant. The removal of acid gases is accomplished by intimately contacting the feed stream with the descending DEA solution. A partially regenerated semi-lean DEA solution is fed to an intermediate tray of the column for the bulk removal of H/sub 2/S and CO/sub 2/ while a fully regenerated lean DEA solution is fed at the top tray for the removal of the remaining acid gases in the top section of the absorber. The lean solution stream temperature is maintained at 10 to 15/sup 0/F above the absorber feed gas temperature to prevent hydrocarbon condensation in the column with consequent foaming and flooding of the column. The overhead gas (Stream 6305) leaving the H.P. DEA absorber is cooled and passed through the Sweet Gas K.O. Drum (bottom section of V-15305) to separate any condensate. The gas leaving the drum is further contacted with a 3 weight percent caustic solution in the bottom section of the Treated Gas Wash Column (T-15303) for removal of residual acid gases in order to comply with the sweet gas specifications of 1 ppMv H/sub 2/S and 10 ppMv CO/sub 2/. The LPG Recovery Unit is designed to process 15.95 MMSCFD of low pressure fuel reject gas from the HPU to recover approximately 60 percent of the propane and most of the heavier hydrocarbons. The recovered hydrocarbons are produced as liquefied petroleum gas (LPG) product. Specifications for the LPG product are: (1) Ethane/Propane (Vol/Vol) 0.02; and (2) LPG product should meet GPA Publication 2140-77 Commercial B-P mixture specifications.

1983-01-27T23:59:59.000Z

435

State-of-the-art gas turbine and steam turbine power plant  

SciTech Connect

A state-of-the-art power plant in which the heat from solid or low quality fuels is utilized to heat indirectly a motive stream composition of a mixture of steam and gases to drive a gas turbine. The thermal energy from the burning of the solid or low quality fuels is also utilized to generate steam which powers a steam turbine. Excess steam may be generated to be utilized as process steam.

Willyoung, D. M.; Anand, A. K.

1985-03-12T23:59:59.000Z

436

Evaluation of Technical Impracticability Determinations and Their Applicability to Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

Investigation and remediation of former manufactured gas plant (MGP) sites often present many challenges due to the presence of dense nonaqueous phase liquids (DNAPLs), the age of releases, complex geology, persistent compounds, and site ownership by third parties. As a result, it is often difficult or impossible to remediate former MGP sites to pre-release conditions or regulatory-established default soil and groundwater quality criteria. The U.S. Environmental Protection Agency (USEPA) and many states ...

2009-12-15T23:59:59.000Z

437

State of the Science Review of Cyanide and Its Compounds at Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

One area of environmental concern associated with former manufactured gas plant (MGP) sites involves the presence of cyanide-containing compounds at many of these sites. This report compiles information on this subject. Experts in the areas of regulatory requirements, cyanide speciation and analysis, site characterization, transport and fate, and human health risk issues have contributed chapters, and a research agenda is also suggested. The report is a result of a tailored collaboration effort between E...

1999-12-15T23:59:59.000Z

438

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

439

Evaluation of Biosparging for Management of Groundwater at the Manufactured Gas Plant in Baraboo, Wisconsin  

Science Conference Proceedings (OSTI)

This report presents the results of field and modeling studies of the fate and transport of a plume of organic constituents in an aquifer underlying a manufactured gas plant (MGP) site and documents the effectiveness of biosparging technology for remediation of groundwater. Because a significant fraction of naphthalene and other contaminants are only slowly released to the aqueous phase, processes such as biodegradation or pump-and-treat that address constituents in the aqueous phase require exceedingly ...

2001-01-30T23:59:59.000Z

440

Program on Technology Innovation: Nanoparticles at Coal and Gas Fired Power Plants  

Science Conference Proceedings (OSTI)

Nanoparticles—particles with diameters less than 100 nanometers—can occur from the combustion of fossil fuel, such as coal and natural gas. Recently, nanoparticles have gained the industry’s attention because they may be associated with adverse health effects. Despite potential health hazards, little published data exist concerning the types and concentrations of nanoparticles in work environments. This report is the first published study on concentration and composition of nanoparticles in power plant w...

2008-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation of In-Situ Solidification/Stabilization For Redevelopment of Manufactured Gas Plant Impacted Sites  

Science Conference Proceedings (OSTI)

Process byproducts produced at manufactured gas plants (MGP) pose concerns from an environmental standpoint. One treatment for the management of a broad range of contaminated media and wastes is solidification/stabilization (S/S). The U.S. Environmental Protection Agency (EPA) considers S/S an established treatment technology and it continues as a cornerstone treatment technology for the management of site remediation. The Electric Power Research Institute (EPRI) has been sponsoring research on the ...

2013-05-09T23:59:59.000Z

442

Solid-Phase Biotreatment Technology Studies Using Manufactured Gas Plant (MGP) Soils  

Science Conference Proceedings (OSTI)

The utility industry has been conducting site investigations to assess the presence of tar residuals at manufactured gas plant sites and to determine appropriate remediation actions. Tars typically contain volatile organic compounds (VOCs) and semi-volatile polycyclic aromatic hydrocarbon (PAH) compounds. This report evaluates the feasibility of remediating such tarry materials using a patented solid-phase bioremediation technology to target PAH degradation. Bench- and pilot scale treatability trials det...

2000-03-27T23:59:59.000Z

443

Advanced Oxidation Techniques for Soils Containing Manufactured Gas Plant (MGP) Hydrocarbons  

Science Conference Proceedings (OSTI)

This report presents the results of a bench-scale experimental study using a combination of chemical oxidation and electrotreatment of PAH contaminated soils from former Manufactured Gas Plant (MGP) sites. Electroosmotic movement of water and movement of charged surfactant micelles due to the electro-gradient were used to introduce persulfate oxidant into the contaminated soil matrix. Results showed that greater than 80% removal of the PAHs were obtained in 20 days of treatment time. Experiments with aqu...

2006-03-30T23:59:59.000Z

444

Survey of Physical and Chemical Properties of Soils Collected From Former Manufactured Gas Plant Sites  

Science Conference Proceedings (OSTI)

This report presents technical information and data from a study of the physical and chemical nature of soils at former manufactured gas plant (MGP) sites. Included in the report is a comparison of chemical analysis methods for determination of monocyclic aromatic hydrocarbons (MAHs), polycyclic aromatic hydrocarbons (PAHs), and total petroleum hydrocarbons (TPH). One of the specific objectives of the research was determining relationships between total soil and leachate concentrations of analytes of int...

1999-12-15T23:59:59.000Z

445

DNAPL Site Characterization for Waste Management at Manufactured Gas Plant (MGP) Sites  

Science Conference Proceedings (OSTI)

Determining the optimal waste management strategy at manufactured gas plant (MGP) sites requires adequate site characterization to provide data for remediation decisions, a task that is particularly challenging when dense nonaqueous phase liquids (DNAPLs) are present. This report discusses development of an appropriate characterization strategy, including parameters that should be characterized, tools for characterization and the relation between characterization goals, a developing site conceptual model...

2004-12-22T23:59:59.000Z

446

Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants  

SciTech Connect

This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant.

1992-06-01T23:59:59.000Z

447

Direct Chlorination Process for geothermal power plant off-gas - hydrogen sulfide abatement  

DOE Green Energy (OSTI)

The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5% hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90% excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process Compared to the Stretford Process, the Direct Chlorination process requires about one-third the initial capital investment and about one-fourth the net daily expenditure. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

Sims, A.V.

1983-06-01T23:59:59.000Z

448

Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

449

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

SciTech Connect

Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); University of technology, faculty of Process and Chemical Engineering, Warsaw (Poland); Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, Janusz [Institute of Atomic Energy, Swierk (Poland)

2003-08-26T23:59:59.000Z

450

Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption

451

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

452

NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions  

SciTech Connect

This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

Phillip Mills

2012-02-01T23:59:59.000Z

453

Solid oxide fuel cell/gas turbine power plant cycles and performance estimates  

DOE Green Energy (OSTI)

SOFC pressurization enhances SOFC efficiency and power performance. It enables the direct integration of the SOFC and gas turbine technologies which can form the basis for very efficient combined- cycle power plants. PSOFC/GT cogeneration systems, producing steam and/or hot water in addition to electric power, can be designed to achieve high fuel effectiveness values. A wide range of steam pressures and temperatures are possible owing to system component arrangement flexibility. It is anticipated that Westinghouse will offer small PSOFC/GT power plants for sale early in the next decade. These plants will have capacities less than 10 MW net ac, and they will operate with efficiencies in the 60-65% (net ac/LHV) range.

Lundberg, W.L.

1996-12-31T23:59:59.000Z

454

HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability  

SciTech Connect

The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation.

McDonald, C.F.

1980-04-01T23:59:59.000Z

455

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

456

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network (OSTI)

In Canada, medium and large sized steam plants consume approximately 442 Billion Cubic Feet (12.5 Billion Cubic Meters) of natural gas annually. This is 25% of all natural gas delivered to all customers. (Small steam plants and Hydronic heating boilers consume another 15%) Enbridge Consumers Gas, a local gas distribution company located in Toronto, has approximately 400 Industrial and Institutional customers who own medium or large sized steam plants. During the past three years, Enbridge has developed a comprehensive steam energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large sized boiler plants where audits have been completed and projects have been implemented. The savings in cubic feet per year of natural gas are broken down according to project or technology type. The financial payback is indicated for each category. Eleven of the larger plants have been "benchmarked". Plant efficiency, fuel consumption, steam costs and other performance variables are tabulated for these plants.

Griffin, B.

2000-04-01T23:59:59.000Z

457

File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf | Open Energy  

Open Energy Info (EERE)

oil.gas.plant.platform.sta.brbra.map.4.2010.pdf oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 234 KB, MIME type: application/pdf) Description Federal Leases in Pacific Ocean, near Santa Barbara Channel Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2010-04 Extent Santa Barbara Channel Countries United States UN Region Northern America States California Locations of oil and separation and treatment plants, oil separation, gas processing, and treatment plants, oil spill response vessels, platforms,

458

Coke oven gas desulphurization by the Carl Still process  

SciTech Connect

The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

Knight, R.E.

1981-01-01T23:59:59.000Z

459

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

460

Safety implications associated with in-plant pressurized gas storage and distribution systems in nuclear power plants  

SciTech Connect

Storage and handling of compressed gases at nuclear power plants were studied to identify any potential safety hazards. Gases investigated were air, acetylene, carbon dioxide, chlorine, Halon, hydrogen, nitrogen, oxygen, propane, and sulfur hexaflouride. Physical properties of the gases were reviewed as were applicable industrial codes and standards. Incidents involving pressurized gases in general industry and in the nuclear industry were studied. In this report general hazards such as missiles from ruptures, rocketing of cylinders, pipe whipping, asphyxiation, and toxicity are discussed. Even though some serious injuries and deaths over the years have occurred in industries handling and using pressurized gases, the industrial codes, standards, practices, and procedures are very comprehensive. The most important safety consideration in handling gases is the serious enforcement of these well-known and established methods. Recommendations are made concerning compressed gas cylinder missiles, hydrogen line ruptures or leaks, and identification of lines and equipment.

Guymon, R.H.; Casto, W.R.; Compere, E.L.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Pilot-plant technical assessment of wet flue gas desulfurization using limestone  

Science Conference Proceedings (OSTI)

An experimental study was performed on a countercurrent pilot-scale packed scrubber for wet flue gas desulfurization (FGD). The flow rate of the treated flue gas was around 300 Nm{sup 3}/h, so the pilot-plant capacity is one of the largest with respect to other published studies on a pilot-plant wet FGD. The tests were carried out at an SO{sub 2} inlet concentration of 2000 ppm by changing the recycle slurry pH to around 4.8 and the L/G ratio to between 7.5 and 15. Three types of limestone were tested, obtaining desulfurization efficiencies from 59 to 99%. We show the importance of choosing an appropriate limestone in order to get a better performance from the FGD plant. Thus, it is important to know the reactivity (on a laboratory scale) and the sorbent utilization (on a pilot-plant scale) in order to identify if a limestone is reactive enough and to compare it with another type. In addition, by using the transfer-unit concept, a function has been obtained for the desulfurization efficiency, using the L/G ratio and the recycle slurry pH as independent variables. The Ca/S molar ratio is related to these and to the SO{sub 2} removal efficiency. This function, together with a simplified function of the operation variable cost, allows us to determine the pair (L/G ratio and pH) to achieve the desired SO{sub 2} removal with the minimum operation cost. Finally, the variable operation costs between packed towers and spray scrubbers have been compared, using as a basis the pilot packed tower and the industrial spray column at the Compostilla Power Station's FGD plant (in Leon, Spain).

Ortiz, F.J.G.; Vidal, F.; Ollero, P.; Salvador, L.; Cortes, V.; Gimenez, A. [University of Seville, Seville (Spain)

2006-02-15T23:59:59.000Z

462

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel  

E-Print Network (OSTI)

Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital upside in view of the power generation growth potential in Asia and the environmental friendly, cost's energy and farming centers in North America as an alternative to coal-fired power plants and a solution

Columbia University

463

Remote-Controllable Power Outlet System for Home Power Management  

Science Conference Proceedings (OSTI)

In this paper we describe the Wireless Power-Controlled Outlet Module (WPCOM) with a scalable mechanism for home power management which we have developed. The WPCOM integrates the multiple AC power sockets and a simple low-power microcontroller into ...

Chia-Hung Lien; Ying-Wen Bai; Ming-Bo Lin

2007-11-01T23:59:59.000Z

464

Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis  

DOE Green Energy (OSTI)

Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

Kadam, K. L.

2001-06-22T23:59:59.000Z

465

International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant  

SciTech Connect

This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. After reviewing the IAEA safeguards objectives and concerns at such a plant, the paper describes the material accountancy performed by the facility operator, and discusses strategies by which the operator might attempt to divert a portion of the declared nuclear materials. Finally, the paper discusses the verification of the declared material balance, including sampling strategies, attributes and variables measurements, and nondestructive measurements to improve the efficiency of the inspection measures.

Gordon, D.M.; Sanborn, J.B.

1979-01-01T23:59:59.000Z

466

Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants  

E-Print Network (OSTI)

Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands. The optimum cycle is typically based on an analysis of the plant's electrical / steam / process heating requirements, an evaluation of the potential for selling to or permit wheeling by utilities of electrical power under PURPA guidelines, and application of pertinent investment decision criteria. The study that identifies the best solution to the problem must contain sufficient detail to support a plan of action by management. This paper addresses how computer-aided design techniques support the effort necessary to fully evaluate several alternative cycle designs in a short time frame. It includes examples for a new power unit as well as for cycles which require modifications to existing process and steam generating equipment in a medium-sized chemical plant.

Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

1984-01-01T23:59:59.000Z

467

,"Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

468

,"Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

469

,"Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

470

,"Oklahoma Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

471

,"California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

472

,"Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

473

,"Michigan Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

474

,"Mississippi Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"

475

,"Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_soh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_soh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

476

,"Louisiana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

477

,"Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

478

,"Florida Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

479

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

480

,"Alaska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:46 PM"

Note: This page contains sample records for the topic "outlet gas plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Arkansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

482

,"Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

483

,"Nebraska Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:51 PM"

484

,"Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

485

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

486

,"California Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:47 PM"

487

,"Colorado Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:48 PM"

488

,"Utah Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:53 PM"

489

Evaluation of In Situ Thermal Stabilization at a Former Manufactured Gas Plant  

Science Conference Proceedings (OSTI)

In Situ Thermal Stabilization (ISTS) is an emerging technology that has been proposed for the remediation of residual organic contamination at a former Manufactured Gas Plant (MGP) site in the southeastern United States. As described in this report, a test program was designed to verify the effectiveness of ISTS to treat the contaminants of concern, as well as to identify any adverse impacts (e.g., ground settling) to operations on an adjacent set of railroad tracks. A further goal of the testing was to ...

2009-11-13T23:59:59.000Z

490

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Conference Proceedings (OSTI)

Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

Yusibani, Elin [Research Center for Hydrogen Industrial Use and Storage, AIST (Japan); Department of Physics, Universitas Syiah Kuala (Indonesia); Kamil, Insan; Suud, Zaki [Department of Physics, Institut Teknologi Bandung (Indonesia)

2010-06-22T23:59:59.000Z

491

,"Wyoming Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:54 PM"

492

,"Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

493

,"Kentucky Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

494

,"Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

495

,"Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

496

,"Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

497

,"Kansas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:49 PM"

498

,"Tennessee Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:52 PM"

499

,"Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

500

,"Montana Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (MMcf)" Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1850_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1850_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:50 PM"