National Library of Energy BETA

Sample records for outlet gas plant

  1. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  2. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  3. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  4. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  5. ,"U.S. Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Natural Gas Plant Processing",3,"Annual",2013,"6301930" ... to Contents","Data 1: U.S. Natural Gas Plant Processing" "Sourcekey","NA1180NUS2","NA...

  6. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  7. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    7. Natural Gas Processing Plants in Alaska, 2009 Figure 7. Natural Gas Processing Plants in Alaska, 2009...

  8. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  9. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption New Mexico Natural Gas Consumption by ...

  10. ,"Natural Gas Plant Liquids Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2013,"06301979" ,"Release...

  11. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  12. How Gas Turbine Power Plants Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex ...

  13. Natural Gas Plant Liquids Production

    Gasoline and Diesel Fuel Update (EIA)

    Market Centers and Hubs: A 2003 Update EIA Home > Natural Gas > Natural Gas Analysis Publications Natural Gas Market Centers and Hubs: A 2003 Update Printer-Friendly Version "This special report looks at the current status of market centers/hubs in today's natural gas marketplace, examining their role and their importance to natural gas shippers, marketers, pipelines, and others involved in the transportation of natural gas over the North American pipeline network. Questions or

  14. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  15. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Below is information ...

  16. Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a...

    Office of Scientific and Technical Information (OSTI)

    Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Citation Details In-Document Search Title: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a ...

  17. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    1. Natural Gas Processing Plants and Production Basins, 2009 Figure 1. Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration,...

  18. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State...

  19. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

  20. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Natural Gas Processing Plants, Production Basins, and Plays in the Rocky Mountain States and California, 2009 Figure 5. Natural Gas Processing Plants, Production Basins, and...

  1. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    6. Natural Gas Processing Plants, Production Basins, and Plays in the Midwestern and Eastern States, 2009 Figure 6. Natural Gas Processing Plants, Production Basins, and Plays in...

  2. Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Safeguards at Gas Centrifuge Enrichment Plants: Why is Iran a Threat? Citation Details In-Document Search Title: Safeguards at Gas Centrifuge Enrichment Plants: ...

  3. New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent New Mexico Natural Gas Plant ...

  4. West Virginia Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent West Virginia Natural Gas Plant Processing NGPL ...

  5. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ... 1: Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ...

  6. ,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Texas (with State Offshore) Natural Gas Plant Liquids, Expected ...

  7. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids,...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected ...

  8. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ...

  9. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ... Contents","Data 1: Alabama (with State Offshore) Natural Gas Plant Liquids, Expected ...

  10. ,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected ...

  11. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  12. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0...

  13. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  14. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  15. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  16. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ... ,"Data 1","Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  17. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  18. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  19. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants in Your Gas Tank: From Photosynthesis to Ethanol Grades: 5-8, 9-12 Topic: Biomass Authors: Chris Ederer, Eric Benson, Loren Lykins Owner: ACTS This educational material is...

  20. "NATURAL GAS PROCESSING PLANT SURVEY"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... connected to the plant. (Please check all that apply.)" "Name:" "Capacity (list amount and check units):",,,..." MMcfDay",,,,," BblsDay" "Pipeline ...

  1. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) New Mexico Natural Gas Plant Liquids, Proved Reserves ... Natural Gas Liquids Proved Reserves as of Dec. 31 New Mexico Natural Gas Liquids Proved ...

  2. Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2009 2010 2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 370,670 341,778 322,944 259,565 190,503 191,034 1967-2014 Total Liquids Extracted (Thousand...

  3. New Mexico Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use ...

  4. New York Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New York Natural Gas Consumption by End Use ...

  5. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1" "Date","U.S. Gas Plant Production of Natural Gas Liquids ...

  6. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  7. Safety aspects of gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely.

  8. Texas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294,879 284,013 270,227 1990's 268,181 269,411 292,990 297,516 306,376 325,785 329,287 332,077 320,922 314,598 2000's 315,906 314,858 317,446 320,786 322,242 322,999 329,918 326,812 324,671 313,384 2010's 312,277 314,041 314,811 314,036 317,217 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Alaska Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  12. Florida Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  14. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W.; Zoll, August H.

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  15. Natural Gas Plant Stocks of Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Plant Liquids contained in Total Natural Gas Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 8,557 9,809 10,825 10,777 11,943 15,029 1979-2014 Alabama 55 68 68 55 51 59 1979-2014 Alaska 299 288 288 288 288 241 1979-2014 Arkansas 2 2 3 3 4 5 1979-2014 California 129 114 94 99 102 112 1979-2014 Coastal Region Onshore 10 11 12

  16. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0...

  17. Texas--State Offshore Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 ...

  18. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade ...

  19. ,"Kansas Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production ...

  20. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  1. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  2. ,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production ...

  3. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production ...

  4. ,"Lower 48 States Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... ,"Data 1","Lower 48 States Natural Gas Plant Liquids, Expected Future Production ...

  5. ,"Utah Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production ...

  6. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production ...

  7. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production ...

  8. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  9. ,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production ...

  10. ,"Montana Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production ...

  11. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production ...

  12. ,"Michigan Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production ...

  13. ,"Miscellaneous States Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... 1","Miscellaneous States Natural Gas Plant Liquids, Expected Future Production ...

  14. Natural Gas Plant Liquids Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Plant Liquids contained in Total Natural Gas Proved Reserves (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 8,557 9,809 10,825 10,777 11,943 15,029 1979-2014 Alabama 55 68 68 55 51 59 1979-2014 Alaska 299 288 288 288 288 241 1979-2014 Arkansas 2 2 3 3 4 5 1979-2014 California 129 114 94 99 102 112 1979-2014 Coastal Region Onshore 10 11 12

  15. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf of Mexico States, 2009 Figure 4. Natural Gas Processing Plants, Production Basins, and Plays in the Gulf...

  16. Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Plant Liquids, Proved Reserves (Million Barrels) Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. New Mexico - West Natural Gas Plant Liquids, Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - West Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  18. ,"New Mexico--West Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Natural Gas Plant Liquids, ... 8:53:57 AM" "Back to Contents","Data 1: New Mexico--West Natural Gas Plant Liquids, ...

  19. ,"New Mexico--East Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Natural Gas Plant Liquids, ... 8:53:57 AM" "Back to Contents","Data 1: New Mexico--East Natural Gas Plant Liquids, ...

  20. ,"New Mexico Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids, Expected ... 8:54:02 AM" "Back to Contents","Data 1: New Mexico Natural Gas Plant Liquids, Expected ...

  1. New Mexico - East Natural Gas Plant Liquids, Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Plant Liquids, Proved Reserves (Million Barrels) New Mexico - East Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  2. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant ... AM" "Back to Contents","Data 1: Federal Offshore--Louisiana and Alabama Natural Gas Plant ...

  3. ,"U.S. Total Imports Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Total Imports Natural Gas Plant Processing",1,"Monthly"... "Back to Contents","Data 1: U.S. Total Imports Natural Gas Plant Processing" ...

  4. ,"Texas--RRC District 10 Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 10 Natural Gas Plant ... 7:17:18 AM" "Back to Contents","Data 1: Texas--RRC District 10 Natural Gas Plant ...

  5. ,"U.S. Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production ... to Contents","Data 1: U.S. Natural Gas Plant Liquids, Expected Future Production ...

  6. Alaska Onshore Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 18,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous

  7. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P.; Novaresi, Mark A.; Cornelius, Charles C.

    2008-10-14

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  8. Insurance recovery for manufactured gas plant liabilities

    SciTech Connect (OSTI)

    Koch, G.S.; Wise, K.T.; Hanser, P.

    1997-04-15

    This article addresses insurance and liability issues arising from former manufactured gas plant sites. Three issues are discussed in detail: (1) how to place a value on a potential insurance recovery or damage award, (2) how to maximize recovery through litigation or settlement, and (3) how to mediate coverage disputes to avoid litigation. The first issue, valuing potential recovery, is discussed in the most detail. An approach is outlined which includes organizing policy data, evaluating site facts relevant to coverage, estimating site costs, estimating coverage likelihoods, and assessing the expected value of litigation. Probability and cost estimate data is provided to aid in assessments.

  9. Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  10. Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  11. Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  12. Mississippi (with State Offshore) Natural Gas Plant Liquids,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  13. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  14. California--State Offshore Natural Gas Plant Liquids Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants California State Offshore Natural Gas Gross Withdrawals and Production...

  15. Federal Offshore California Natural Gas Plant Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Next Release Date: 10312014 Referring Pages: NGPL Production, Gaseous Equivalent at Processing Plants Federal Offshore California Natural Gas Gross Withdrawals and Production...

  16. Federal Offshore--California Natural Gas Plant Liquids, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  17. Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  18. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

  19. ,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  20. ,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  1. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  2. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  3. Alabama Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  4. Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  5. West Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  6. Washington Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  8. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  9. Table 17. Estimated natural gas plant liquids and dry natural gas content of tot

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated natural gas plant liquids and dry natural gas content of total natural gas proved reserves, 2014" "million barrels and billion cubic feet" ,"Total Wet Natural Gas Proved Reserves",,,,"Estimated content of proved reserves" " State and Subdivision",,2014,,,"Natural Gas Plant Liquids",,"Dry Natural Gas" ,,"billion cubic feet",,,"million barrels",,"billion cubic feet"

  10. The NuGas{sup TM} Concept - Combining a Nuclear Power Plant with a Gas-Fired Plant

    SciTech Connect (OSTI)

    Willson, Paul; Smith, Alistair

    2007-07-01

    Nuclear power plants produce low carbon emissions and stable, low cost electricity. Combined cycle gas-fired power plants are cheap and quick to build and have very flexible operation. If you could combine these two technologies, you could have an ideal base-load power plant. (authors)

  11. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data ...

  12. West Virginia Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in...

  15. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas...

  16. Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  17. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  18. New Mexico Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  19. New Mexico Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  20. Sensitivity and optimization analyses of the ``ACOGAS`` gas conditioning plant

    SciTech Connect (OSTI)

    Ochoa, D.; Cardenas, A.R.

    1995-11-01

    ACOGAS is a gas dew point control plant (water and hydrocarbons), operated by Lagoven S.A., a subsidiary of Petroleos de Venezuela S.A. (PDVSA). The ACOGAS plant located in Jusepin, Eastern Venezuela, produces stabilized condensate from an inlet gas stream which is a mixture of different gravity gases obtained by separation and compression from various oil production fields in the area. Sensitivity and optimization analyses of the plant and the stabilizer tower were carried out to evaluate the effects of: plant capacity reductions during shutdowns of some unspared systems of the plant; composition changes from original design basis; segregation of the lean gas currents from the inlet gas stream, reducing total flow but increasing GPM (C{sub 3}{sup +}) content; and incorporating condensate from the upstream compression processes in the inlet gas stream. It is shown that significant increases of stabilized condensate production could be obtained, while maintaining the quality for the condensate and lean residual gas within specifications, by various low cost modifications to the upstream processes and the stabilizer tower. Additionally, a change of the stabilizer tower valves could lower the minimum acceptable inlet flow, thereby increasing flexibility during shutdowns and low feed gas flows.

  1. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  2. Pennsylvania-Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) 51,023 5,826 2013-2014 Total Liquids Extracted (Thousand Barrels) 1,201 248 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 346 2014

  3. Florida-Florida Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2014 View History Natural Gas Processed (Million Cubic Feet) 2,915 2014-2014 Total Liquids Extracted (Thousand Barrels) 173 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 233 2014

  4. Illinois-Illinois Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2014 View History Natural Gas Processed (Million Cubic Feet) 294 2014-2014 Total Liquids Extracted (Thousand Barrels) 40 2014-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 47 2014

  5. Arkansas-Arkansas Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    13,472 13,037 12,709 12,271 12,715 13,517 1990-2016 Base Gas 11,664 11,664 11,652 11,652 12,091 12,542 1990-2016 Working Gas 1,808 1,374 1,057 619 625 974 1990-2016 Net Withdrawals -127 434 328 438 -444 -801 1990-2016 Injections 538 127 208 68 574 808 1990-2016 Withdrawals 411 562 537 506 130 7 1990-2016 Change in Working Gas from Same Period Previous Year Volume -461 -464 -214 -418 -321 -382 1990-2016 Percent -20.3 -25.3 -16.8 -40.3 -34.0 -28.2

    1,760 21,760 21,359 21,853 21,853 21,853

  6. Ohio-Ohio Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    505,621 458,539 426,379 408,777 413,828 435,383 1990-2016 Base Gas 340,158 340,158 340,158 340,158 340,158 340,158 1990-2016 Working Gas 165,463 118,381 86,221 68,618 73,670 95,224 1990-2016 Net Withdrawals 19,441 47,082 32,160 17,603 -5,040 -21,537 1990-2016 Injections 1,632 70 260 706 11,545 22,461 1990-2016 Withdrawals 21,073 47,151 32,421 18,309 6,505 924 1990-2016 Change in Working Gas from Same Period Previous Year Volume 32,993 28,880 34,265 35,826 26,079 16,213 1990-2016 Percent 24.9

  7. Tennessee-Tennessee Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,039 2,014 2,020 2,052 2,069 2,095 1997-2016 Base Gas 878 878 878 878 878 878 1997-2016 Working Gas 1,162 1,137 1,143 1,175 1,192 1,217 1997-2016 Net Withdrawals -54 25 -6 -32 -17 -27 1998-2016 Injections 55 3 25 37 19 27 1997-2016 Withdrawals 1 28 19 5 2 1997-2016 Change in Working Gas from Same Period Previous Year Volume 1,162 470 573 595 565 537 1997-2016 Percent 0 70.6 100.4 102.6 90.0 79.0 1997

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields

  8. Ohio-Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,211 32,760 344,073 2012-2014 Total Liquids Extracted (Thousand Barrels) 118 1,353 24,411 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 33,332

  9. Wyoming-Colorado Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 69,827 75,855 136,964 2012-2014 Total Liquids Extracted (Thousand Barrels) 5,481 5,903 12,130 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 16,070

  10. Wyoming-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  11. Wyoming-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 1,622,025 1,544,493 1,442,021 1,389,782 2011-2014 Total Liquids Extracted (Thousand Barrels) 65,256 47,096 42,803 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 60,873

  12. Alaska Onshore Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) 2,811,384 2,735,783 2013-2014 Total Liquids Extracted (Thousand Barrels) 17,670 15,724 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 18,43

  13. Natural Gas Plant Field Production: Natural Gas Liquids

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 PADD 1

  14. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  15. U.S. Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Gulf of Mexico Alabama Alaska Arkansas California Colorado Florida Illinois Indiana Kansas Kentucky Louisiana Michigan Mississippi Montana Nebraska New Mexico North Dakota Ohio Oklahoma Pennsylvania South Dakota Tennessee Texas Utah West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 2013 View History Natural Gas

  16. Colorado-Colorado Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    100,007 90,208 87,796 84,108 82,774 88,322 1990-2016 Base Gas 58,446 58,435 58,428 58,429 58,436 58,440 1990-2016 Working Gas 41,561 31,772 29,368 25,679 24,338 29,882 1990-2016 Net Withdrawals 9,420 9,800 2,412 3,688 1,334 -5,548 1990-2016 Injections 3,164 1,835 3,933 3,939 3,816 7,388 1990-2016 Withdrawals 12,584 11,635 6,345 7,627 5,149 1,841 1990-2016 Change in Working Gas from Same Period Previous Year Volume 3,415 -434 2,740 2,493 3,043 3,547 1990-2016 Percent 9.0 -1.3 10.3 10.8 14.3 13

  17. Kentucky-Kentucky Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10,369 190,694 181,000 178,850 194,795 203,102 1990-2016 Base Gas 112,965 112,965 112,964 112,961 112,959 112,957 1990-2016 Working Gas 97,404 77,729 68,036 65,889 81,836 90,145 1990-2016 Net Withdrawals 7,953 19,675 9,656 2,150 -16,117 -8,262 1990-2016 Injections 2,105 575 1,883 3,203 17,718 10,554 1990-2016 Withdrawals 10,058 20,250 11,540 5,354 1,601 2,292 1990-2016 Change in Working Gas from Same Period Previous Year Volume 17,237 11,014 21,500 21,915 22,918 21,339 1990-2016 Percent 21.5

  18. Montana-Montana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    14,338 13,891 14,044 13,908 13,881 13,864 1990-2016 Base Gas 7,845 7,845 7,845 7,845 7,845 7,845 1990-2016 Working Gas 6,493 6,045 6,198 6,063 6,035 6,019 1990-2016 Net Withdrawals 28 433 -168 119 1990-2016 Injections 91 786 726 0 1990-2016 Withdrawals 119 1,219 557 119 1990-2016 Change in Working Gas from Same Period Previous Year Volume 423 137 1,572 458 446 447 1990-2016 Percent 7.0 2.3 34.0 8.2 8.0 8.0

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845

  19. Pennsylvania-Pennsylvania Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    719,217 631,739 569,313 549,303 554,903 586,915 1990-2016 Base Gas 343,965 343,818 343,699 336,838 336,631 336,740 1990-2016 Working Gas 375,251 287,921 225,614 212,465 218,272 250,176 1990-2016 Net Withdrawals 11,466 87,473 62,426 20,011 -5,601 -32,012 1990-2016 Injections 17,010 5,148 8,852 24,088 30,454 44,376 1990-2016 Withdrawals 28,476 92,621 71,278 44,098 24,854 12,364 1990-2016 Change in Working Gas from Same Period Previous Year Volume 38,300 34,424 64,473 98,696 77,397 46,930 1990-2016

  20. Wyoming-Colorado Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    97,415 94,381 91,933 92,069 94,539 98,310 1990-2016 Base Gas 68,174 68,131 68,062 68,037 68,084 68,664 1990-2016 Working Gas 29,240 26,249 23,871 24,033 26,455 29,646 1990-2016 Net Withdrawals 1,646 3,031 2,448 -139 -2,386 -3,858 1990-2016 Injections 227 1,988 3,024 2,558 2,851 4,367 1990-2016 Withdrawals 1,873 5,019 5,472 2,419 465 509 1990-2016 Change in Working Gas from Same Period Previous Year Volume 872 -218 -200 1,161 3,916 5,960 1990-2016 Percent 3.1 -0.8 -0.8 5.1 17.4 25.2

    111,120

  1. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 35 30 19 31 21 13 1990's 0 14 9 0 3 2 3 7 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel

  2. California--Coastal Region Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 22 1980's 23 14 16 17 14 15 15 13 13 11 1990's 12 11 9 10 9 7 9 9 9 31 2000's 27 16 17 15 19 16 22 14 10 10 2010's 11 12 18 13 12

  3. Texas Offshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    7 (Million Cubic Feet)

    Offshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Offshore Natural Gas Plant Processing

  4. Utah Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 54 116 2010's 132 196 181 169 206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids Proved

  5. Wyoming Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 822 887 1,010 2010's 1,001 1,122 1,064 894 881 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Plant Liquids

  6. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption

  7. Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 506 516 501 488 382 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Tennessee Natural Gas Plant Processing NGPL

  8. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect (OSTI)

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  9. Michigan-Michigan Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,216 11,365 15,193 11,630 8,521 21,248 1982-2014 Import Price 4.50 4.73 4.38 2.88 4.02 8.34 1989-2014 Export Volume 673,318 721,075 876,267 872,620 684,510 554,675 1982-2014 Export Price 4.58 4.85 4.44 3.12 4.07 6.26 1989

    972,600 864,273 783,620 753,579 767,453 832,933 1990-2016 Base Gas 385,038 385,032 385,032 385,032 385,032 385,032 1990-2016 Working Gas 587,562 479,240 398,588 368,547 382,421 447,901 1990-2016 Net Withdrawals 30,889 108,415 80,654 30,025 -13,874 -65,480 1990-2016

  10. Mississippi-Mississippi Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    482,749 451,405 548,686 406,327 243,805 328,610 1982-2014 Import Price 4.21 4.49 4.15 2.87 3.87 5.60 1989-2014 Export Volume 0 0 3,975 11,768 16,209 5,474 1999-2014 Export Price -- -- 3.90 3.46 3.83 11.05 199

    6,973 6,658 6,531 6,016 6,009 6,085 1990-2016 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2016 Working Gas 2,125 1,810 1,683 1,168 1,161 1,237 1990-2016 Net Withdrawals 10 315 127 515 7 -76 1990-2016 Injections 76 1990-2016 Withdrawals 10 315 127 515 7 1990-2016 Change in Working

  11. Utah-Utah Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's NA NA NA NA NA NA NA 1980's 155 176 145 132 110 126 113 101 101 107 1990's 123 113 118 119 111 110 109 103 102 98 2000's 90 86 68 68 60 64 66 63 61 65 2010's 65 60 61 55 60 60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016

    Consumption of Heat Content of Natural Gas (BTU per Cubic

  12. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  13. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  14. ,"Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 1 Natural Gas Plant Liquids, ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 1 Natural Gas Plant Liquids, ...

  15. ,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 4 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 4 Onshore Natural Gas Plant ...

  16. ,"Texas--RRC District 7B Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 7B Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 7B Natural Gas Plant ...

  17. ,"Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 5 Natural Gas Plant Liquids, ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 5 Natural Gas Plant Liquids, ...

  18. ,"Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 6 Natural Gas Plant Liquids, ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 6 Natural Gas Plant Liquids, ...

  19. ,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 3 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 3 Onshore Natural Gas Plant ...

  20. ,"Texas--RRC District 8A Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 8A Natural Gas Plant ... 7:17:18 AM" "Back to Contents","Data 1: Texas--RRC District 8A Natural Gas Plant ...

  1. ,"Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 8 Natural Gas Plant Liquids, ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 8 Natural Gas Plant Liquids, ...

  2. ,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 2 Onshore Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 2 Onshore Natural Gas Plant ...

  3. ,"Texas--RRC District 7C Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 7C Natural Gas Plant ... 7:17:17 AM" "Back to Contents","Data 1: Texas--RRC District 7C Natural Gas Plant ...

  4. ,"Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--RRC District 9 Natural Gas Plant Liquids, ... 7:17:18 AM" "Back to Contents","Data 1: Texas--RRC District 9 Natural Gas Plant Liquids, ...

  5. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel

  6. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,170 794 598 1970's 555 599 539 474 460 313 259 226 168 139 1980's 126 153 133 137 132 115 77 81 59 29 1990's 0 13 3 8 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. California (with State Offshore) Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 107 1980's 109 73 146 139 128 124 118 109 1990's 101 87 94 98 86 88 89 92 71 97 2000's 100 75 95 101 121 135 130 126 113 129 2010's 114 94 99 102 112 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. California--State Offshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 1 2 6 5 2 2 2 3 1990's 2 1 1 1 1 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. Federal Offshore--California Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 10 12 16 19 1990's 13 11 15 20 17 21 19 10 8 0 2000's 1 1 0 0 0 0 0 0 1 1 2010's 1 1 1 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 6 5 12 17 36 34 36 29 26 21 1990's 21 26 34 34 25 27 27 27 21 24 2000's 27 25 28 17 13 9 9 4 7 0 2010's 0 0 35 41 30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  11. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 74 19 12 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  12. Alabama Offshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  13. Alabama Onshore-Alabama Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production,

  14. California Offshore-California Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (Million Cubic Feet) Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL

  15. California Onshore-California Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (Million Cubic Feet) Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12,755 13,192 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages:

  16. Louisiana Offshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL

  17. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet)

    Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL

  18. California Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    47,281 46,755 41,742 32,313 32,924 34,206 1977 California (Million Cubic Feet)

    Plant Liquids Production Extracted in California (Million Cubic Feet) California Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next

  19. Louisiana Offshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    7 Louisiana (Million Cubic Feet)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,100 3,585 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  20. Louisiana--North Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 28 33 27 39 1990's 37 41 47 21 19 16 36 12 13 23 2000's 28 41 37 35 27 31 22 25 55 43 2010's 24 44 20 16 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Miscellaneous States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous

  5. Testing in flue gas cleaning systems of waste incineration plants

    SciTech Connect (OSTI)

    Wallen, B.; Bergquist, A.; Nordstroem, J.

    1995-07-01

    Test racks containing creviced, welded coupons of stainless steels (SS), nickel-based alloys, and titanium were exposed in gas cleaning systems in municipal waste incineration plants. The environments in the cleaning systems were very corrosive. The best corrosion resistance was shown by the superaustenitic SS UNS S32654 and the nickel-based alloys UNS N10276 (C-276) and N06022 (C-22). Titanium performed poorly and was attacked by excessive uniform corrosion.

  6. Gas Reactor Plant Analyzer and Simulator for Hydrogen Production

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    This software is used to study and analyze various configurations of plant equipment for gas cooled nuclear reactor applications. The user of this software would likely be interested in optimizing the economic, safety, and operating performance of this type of reactor. The code provides the capability for the user through his input to configure networks of nuclear reactor components. The components available include turbine, compressor, heat exchanger, reactor core, coolers, bypass valves, and control systems.

  7. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 469 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Utah-Wyoming

  8. Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Kansas (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Kansas

  9. Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Utah (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 34 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Colorado-Utah

  10. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  11. Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Texas

  12. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  13. Trash-fired boiler cuts plant's gas use 30%

    SciTech Connect (OSTI)

    Watson, F

    1983-06-27

    A Minneapolis bottling plant will burn trash in a 450-horsepower boiler/incinerator to reduce natural gas consumption 30% and eliminate the costs of hauling and disposing of trash. Combined with a CA1500 heat-recovery system installed in 1982, the project will have a two-year payback. The system is clean enough that even old tires can be burned and still meet air pollution regulations. (DCK)

  14. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  15. Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 50 63 71 69 96 88 87 1990's 14 14 16 20 36 32 37 39 40 42 2000's 43 40 37 17 18 12 8 5 0 0 2010's 0 0 127 202 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  16. Ohio Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 20 23 29 41 67 68 50 44 46 1990's 58 49 72 95 104 94 85 83 78 78 2000's 78 86 72 68 58 29 5 9 0 0 2010's 0 0 155 2,116 33,332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  17. Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 158 171 148 171 205 191 218 1990's 156 159 341 235 116 181 217 253 222 274 2000's 208 272 251 343 395 483 549 495 575 599 2010's 881 963 2,529 9,200 11,602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  18. Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Extracted in Ohio (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 346 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania-Ohio

  19. ,"Natural Gas Plant Liquids Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Liquids Proved Reserves",49,"Annual",2014,"06/30/1979" ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. Arkansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 15 15 12 9 10 9 15 15 11 8 1990's 7 3 2 2 3 3 2 3 3 3 2000's 3 3 3 2 2 2 2 2 1 2 2010's 2 3 3 4 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  1. Colorado Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 170 1980's 183 195 174 173 142 155 127 142 162 191 1990's 152 181 193 190 210 243 254 244 235 277 2000's 288 298 329 325 362 386 382 452 612 722 2010's 879 925 705 762 813 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  2. Florida Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 21 1980's 27 17 11 17 17 14 9 16 10 1990's 8 7 8 9 18 17 22 17 18 16 2000's 11 12 14 17 12 7 3 2 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  3. Kansas Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 400 1980's 387 407 300 441 422 370 437 459 342 327 1990's 311 426 442 378 396 367 336 263 331 355 2000's 303 300 261 245 267 218 204 194 175 162 2010's 195 192 174 138 186 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  6. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  7. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  8. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  9. Pennsylvania Natural Gas Plant Liquids Production Extracted in West

    Gasoline and Diesel Fuel Update (EIA)

    Virginia (Million Cubic Feet) West Virginia (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 14,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  10. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  11. Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 790,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Texas

  12. Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Wyoming (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Wyoming-Wyoming

  13. Louisiana Onshore-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 32,212 33,735 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 7/29/2016 Next Release Date: 8/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  14. Alaska (with Total Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 11 10 9 8 0 382 381 418 401 380 1990's 340 360 347 321 301 306 337 631 320 299 2000's 277 405 405 387 369 352 338 325 312 299 2010's 288 288 288 288 241 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. California (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 107 1980's 109 73 146 139 128 124 118 109 1990's 101 87 94 98 86 88 89 92 71 97 2000's 100 75 95 101 121 135 130 126 113 129 2010's 114 94 99 102 112 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Colorado Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 11 10 9 8 9 8 8 9 10 1990's 10 12 13 14 15 18 17 21 18 19 2000's 21 22 23 24 26 26 26 27 38 48 2010's 58 63 57 52 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  17. Kansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 29 1980's 26 24 14 17 20 20 19 19 18 18 1990's 17 26 27 27 29 29 31 24 28 30 2000's 28 26 25 22 22 19 18 18 18 16 2010's 16 16 15 11 12 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 287 301 294 294 1990's 324 321 317 260 281 430 381 261 234 281 2000's 241 204 186 183 167 191 176 191 201 231 2010's 216 192 189 212 243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  20. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  1. Lower 48 Federal Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 363 382 350 331 337 1990's 295 329 295 309 309 239 245 389 370 427 2000's 515 486 511 364 423 416 399 369 321 302 2010's 341 355 405 335 399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  2. Lower 48 States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 579 1980's 572 580 564 568 597 580 566 569 572 549 1990's 556 577 599 608 608 616 655 655 631 649 2000's 688 655 657 593 627 597 615 637 654 701 2010's 734 773 854 920 1,107 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Michigan Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 12 12 11 10 10 8 9 8 8 8 1990's 6 6 6 5 5 5 5 4 4 4 2000's 4 4 3 3 3 3 2 3 3 2 2010's 3 2 2 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  4. Miscellaneous States Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 21 2 1 2 2 3 3 1990's 2 3 6 6 7 7 7 9 8 8 2000's 7 6 8 8 8 9 11 14 14 0 2010's 9 10 12 32 350 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  5. Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 8 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 1 1 1 1 0 2010's 0 0 0 1 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  6. Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 5 6 6 5 4 3 3 3 3 1990's 3 3 3 3 3 3 2 2 3 3 2000's 2 2 2 2 1 2 2 3 3 4 2010's 4 6 4 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 280 1980's 294 363 381 483 577 681 700 701 932 704 1990's 641 580 497 458 440 503 639 680 600 531 2000's 858 782 806 756 765 710 686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  10. West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 6 6 5 5 6 7 6 6 7 7 1990's 7 7 7 7 6 4 4 4 4 4 2000's 6 6 6 4 4 4 5 5 5 5 2010's 5 5 8 10 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  11. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of

  12. Illinois Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Liquids Production Extracted in Illinois (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production Extracted in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent

  13. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  14. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  15. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  16. Plants in Your Gas Tank: From Photosynthesis to Ethanol

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  17. Michigan Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 102 1980's 102 93 91 99 77 62 77 90 82 79 1990's 66 54 52 44 43 38 48 45 43 42 2000's 32 41 42 44 44 36 36 50 58 43 2010's 48 38 26 27 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 982 966 7,077 4,709 6,270 6,646 7,646 1990's 637 188 268 352 467 468 451 508 405 405 2000's 441 653 890 504 490 433 509 404 470 489 2010's 529 423 622 797 871 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  20. Florida Natural Gas Plant Liquids Production Extracted in Florida (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Liquids Production Extracted in Florida (Million Cubic Feet) Florida Natural Gas Plant Liquids Production Extracted in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Florida-Florida

  1. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,125 1980's 2,081 2,285 2,393 2,650 2,660 2,610 2,671 2,509 2,339 2,270 1990's 2,305 2,237 2,162 2,211 2,151 2,269 2,337 2,376 2,262 2,257 2000's 2,479 2,318 2,368 2,192 2,466 2,723 2,913 3,158 3,148 3,432 2010's 3,983

  4. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 34,179 30,527 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908

  6. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. Description of the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Arthur, W.B.

    1980-12-16

    The Portsmouth Gas Centrifuge Enrichment Plant (GCEP) will be located at the site of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. The purpose of the facility is to provide enriching services for the production of low assay enriched uranium for civilian nuclear power reactors. The construction and operation of the GCEP is administered by the US Department of Energy. The facility will be operated under contract from the US Government. Control of the GCEP rests solely with the US Government, which holds and controls access to the technology. Construction of GCEP is expected to be completed in the mid-1990's. Many facility design and operating procedures are subject to change. Nonetheless, the design described in this report does reflect current thinking. Descriptions of the general facility and major buildings such as the process buildings, feed and withdrawal building, cylinder storage and transfer, recycle/assembly building, and a summary of the centrifuge uranium enriching process are provided in this report.

  8. Illinois Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,725 13,657 13,425 1970's 14,165 13,520 13,346 13,534 13,821 12,785 12,477 13,310 13,173 13,484 1980's 13,340 13,264 11,741 12,843 11,687 11,436 9,259 6,662 61 81 1990's 81 100 100 86 80 77 64 200 70 55 2000's 42 35 47 48 49 46 47 48 42 31 2010's 345 1,043 0 0 47 - = No Data Reported; -- = Not

  9. Lower 48 States Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,191 1980's 5,187 5,478 5,611 6,280 6,121 6,109 6,348 6,327 6,448 6,000 1990's 5,944 5,860 5,878 5,709 5,722 5,896 6,179 6,001 5,868 6,112 2000's 6,596 6,190 6,243 5,857 6,338 6,551 6,795 7,323 7,530 8,258 2010's 9,521 10,537 10,489 11,655

  10. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 100,497 93,074 82,996 1970's 92,119 75,241 68,738 72,574 71,686 84,843 78,967 79,425 69,624 65,787 1980's 62,824 53,655 22,275 22,231 25,213 25,274 22,973 26,846 22,778 19,586 1990's 22,712 104,251 92,228 87,306 69,639 66,447 67,817 74,182 72,881 - = No Data Reported; -- = Not

  11. Florida Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Florida Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,010 1,723 1970's 1,829 180 2,144 2,886 3,369 9,170 13,865 13,534 17,436 15,954 1980's 15,740 12,478 10,453 8,269 6,631 5,471 4,802 3,884 3,584 3,551 1990's 2,831 1,893 2,563 2,557 1,789 1,630 1,649 1,563 1,523 1,557 2000's 1,354 1,159 855 771 618 495 485 132 22 0 2010's 0 0 0 0 233 - = No Data

  12. Intelligent electrical outlet for collective load control

    DOE Patents [OSTI]

    Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.; Goldsmith, Steven Y.

    2015-10-27

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and a supply of generated electric power in the microgrid at a given time.

  13. Intelligent electrical outlet for collective load control

    DOE Patents [OSTI]

    Lentine, Anthony L; Ford, Justin R; Spires, Shannon V; Goldsmith, Steven Y

    2015-11-05

    Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and a supply of generated electric power in the microgrid at a given time.

  14. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Motor Gasoline Sales Through Retail Outlets Prices ",60,"Annual",2014,"6301984" ,"Release...

  15. 850/sup 0/C VHTR plant technical description

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report describes the conceptual design of an 842-MW(t) process heat very high temperature reactor (VHTR) plant having a core outlet temperature of 850/sup 0/C (1562/sup 0/F). The reactor is a variation of the high-temperature gas-cooled reactor (HTGR) power plant concept. The report includes a description of the nuclear heat source (NHS) and of the balance of reactor plant (BORP) requirements. The design of the associated chemical process plant is not covered in this report. The reactor design is similar to a previously reported VHTR design having a 950/sup 0/C (1742/sup 0/F) core outlet temperature.

  16. Experimental Smart Outlet Brings Flexibility, Resiliency to Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Architecture Smart Outlet Brings Flexibility, Resiliency to Grid Architecture - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  17. CO₂ Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Toy, Lora; Kataria, Atish; Gupta, Raghubir

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO₂ permeance

  18. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  19. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,952 55,724 57,270 1970's 58,926 55,914 56,376 61,647 62,860 60,008 52,087 55,238 61,868 71,559 1980's 74,434 80,401 85,934 90,772 98,307 99,933 100,305 99,170 103,302 94,889 1990's 96,698 101,851 104,609 101,962 101,564 94,930 100,379 96,830 92,785 93,308 2000's 96,787 88,885 81,287 74,745 84,355 87,404

  1. Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 12,003 20,936 39,989 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  2. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 25,430 25,873 27,297 25,616 28,804 29,357 29,665 1990's 22,499 30,800 26,312 36,294 28,988 28,510 30,444 26,205 20,921 19,321 2000's 16,664 10,928 11,723 9,706 6,460 8,100 7,541 5,439 2,331 2,126 2010's 2,102 2,246 2,268 2,189 1,983 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  3. Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,995 4,136 4,142 3,831 4,365 3,896 4,141 1990's 3,212 3,343 3,096 3,282 3,367 3,337 3,011 2,674 3,073 2,912 2000's 2,455 2,587 2,445 2,798 2,419 2,318 2,363 2,076 1,982 1,686 2010's 1,684 1,303 1,174 1,071 1,152 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 855 830 641 591 385 298 280 1990's 621 708 573 538 463 399 382 372 363 638 2000's 786 722 758 251 895 1,018 1,138 1,196 1,140 1,150 2010's 1,155 1,042 1,111 1,103 1,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 486 466 495 - = No Data Reported; -- =

  6. Montana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Montana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 744 744 705 1970's 3,032 750 839 918 857 831 761 630 503 776 1980's 890 818 940 1,049 1,069 1,189 1,086 1,058 1,072 1,095 1990's 1,091 1,055 907 741 631 597 576 409 410 435 2000's 272 470 575 615 634 1,149 1,422 1,576 1,622 1,853 2010's 1,367 1,252 1,491 1,645 1,670 - = No Data Reported; -- = Not Applicable;

  7. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  8. Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 0 0 0 0 0 0 0 0 0 2000's 0 1 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  9. Florida Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 10 5 4 3 2 2 1 1 1 1990's 1 1 1 1 1 1 1 1 1 1 2000's 1 1 1 1 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  10. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Lower 48 States Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Lower 48 States Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,191 1980's 5,187 5,478 5,611 6,280 6,121 6,109 6,348 6,327 6,448 6,000 1990's 5,944 5,860 5,878 5,709 5,722 5,896 6,179 6,001 5,868 6,112 2000's 6,596 6,190 6,243 5,857 6,338 6,551 6,795 7,323 7,530 8,258 2010's 9,521 10,537 10,489 11,655 14,788 - = No Data

  12. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 1 1 1 1 0 0 0 0 0 2000's 0 0 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  13. Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,125 1980's 2,081 2,285 2,393 2,650 2,660 2,610 2,671 2,509 2,339 2,270 1990's 2,305 2,237 2,162 2,211 2,151 2,269 2,337 2,376 2,262 2,257 2000's 2,479 2,318 2,368 2,192 2,466 2,723 2,913 3,158 3,148 3,432 2010's 3,983 4,541 4,727 5,653

  14. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 27,935 25,782 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 36,638 36,707 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  16. Alaska Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 188 1970's 264 99 749 986 1,097 1,244 1,229 1,321 954 701 1980's 483 529 468 440 2,849 6,703 4,206 19,590 23,240 19,932 1990's 21,476 28,440 32,004 32,257 30,945 35,052 38,453 41,535 40,120 38,412 2000's 39,324 36,149 34,706 33,316 33,044 27,956 24,638 26,332 24,337 22,925 2010's 20,835 21,554 21,470 20,679

  17. Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 486 582 - = No Data Reported; -- = Not Applicable; NA =

  18. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,662 7,715 7,699 7,105 8,780 8,408 8,521 1990's 7,958 7,809 8,008 7,096 6,388 4,287 4,520 4,796 4,511 4,212 2000's 3,572 2,893 2,781 2,568 2,760 2,875 2,475 2,540 2,318 2,611 2010's 2,370 2,253 2,417 2,834 2,361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  19. Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,057 5,060 5,243 4,406 5,715 5,541 6,591 1990's 8,455 9,081 12,233 11,863 12,482 13,560 14,894 12,435 12,200 12,863 2000's 13,064 13,871 15,904 15,927 17,093 15,641 16,347 16,218 18,613 21,288 2010's 25,090 28,265 29,383 25,806 30,873 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  20. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,852 7,425 6,782 5,878 7,250 7,034 8,734 1990's 1,466 1,338 1,315 1,241 167 145 125 113 129 147 2000's 157 127 124 112 102 286 796 671 83 0 2010's 0 0 0 0 272 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  1. Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 123,847 122,272 113,937 113,093 126,712 118,683 128,759 1990's 166,120 172,035 170,734 165,507 158,826 154,721 153,039 157,013 153,966 144,544 2000's 144,971 128,836 133,427 123,383 127,356 133,306 140,414 139,262 142,476 152,948 2010's 151,818 155,358 171,359 178,682 184,723 - = No Data Reported; -- = Not

  2. Texas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Texas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860

  3. Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption After Energy Assessment | Department of Energy Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment Terra Nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment This case study describes how Terra Nitrogen Company saved 497,000 MMBtu and $3.5 million yearly after upgrading the steam system in its ammonia plant in Verdigris, Oklahoma. Terra Nitrogen Company, L.P.: Ammonia Plant

  4. Assessment and remediation at former manufactured gas plants

    SciTech Connect (OSTI)

    Mehan, D.G.

    1995-12-01

    Over 1,000 former Manufactured Gas Plants (MGP) have been identified in the United States. Gal Plants were used to produce gas for lighting and heating from coal and oil from the mid-1800s until the 1950s. Former MGP sites are typically impacted by a variety of compounds that do not collectively lend themselves to {open_quotes}standard{close_quotes} assessment and remedial solutions. These compounds include the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylene, a variety of semi-volatile organic compound, and inorganic compounds (iron and cyanide). The assessment of former MGP sites is complicated because many former sites are now located in developed and industrialized areas. MGP wastes and by-products were typically disposed on-site. Many modern buildings are now located over former MGP sites. Standard assessment tools such as augering and drilling tend to encounter former structures, making their use difficult and ineffective. Assessment by excavation and geophysical methods allows the acquisition of only shallow data. The remediation of impacted soils and ground water at former MGP sites poses significant challenges due to the differing characteristics of the typical MGP compounds. For example, soil vapor extraction and ground water treatment may decrease VOC concentrations, yet be ineffective on the inorganic and PAH compounds. Because of the variety of typical MGP associated wastes, risk assessment is a vital tool in assessing and selecting the appropriate remedial strategies. Several states have aggressively adopted clean-up programs that rely on risk assessment to determine the appropriate remedial strategy at former MGP sites. At numerous sites, no further action is employed because of the VOCs have attenuated over time, the PAH and inorganic compounds are relatively immobile, ground water contamination plumes are limited, and risk assessment indicates acceptable risks.

  5. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  6. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOE Patents [OSTI]

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  7. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  8. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  9. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  10. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  11. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009 Figure 2. Processing Plant Capacity and Percent of Total U.S. Capacity, 2009...

  12. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Whitaker, Jr., James; Garner, James R; Whitaker, Michael; Lockwood, Dunbar; Gilligan, Kimberly V; Younkin, James R; Hooper, David A; Henkel, James J; Krichinsky, Alan M

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  13. Kansas Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,480 29,042 35,813 1970's 38,843 39,741 40,738 43,909 43,416 42,763 40,975 41,971 45,582 45,640 1980's 39,130 36,653 23,023 28,561 29,707 28,964 27,050 28,397 29,800 30,273 1990's 29,642 41,848 42,733 44,014 46,936 47,442 47,996 38,224 45,801 48,107 2000's 44,200 38,517 39,196 34,724 34,573 31,521 30,726

  14. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684

  15. Michigan Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's

  16. Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,993 11,390 12,540 1970's 12,863 12,802 16,228 16,093 14,072 13,224 14,669 15,625 14,363 14,056 1980's 13,582 15,160 15,482 19,668 29,169 31,871 25,819 24,827 29,434 29,247 1990's 28,591 31,470 31,378 29,118 33,486 36,058 48,254 49,333 44,358 50,639 2000's 65,085 65,740 74,387 69,817 70,831 67,563 67,435

  17. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C.

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  18. California Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) California Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056

  19. Colorado Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180

  20. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  1. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  2. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12...

  3. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinhoe, Martyn T; Ianakiev, Kiril; Marlow, Johnna B

    2010-04-05

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  4. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    3. Btu Content at Plant Inlets for Processing Plants in the United States, 2009 Minimum Annual Btu Content Maximum Annual Btu Content Average Annual Btu Content Alaska 850 1071 985...

  5. Synthesis Gas Demonstration Plant, Baskett, Kentucky: environmental report

    SciTech Connect (OSTI)

    1980-01-01

    A summary of the potential environmental impacts of the construction and operation of the proposed plant is presented. The construction and operation of the plant are discussed in detail.

  6. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W.

    1997-12-31

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  7. New Measures to Safeguard Gas Centrifuge Enrichment Plants (Conference...

    Office of Scientific and Technical Information (OSTI)

    use equipment for process monitoring of load cells at feed and withdrawal (FW) stations. ... CAPACITY; GAS CENTRIFUGES; IAEA; MONITORING; ORNL; SAFEGUARDS; SENSORS; ...

  8. Ohio-West Virginia Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 View History Natural Gas Processed (Million Cubic Feet) 271 2013-2013 Total Liquids Extracted (Thousand Barrels) 14 2013-2013

  9. Ohio-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2013 View History Natural Gas Processed (Million Cubic Feet) 271 2013-2013 Total Liquids Extracted (Thousand Barrels) 14 2013-2013

  10. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded...

  11. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu)...

  12. U.S. Natural Gas Plant Liquids, Expected Future Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. New Mexico--West Natural Gas Plant Liquids, Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  14. New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  15. New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  16. New Mexico--East Natural Gas Plant Liquids, Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  17. Control Scheme Modifications Increase Efficiency of Steam Generation System at Exxon Mobil Gas Plant

    SciTech Connect (OSTI)

    2002-01-01

    This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

  18. File:BOEMRE oil.gas.plant.platform.sta.brbra.map.4.2010.pdf ...

    Open Energy Info (EERE)

    oil.gas.plant.platform.sta.brbra.map.4.2010.pdf Jump to: navigation, search File File history File usage Federal Leases in Pacific Ocean, near Santa Barbara Channel Size of this...

  19. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  20. Natural Gas Processing Plants in the United States: 2010 Update...

    Gasoline and Diesel Fuel Update (EIA)

    National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average...

  1. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  2. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (No intransit Receipts) (Million Cubic Feet) Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 5,774 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Imports (Summary) Mississippi U.S. Natural Gas

  3. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  4. Texas Onshore-New Mexico Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 View History Natural Gas Processed (Million Cubic Feet) 29,056 869 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,262 90 2012-2013

  5. South Dakota-North Dakota Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 113 86 71 2012-2014 Total Liquids Extracted (Thousand Barrels) 23 19 16 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 21 2014

  6. Texas Onshore-New Mexico Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 View History Natural Gas Processed (Million Cubic Feet) 29,056 869 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,262 90 2012-2013

  7. California Offshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Natural Gas Processed (Million Cubic Feet) NA 381 2013-2014 Total Liquids Extracted (Thousand Barrels) NA 8 2013-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 9 2014

  8. DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants DOE, RTI to Design and Build Gas Cleanup System for IGCC Power Plants July 13, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) announces a collaborative project with Research Triangle Institute (RTI) International to design, build, and test a warm gas cleanup system to remove multiple contaminants from coal-derived syngas. The 50-MWe system will include technologies to remove

  9. Expander-gas processing plant converted to boost C3 recovery at Canada's Judy Creek

    SciTech Connect (OSTI)

    Khan, S.A.

    1985-06-03

    This article discusses Esso Resources Canada Ltd's conversion of its Judy Creek cryogenic expander gas plant in Alberta to a process which can boost recovery of propane and heavier hydrocarbons. After conversion, propane recovery at the plant increased from 72% to 95%. At constant plant feed rates, 100% propane recovery has been recorded. The total investment for the conversion, less than $750,000, was paid out in under 6 months.

  10. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  11. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  12. Natural Gas Processing Plants in the United States: 2010 Update...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average...

  13. Integration of oxygen plants and gas turbines in IGCC facilities

    SciTech Connect (OSTI)

    Smith, A.R.; Sorensen, J.C.; Woodward, D.W.

    1996-10-01

    The commercialization of Integrated Gasification Combined-Cycle (IGCC) power has been aided by concepts involving the integration of a cryogenic air separation unit (ASU) with the gas turbine combined-cycle module. It is known and now widely accepted that an ASU designed for elevated pressure service and optimally integrated with the gas turbine can increase overall IGCC power output, increase overall efficiency, and decrease the net cost of power generation compared to non-integrated facilities employing low pressure ASU`s. Depending upon the specific gas turbine, gasification technology, NO{sub x} emission specification, and other site specific factors, various degrees of compressed air and nitrogen integration are optimal. Air Products has supplied ASU`s with no integration (Destec/Plaquemine IGCC), nitrogen-only integration (Tampa Electric/Polk County IGCC), and full air and nitrogen integration (Demkolec/Buggenum IGCC). Continuing advancements in both air separation and gas turbine technologies offer new integration opportunities to further improve performance and reduce costs. This paper reviews basic integration principles, highlights the integration scheme used at Polk County, and describes some advanced concepts based on emerging gas turbines. Operability issues associated with integration will be reviewed and control measures described for the safe, efficient, and reliable operation of these facilities.

  14. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  15. California - Coastal Region Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) California (with State off) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 855 777 756 44 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 California Shale Gas Proved Reserves, Reserves

  16. California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 305 284 277 - = No Data Reported;

  17. California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 98 90 84 - = No Data

  18. California Federal Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756

  19. California State Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 65 75 76 - = No Data

  20. Texas Onshore-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 57,971 63,053 144,573 112,694 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,727 5,881 5,145 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 7,355 2014

  1. Pennsylvania-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 10,273 236,886 101,613 2012-2014 Total Liquids Extracted (Thousand Barrels) 195 7,150 9,890 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 14,335

  2. U.S. Natural Gas Plant Field Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Liquids 757,019 808,865 881,306 951,057 1,100,298 1,194,630 1981-2015 Pentanes Plus 101,155 106,284 116,002 126,809 143,831 156,568 1981-2015 Liquefied Petroleum Gases ...

  3. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  4. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  5. California Onshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 180,648 169,203 164,401 162,413 2011-2014 Total Liquids Extracted (Thousand Barrels) 9,923 10,641 9,597 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 12,755 13,192

  6. Louisiana Offshore-Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 151,301 99,910 94,790 2012-2014 Total Liquids Extracted (Thousand Barrels) 3,378 2,694 2,454 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,100 3,585 2012

  7. Texas Onshore-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 57,971 63,053 144,573 112,694 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,727 5,881 5,145...

  8. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect (OSTI)

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  9. Automatic Identification and Truncation of Boundary Outlets in...

    Office of Scientific and Technical Information (OSTI)

    ...MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; ALGORITHMS; IMAGE PROCESSING; LUNGS; MESH GENERATION; AUTOMATION; ARTERIES; CALCULATION METHODS medical imaging; outlets; ...

  10. Texas Onshore Natural Gas Plant Liquids Production Extracted in Kansas

    Gasoline and Diesel Fuel Update (EIA)

    7,615,836 7,565,123 7,910,898 8,127,004 8,285,436 8,652,111 1992-2014 From Gas Wells 4,823,557 4,413,767 3,771,162 3,603,948 3,101,759 2,723,229 1992-2014 From Oil Wells 773,829 848,406 1,073,301 860,123 1,166,425 1,519,902 1992-2014 From Shale Gas Wells 3,662,933 4,408,980 2012-2014 Repressuring 552,907 558,854 502,020 437,367 423,413 452,150 1992-2014 Vented and Flared 41,234 39,569 35,248 47,530 76,113 81,755 1992-2014 Nonhydrocarbon Gases Removed 240,533 279,981 284,557 183,118 166,328

  11. Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,869 1980's 3,160 3,358 2,988 3,008 2,546 2,650 2,567 2,350 2,442 2,705 1990's 2,640 2,435 2,363 2,376 2,599 2,863 3,189 3,156 2,943 3,127 2000's 3,344 3,927 4,283 5,137 5,841 6,768 6,795 6,437 7,966 17,273 2010's 26,136

  12. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  13. California Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    258,983 273,136 237,388 214,509 219,386 218,512 1992-2014 From Gas Wells 80,500 71,189 62,083 76,704 73,493 61,265 1992-2014 From Oil Wells 76,456 106,442 80,957 49,951 51,625 49,734 1992-2014 From Shale Gas Wells 55,344 107,513 2012-2014 Repressuring 14,566 15,767 13,702 NA NA NA 1992-2014 Vented and Flared 2,501 2,790 2,424 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 2,879 3,019 2,624 NA NA NA 1992-2014 Marketed Production 239,037 251,559 218,638 214,509 219,386 218,512 1992-2014 Dry

  14. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  15. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  16. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  17. Application of microturbines to control emissions from associated gas

    SciTech Connect (OSTI)

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  18. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  19. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  20. U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Sales (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 906 448 458 403 442 440 931 670 282 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Reserves Sales

  1. Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 168 0 0 0 0 0 0 1990's 0 53 30 21 16 1 11 9 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  2. California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 1980's 11 6 6 6 5 6 7 7 7 4 1990's 5 4 5 6 5 4 3 4 5 7 2000's 10 8 10 8 8 9 8 9 6 6 2010's 5 4 4 4 4

  3. California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 74 1980's 74 51 118 111 100 115 104 102 96 91 1990's 82 71 79 81 71 77 77 79 57 59 2000's 63 51 68 78 94 110 100 103 97 113 2010's 98 78 77 85 96

  4. Missouri Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Missouri Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 494 0 1980's 0 0 0 0 0 0 0 0 1990's 0 0 1 0 0 0 1 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas

  5. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Lease and

  6. Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 38 5 6 22 4 1980's 7 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Lease and

  7. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  9. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Wayne Moe

    2013-05-01

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  10. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (801 KB) Technology Marketing SummaryIncreased recycling of power plant cooling water calls for low-cost means of preventing the formation of calcium carbonate and silicate scale. Hardness (Ca and Mg) and silica are two of

  11. West Virginia-West Virginia Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    309,516 332,358 313,922 312,236 333,050 359,348 1982-2014 Import Price 3.99 4.22 3.96 2.72 3.62 4.32 1989-2014 Export Volume 12,530 7,769 9,768 6,016 10,409 3,547 1982-2014 Export Price 5.55 4.81 4.47 3.87 4.02 5.05 1998

    39,380 37,900 32,046 30,111 33,029 37,421 1990-2016 Base Gas 22,300 22,300 22,300 22,300 22,300 22,300 1990-2016 Working Gas 17,080 15,600 9,746 7,811 10,729 15,121 1990-2016 Net Withdrawals 2,710 1,480 5,854 1,935 -2,918 -4,392 1990-2016 Injections 1,968 1,951 503 1,362

  12. Outlook for third Malaysian LNG plant brighter with big gas find

    SciTech Connect (OSTI)

    Not Available

    1993-05-03

    Prospects for a third liquefied natural gas export complex in Malaysia are brighter than ever. A unit of Occidental Petroleum Corp. has drilled its fourth and biggest natural gas strike into a carbonate reef on Block SK-8 off Sarawak, East Malaysia, turning up still more potential reserves for the country's proposed third LNG plant. The find brings to a combined total of 5 tcf of gas in place in the four SK-8 fields for which Oxy has disclosed test results. Well details are given. The LNG project under study would make Malaysia the largest supplier of LNG to the rapidly expanding East Asian market, Oxy said.

  13. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  14. Oklahoma Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Pennsylvania Natural Gas Plant Liquids Production Extracted in Pennsylvania

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  16. Tennessee Natural Gas Plant Liquids Production Extracted in Tennessee

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 134 112 102 103 2 0 1999 6 0 0 0 143 107 76 104 105 57 0 0 2000 0 4 0 0 0 0 0 0 49 114 86 21 2001 0 0 0 103 113 32 63 47 62 100 32 4 2002 50 3 6 2 0 0 0 1 1 1 0 0 2003 0 0 0 0 42 76 75 95 2 46 0 0 2004 2 0 0 33 32 46 63 55 6 25 0 0 2005 0 2015 4 3 26 56 61 57 69 67 72 93 102 55 2016 3 25 37 19 27 38

    Additions (Million Cubic Feet) Tennessee Natural Gas LNG Storage Additions (Million

  17. West Virginia Natural Gas Plant Liquids Production Extracted in West

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  18. Wyoming Natural Gas Plant Liquids Production Extracted in Colorado (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. California--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Marketed Production (Million Cubic Feet) California--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7,211 6,467 7,204 5,664 5,975 6,947 6,763 6,500 2000's 6,885 6,823 6,909 6,087 6,803 6,617 6,652 7,200 6,975 5,832 2010's 5,120 4,760 5,051 5,470 5,961 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. Arkansas Natural Gas Plant Liquids Production Extracted in Arkansas

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  1. Colorado Natural Gas Plant Liquids Production Extracted in Colorado

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Kansas Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Michigan Natural Gas Plant Liquids Production Extracted in Michigan

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Montana Natural Gas Plant Liquids Production Extracted in Montana (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect (OSTI)

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  9. ASSESSMENT OF SUBSURFACE FATE OF MONOETHANOLAMINE AT SOUR GAS PROCESSING PLANT SITES-PHASE III

    SciTech Connect (OSTI)

    James A. Sorensen

    1999-02-01

    Alkanolamines are commonly used by the natural gas industry to remove hydrogen sulfide, carbon dioxide, and other acid gases from the natural gas in which they occur (''sour'' gas if hydrogen sulfide is present). At sour gas-processing plants, as at all plants that use alkanolamines for acid gas removal (AGR), spills and on-site management of wastes containing alkanolamines and associated reaction products have occasionally resulted in subsurface contamination that is presently the focus of some environmental concern. In 1994, the Energy and Environmental Research Center (EERC) initiated a three-phase program to investigate the natural attenuation processes that control the subsurface transport and fate of the most commonly used alkanolamine in Canada, monoethanolamine (MEA). Funding for the MEA research program was provided by the U.S. Department of Energy (DOE), Canadian Association of Petroleum Producers (CAPP), Canadian Occidental Petroleum Ltd. (CanOxy), Gas Research Institute (GRI), Environment Canada, and the National Energy Board of Canada. The MEA research program focused primarily on examining the biodegradability of MEA and MEA-related waste materials in soils and soil-slurries under a variety of environmentally relevant conditions, evaluating the mobility of MEA in soil and groundwater and the effectiveness of bioremediation techniques for removing contaminants and toxicity from MEA-contaminated soil. The presently inactive Okotoks sour gas-processing plant, owned by CanOxy in Alberta, Canada, was the source of samples and field data for much of the laboratory-based experimental work and was selected to be the location for the field-based efforts to evaluate remediation techniques. The objective of the research program is to provide the natural gas industry with ''real world'' data and insights developed under laboratory and field conditions regarding the effective and environmentally sound use of biological methods for the remediation of soil

  10. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  11. U.S. Natural Gas Plant Field Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Natural Gas Liquids 102,401 96,538 108,784 105,106 111,388 108,530 1981-2016 Pentanes Plus 12,323 11,708 12,970 12,520 13,325 13,410 1981-2016 Liquefied Petroleum Gases 90,078 84,830 95,814 92,586 98,063 95,120 1981-2016 Ethane 35,939 33,304 39,579 38,526 42,236 41,404 1981-2016 Propane 34,929 33,311 36,460 35,200 36,169 34,716 1981-2016 Normal Butane 9,656 9,463 10,271 9,308 9,681 9,335 1981-2016 Isobutane 9,554 8,752 9,504 9,552 9,977

  12. Alaska Onshore Natural Gas Plant Liquids Production Extracted in Alaska

    Gasoline and Diesel Fuel Update (EIA)

    2,954,896 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 1992-2014 From Gas Wells 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 From Oil Wells 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 2,600,167 2,502,371 2,494,216 2,532,559 2,597,184 2,492,589 1992-2014 Vented and Flared 5,271 8,034 9,276 9,244 5,670 5,779 1992-2014 Marketed Production 349,457 316,546 294,728 315,682 280,101 305,061 1992-2014 Dry

  13. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  14. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    SciTech Connect (OSTI)

    Ballinger, Ronald G.; Wang, Chun Yun; Kadak, Andrew; Todreas, Neil; Mirick, Bradley; Demetri, Eli; Koronowski, Martin

    2004-08-30

    power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

  15. Gas turbines for coal-fired turbocharged PFBC boiler power plants

    SciTech Connect (OSTI)

    Wenglarz, R.; Drenker, S.

    1984-11-01

    A coal-fired turbocharged boiler using fluidized bed combustion at high pressure would be more compact than a pulverized coal fired boiler. The smaller boiler size could permit the utility industry to adopt efficient modular construction methods now widely used in other industries. A commercial turbocharger of the capacity needed to run a 250 MW /SUB e/ power plant does not exist; commercial gas turbines of the correct capacity exist, but they are not matched to this cycle's gas temperature of less than 538/sup 0/C (1000/sup 0/F). In order to avoid impeding the development of the technology, it will probably be desirable to use existing machines to the maximum extent possible. This paper explores the advantages and disadvantages of applying either standard gas turbines or modified standard gas turbines to the turbocharged boiler.

  16. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  17. An assessment of radiolytic gas generation: Impacts from Rocky Flats Plant residue elimination alternatives. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-02-26

    This report evaluates the Sandia National Laboratory-Albuquerque analytical model that is used to support present wattage limit decisions for various matrix forms from the Residue Elimination Project for Waste Isolation Pilot Plant waste acceptability. This study includes (1) a comparison of the SNL-A model to Rocky Flats Plant models for consistency of assumptions and the phenomena considered in the models, and (2) an evaluation of the appropriateness of the Sandia National Laboratory-Albuquerque model to Rocky Flats Plant residues, considering that the original intent was to model wastes rather than residues. The study draws the following conclusions: (1) only real-time gas generation testing of specific waste streams may provide a sound basis for an increase in the transportation wattage limit of specific waste streams, and (2) the radiolytic gas generation rate from Residue Elimination Project waste emplaced at Waste Isolation Pilot Plant, under worst-case conditions, is not a significant factor in comparison to the total gas generation rate due to radiolysis, microbial degradation, and corrosion.

  18. Water Outlet Control Mechanism for Fuel Cell System Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Water Outlet Control Mechanism for Fuel Cell System Operation in Variable Gravity Environments Self-Regulating Water Separation System for Fuel ...

  19. Integration and optimization of the gas removal system for hybrid-cycle OTEC power plants

    SciTech Connect (OSTI)

    Rabas, T.J.; Panchal, C.B.; Stevens, H.C. )

    1990-02-01

    A preliminary design of the noncondensible gas removal system for a 10 mWe, land-based hybrid-cycle OTEC power plant has been developed and is presented herein. This gas removal system is very different from that used for conventional power plants because of the substantially larger and continuous noncondensible gas flow rates and lower condenser pressure levels which predicate the need for higher-efficiency components. Previous OTEC studies discussed the need for multiple high-efficiency compressors with intercoolers; however, no previous design effort was devoted to the details of the intercoolers, integration and optimization of the intercoolers with the compressors, and the practical design constraints and feasibility issues of these components. The resulting gas removal system design uses centrifugal (radial) compressors with matrix-type crossflow aluminum heat exchangers as intercoolers. Once-through boiling of ammonia is used as the heat sink for the cooling and condensing of the steam-gas mixture. A computerized calculation method was developed for the performance analysis and subsystem optimization. For a specific number of compressor units and the stream arrangement, the method is used to calculate the dimensions, speeds, power requirements, and costs of all the components.

  20. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  1. U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Acquisitions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,051 550 512 433 554 596 1,048 771 332 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids Reserves Acquisitions

  2. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  3. Oregon Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oregon Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 32 30 37 30 30 1980's 0 0 0 0 0 120 131 130 115 59 1990's 93 60 68 118 95 66 40 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  4. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant

  5. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect (OSTI)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  6. Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 18 20 24 35 33 33 30 22 23 15 1990's 20 23 24 23 23 23 44 46 32 161 2000's 49 35 34 24 31 31 32 43 44 87 2010's 163 158 197 233 343 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 356 1980's 350 349 376 397 425 416 411 402 351 331 1990's 318 346 327 316 305 343 323 372 342 191 2000's 191 311 326 315 373 367 396 458 473 494 2010's 566 578 522 481 598 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 45 1980's 48 68 52 73 81 76 69 70 67 56 1990's 63 61 66 72 74 82 85 75 75 64 2000's 59 53 60 56 64 72 74 94 88 77 2010's 113 203 374 698 1,037 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 1980's 32 42 44 61 61 62 73 76 72 65 1990's 61 53 55 50 50 47 48 31 31 24 2000's 24 43 39 40 44 40 42 50 126 192 2010's 225 237 214 183 193 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  10. Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 228 1980's 268 259 232 280 253 247 224 213 210 212 1990's 195 195 205 202 218 223 242 221 235 182 2000's 182 215 213 195 233 264 279 324 318 330 2010's 369 360 269 376 387 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 82 99 99 129 103 101 106 90 95 71 1990's 74 81 67 73 61 69 64 57 48 34 2000's 34 28 24 31 42 89 131 200 269 326 2010's 359 416 295 332 312 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  12. Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 168 1980's 120 172 184 204 219 242 232 231 226 225 1990's 234 218 266 250 241 255 285 309 266 291 2000's 291 271 326 319 365 391 404 464 402 412 2010's 465 549 524 438 473 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 452 1980's 452 498 554 650 662 646 697 623 530 542 1990's 545 466 426 430 398 432 417 447 479 479 2000's 479 504 488 484 487 559 547 525 524 536 2010's 618 689 802 830 1,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 350 1980's 289 335 296 262 282 282 331 307 325 332 1990's 353 333 257 297 267 284 262 290 226 222 2000's 222 250 180 163 197 248 231 260 194 201 2010's 230 239 242 239 245 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 75 1980's 81 81 111 115 113 106 112 107 102 90 1990's 100 96 89 88 94 90 116 96 91 156 2000's 156 182 229 228 228 276 372 347 348 419 2010's 488 552 542 578 662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Indiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 7 51 10 4 12 11 10 7 12 10 1990's 13 5 5 6 2 5 8 12 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages:

  17. Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Maryland Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 257 310 381 1970's 319 451 67 474 392 277 415 342 889 2,488 1980's 0 0 1 1 2 1 1 2 1 1 1990's 1 0 0 1 1 1 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  18. Calif--Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Calif--Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 0 1990's 0 0 1 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  19. Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Plant Liquids, Reserves Based Production (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6 1980's 4 4 9 9 9 10 10 10 9 8 1990's 8 7 8 8 7 8 8 7 6 7 2000's 7 7 9 9 9 10 10 10 10 10 2010's 9 9 9 10 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  1. ,"California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arizona Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33 20 34 1970's 50 50 44 39 0 0 0 0 0 0 1980's 0 222 7 7 7 6 5 6 5 35 1990's 71 45 41 49 61 57 58 51 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  5. Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Lease and Plant Fuel Consumption (Million Cubic Feet) Rhode Island Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 4 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural

  6. South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 63 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  7. Tennessee Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 355 753 986 1970's 1,265 1,524 1,150 1,263 1,087 387 537 509 516 616 1980's 0 0 78 113 153 138 98 93 60 45 1990's 74 44 39 49 44 47 37 45 31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016

  8. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P.; Getmanov, E. A.; Ermaikina, N. A.

    2008-07-15

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  9. Hindered amine development and operating experience at Quirk Creek Gas Plant

    SciTech Connect (OSTI)

    Smart, P.; Devenny, I. [Imperial Oil Resources Ltd., Calgary, Alberta (Canada); Rendall, A. [Nalco/Exxon Energy Chemicals, Calgary, Alberta (Canada)

    1997-12-31

    The Imperial Oil Resources Limited Quirk Creek gas plant has a significant natural gas treating challenge. The natural gas feed contains H{sub 2}S, CO{sub 2}, carbonyl sulfide, mercaptans and elemental sulfur. The trace sulfur components are difficult to remove with conventional solvents. Over its 26 year history, three different solvents have been used. The latest solvent, a hybrid of a hindered amine and a physical solvent, has been operating for over two years, with better than expected performance. This high capacity solvent has lowered operating costs by over $500,000/yr by reducing solids formation. The development work, including pilot testing at Quirk Creek, and the operating history will be reviewed.

  10. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Phillip Mills

    2012-02-01

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  11. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  12. Bi-gas pilot plant operation. Technical progress report, 1 November-30 November 1980

    SciTech Connect (OSTI)

    1980-01-01

    Test G-14A was completed; Test G-15 was initiated and also completed. During the latter part of G-14A, solids feed and pressure control remained stable but problems in the slag removal and spray drying areas limited further completion of objectives. Test G-15 also had very stable solids feed but problems with the gas washer and slag tap burner interrupted testing. Accomplishments during operation were: control of Stage I temperature with fuel gas flow; operation at reduced fuel gas rates to the A and C char burners; operation with three char burners of the new design; and collection of material balance data. The BI-GAS staged concept of gasification was developed by Bituminous Coal Research primarily to maximize the yield of methane as the coal is devolitized by the hot, hydrogen rich gas in Stage II. At present, the major developmental effort is concentrated on gasification. Current goals are to assess the viability of the process from an operating and cost standpoint, determine possible improvements, and obtain design data for a full scale plant.

  13. ,"California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  14. ,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  15. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release

  16. Variable leak gas source

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A variable leak gas source and a method for obtaining the same which includes filling a quantity of hollow glass micro-spheres with a gas, storing said quantity in a confined chamber having a controllable outlet, heating said chamber above room temperature, and controlling the temperature of said chamber to control the quantity of gas passing out of said controllable outlet. Individual gas filled spheres may be utilized for calibration purposes by breaking a sphere having a known quantity of a known gas to calibrate a gas detection apparatus.

  17. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  18. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  19. Corrosion testing in the flue gas cleaning and condensation systems in Swedish waste incineration plants

    SciTech Connect (OSTI)

    Wallen, B.; Bergqvist, A.; Nordstroem, J.

    1994-12-31

    Test racks containing creviced, welded coupons of stainless steels, nickel base alloys and titanium have been exposed in various parts of the gas cleaning systems in three municipal waste incineration plants. The flue gases were rich in hydrogen halides and the environments in the cleaning systems were very corrosive causing mainly crevice and pitting corrosion. The best corrosion resistance was shown by the superaustenitic stainless steel S32654 and the nickel base alloys N10276 and N06022. Titanium performed badly and was attacked by excessive uniform corrosion.

  20. ,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production, Gaseous Equivalent (Bcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  1. Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know where it comes from. This module uses a series of four activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis, then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

  2. Texas--RRC District 1 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 16 1980's 18 20 24 35 33 33 30 22 23 15 1990's 20 23 24 23 23 23 44 46 32 161 2000's 49 35 34 24 31 31 32 43 44 87 2010's 163 158 197 233 343 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Texas--RRC District 10 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 356 1980's 350 349 376 397 425 416 411 402 351 331 1990's 318 346 327 316 305 343 323 372 342 191 2000's 191 311 326 315 373 367 396 458 473 494 2010's 566 578 522 481 598 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Texas--RRC District 5 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 1980's 32 42 44 61 61 62 73 76 72 65 1990's 61 53 55 50 50 47 48 31 31 24 2000's 24 43 39 40 44 40 42 50 126 192 2010's 225 237 214 183 193 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Texas--RRC District 6 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 228 1980's 268 259 232 280 253 247 224 213 210 212 1990's 195 195 205 202 218 223 242 221 235 182 2000's 182 215 213 195 233 264 279 324 318 330 2010's 369 360 269 376 387 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Texas--RRC District 7B Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 62 1980's 82 99 99 129 103 101 106 90 95 71 1990's 74 81 67 73 61 69 64 57 48 34 2000's 34 28 24 31 42 89 131 200 269 326 2010's 359 416 295 332 312 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Texas--RRC District 7C Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 168 1980's 120 172 184 204 219 242 232 231 226 225 1990's 234 218 266 250 241 255 285 309 266 291 2000's 291 271 326 319 365 391 404 464 402 412 2010's 465 549 524 438 473 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Texas--RRC District 8 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 452 1980's 452 498 554 650 662 646 697 623 530 542 1990's 545 466 426 430 398 432 417 447 479 479 2000's 479 504 488 484 487 559 547 525 524 536 2010's 618 689 802 830 1,240 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Texas--RRC District 8A Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 350 1980's 289 335 296 262 282 282 331 307 325 332 1990's 353 333 257 297 267 284 262 290 226 222 2000's 222 250 180 163 197 248 231 260 194 201 2010's 230 239 242 239 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  10. Texas--RRC District 9 Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 75 1980's 81 81 111 115 113 106 112 107 102 90 1990's 100 96 89 88 94 90 116 96 91 156 2000's 156 182 229 228 228 276 372 347 348 419 2010's 488 552 542 578 662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Adjustments (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 64 1980's 153 231 299 849 -123 426 367 231 11 -277 1990's -83 233 225 102 43 192 474 -15 -361 99 2000's -83 -429 62 -338 273 -89 173 -139 76 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  12. U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 580 1980's 572 580 564 568 597 585 569 585 592 566 1990's 574 601 626 635 634 646 688 690 655 697 2000's 710 675 677 611 645 614 629 650 667 714 2010's 745 784 865 931 1,124 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  13. U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Extensions (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 364 1980's 418 542 375 321 348 337 263 213 268 259 1990's 299 189 190 245 314 432 451 535 383 313 2000's 645 717 612 629 734 863 924 1,030 956 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) New Field Discoveries (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 94 1980's 90 131 112 70 55 44 34 39 41 83 1990's 39 25 20 24 54 52 65 114 66 51 2000's 92 138 48 35 26 32 16 30 65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  15. U.S. Natural Gas Plant Liquids, Reserves Revision Decreases (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Decreases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 726 1980's 639 643 832 781 724 744 807 656 715 1,020 1990's 606 695 545 640 676 691 669 910 1,094 1,321 2000's 724 1,089 951 1,043 1,135 947 1,010 765 1,435 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Alabama

  17. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 51,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Louisia

  18. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7,404 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Texas

  19. New Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent New Mexico-Texas

  20. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  1. Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,164 1,945 1,877 1970's 1,650 1,275 814 1,809 1,194 1,036 708 695 1,160 1,867 1980's 3,779 132 107 94 105 87 59 74 47 34 1990's 26 31 40 56 89 60 46 45 37 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA =

  3. Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,656 3,505 2,879 1970's 3,140 4,302 3,397 3,548 2,957 2,925 2,742 2,814 3,477 22,094 1980's 1,941 1,776 3,671 4,377 5,741 5,442 5,243 5,802 4,869 3,876 1990's 5,129 1,476 1,450 1,366 1,332 1,283 1,230 1,201 1,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  4. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable;

  5. Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,842 15,867 17,587 1970's 20,841 27,972 28,183 32,663 35,350 27,212 31,044 29,142 30,491 48,663 1980's 24,521 19,665 41,392 37,901 40,105 42,457 38,885 44,505 45,928 43,630 1990's 40,914 44,614 43,736 56,657 44,611 47,282 49,196 46,846 33,989 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data

  8. Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Michigan Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,798 2,012 2,074 1970's 3,440 2,145 2,143 2,551 3,194 8,420 7,647 8,022 11,076 14,695 1980's 6,494 3,461 9,699 8,130 8,710 8,195 7,609 9,616 8,250 8,003 1990's 9,094 9,595 7,274 8,171 9,766 9,535 8,489 12,060 9,233 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  9. Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1983-01-01

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP.

  11. Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,722 17,271 19,964 1970's 19,625 20,348 22,402 21,151 14,302 15,102 16,726 16,601 20,363 31,081 1980's 17,763 17,527 26,559 28,010 34,459 34,709 30,599 41,371 40,698 40,361 1990's 41,415 35,142 40,599 20,643 18,615 19,466 19,661 19,696 20,001 - = No Data Reported; -- = Not Applicable; NA =

  12. 90 MW build/own/operate gas turbine combined cycle cogeneration project with sludge drying plant

    SciTech Connect (OSTI)

    Schroppe, J.T.

    1986-04-01

    This paper will discuss some of the unique aspects of a build/own/operate cogeneration project for an oil refinery in which Foster Wheeler is involved. The organization is constructing a 90 MW plant that will supply 55 MW and 160,000 lb/hr of 600 psi, 700F steam to the Tosco Corporation's 130,000 bd Avon Oil Refinery in Martinez, California. (The refinery is located about 45 miles northeast of San Francisco.) Surplus power production will be sold to the local utility, Pacific Gas and Electric Co. (PG and E). Many of the aspects of this project took on a different perspective, since the contractor would build, own and operate the plant.

  13. Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,659 2,240 6,864 1970's 4,748 8,459 16,056 15,217 14,402 17,842 15,972 17,336 15,895 12,153 1980's 30,250 15,249 94,232 97,828 111,069 64,148 72,686 116,682 153,670 192,239 1990's 193,875 223,194 234,716 237,702 238,156 292,811 295,834 271,284 281,872 - = No Data Reported; -- = Not Applicable;

  14. Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Arkansas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,267 4,027 6,268 1970's 9,184 6,433 4,740 3,000 4,246 4,200 4,049 4,032 3,760 7,661 1980's 1,949 2,549 5,096 5,384 5,922 12,439 9,062 11,990 12,115 11,586 1990's 7,101 1,406 5,838 6,405 4,750 5,551 5,575 6,857 8,385 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  15. Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,668 2,361 2,604 1970's 2,726 3,231 4,676 7,202 5,822 7,673 7,739 9,124 10,619 21,610 1980's 7,041 7,093 13,673 10,000 10,560 10,829 9,397 12,095 11,622 12,221 1990's 17,343 23,883 21,169 24,832 24,347 25,130 27,492 29,585 31,074 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  16. Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 210 201 176 1970's 234 294 1,782 3,027 2,700 6,304 6,306 4,890 5,314 7,628 1980's 8,284 9,035 10,603 8,520 7,847 7,174 6,156 7,563 7,275 8,942 1990's 1,716 3,751 5,134 1,717 820 765 2,174 2,434 2,329 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 645,058 711,720 741,902 1970's 769,500 784,773 802,112 828,139 817,194 763,107 729,946 732,428 757,853 717,462 1980's 536,766 505,322 347,846 307,717 326,662 307,759 302,266 355,765 318,922 291,977 1990's 394,605 297,233 293,845 296,423 298,253 333,548 330,547 301,800 330,228 - = No Data

  18. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, David; Gemmen, Randall

    2010-08-01

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  19. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no

  20. Realities of verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Swindle, D.W.

    1990-03-01

    Over a two and one-half year period beginning in 1981, representatives of six countries (United States, United Kingdom, Federal Republic of Germany, Australia, The Netherlands, and Japan) and the inspectorate organizations of the International Atomic Energy Agency and EURATOM developed and agreed to a technically sound approach for verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants. This effort, known as the Hexapartite Safeguards Project (HSP), led to the first international concensus on techniques and requirements for effective verification of the absence of weapons-grade nuclear materials production. Since that agreement, research and development has continued on the radiation detection technology-based technique that technically confirms the HSP goal is achievable. However, the realities of achieving the HSP goal of effective technical verification have not yet been fully attained. Issues such as design and operating conditions unique to each gas centrifuge plant, concern about the potential for sensitive technology disclosures, and on-site support requirements have hindered full implementation and operator support of the HSP agreement. In future arms control treaties that may limit or monitor fissile material production, the negotiators must recognize and account for the realities and practicalities in verifying the absence of HEU production. This paper will describe the experiences and realities of trying to achieve the goal of developing and implementing an effective approach for verifying the absence of HEU production. 3 figs.

  1. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect (OSTI)

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  2. Method of measurement of VOCs in the off-gas and wastewater of wastewater treatment plants

    SciTech Connect (OSTI)

    Min Wang; Keener, T.C.; Orton, T.L.; Zhu, H.; Bishop, P.; Pekonen, S.; Siddiqui, K.

    1997-12-31

    VOCs need to be controlled according to Title 3 of the 1990 Clean Air Act Amendments (CAAA), so an accurate estimation of the total VOC emissions must be attained. This paper reports on a study where EPA method 624 was revised so that this method could be used for VOC analysis both in the water and off-gas of wastewater treatment plants. The revised method uses the same approach and equipment as water and soil analyses, thereby providing a great time and cost advantage for anyone needing to perform this type of analysis. Without using a cryogenic preconcentration step, gas samples from Tedlar bags are easily analyzed to concentrations of approximately 20 ppb using scan mode in a GC-MS unit. For the wastewater, scan mode was still used for the identification, but Selected Ion Monitoring (SIM) mode was used for quantitative analysis because of lower VOC concentration in the water. The results show that this method`s detection limit (MDL) was lowered 2--3 orders of magnitude when compared with scan mode. The modified method has been successfully applied to the identification and quantitative analysis of wastewater and off-gas VOCs from a publicly owned treatment works (POTW) aeration basin (120 MGD).

  3. GAS METERING PUMP

    DOE Patents [OSTI]

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  4. Construction and start-up of a 250 kW natural gas fueled MCFC demonstration power plant

    SciTech Connect (OSTI)

    Figueroa, R.A.; Carter, J.; Rivera, R.; Otahal, J.

    1996-12-31

    San Diego Gas & Electric (SDG&E) is participating with M-C Power in the development and commercialization program of their internally manifolded heat exchanger (IMHEX{reg_sign}) carbonate fuel cell technology. Development of the IMHEX technology base on the UNOCAL test facility resulted in the demonstration of a 250 kW thermally integrated power plant located at the Naval Air Station at Miramar, California. The members of the commercialization team lead by M-C Power (MCP) include Bechtel Corporation, Stewart & Stevenson Services, Inc., and Ishikawajima-Harima Heavy Industries (IHI). MCP produced the fuel cell stack, Bechtel was responsible for the process engineering including the control system, Stewart & Stevenson was responsible for packaging the process equipment in a skid (pumps, desulfurizer, gas heater, turbo, heat exchanger and stem generator), IHI produced a compact flat plate catalytic reformer operating on natural gas, and SDG&E assumed responsibility for plant construction, start-up and operation of the plant.

  5. U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in Old Fields

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,204 1980's 5,198 5,488 5,620 6,288 6,121 6,491 6,729 6,745 6,849 6,380 1990's 6,284 6,220 6,225 6,030 6,023 6,202 6,516 6,632 6,188 6,503 2000's 6,873 6,595 6,648 6,244 6,707 6,903 7,133 7,648 7,842 8,557 2010's 9,809 10,825 10,777 11,943 15,029 - = No Data Reported; -- = Not

  6. U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) U.S. Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,615 1980's 6,728 7,068 7,221 7,901 7,643 7,944 8,165 8,147 8,238 7,769 1990's 7,586 7,464 7,451 7,222 7,170 7,399 7,823 7,973 7,524 7,906 2000's 8,345 7,993 7,994 7,459 7,928 8,165 8,472 9,143 9,275 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. U.S. Natural Gas Plant Liquids, Reserves Revision Increases (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Increases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 677 1980's 743 729 811 847 866 906 1,030 847 1,168 1,143 1990's 827 825 806 764 873 968 844 1,199 1,302 2,048 2000's 1,183 957 982 882 1,232 968 845 1,187 1,192 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  8. U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) U.S. Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 383,077 389,525 367,572 348,731 408,115 398,180 429,269 1990's 428,657 456,954 460,571 448,822 423,878 427,853 450,033 426,873 401,314 399,509 2000's 404,059 371,141 382,503 363,903 366,341 355,193 358,985 365,323 355,590 362,009 2010's 368,830 384,248 408,316 414,796 425,238 - = No Data Reported; -- = Not

  9. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  10. RGA Analysis of a Solid Oxide Fuel Cell Gas Turbine Hybrid Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01

    This paper presents a Relative Gain Array (RGA) analysis of a simulated SOFC/Gas Turbine plant based on a multivariate empirical formulation of a 300kW hybrid system. The HyPer test facility at the National Energy Technology Laboratory, served as the test bed for deriving frequency response data and subsequent multivariable model of a direct fired, recuperated hybrid cycle plant. Through the modulation of various airflow bypass-valves, magnitude and phase data is used to formulate Transfer Function {TF} equations that describe input/output system interaction. A frequency dependent RGA calculation of the empirical Transfer Function matrix provides a means of quantifying the degree of coupling between system inputs and outputs for the configuration studied. Various input/output interaction time scales are obtained to identify frequencies where fully developed system coupling occur. Analysis of the RGA matrix leads to a better understanding of the inherent properties the hybrid configuration, and can serve as a validating tool to existing analytical RGA calculations of similar types of hybrids.

  11. A Monte Carlo Analysis of Gas Centrifuge Enrichment Plant Process Load Cell Data

    SciTech Connect (OSTI)

    Garner, James R; Whitaker, J Michael

    2013-01-01

    As uranium enrichment plants increase in number, capacity, and types of separative technology deployed (e.g., gas centrifuge, laser, etc.), more automated safeguards measures are needed to enable the IAEA to maintain safeguards effectiveness in a fiscally constrained environment. Monitoring load cell data can significantly increase the IAEA s ability to efficiently achieve the fundamental safeguards objective of confirming operations as declared (i.e., no undeclared activities), but care must be taken to fully protect the operator s proprietary and classified information related to operations. Staff at ORNL, LANL, JRC/ISPRA, and University of Glasgow are investigating monitoring the process load cells at feed and withdrawal (F/W) stations to improve international safeguards at enrichment plants. A key question that must be resolved is what is the necessary frequency of recording data from the process F/W stations? Several studies have analyzed data collected at a fixed frequency. This paper contributes to load cell process monitoring research by presenting an analysis of Monte Carlo simulations to determine the expected errors caused by low frequency sampling and its impact on material balance calculations.

  12. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  13. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    SciTech Connect (OSTI)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  14. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Ianakiev, Kiril D; Reimold, Benjamin A; Ward, Steven L; Howell, John

    2010-09-13

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  15. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David; Erpenbeck, Heather H; Miller, Karen A; Swinjoe, Martyn T; Ianakiev, Kiril D; Marlow, Johnna B

    2010-01-01

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  16. Application of systems engineering techniques (reliability, availability, maintainability, and dollars) to the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Boylan, J.G.; DeLozier, R.C.

    1982-01-01

    The systems engineering function for the Gas Centrifuge Enrichment Plant (GCEP) covers system requirements definition, analyses, verification, technical reviews, and other system efforts necessary to assure good balance of performance, safety, cost, and scheduling. The systems engineering function will support the design, installation, start-up, and operational phases of GCEP. The principal objectives of the systems engineering function are to: assure that the system requirements of the GCEP process are adequately specified and documented and that due consideration and emphasis are given to all aspects of the project; provide system analyses of the designs as they progress to assure that system requirements are met and that GCEP interfaces are compatible; assist in the definition of programs for the necessary and sufficient verification of GCEP systems; and integrate reliability, maintainability, logistics, safety, producibility, and other related specialties into a total system effort. This paper addresses the GCEP reliability, availability, maintainability, and dollars (RAM dollars) analyses which are the primary systems engineering tools for the development and implementation of trade-off studies. These studies are basic to reaching cost-effective project decisions. The steps necessary to achieve optimum cost-effective design are shown.

  17. Rotor dynamic analysis of GCEP (Gas Centrifuge Enrichment Plant) Tails Withdrawal Test Facility AC-12 compressor

    SciTech Connect (OSTI)

    Spencer, J.W.

    1982-01-22

    The reliable operation of the centrifugal compressors utilized in the gaseous diffusion process is of great importance due to the critical function of these machines in product and tails withdrawal, cascade purge and evacuation processes, the purge cascade and product booster applications. The same compressors will be used in equally important applications within the Gas Centrifuge Enrichment Plant (GCEP). In response to concern over the excessive vibration exhibited by the AC-12 compressor in the No. 3 position of the GCEP Tails Withdrawal Test Facility, a rotor-bearing dynamic analysis was performed on the compressor. This analysis included the acquisition and reduction of compressor vibration data, characterization and modeling of the rotorbearing system, a computer dynamic study, and recommendations for machine modification. The compressor dynamic analysis was performed for rotor speeds of 9000 rpm and 7200 to 7800 rpm, which includes all possible opreating speeds of the compressor in the GCEP Test Facility. While the analysis was performed on this particular AC-12 compressor, the results should be pertinent to other AC-12 applications as well. Similar diagnostic and analytical techniques can be used to evaluate operation of other types of centrifugal compressors.

  18. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect (OSTI)

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  19. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  20. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Ward,R.; Rosenthal,M.

    2009-07-12

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector"s efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the "Option 4" safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo’s paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.