Sample records for outlet gas plant

  1. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOE Patents [OSTI]

    Wilding, Bruce M; Turner, Terry D

    2014-12-02T23:59:59.000Z

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  2. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01T23:59:59.000Z

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  3. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01T23:59:59.000Z

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  4. Natural Gas Processing Plant- Sulfur (New Mexico)

    Broader source: Energy.gov [DOE]

    This regulation establishes sulfur emission standards for natural gas processing plants. Standards are stated for both existing and new plants. There are also rules for stack height requirements,...

  5. Sauget Plant Flare Gas Reduction Project

    E-Print Network [OSTI]

    Ratkowski, D. P.

    2007-01-01T23:59:59.000Z

    Empirical analysis of stack gas heating value allowed the Afton Chemical Corporation Sauget Plant to reduce natural gas flow to its process flares by about 50% while maintaining the EPA-required minimum heating value of the gas streams....

  6. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01T23:59:59.000Z

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  7. Proceedings: EPRI Manufactured Gas Plants 2003 Forum

    SciTech Connect (OSTI)

    None

    2004-02-01T23:59:59.000Z

    The EPRI Manufactured Gas Plants 2003 Forum covered a range of topics related to remediation and management of former manufactured gas plant (MGP) sites, with emphasis on technological advances and current issues associated with site cleanup. In specific, the forum covered MGP coal-tar delineation, soil and groundwater remediation technologies, improvements in air monitoring, and ecological risk characterization/risk management tools.

  8. Renewable Energy Plants in Your Gas Tank: From Photosynthesis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities) Renewable Energy Plants in Your Gas Tank: From Photosynthesis to Ethanol (4 Activities)...

  9. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W. [Mobil Technology Co., Dallas, TX (United States)

    1998-12-31T23:59:59.000Z

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  10. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

  11. Energy Saving in Ammonia Plant by Using Gas Turbine 

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01T23:59:59.000Z

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  12. Energy Saving in Ammonia Plant by Using Gas Turbine

    E-Print Network [OSTI]

    Uji, S.; Ikeda, M.

    1981-01-01T23:59:59.000Z

    An ammonia plant, in which the IHI-SULZER Type 57 Gas Turbine is integrated in order to achieve energy saving, has started successful operation. Tile exhaust gas of the gas turbine has thermal energy of relatively high temperature, therefore...

  13. Gas turbine power plant with supersonic shock compression ramps

    DOE Patents [OSTI]

    Lawlor, Shawn P. (Bellevue, WA); Novaresi, Mark A. (San Diego, CA); Cornelius, Charles C. (Kirkland, WA)

    2008-10-14T23:59:59.000Z

    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  14. ,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  15. IMPLEMENTATION OF MPC ON A DEETHANIZER AT KARST GAS PLANT

    E-Print Network [OSTI]

    Skogestad, Sigurd

    predictive control (MPC) is implemented on several distillation columns at the K°arstø gas processing plant and Prediction Tool for Identification and Control Keywords: Model based control, distillation columnsIMPLEMENTATION OF MPC ON A DEETHANIZER AT K°ARST� GAS PLANT Elvira Marie B. Aske , , Stig Strand

  16. Wireless Critical Process Control in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

  17. Turbine Drive Gas Generator for Zero Emission Power Plants

    SciTech Connect (OSTI)

    Doyle, Stephen E.; Anderson, Roger E.

    2001-11-06T23:59:59.000Z

    The Vision 21 Program seeks technology development that can reduce energy costs, reduce or eliminate atmospheric pollutants from power plants, provide choices of alternative fuels, and increase the efficiency of generating systems. Clean Energy Systems is developing a gas generator to replace the traditional boiler in steam driven power systems. The gas generator offers the prospects of lower electrical costs, pollution free plant operations, choices of alternative fuels, and eventual net plant efficiencies in excess of 60% with sequestration of carbon dioxide. The technology underlying the gas generator has been developed in the aerospace industry over the past 30 years and is mature in aerospace applications, but it is as yet unused in the power industry. This project modifies and repackages aerospace gas generator technology for power generation applications. The purposes of this project are: (1) design a 10 MW gas generator and ancillary hardware, (2) fabricate the gas generator and supporting equipment, (3) test the gas generator using methane as fuel, (4) submit a final report describing the project and test results. The principal test objectives are: (1) define start-up, shut down and post shutdown control sequences for safe, efficient operation; (2) demonstrate the production of turbine drive gas comprising steam and carbon dioxide in the temperature range 1500 F to 3000 F, at a nominal pressure of 1500 psia; (3) measure and verify the constituents of the drive gas; and (4) examine the critical hardware components for indications of life limitations. The 21 month program is in its 13th month. Design work is completed and fabrication is in process. The gas generator igniter is a torch igniter with sparkplug, which is currently under-going hot fire testing. Fabrication of the injector and body of the gas generator is expected to be completed by year-end, and testing of the full gas generator will begin in early 2002. Several months of testing are anticipated. When demonstrated, this gas generator will be the prototype for use in demonstration power plants planned to be built in Antioch, California and in southern California during 2002. In these plants the gas generator will demonstrate durability and its operational RAM characteristics. In 2003, it is expected that the gas generator will be employed in new operating plants primarily in clean air non-attainment areas, and in possible locations to provide large quantities of high quality carbon dioxide for use in enhanced oil recovery or coal bed methane recovery. Coupled with an emission free coal gasification system, the CES gas generator would enable the operation of high efficiency, non-polluting coal-fueled power plants.

  18. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01T23:59:59.000Z

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  19. Gas Turbine Cogeneration Plant for the Dade County Government Center 

    E-Print Network [OSTI]

    Michalowski, R. W.; Malloy, M. K.

    1985-01-01T23:59:59.000Z

    GAS TURBINE COGENERATION PLANT FOR THE DADE COUNTY GOVERNMENT CENTER Roger W. Michalowski Michael K. Malloy Thermo Electron Corporation GEC Rolls-Royce Waltham, Massachusetts ABSTRACT A government complex consisting of a number of State... expansion plans, the system will efficiently produce additional electricity when chilled water demands are low. Houston, Texas The cogeneration plant consists of a Rolls-Royce gas turbine-generator set and a waste-heat recovery system which recovers...

  20. Largest U. S. gas processing plant begins operations

    SciTech Connect (OSTI)

    Mallet, M.W.

    1987-01-19T23:59:59.000Z

    Conoco Inc.'s and Tenneco Oil Co.'s new San Juan, N.M., gas processing plant near Bloomfield, N.M., is capable of making more NGL than any gas plant in the U.S. The plant, with a throughput capacity of 500 MMcfd, proved this when it began production this past November at a rate of 42,000 b/d of NGL. The jointly owned cryogenic plant was constructed by Conoco's natural gas products department, which operates the plant. Construction began in September 1985 and was completed in 13 months. Careful planning between Conoco and the two prime contractors, Pan West Constructors Inc. and Dresser Clark, facilitated a ''fast track'' construction schedule and an extremely smooth start-up.

  1. Corrosion in gas conditioning plants - An overview

    SciTech Connect (OSTI)

    Pearce, B.; Dupart, M.

    1987-01-01T23:59:59.000Z

    Since the early 1800's, fuel gases of various sorts (acetylene, blast furnace gas, flue water gas, carbureted water gas, coal gas, coke oven gas and producer gas) were transmitted at low pressures in pipelines and were conditioned for contaminate removal. The removal of such contaminates as H/sub 2/S was usually accomplished by solid absorbents such as iron oxide, a process that is still in use today. The discovery in the late 20's of a regenerative process employing alkanolamines was instrumental in rapid increase in the use of natural gas in large volumes. Also at this time, the development of wide diameter pipelines that could handle 500-700 psi gas pressure provided the means of handling these large volumes of gas. The protection of the pipeline from corrosion depended upon contaminate removal of water, carbon dioxide and hydrogen sulfide. In the process of contaminant removal, the process equipment suffered severe corrosion damage. Corrosion test methods and inhibitors were applied to those early processes and have advanced from weep holes and coupons to the present way of electronic and physical test methods. The trend is away from the primary amine at either low strength or inhibited at high concentration to less corrosive, ''tailor-made'' solvents that can be designed or formulated to perform a given task at acceptable corrosion rates and at much lower energy levels.

  2. Optimal Maintenance Scheduling of a Gas Engine Power Plant

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    to carry out preventive maintenance at regular intervals19 . The maintenance schedule affects many short1 Optimal Maintenance Scheduling of a Gas Engine Power Plant using Generalized Disjunctive with parallel units. Gas engines are shutdown according to a regular maintenance plan that limits the number

  3. A Wood-Fired Gas Turbine Plant 

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    1986-01-01T23:59:59.000Z

    This paper covers the research and development of a wood-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T...

  4. Gas Centrifuge Enrichment Plant Safeguards System Modeling

    SciTech Connect (OSTI)

    Elayat, H A; O'Connell, W J; Boyer, B D

    2006-06-05T23:59:59.000Z

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

  5. Natural Gas Plant Stocks of Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In thisProduct: Natural Gas LiquidsNatural

  6. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01T23:59:59.000Z

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  7. Gulf of Mexico Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 2009 2010

  8. New Mexico Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic2008 2009 2010

  9. U.S. Natural Gas Processing Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawalsPoint of Entry (MillionPlantAll

  10. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    regulations for coal plants New concerns about nuclear power after Fukushima · Recent studies also show emissions · Most CCS cost studies have focused on coal-based power plants; relatively few on NGCC with CCS1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power

  11. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30T23:59:59.000Z

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  12. Gas sweetening in Saudi Arabia in large dga plants

    SciTech Connect (OSTI)

    Huval, M.; Van De Venne, H.

    1981-01-01T23:59:59.000Z

    The authors are concerned with the natural gas conditioning by using sweetening agent, diglycolamine or DGA, a trademark name for 2-(2-amino-ethoxy) ethanol or 2-2 hydroxy-ethylamine. This paper describes the use of DGA in Saudi Arabia, where Aramco has several DGA plants to treat large amounts of low pressure associated gas to 1/4 grain gas pipeline specification. The paper also describes the reasons why DGA was selected, some of the special features of these plants and the operating experiences to date. It is demonstrated that DGA is a very potent gas sweetening agent. Sour gases with H/sub 2/S concentrations ranging from 3-8% and with CO/sub 2/ concentrations ranging from 8-14% can be treated in a single contactor with 21 trays producing sweet gas containing 1-2 ppm H/sub 2/S and less than 100 ppm CO/sub 2/. Recommendations for practice are included.

  13. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12T23:59:59.000Z

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  14. Techno-socio-economic study of bio-gas plants

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This study covers technological, social and economic aspects of the biogas program in Chitawan, Nepal. Many interesting facts are revealed which may be useful for future planning of Nepalese biogas programs. Concerning the social aspects, only big farmers (having more than 4 bighas of land and more than 10 domestic animals) were found to have biogas plants. No farmer who had a biogas plant was illiterate. As for the technical aspects of the total gas ovens used in the area, 66% were of BTI design. Most of the ovens were of 0.45-m/sup 3/ capacity. The life of BTI ovens was found to be shorter than the life of ovens of other companies. BTI ovens are not useful when farmers have to use a big pot for cooking. All farmers of the area were found to be convinced of the utility of the biogas plant. With regard to the economic aspects of using biogas plants, farmers were able to save 53% of the total expenditure which they had been spending for fuel. Wood consumption was reduced to 50% by using biogas. The internal rate of return of a 2.8-m/sup 3/ biogas plant was found to be 14% assuming that the plant would last for 20 years. Most of the farmers in the area did not have biogas plants. The main reason given was that there were not enough capital and cattle to begin such an operation.

  15. The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power Plants

    E-Print Network [OSTI]

    1 The Cost of CCS forThe Cost of CCS for Natural GasNatural Gas--Fired Power PlantsFired Power, Pennsylvania Presentation to the Natural Gas CCS Forum Washington, DC November 4, 2011 E.S. Rubin, Carnegie Mellon MotivationMotivation · Electric utilities again looking to natural gas combined cycle (NGCC

  16. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D [Los Alamos National Laboratory; Alexandrov, Boian S. [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory; Hill, Thomas R. [Los Alamos National Laboratory; Macarthur, Duncan W. [Los Alamos National Laboratory; Marks, Thomas [Los Alamos National Laboratory; Moss, Calvin E. [Los Alamos National Laboratory; Sheppard, Gregory A. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

    2008-06-13T23:59:59.000Z

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  17. Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant

    E-Print Network [OSTI]

    Keinan, Alon

    Cornell's conversion of a coal fired heating plant to natural Gas University began operating with natural gas, instead of the coal-fired generators of the coal that had been stockpiled, the Plant is running completely on natural gas

  18. Sandia Energy - Experimental Smart Outlet Brings Flexibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Smart Outlet Brings Flexibility, Resiliency to Grid Architecture Home Energy Assurance Renewable Energy Energy Surety Energy Grid Integration News Energy Efficiency...

  19. Comparative Assessment of Coal-and Natural Gas-fired Power Plants under a

    E-Print Network [OSTI]

    Comparative Assessment of Coal- and Natural Gas-fired Power Plants under a CO2 Emission Performance standard (EPS) for pulverized coal (PC) and natural gas combined cycle (NGCC) power plants; · Evaluate · Coal-fired Power Plant: Supercritical pulverized coal (SC PC) Illinois #6 Coal Capacity Factor 75

  20. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOE Patents [OSTI]

    Bjorkman, Jr., Harry K. (Birmingham, MI)

    1983-06-21T23:59:59.000Z

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  1. anal outlet obstruction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sean Barker, Mohamed Musthag, David Irwin in the near future will be able to install "smart" outlets, which monitor and transmit an outlets power usage of smart outlets is that...

  2. Systems approach used in the Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Rooks, W.A. Jr.

    1982-01-01T23:59:59.000Z

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  3. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01T23:59:59.000Z

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  4. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  5. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31T23:59:59.000Z

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  6. Innovative coal gas cleaning at Sparrows Point Coal Chemical Plant, Maryland for Bethlehem Steel Corporation

    SciTech Connect (OSTI)

    Antrobus, K.; Platts, M. (Davy/Still Otto, Pittsburgh, PA (US)); Harbold, L. (Bethlehem Steel Corp., PA (USA)); Kornosky, R. (Office of Clean Coal Technology, US DOE, Pittsburgh, PA (US))

    1990-01-01T23:59:59.000Z

    In response to the Clean Coal II solicitation, Bethlehem Steel Corporation (BSC) submitted a proposal to the DOE in May 1988. The proposal submitted by BSC describes a Unique integration of commercial technologies developed by Davy/Still Otto to clean coke oven gas being produced at its Sparrows Point, Maryland steel plant. This innovative coke oven gas cleaning system combines secondary gas cooling with hydrogen sulfide and ammonia removal, hydrogen sulfide and ammonia recovery, ammonia destruction and sulfur recovery to produce a cleaner fuel gas for plant use. The primary environmental benefit associated with employing this innovative coke oven gas cleaning system is realized when the fuel gas is burned within the steel plant. Emissions of sulfur dioxide are reduced by more than 60 percent. The removal, recovery and destruction of ammonia eliminates the disposal problems associated with an unmarketable ammonium sulfate by-product. Significant reduction in benzene and hydrogen cyanide emissions are also obtained.

  7. Gas treatment and by-products recovery of Thailand`s first coke plant

    SciTech Connect (OSTI)

    Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31T23:59:59.000Z

    Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

  8. Defining the needs for gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-04-05T23:59:59.000Z

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

  9. Synthesis Gas Demonstration Plant, Baskett, Kentucky: environmental report

    SciTech Connect (OSTI)

    none,

    1980-01-01T23:59:59.000Z

    A summary of the potential environmental impacts of the construction and operation of the proposed plant is presented. The construction and operation of the plant are discussed in detail.

  10. Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants

    E-Print Network [OSTI]

    Clark, F.

    2008-01-01T23:59:59.000Z

    Improving Energy Efficiency and Reducing Greenhouse Gas Emissions in BPs PTA Manufacturing Plants Fred Clark Energy/GHG Advisor BP Aromatics & Acetyls Naperville, Illinois BP is the world?s leading producer of purified terephthalic acid...

  11. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

    2011-05-15T23:59:59.000Z

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  12. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01T23:59:59.000Z

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  13. Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants

    E-Print Network [OSTI]

    with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery

  14. Wireless channel characterization and modeling in oil and gas refinery plants

    E-Print Network [OSTI]

    Savazzi, Stefano

    Wireless channel characterization and modeling in oil and gas refinery plants Stefano Savazzi1 modeling approach is validated by experimental measurements in two oil refinery sites using industry and gas refinery sites are characterized by harsh environments where radio signals are prone to blockage

  15. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas

    E-Print Network [OSTI]

    Yang, Zhenyu

    Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu Campus, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark (e-mail: yang@et.aau.dk). Maersk Oil A/S, Kanalen 1, 6700 Esbjerg, Denmark (e-mail: Jens.Peter.Stigkaer@maerskoil.com) Ramboll Oil & Gas A/S, Willemoesgade

  16. A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics

    E-Print Network [OSTI]

    and Norwegian pollution laws. But the Labour Party and other opposition politicians insisted that regulations contended the gas-fired plants would slow Norway's dependence on imported electricity from Denmark, which is generated from even more carbon-intensive coal-fired plants. Over Bondevik objections, the parliament voted

  17. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  18. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect (OSTI)

    Stone, J.B.; Jones, G.N. [Exxon Production Research, Houston, TX (United States); Denton, R.D. [Exxon Production Malaysia, Inc., Kuala Lumpur (Malaysia)

    1996-12-31T23:59:59.000Z

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  19. Application of microturbines to control emissions from associated gas

    DOE Patents [OSTI]

    Schmidt, Darren D.

    2013-04-16T23:59:59.000Z

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  20. Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

  1. Gobar gas (biogas) survey in Nepal - 1979; a survey of three community biogas plants in Nepal - 1980; survey of present gobar gas work in India; and night soil gas plant

    SciTech Connect (OSTI)

    Bulmer, A.; Schlorholtz, A.; Fulford, D.J.; Peters, N.

    1980-01-01T23:59:59.000Z

    The first of these documents investigates the success of a project to bring the use of Biogas to Nepal. 50 users and 24 non-users were interviewed. The conclusions were that use of biogas in Nepal is successful, providing clean kitchens, healthier lives, and saving forests. They cause no social problems, but the service company for the plants needs improvement. The second report shows that community plants relying on continued cooperation are fragile enterprises. One of the plants ended up being run by one family, the gas distributed according to the dung input by each family. The gas was not used fully. Technical problems were partly responsible for this. In the second village technical problems and social problems reduced the number of users to 5 families from 26. In the third case the plant fell into disrepair but the social pattern of using a common area for defecation to fill the plant benefitted from having a permanent enclosure built. This scheme charged for use of the gas to help run the plant but the technical and social problems stymied correction. The third report lists the activities of various gobar gas research stations in India. The fourth report gives directions and specifications to build a night soil gas plant, including working drawings.

  2. Greenhouse Gas emissions from California Geothermal Power Plants

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-14T23:59:59.000Z

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  3. Greenhouse Gas emissions from California Geothermal Power Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

  4. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13T23:59:59.000Z

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  5. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect (OSTI)

    Harruff, L.G.; Bushkuhl, S.J. [Saudi Aramco, Dhahran (Saudi Arabia)

    1996-12-31T23:59:59.000Z

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  6. An automotive transmission for automotive gas turbine power plants

    SciTech Connect (OSTI)

    Polak, J.C.

    1980-01-01T23:59:59.000Z

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  7. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  8. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  9. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    SciTech Connect (OSTI)

    Sims, A.V.

    1983-06-01T23:59:59.000Z

    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  10. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas,Plant Liquids,

  11. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas,PlantCrudePlant

  12. Overall plant design specification Modular High Temperature Gas-cooled Reactor. Revision 9

    SciTech Connect (OSTI)

    NONE

    1990-05-01T23:59:59.000Z

    Revision 9 of the ``Overall Plant Design Specification Modular High Temperature Gas-Cooled Reactor,`` DOE-HTGR-86004 (OPDS) has been completed and is hereby distributed for use by the HTGR Program team members. This document, Revision 9 of the ``Overall Plant Design Specification`` (OPDS) reflects those changes in the MHTGR design requirements and configuration resulting form approved Design Change Proposals DCP BNI-003 and DCP BNI-004, involving the Nuclear Island Cooling and Spent Fuel Cooling Systems respectively.

  13. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Wayne Moe

    2013-05-01T23:59:59.000Z

    This document provides key definitions, plant capabilities, and inputs and assumptions related to the Next Generation Nuclear Plant to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor. These definitions, capabilities, and assumptions were extracted from a number of NGNP Project sources such as licensing related white papers, previously issued requirement documents, and preapplication interactions with the Nuclear Regulatory Commission (NRC).

  14. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31T23:59:59.000Z

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  15. New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion Cubic Feet) Gas,DecadeYear JanBarrels)

  16. Utah Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural GasCubic Feet)

  17. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May JunFuel Consumption

  18. Florida Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May JunFuel

  19. Florida Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May JunFuelProved

  20. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,perMississippi

  1. Gulf of Mexico-Alabama Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 2009

  2. Gulf of Mexico-Louisiana Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008 200988,219

  3. Gulf of Mexico-Mississippi Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008

  4. Gulf of Mexico-Texas Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million2008119,456

  5. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas NumberFuel

  6. New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas NumberFuel(Million

  7. New Mexico Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic

  8. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 0 0YearIndustrialFuelPlant

  9. ,"U.S. Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014Processing"

  10. U.S. Total Imports Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane, No.1 and No.DecreasesPlant Processing

  11. Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet) Lease and Plant

  12. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Plant Fuel

  13. Illinois Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Plant Fuel

  14. Indiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal ConsumptionperFeet)CommercialPlant

  15. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009Year Jan Feband PlantFuel(Million Cubic

  16. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal2009Year Jan Feband PlantFuel(Million

  17. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803and Plant Fuel ConsumptionDecadeFeet) 2012(Million

  18. Michigan Natural Gas Plant Liquids Production Extracted in Michigan

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803and Plant Fuel0 0DecadeDecade52 (Million(Million Cubic

  19. Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803and PlantLease(Million Cubic Feet) Extracted in

  20. Nebraska Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) (MillionFuelPlant

  1. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOffice of StateOklahomaField,Olde WestInformation

  2. Balance of Plant System Analysis and Component Design of Turbo-Machinery for High Temperature Gas Reactor Systems

    SciTech Connect (OSTI)

    Ronald G. Ballinger Chunyun Wang Andrew Kadak Neil Todreas

    2004-08-30T23:59:59.000Z

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a Generation IV nuclear system. The availability of controllable helium turbomachinery and compact heat exchangers are thus the critical enabling technology for the gas turbine cycle. The development of an initial reference design for an indirect helium cycle has been accomplished with the overriding constraint that this design could be built with existing technology and complies with all current codes and standards. Using the initial reference design, limiting features were identified. Finally, an optimized reference design was developed by identifying key advances in the technology that could reasonably be expected to be achieved with limited R&D. This final reference design is an indirect, intercooled and recuperated cycle consisting of a three-shaft arrangement for the turbomachinery system. A critical part of the design process involved the interaction between individual component design and overall plant performance. The helium cycle overall efficiency is significantly influenced by performance of individual components. Changes in the design of one component, a turbine for example, often required changes in other components. To allow for the optimization of the overall design with these interdependencies, a detailed steady state and transient control model was developed. The use of the steady state and transient models as a part of an iterative design process represents a key contribution of this work. A dynamic model, MPBRSim, has been developed. The model integrates the reactor core and the power conversion system simultaneously. Physical parameters such as the heat exchangers; weights and practical performance maps such as the turbine characteristics and compressor characteristics are incorporated into the model. The individual component models as well as the fully integrated model of the power conversion system have been verified with an industry-standard general thermal-fluid code Flownet. With respect to the dynamic model, bypass valve control and inventory control have been used as the primary control methods for the power conversion system. By performing simulation using the dynamic model with the designed control scheme, the combination of bypass and inventory control was optimized to assure system stability within design temperature and pressure limits. Bypass control allows for rapid control system response while inventory control allows for ultimate steady state operation at part power very near the optimum operating point for the system. Load transients simulations show that the indirect, three-shaft arrangement gas turbine power conversion system is stable and controllable. For the indirect cycle the intermediate heat exchanger (IHX) is the interface between the reactor and the turbomachinery systems. As a part of the design effort the IHX was identified as the key component in the system. Two technologies, printed circuit and compact plate-fin, were investigated that have the promise of meeting the design requirements for the system. The reference design incorporates the possibility of using either technology although the compact plate-fin design was chosen for subsequent analysis. The thermal design and parametric analysis with an IHX and recuperator using the plate-fin configuration have been performed. As a three-shaft arrangement, the turbo-shaft sets consist of a pair of turbine/compressor sets (high pressure and low pressure turbines with same-shaft compressor) and a power turbine coupled with a synchronous generator. The turbines and compressors are all axial type and the shaft configuration is horizontal. The core outlet/inlet temperatures are 900/520 C, and the optimum pressure ratio in the power conversion cycle is 2.9. The design achieves a plant net efficiency of approximately 48%.

  3. Seaway conversion moves Oklahoma gas to Texas plant

    SciTech Connect (OSTI)

    Bazin, G.L. II; Ince, R.L.

    1986-03-03T23:59:59.000Z

    Purchase and conversion to natural gas transmission of the Seaway crude oil pipeline was an effort to capitalize on the line's location to gather raw gas in Oklahoma and Texas for use as fuel at Phillips Petroleum Co.'s Sweeny, Tex., refinery. The Seaway pipeline was planned during the early 1970s as a major midwest oil artery. The purpose of the 30-in., 500-mile pipeline, extending from Jones Creek, Tex., to Cushing, Okla., was to feed inland midcontinent refineries with lower-cost imported oil. Owned by a consortium of seven companies, the pipeline began operation in mid-1976 and continued almost uninterrupted until 1982, at which time excess U.S. refining capacity, coupled with reduced oil imports, resulted in the closing of several large inland refineries. These refinery closings, along with reduced crude oil import demands, caused the Seaway pipeline to become inactive for several long periods of time. Since the forecast use of the pipeline was not favorable, the pipeline and its terminals were put up for sale.

  4. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    SciTech Connect (OSTI)

    none,

    1981-05-01T23:59:59.000Z

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  5. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect (OSTI)

    Eby, R.J.

    1980-12-01T23:59:59.000Z

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  6. Utility/user requirements for the Modular High Temperature Gas-Cooled Reactor Plant

    SciTech Connect (OSTI)

    Swart, F.E.

    1987-06-01T23:59:59.000Z

    The purpose of this document is to set forth the top level Utilty/User requirements for a Modular High Temperature Gas-Cooled Reactor electric generating plant that incorporates 4 reactors and 2 turbine-generators to produce a nominal electrical output of 550 MW net.

  7. Fast-flowing outlet glaciers on Svalbard ice caps

    SciTech Connect (OSTI)

    Dowdeswell, J.A. (Univ. of Cambridge (England)); Collin, R.L. (University College of Wales, Aberystwyth (England))

    1990-08-01T23:59:59.000Z

    Four well-defined outlet glaciers are present on the 2510 km{sup 2} cap of Vestfonna in Nordaustlandet, Svalbard. Airborne radio echo sounding and aerial-photograph and satellite-image analysis methods are used to analyze the morphology and dynamics of the ice cap and its component outlet glaciers. The heavily crevassed outlets form linear depressions in the ice-cap surface and flow an order of magnitude faster than the ridges of uncrevassed ice between them. Ice flow on the ridges is accounted for by internal deformation alone, whereas rates of outlet glacier flow require basal motion. One outlet has recently switched into and out of a faster mode of flow. Rapid terminal advance, a change from longitudinal compression to tension, and thinning in the upper basin indicate surge behavior. Observed outlet glacier discharge is significantly greater than current inputs of mass of the ice cap, indicating that present rates of flow cannot be sustained under the contemporary climate.

  8. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect (OSTI)

    NONE

    1998-07-30T23:59:59.000Z

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  9. EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO GROUP VIII METAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    EFFECTS ON CHP PLANT EFFICIENCY OF H2 PRODUCTION THROUGH PARTIAL OXYDATION OF NATURAL GAS OVER TWO with natural gas in spark ignition engines can increase for electric efficiency. In-situ H23 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and4 reformed

  10. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.

    2011-07-01T23:59:59.000Z

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  11. Assessment of the Flue Gas Recycle Strategies on Oxy-Coal Power Plants using an Exergy-based Methodology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of the Flue Gas Recycle Strategies on Oxy- Coal Power Plants using an Exergy to be competitive with post-combustion for carbon capture on coal-fired power plants. In order to achieve is produced from coal (IEA 2012b), the development of CO2 capture technology on coal-fired power plants

  12. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06T23:59:59.000Z

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  13. Dutch gas plant uses polymer process to treat aromatic-saturated water

    SciTech Connect (OSTI)

    NONE

    1998-11-02T23:59:59.000Z

    A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

  14. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J. [Magnitogorsk Integrated Iron and Steel Works, (Russian Federation); Gross, M. [Krupp Koppers GmbH, Essen (Germany)

    1995-12-01T23:59:59.000Z

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  15. ,"U.S. Total Exports Natural Gas Plant Processing"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks ofReservesNatural Gas

  16. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    SciTech Connect (OSTI)

    Goles, R.W.

    1996-03-01T23:59:59.000Z

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed.

  17. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  18. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    E-Print Network [OSTI]

    unknown authors

    Abstract—The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

  19. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas,Liquids

  20. ,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas,CoalbedPlant Liquids,

  1. Coke oven gas desulphurization by the Carl Still process

    SciTech Connect (OSTI)

    Knight, R.E.

    1981-01-01T23:59:59.000Z

    The Steubenville East Coke Plant need a desulfurization process that would desulfurize an eventual 95 million standard cubic feet per day of coke oven gas from an inlet of 450 gr/DSCF to an outlet of 45 gr/DSCF of hydrogen sulfide. The Dravo/Still plant process was selected, due to the use of ammonia which was available in the gas, as the absorbing agent. It was also a proven process. Dravo/Still also was capable of building a sulfuric acid plant. The desulfurization efficiency of the plant has consistently provided an average final gas sulfur loading below the guaranteed 45 gr/DSCF. This removal efficiency has enabled production of an average of 4615 tons per day of 66/sup 0/Be acid. Also SO/sub 2/ to SO/sub 3/ conversion has averaged 98%. 3 figures. (DP)

  2. NGNP: High Temperature Gas-Cooled Reactor Key Definitions, Plant Capabilities, and Assumptions

    SciTech Connect (OSTI)

    Phillip Mills

    2012-02-01T23:59:59.000Z

    This document is intended to provide a Next Generation Nuclear Plant (NGNP) Project tool in which to collect and identify key definitions, plant capabilities, and inputs and assumptions to be used in ongoing efforts related to the licensing and deployment of a high temperature gas-cooled reactor (HTGR). These definitions, capabilities, and assumptions are extracted from a number of sources, including NGNP Project documents such as licensing related white papers [References 1-11] and previously issued requirement documents [References 13-15]. Also included is information agreed upon by the NGNP Regulatory Affairs group's Licensing Working Group and Configuration Council. The NGNP Project approach to licensing an HTGR plant via a combined license (COL) is defined within the referenced white papers and reference [12], and is not duplicated here.

  3. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  4. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981

    SciTech Connect (OSTI)

    Eby, R.J.

    1981-03-01T23:59:59.000Z

    Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

  5. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01T23:59:59.000Z

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  6. alcohol outlet density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 21 Non-Intrusive Load Identification for Smart Outlets Sean Barker, Mohamed Musthag, David Irwin, and Prashant Shenoy Computer...

  7. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  8. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect (OSTI)

    Kadam, K. L.

    2001-06-22T23:59:59.000Z

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  9. Hazards to nuclear power plants from large liquefied natural gas (LNG) spills on water

    SciTech Connect (OSTI)

    Kot, C.A.; Eichler, T.V.; Wiedermann, A.H.; Pape, R.; Srinivasan, M.G.

    1981-11-01T23:59:59.000Z

    The hazards to nuclear power plants arising from large spills of liquefied natural gas (LNG) on water transportation routes are treated by deterministic analytical procedures. Global models, which address the salient features of the LNG spill phenomena are used in the analysis. A coupled computational model for the combined LNG spill, spreading, and fire scenario is developed. To predict the air blast environment in the vicinity of vapor clouds with pancake-like geometries, a scalable procedure using both analytical methods and hydrocode calculations is synthesized. Simple response criteria from the fire and weapons effects literature are used to characterize the susceptibility of safety-related power plant systems. The vulnerability of these systems is established either by direct comparison between the LNG threat and the susceptibility criteria or through simple response calculations. Results are analyzed.

  10. Texas - RRC District 5 Natural Gas Plant Liquids, Proved Reserves (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4.SyntheticBarrels) Gas Plant

  11. ,"Utah Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plant Liquids, Expected Future

  12. Idaho Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-MonthExportsLease and Plant

  13. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Banta, Larry [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Tucker, David [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Gemmen, Randall [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States)

    2010-08-01T23:59:59.000Z

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller’s main objective is to track and maintain hybrid operational constraints in the fuel cell’s cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  14. RELAP5-3D Transient Modelling for NGNP Integrated Plant

    SciTech Connect (OSTI)

    P. Sabharwall; N.A. Anderson

    2014-06-01T23:59:59.000Z

    The High-Temperature Gas-cooled Reactor (HTGR) is designed with outlet temperatures ranging between 750°C and 800°C. These high outlet temperatures enhance the power production efficiency and facilitate a variety of industrial applications. The objective of this study is to understand the response of the primary system to potential transients in the secondary system. For this analysis, the transient condition originates in the Intermediate Heat Exchanger (IHX) or Steam Generator (SG) of the HTGR-integrated plant. The transients analysed are: a loss of pressure; loss of feedwater flow; inadvertent closure of main steam valve; decrease in returning gas temperature and heat load step change. The results show a large dependence on the negative reactivity added to the fuel as a function of increased temperature. The returning gas temperature decrease transient resulted in the highest fuel temperature (1361°C). Fuel temperature was shown to be less than the 1600°C fuel limit for each case analysed.

  15. Final environmental information volume for the coke oven gas cleaning project at the Bethlehem Steel Corporation Sparrows Point Plant

    SciTech Connect (OSTI)

    Not Available

    1990-04-24T23:59:59.000Z

    Bethelehem Steel Corporation (BSC) is planning to conduct a demonstration project involving an integrated system that can be retrofitted into coke oven gas handling systems to address a variety of environmental and operational factors in a more cost-effective manner. Successful application of this technology to existing US coke plants could: (1) reduce emissions of sulfur dioxide, cyanide, and volatile organic compounds (including benzene) (2) reduce the cost and handling of processing feed chemicals, (3) disposal costs of nuisance by-products and (4) increase reliability and reduce operation/maintenance requirements for coke oven gas desulfurization systems. The proposed system will remove sulfur from the coke oven gas in the form of hydrogen sulfide using the ammonia indigenous to the gas as the primary reactive chemical. Ammonia and hydrogen cyanide are also removed in this process. The hydrogen sulfide removed from the coke oven gas in routed to a modified Claus plant for conversion to a saleable sulfur by-product. Ammonia and hydrogen cyanide will be catalytically converted to hydrogen, nitrogen, carbon dioxide, and carbon monoxide. The tail gas from the sulfur recovery unit is recycled to the coke oven gas stream, upstream of the new gas cleaning system. The proposed demonstration project will be installed at the existing coke oven facilities at BSC's Sparrows Point Plant. This volume describes the proposed actions and the resulting environmental impacts. 21 refs., 19 figs., 9 tabs.

  16. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31T23:59:59.000Z

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

  17. Audit of wet gas processing at Chevron's McKittrick Plant, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-04-10T23:59:59.000Z

    The purpose of the audit was to determine if: (1) volumes of wet gas delivered to the McKittrick plant were properly calculated and reported; (2) processing fees paid to Chevron conformed to contract provisions; (3) wet gas processing at Chevron's facility was economical; and (4) controls over natural gas liquid sales were adequate. Our review showed that there were weaknesses in internal controls, practices and procedures regarding the Department's management of the wet gas which is processed by Chevron under contract to the Reserve. The findings, recommendations and management comments are synopsized in the Executive Summary.

  18. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect (OSTI)

    JOE,J.

    2007-07-08T23:59:59.000Z

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  19. Realities of verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Swindle, D.W.

    1990-03-01T23:59:59.000Z

    Over a two and one-half year period beginning in 1981, representatives of six countries (United States, United Kingdom, Federal Republic of Germany, Australia, The Netherlands, and Japan) and the inspectorate organizations of the International Atomic Energy Agency and EURATOM developed and agreed to a technically sound approach for verifying the absence of highly enriched uranium (HEU) in gas centrifuge enrichment plants. This effort, known as the Hexapartite Safeguards Project (HSP), led to the first international concensus on techniques and requirements for effective verification of the absence of weapons-grade nuclear materials production. Since that agreement, research and development has continued on the radiation detection technology-based technique that technically confirms the HSP goal is achievable. However, the realities of achieving the HSP goal of effective technical verification have not yet been fully attained. Issues such as design and operating conditions unique to each gas centrifuge plant, concern about the potential for sensitive technology disclosures, and on-site support requirements have hindered full implementation and operator support of the HSP agreement. In future arms control treaties that may limit or monitor fissile material production, the negotiators must recognize and account for the realities and practicalities in verifying the absence of HEU production. This paper will describe the experiences and realities of trying to achieve the goal of developing and implementing an effective approach for verifying the absence of HEU production. 3 figs.

  20. UBC vehicles to run on natural gas by fallEighteen UBC vehicles operated by the Department of Physical Plant will

    E-Print Network [OSTI]

    Farrell, Anthony P.

    of Physical Plant will be running on compressed natural gas instead of gasoline by theend of September to bum compressed natural gas instead of gasoline is a fairly simpleoneand willbe carried out by a B

  1. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect (OSTI)

    Annen, K.D.

    1981-08-01T23:59:59.000Z

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  2. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  3. CO{sub 2} Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Lora Toy; Atish Kataria; Raghubir Gupta

    2011-09-30T23:59:59.000Z

    Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ï?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ï?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ï?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ï?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ï?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

  4. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough Retail

  5. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31T23:59:59.000Z

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  6. ,"New Mexico--East Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas,CrudePlant

  7. A Monte Carlo Analysis of Gas Centrifuge Enrichment Plant Process Load Cell Data

    SciTech Connect (OSTI)

    Garner, James R [ORNL; Whitaker, J Michael [ORNL

    2013-01-01T23:59:59.000Z

    As uranium enrichment plants increase in number, capacity, and types of separative technology deployed (e.g., gas centrifuge, laser, etc.), more automated safeguards measures are needed to enable the IAEA to maintain safeguards effectiveness in a fiscally constrained environment. Monitoring load cell data can significantly increase the IAEA s ability to efficiently achieve the fundamental safeguards objective of confirming operations as declared (i.e., no undeclared activities), but care must be taken to fully protect the operator s proprietary and classified information related to operations. Staff at ORNL, LANL, JRC/ISPRA, and University of Glasgow are investigating monitoring the process load cells at feed and withdrawal (F/W) stations to improve international safeguards at enrichment plants. A key question that must be resolved is what is the necessary frequency of recording data from the process F/W stations? Several studies have analyzed data collected at a fixed frequency. This paper contributes to load cell process monitoring research by presenting an analysis of Monte Carlo simulations to determine the expected errors caused by low frequency sampling and its impact on material balance calculations.

  8. Factors Affecting Cotton Producers' Choice of Marketing Outlet

    E-Print Network [OSTI]

    Pace, Jason 1979-

    2012-08-16T23:59:59.000Z

    Studies 4 Adoption Studies Employing Multinomial Logistic Regression ?.. 5 Hedging Studies ?????????????????????.. 8 Marketing Studies ????????????????????... 12 Non-cotton and General Commodity Marketing Studies ????. 12 Cotton Marketing Studies... Employing Multinomial Logistic Regression This paper will model the factors that influence several qualitative choices (cash marketing outlets) among cotton producers. The objective of qualitative choice modeling is to determine each explanatory...

  9. Increasing Energy Awareness Through Web-enabled Power Outlets

    E-Print Network [OSTI]

    , energy conservation, visualization, mobile phone, feedback systems. 1. INTRODUCTION In additionIncreasing Energy Awareness Through Web-enabled Power Outlets Markus Weiss Institute for Pervasive Computing Bits to Energy Lab ETH Zurich markus-weiss@ethz.ch Dominique Guinard MIT Auto-ID Labs SAP Research

  10. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01T23:59:59.000Z

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  11. Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel

    E-Print Network [OSTI]

    Columbia University

    Energy's patented technology produces a clean-burning by-product from the widest variety of processed-efficient technology represented by the coal-substitute technology. The same technology will be deployed by DIGGDigital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital

  12. 409g Implementation of Coordinator Mpc on a Large-Scale Gas Plant Elvira M. B Aske, Dept. of Chemical Engineering, Norwegian Univ of Sci & Tech (NTNU),

    E-Print Network [OSTI]

    Skogestad, Sigurd

    constraints. Most of the distillation columns at the Kårstø gas plant have already MPC installed with two409g Implementation of Coordinator Mpc on a Large-Scale Gas Plant Elvira M. B Aske, Dept is not necessary. The key issue is to identify the active "bottleneck" constraint and a coordinator MPC based

  13. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  14. In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Ward,R.; Rosenthal,M.

    2009-07-12T23:59:59.000Z

    Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector"s efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the "Option 4" safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo’s paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

  15. Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

  16. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    SciTech Connect (OSTI)

    Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

    2010-09-13T23:59:59.000Z

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  17. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect (OSTI)

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29T23:59:59.000Z

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  18. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, Paolo R. (Pittsburgh, PA); Dederer, Jeffrey T. (Valencia, PA); Gillett, James E. (Greensburg, PA); Basel, Richard A. (Plub Borough, PA); Antenucci, Annette B. (Pittsburgh, PA)

    1996-01-01T23:59:59.000Z

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.

  19. Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant

    DOE Patents [OSTI]

    Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.

    1996-11-12T23:59:59.000Z

    A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.

  20. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  1. A study of hazardous air pollutants at the Tidd PFBC Demonstration Plant

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Clean Coal Technology (CCD Program is a joint effort between government and industry to develop a new generation of coal utilization processes. In 1986, the Ohio Power Company, a subsidiary of American Electric Power (AEP), was awarded cofunding through the CCT program for the Tidd Pressure Fluidized Bed Combustor (PFBC) Demonstration Plant located in Brilliant, Ohio. The Tidd PFBC unit began operation in 1990 and was later selected as a test site for an advanced particle filtration (APF) system designed for hot gas particulate removal. The APF system was sponsored by the DOE Morgantown Energy Technology Center (METC) through their Hot Gas Cleanup Research and Development Program. A complementary goal of the DOE CCT and METC R&D programs has always been to demonstrate the environmental acceptability of these emerging technologies. The Clean Air Act Amendments of 1990 (CAAA) have focused that commitment toward evaluating the fate of hazardous air pollutants (HAPs) associated with advanced coal-based and hot gas cleanup technologies. Radian Corporation was contacted by AEP to perform this assessment of HAPs at the Tidd PFBC demonstration plant. The objective of this study is to assess the major input, process, and emission streams at Plant Tidd for the HAPs identified in Title III of the CAAA. Four flue gas stream locations were tested: ESP inlet, ESP outlet, APF inlet, and APF outlet. Other process streams sampled were raw coal, coal paste, sorbent, bed ash, cyclone ash, individual ESP hopper ash, APF ash, and service water. Samples were analyzed for trace elements, minor and major elements, anions, volatile organic compounds, dioxin/furan compounds, ammonia, cyanide, formaldehyde, and semivolatile organic compounds. The particle size distribution in the ESP inlet and outlet gas streams and collected ash from individual ESP hoppers was also determined.

  2. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, Billy Joe (Winter Park, FL); Whidden, Graydon Lane (Great Blue, CT)

    1999-01-01T23:59:59.000Z

    A method of converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit.

  3. Gas turbine combustor transition

    DOE Patents [OSTI]

    Coslow, B.J.; Whidden, G.L.

    1999-05-25T23:59:59.000Z

    A method is described for converting a steam cooled transition to an air cooled transition in a gas turbine having a compressor in fluid communication with a combustor, a turbine section in fluid communication with the combustor, the transition disposed in a combustor shell and having a cooling circuit connecting a steam outlet and a steam inlet and wherein hot gas flows from the combustor through the transition and to the turbine section, includes forming an air outlet in the transition in fluid communication with the cooling circuit and providing for an air inlet in the transition in fluid communication with the cooling circuit. 7 figs.

  4. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum

  5. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlant Liquids, Expected

  6. ,"Lower 48 Federal Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas,CoalbedPlantLiquids

  7. Thermionic combustor application to combined gas and steam turbine power plants

    SciTech Connect (OSTI)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.; Margulies, A.E.; Fusegni, L.J.; Lovell, B.J.

    1981-01-01T23:59:59.000Z

    The engineering and economic feasibility of a thermionic converter topped combustor for a gas turbine is evaluated in this paper. A combined gas and steam turbine system was chosen for this study with nominal outputs of the gas and steam turbines of 70 MW and 30 MW, respectively. 7 refs.

  8. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    SciTech Connect (OSTI)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01T23:59:59.000Z

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  9. A Robust Infrastructure Design for Gas Centrifuge Enrichment Plant Unattended Online Enrichment Monitoring

    SciTech Connect (OSTI)

    Younkin, James R [ORNL; Rowe, Nathan C [ORNL; Garner, James R [ORNL

    2012-01-01T23:59:59.000Z

    An online enrichment monitor (OLEM) is being developed to continuously measure the relative isotopic composition of UF6 in the unit header pipes of a gas centrifuge enrichment plant (GCEP). From a safeguards perspective, OLEM will provide early detection of a facility being misused for production of highly enriched uranium. OLEM may also reduce the number of samples collected for destructive assay and if coupled with load cell monitoring can provide isotope mass balance verification. The OLEM design includes power and network connections for continuous monitoring of the UF6 enrichment and state of health of the instrument. Monitoring the enrichment on all header pipes at a typical GCEP could require OLEM detectors on each of the product, tails, and feed header pipes. If there are eight process units, up to 24 detectors may be required at a modern GCEP. Distant locations, harsh industrial environments, and safeguards continuity of knowledge requirements all place certain demands on the network robustness and power reliability. This paper describes the infrastructure and architecture of an OLEM system based on OLEM collection nodes on the unit header pipes and power and network support nodes for groupings of the collection nodes. A redundant, self-healing communications network, distributed backup power, and a secure communications methodology. Two candidate technologies being considered for secure communications are the Object Linking and Embedding for Process Control Unified Architecture cross-platform, service-oriented architecture model for process control communications and the emerging IAEA Real-time And INtegrated STream-Oriented Remote Monitoring (RAINSTORM) framework to provide the common secure communication infrastructure for remote, unattended monitoring systems. The proposed infrastructure design offers modular, commercial components, plug-and-play extensibility for GCEP deployments, and is intended to meet the guidelines and requirements for unattended and remotely monitored safeguards systems.

  10. Approach to IAEA verification of the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP)

    SciTech Connect (OSTI)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1982-01-01T23:59:59.000Z

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP), should that plant be placed under IAEA safeguards. The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistics for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of (a) attributes and variables sample sizes for the various strata, (b) standard deviations of the relevant test statistics, and (c) the sensitivity for detection of diversion which the IAEA might achieve by this verification strategy at GCEP.

  11. Title: Net Energy Ratio and Greenhouse Gas Analysis of a Biogas Power Plant

    E-Print Network [OSTI]

    Bauer, Wolfgang

    biofuels our process provides 3.8 times more yield per hectare than bioethanol, geothermal power plants, bioethanol production facilities, and solar­6 and the same can be said for other energy plant feed stocks for bioethanol

  12. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah (Sarah Omer)

    2010-01-01T23:59:59.000Z

    Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

  13. Land O'Lakes Shaves Gas Usage through Steam System In-Plant Training

    Broader source: Energy.gov [DOE]

    Twelve participants from 6 different facilities learned and practiced energy efficiency assessment skills during the recent in-plant training at a Land O'Lakes dairy plant in Carlisle, Pennsylvania...

  14. Method and System for the Production of Hydrogen at Reduced VHTR Outlet Temperatures

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2009-10-01T23:59:59.000Z

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility dedicated to hydrogen production, early designs are expected to be dual purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor with electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. The integrated system of a Very High Temperature Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) hydrogen production plant is being investigated and this system, as it is currently envisioned, will produce hydrogen by utilizing a highly efficient VHTR with a VHTR outlet temperature of 900°C to supply the necessary energy and electricity to the HTSE unit. Though the combined system may produce hydrogen and electricity with high efficiency, the choices of materials that are suitable for use at 900°C are limited due to high-temperature strength, corrosion, and durability (creep) considerations. The lack of materials that are ASME (American Society of Mechanical Engineers) code-certified at these temperatures is also a problem, and is a barrier to commercial deployment. If the current system concept can be modified to produce hydrogen with comparable efficiency at lower temperatures, then the technical barriers related to materials selection and use might be eliminated, and the integrated system may have a much greater probability of succeeding at the commercial scale. This paper describes a means to reduce the outlet temperature of the VHTR to approximately 700°C while still maintaining plant high efficiency.

  15. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  16. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2006-03-07T23:59:59.000Z

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  17. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01T23:59:59.000Z

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  18. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  19. Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)

    E-Print Network [OSTI]

    Demirel, Melik C.

    Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

  20. Combustion-gas recirculation system

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lacon, IL)

    2007-10-09T23:59:59.000Z

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  1. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be achieved by using the adaptive KF.

  2. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01T23:59:59.000Z

    The AVESTAR Center located at the U.S. Department of Energy’s National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a “gasification with CO{sub 2} capture” process simulator with a “combined cycle” power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTAR’s IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  3. Universal model for water costs of gas exchange by animals and plants

    E-Print Network [OSTI]

    of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide meta- bolic and exchange systems. carbon dioxide | oxygen | respiration | temperature | scaling All for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model

  4. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  5. Computer-Aided Design Reveals Potential of Gas Turbine Cogeneration in Chemical and Petrochemical Plants 

    E-Print Network [OSTI]

    Nanny, M. D.; Koeroghlian, M. M.; Baker, W. J.

    1984-01-01T23:59:59.000Z

    Gas turbine cogeneration cycles provide a simple and economical solution to the problems created by rising fuel and electricity costs. These cycles can be designed to accommodate a wide range of electrical, steam, and process heating demands...

  6. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01T23:59:59.000Z

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  7. Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    E-Print Network [OSTI]

    Bashadi, Sarah O.

    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] ...

  8. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG StorageConsumptionPlant Liquids, Expected

  9. ,"New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids, Expected Future

  10. Gas turbine cycles with solid oxide fuel cells. Part 1: Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology

    SciTech Connect (OSTI)

    Harvey, S.P.; Richter, H.J. (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering)

    1994-12-01T23:59:59.000Z

    The energy conversion efficiency of the combustion process can be improved if immediate contact of fuel and oxygen is prevent4ed and an oxygen carrier is used. In a previous paper (Harvey et al., 1992), a gas turbine cycle was investigated in which part of the exhaust gases are recycled and used as oxygen-carrying components. For the optimized process, a theoretical thermal efficiency of 66.3% was achieved, based on the lower heating value (LHV) of the methane fuel. One means to further improve the exergetic efficiency of a power cycle is to utilize fuel cell technology. Solid oxide fuel cells (SOFC) have many features that make them attractive for utility and industrial applications. In this paper, the authors will therefore consider SOFC technology. In view of their high operating temperatures and the incomplete nature of the fuel oxidation process, fuel cells must be combined with conventional power generation technology to develop power plant configurations that are both functional and efficient. In this paper, the authors will show how monolithic SOFC (MSOFC) technology may be integrated into the previously described gas turbine cycle using recycled exhaust gases as oxygen carriers. An optimized cycle configuration will be presented based upon a detailed cycle analysis performance using Aspen Plus[trademark] process simulation software and a MSOFC fuel cell simulator developed by Argonne National Labs. The optimized cycle achieves a theoretical thermal efficiency of 77.7%, based on the LHV of the fuel.

  11. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

  12. Design Configurations and Coupling High Temperature Gas-Cooled Reactor and Hydrogen Plant

    SciTech Connect (OSTI)

    Chang H. Oh; Eung Soo Kim; Steven Sherman

    2008-04-01T23:59:59.000Z

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood.

  13. Rates and rites of passage: The use of natural gas in power plants

    SciTech Connect (OSTI)

    Bloom, D.I. [Mayer, Brown & Platt, Washington, DC (United States)

    1995-12-31T23:59:59.000Z

    There are many advantages to the use of natural gas in new or repowered electric generating facilities. These include lower capital costs, positive environmental impacts, the use of proven technology, and an adequate resource base with a highly reliable and flexible transportation system. However, it is also clear that FERC`s regulation of pipeline rates and operating practices has a direct impact on the bottom line of electric generators. a sober understanding of these rules, a careful integration of the rules into project documents, and a more commercial approach to transportation contracts will enhance the revenues and control the risks of the financially successful gas-fired electric generators.

  14. ,"Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plantand Wyoming Natural Gas

  15. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved Reserves, WetGas (Million(Million

  16. Elevated East Antarctic outlet glaciers during warmer-than-present climates in southern Victoria Land

    E-Print Network [OSTI]

    Marchant, David R.

    Elevated East Antarctic outlet glaciers during warmer-than-present climates in southern Victoria August 2011 Keywords: McMurdo Dry Valleys Taylor Dome Taylor Glacier cosmogenic Pliocene Pleistocene We document Plio-Pleistocene changes in the level of Taylor Glacier, an outlet glacier in southern Victoria

  17. Final Independent External Peer Review Report for the Mississippi River Gulf Outlet Ecosystem

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report for the Mississippi River ­ Gulf Outlet Ecosystem Prepared for Department of the Army U.S. Army Corps of Engineers Ecosystem Restoration Planning Center Independent External Peer Review Report for the Mississippi River-Gulf Outlet Ecosystem Restoration Plan

  18. Changes in the Dynamics of Marine-Terminating Outlet Glaciers in West Greenland (2000-2009)

    E-Print Network [OSTI]

    Howat, Ian M.

    Changes in the Dynamics of Marine-Terminating Outlet Glaciers in West Greenland (2000-2009) 1 2 3 of Greenland's marine-terminating outlet glaciers indicate a rapid and complex response to external forcing Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone

  19. Optimizing Technology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-01-31T23:59:59.000Z

    Revised maps and associated data show potential mercury, sulfur, and chlorine emissions for U.S. coal by county of origin. Existing coal mining and coal washing practices result in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Selection of low-mercury coal is a good mercury control option for plants having hot-side ESP, cold-side ESP, or hot-side ESP/FGD emission controls. Chlorine content is more important for plants having cold-side ESP/FGD or SDA/FF controls; optimum net mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions.

  20. Thermal Hydraulic Analyses for Coupling High Temperature Gas-Cooled Reactor to Hydrogen Plant

    SciTech Connect (OSTI)

    C.H. Oh; R. Barner; C. B. Davis; S. Sherman; P. Pickard

    2006-08-01T23:59:59.000Z

    The US Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the high-temperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant (NGNP), may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermalhydraulic and efficiency points of view.

  1. ,"Texas--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGross WithdrawalsMarketed

  2. ,"Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPrice (Dollars perPlant

  3. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  4. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect (OSTI)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31T23:59:59.000Z

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

  5. Leaf gas exchange and carbohydrate concentrations in Pinus pinaster plants subjected to elevated CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to elevated CO2 and a soil drying cycle Catherine Picon-Cochard Jean-Marc Guehl Unité de recherches en.) were acclimated for 2 years under ambient (350 ?mol mol-1)and elevated (700 ?mol mol-1) CO2 concentrations ([CO2]). In the summer of the second growing season, the plants were subjected to a soil drying

  6. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  7. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

  8. Risk analysis of highly combustible gas storage, supply, and distribution systems in PWR plants

    SciTech Connect (OSTI)

    Simion, G.P. [Science Applications International Corp., Albuquerque, NM (United States); VanHorn, R.L.; Smith, C.L.; Bickel, J.H.; Sattison, M.B. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Bulmahn, K.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1993-06-01T23:59:59.000Z

    This report presents the evaluation of the potential safety concerns for pressurized water reactors (PWRs) identified in Generic Safety Issue 106, Piping and the Use of Highly Combustible Gases in Vital Areas. A Westinghouse four-loop PWR plant was analyzed for the risk due to the use of combustible gases (predominantly hydrogen) within the plant. The analysis evaluated an actual hydrogen distribution configuration and conducted several sensitivity studies to determine the potential variability among PWRs. The sensitivity studies were based on hydrogen and safety-related equipment configurations observed at other PWRs within the United States. Several options for improving the hydrogen distribution system design were identified and evaluated for their effect on risk and core damage frequency. A cost/benefit analysis was performed to determine whether alternatives considered were justifiable based on the safety improvement and economics of each possible improvement.

  9. Measurement of the enrichment of uranium in the pipework of a gas centrifuge enrichment plant

    SciTech Connect (OSTI)

    Packer, T.W.; Lees, E.W.; Close, D.; Nixon, K.V.; Pratt, J.C.; Strittmatter, R.

    1985-01-01T23:59:59.000Z

    The US and UK have been separately working on the development of a NDA instrument to determine the enrichment of gaseous UF/sub 6/ at low pressures in cascade header pipework in line with the conclusions of the Hexapartite Safeguards Project viz. the instrument is capable of making a ''go/no go'' decision of whether the enrichment is less than/greater than 20%. Recently, there has been a series of very useful technical exchanges of ideas and information between the two countries. This has led to a technical formulation for such an instrumentation based on ..gamma..-ray spectrometry which, although plant-specific in certain features, nevertheless is based on the same physical principles. Experimental results from commercially operating enrichment plants are very encouraging and indicate that a complete measurement including set up time on the pipe should be attainable in about 30 minutes when measuring pipes of diameter around 110 mm. 5 refs., 4 figs.

  10. ,"U.S. Natural Gas Plant Field Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids Lease

  11. ,"U.S. Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014

  12. New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million Cubic Feet) New Yorkand Plant

  13. ,"Michigan Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNGCoalbedLiquidsPlant

  14. Control of SOx emission in tail gas of the Claus Plant at Kwangyang Steel Works

    SciTech Connect (OSTI)

    Kang, H.S.; Park, J.W.; Hyun, H.D. [POSCO, Cheonnam (Korea, Republic of). Kwangyang Works; Lee, D.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; Paik, S.C. [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering; Chung, J.S. [RIST, Pohang (Korea, Republic of). Div. of Environmental Catalysis; [POSTECH, Pohang (Korea, Republic of). Dept. of Chemical Engineering

    1995-12-01T23:59:59.000Z

    Pilot and/or laboratory studies were conducted in order to find methods for reducing the SOx emission in the Claus tail gas of the cokes unit. The TGT process which is based on the complete hydrogenation of the sulfur-containing compounds (SO{sub 2}, S) into H{sub 2}S and returning to the COG main line can reduce the SOx emission to zero. In case the return to the COG main is impossible, the SPOR process (Sulfur removal based on Partial Oxidation and Reduction) can be successfully applied to reduce the SOx emission.

  15. Texas - RRC District 6 Natural Gas Plant Liquids, Proved Reserves (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4.SyntheticBarrels) Gas

  16. Texas - RRC District 7B Natural Gas Plant Liquids, Proved Reserves (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4.SyntheticBarrels) GasBarrels)

  17. Texas - RRC District 8 Natural Gas Plant Liquids, Proved Reserves (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4.SyntheticBarrels)Barrels) Gas

  18. Utah Natural Gas Plant Liquids Production Extracted in Utah (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic Feet) Utah Natural Gas

  19. Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May Jun Jul AugFueland

  20. Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG,per

  1. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf

  2. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million Cubic Feet)

  3. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million Cubic

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million CubicLiquids,

  5. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf(Million

  6. Natural Gas Processing Plants in the United States: 2010 Update / Figure 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1. Natural Gas

  7. Natural Gas Processing Plants in the United States: 2010 Update / Table 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas Processing

  8. Natural Gas Processing Plants in the United States: 2010 Update / Table 2

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas Processing2.

  9. Natural Gas Processing Plants in the United States: 2010 Update / Table 3

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas Processing2.3.

  10. New Mexico Natural Gas Plant Liquids Production Extracted in New Mexico

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural Gas

  11. New Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New Mexico Natural GasCubic Feet)

  12. Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0and Plant Fuel

  13. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14DecadeDecadeFueland Plant

  14. U.S. Natural Gas Plant Liquids Production (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoalWithdrawalsPoint of Entry (MillionPlant

  15. ,"U.S. Natural Gas Plant Liquids Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014 ,"Release

  16. ,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+Liquids LeaseAnnual",2014 ,"ReleaseProduction,

  17. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (Dollars perPlant Liquids, Expected Future

  18. Alaska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSalesYear Janand Plant

  19. Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1 Year-2 Year-3Withdrawalsand Plant

  20. Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProduction (Million Barrels) Plant Liquids,

  1. Plants in Your Gas Tank: From Photosynthesis to Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired)of EnergyPlanned Audits andOneEnergy Plants

  2. Nebraska Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million Cubic Feet) Nebraskaand Plant

  3. Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (MillionYearNADecadeand Plant Fuel

  4. Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 2010 2011 2012DecadeFueland Plant

  5. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May JunFeet) DecadeDecadeand Plant Fuel

  6. ,"Arkansas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePrice (Dollars perPlant Liquids,

  7. ,"California--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrudePlant Liquids,

  8. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed Methane ProvedPlant Liquids,

  9. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01T23:59:59.000Z

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  10. Application of Condition-Based Monitoring Techniques for Remote Monitoring of a Simulated Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Hooper, David A [ORNL; Henkel, James J [ORNL; Whitaker, Michael [ORNL

    2012-01-01T23:59:59.000Z

    This paper presents research into the adaptation of monitoring techniques from maintainability and reliability (M&R) engineering for remote unattended monitoring of gas centrifuge enrichment plants (GCEPs) for international safeguards. Two categories of techniques are discussed: the sequential probability ratio test (SPRT) for diagnostic monitoring, and sequential Monte Carlo (SMC or, more commonly, particle filtering ) for prognostic monitoring. Development and testing of the application of condition-based monitoring (CBM) techniques was performed on the Oak Ridge Mock Feed and Withdrawal (F&W) facility as a proof of principle. CBM techniques have been extensively developed for M&R assessment of physical processes, such as manufacturing and power plants. These techniques are normally used to locate and diagnose the effects of mechanical degradation of equipment to aid in planning of maintenance and repair cycles. In a safeguards environment, however, the goal is not to identify mechanical deterioration, but to detect and diagnose (and potentially predict) attempts to circumvent normal, declared facility operations, such as through protracted diversion of enriched material. The CBM techniques are first explained from the traditional perspective of maintenance and reliability engineering. The adaptation of CBM techniques to inspector monitoring is then discussed, focusing on the unique challenges of decision-based effects rather than equipment degradation effects. These techniques are then applied to the Oak Ridge Mock F&W facility a water-based physical simulation of a material feed and withdrawal process used at enrichment plants that is used to develop and test online monitoring techniques for fully information-driven safeguards of GCEPs. Advantages and limitations of the CBM approach to online monitoring are discussed, as well as the potential challenges of adapting CBM concepts to safeguards applications.

  11. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2003-04-08T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  12. Compressor discharge bleed air circuit in gas turbine plants and related method

    DOE Patents [OSTI]

    Anand, Ashok Kumar (Niskayuna, NY); Berrahou, Philip Fadhel (Latham, NY); Jandrisevits, Michael (Clifton Park, NY)

    2002-01-01T23:59:59.000Z

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  13. Use of VFDs on Asphalt Plant Induced Draft Fans

    E-Print Network [OSTI]

    Anderson, G. R.; Case, P. L.; Lowery, J.

    2005-01-01T23:59:59.000Z

    Studies of 10 asphalt plants in the Intermountain Region have identified average ID fan energy savings of 68% by controlling airflow using Variable Frequency Drives (VFDs) on the fan motors in place of damper control (inlet or outlet). Average...

  14. Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier

    E-Print Network [OSTI]

    de Juan, J.; Elosegui, P.; Nettles, M.; Larsen, T.B.; Davis, J.L.; Hamilton, Gordon S.; Stearns, Leigh; Anderson, M.L.; Ekstrom, G.; Ahlstrom, A.P.; Stenseng, L.; Khan, S.A.; Forsberg, R.

    2010-06-23T23:59:59.000Z

    [1] Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near-instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal...

  15. Hydrology and dynamics of a land-terminating Greenland outlet glacier 

    E-Print Network [OSTI]

    Bartholomew, Ian David

    2012-11-29T23:59:59.000Z

    The purpose of this thesis is to investigate the hydrology and dynamics of a land-terminating outlet glacier on the western margin of the Greenland Ice Sheet (GrIS). The investigations are motivated by uncertainty about ...

  16. An analysis of the threshold necessary to sustain rural Texas retail outlets

    E-Print Network [OSTI]

    Adcock, Donna P

    1992-01-01T23:59:59.000Z

    AN ANALYSIS OF THE THRESHOLD NECESSARY TO SUSTAIN RURAL TEXAS RETAIL OUTLETS A Thesis by DONNA PFLUGER ADCOCK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1992 Major Subject: Agricultural Economics AN ANALYSIS OF THE THRESHOLD NECESSARY TO SUSTAIN RURAL TEXAS RETAIL OUTLETS A Thesis by DONNA PFLUGER ADCOCK Approved as to style and content by: Dennis U. Fisher (Chair...

  17. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    J. M. Beck; L. F. Pincock

    2011-04-01T23:59:59.000Z

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  18. The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover

    2009-09-01T23:59:59.000Z

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

  19. Exhaust gas recirculation system for an internal combustion engine

    DOE Patents [OSTI]

    Wu, Ko-Jen

    2013-05-21T23:59:59.000Z

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  20. Approach to IAEA material-balance verification with intermittent inspection at the Portsmouth Gas Centrifuge Enrichment Plant

    SciTech Connect (OSTI)

    Gordon, D.M.; Sanborn, J.B.

    1984-05-18T23:59:59.000Z

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP) for the circumstance in which the IAEA inspections occur on an intermittent basis. The verification approach is a variation of the standard IAEA attributes/variables measurement-verification method. This alternative approach is useful and applicable at the Portsmouth GCEP, which will ship all its product and tails UF/sub 6/ to United States facilities not eligible for IAEA safeguards. The paper reviews some of the relevant results of the Hexapartite Safeguards Project (HSP), describes the standard IAEA material-balance-verification approach for bulk-handling facilities, and provides the procedures to be followed in handling and processing UF/sub 6/ cylinders at the Portsmouth GCEP. The paper then discusses the assumptions made in the approach, and derives a formula for the probability with which the IAEA could detect the diversion of a significant quantity of uranium (75 kg of U-235 in depleted, normal, and low-enriched uranium) if this method were applied. The paper also provides numerical examples of IAEA detection probability should the operator divert uranium from the feed, product, or tails streams for the Portsmouth GCEP with a capacity of 1100 tonnes of separative work per year.

  1. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

  2. GAS HYDRATE EQUILIBRIA FOR CO2-N2 AND CO2-CH4 GAS MIXTURES, EXPERIMENTS AND MODELLING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    steelmaking plants, gas or coal power plants, chemical plants or natural gas production plants. Facing are by definition localized at the plants, like e.g. steelmaking plants, gas or coal power plants, chemical plants be in the order of several cubic meters of CO2 per second. In power plants, the concentration of CO2 is generally

  3. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01T23:59:59.000Z

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  4. Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

    E-Print Network [OSTI]

    1994-01-01T23:59:59.000Z

    Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

  5. Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow

    E-Print Network [OSTI]

    Blanco, Rafael Rodriguez

    2013-12-31T23:59:59.000Z

    In this investigation the performance of a gas turbine exhaust diffuser subject to the outlet flow conditions of a turbine stage is evaluated. Towards that goal, a fully three-dimensional computational analysis has been performed where several...

  6. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOE Patents [OSTI]

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23T23:59:59.000Z

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  7. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01T23:59:59.000Z

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  8. Fuel gas conditioning process

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01T23:59:59.000Z

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  9. Improvement of radar ice-thickness measurements of Greenland outlet glaciers using SAR processing

    E-Print Network [OSTI]

    Braaten, David A.; Gogineni, S. Prasad; Tammana, Dilip; Namburi, Saikiran; Paden, John; Gurumoorthy, Krishna K.

    2002-01-01T23:59:59.000Z

    Extensive aircraft-based radar ice-thickness measurements over the interior and outlet-glacier regions of the Greenland ice sheet have been obtained by the University of Kansas since 1993, with the latest airborne surveys conducted in May 2001...

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Moving UBC Food Outlets Beyond Climate Neutral

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Moving UBC Food Outlets ..................................................................................................................................... 27 Abstract With the increase in global energy use there has been a subsequent increase in greenhouse of qualitative interviews with key stakeholders. Key findings include the low supply of local food, the need

  11. Radar Measurements of Ice Sheet Thickness of Outlet Glaciers in Greenland D. Braaten+

    E-Print Network [OSTI]

    Kansas, University of

    Radar Measurements of Ice Sheet Thickness of Outlet Glaciers in Greenland D. Braaten+ and S of Kansas Lawrence, KS 66045 U.S.A. Abstract ­ We have conducted airborne measurements over the Greenland the mass balance of the Greenland ice sheet, the University of Kansas has been operating an airborne radio

  12. Response of a marineterminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago

    E-Print Network [OSTI]

    Briner, Jason P.

    Response of a marineterminating Greenland outlet glacier to abrupt cooling 8200 and 9300 years ago 16 December 2011. [1] Longterm records of Greenland outletglacier change extending beyond the satellite era can inform future predictions of Greenland Ice Sheet behavior. Of particular relevance

  13. Origin of stratified basal ice in outlet glaciers of Vatnaj okull and O rfaj okull, Iceland

    E-Print Network [OSTI]

    @msu.edu), Department of Geological Sciences, Michigan State University, East Lansing MI 48824, USA; Daniel E. Lawson (e@msu.edu), Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USAOrigin of stratified basal ice in outlet glaciers of Vatnaj ¨okull and O¨ ræfaj ¨okull, Iceland

  14. Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum

    E-Print Network [OSTI]

    Anderson, Nolan Alan

    2006-10-30T23:59:59.000Z

    plenum. Incomplete thermal mixing may give rise to thermal stresses in the downstream components. This analysis was performed by coupling a RELAP5-3D�© VHTR model to a Fluent outlet plenum model. The RELAP5 VHTR model outlet conditions provide the inlet...

  15. Non-Intrusive Load Identification for Smart Outlets Sean Barker, Mohamed Musthag, David Irwin, and Prashant Shenoy

    E-Print Network [OSTI]

    Shenoy, Prashant

    broad sectors of energy consumption--industry and transportation [1]. As a result, even small@ecs.umass.edu Abstract--An increasing interest in energy-efficiency com- bined with the decreasing cost of embedded, and then manually update the outlets meta-data in software whenever a new device is plugged into the outlet. Correct

  16. Plant power : the cost of using biomass for power generation and potential for decreased greenhouse gas emissions

    E-Print Network [OSTI]

    Cuellar, Amanda Dulcinea

    2012-01-01T23:59:59.000Z

    To date, biomass has not been a large source of power generation in the United States, despite the potential for greenhouse gas (GHG) benefits from displacing coal with carbon neutral biomass. In this thesis, the fuel cycle ...

  17. EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

  18. ,"Texas--RRC District 5 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids, Expected FuturePlant

  19. ,"Texas--RRC District 6 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids, ExpectedLiquids LeasePlant

  20. ,"Texas--RRC District 8A Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,LiquidsLiquids LeasePlant

  1. ,"Texas--RRC District 9 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,LiquidsLiquidsPlant

  2. ,"Texas--RRC District 7B Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,

  3. ,"Texas--RRC District 8 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,Liquids

  4. ,"New Mexico--West Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed Methane

  5. Analysis of the salinity regime of the Mississippi River - Gulf Outlet Channel

    E-Print Network [OSTI]

    Amstutz, David E

    1964-01-01T23:59:59.000Z

    Intersecting Channel Polynomial Coefficients (A ) n, m A Tendency Summary n, m Average Tidal Lag and Amplitude Change From Gage Station N-140A 16 30 35 LIST OF FIGURES FIGURE NO. PAGE Area Map Mississippi River ? Gulf Outlet Channel Station... of salinity and tidal data gathering stations are shown in Figure 2. The average time required for tidal propagation be- tween these two stations is 5. 0 hours. The sampling programs began at station TABLE 1 ACCURACY OF CHANNEL SALINITY DATA Salinity...

  6. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  7. California's Greenhouse Gas Policies: Local Solutions to a Global Problem?

    E-Print Network [OSTI]

    Bushnell, Jim B; Peterman, Carla Joy; Wolfram, Catherine D

    2007-01-01T23:59:59.000Z

    peak demand are natural gas fired combustion turbines. Thesenatural gas plants to “follow load” as the more nimble, combustion

  8. ,"Texas--RRC District 2 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDryCoalbedCoalbed MethanePlant

  9. ,"Texas--RRC District 4 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids, Expected Future Production

  10. ,"Texas--RRC District 7C Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant Liquids,Liquids Lease

  11. Report number ex. Ris-R-1234(EN) 1 Local CHP Plants between the Natural Gas and

    E-Print Network [OSTI]

    conversion capacity. In particular they supply a large share of the district heating networks with heat systems, viz., district heating, gas and electricity. 1 Introduction In Denmark, three energy systems form and district heating systems meet in combined heat and power (CHP) generation facilities, of which most

  12. USE OF MAILBOX APPROACH, VIDEO SURVEILLANCE, AND SHORT-NOTICE RANDOM INSPECTIONS TO ENHANCE DETECTION OF UNDECLARED LEU PRODUCTION AT GAS CENTRIFUGE ENRICHMENT PLANTS.

    SciTech Connect (OSTI)

    BOYER, B.D.; GORDON, D.M.; JO, J.

    2006-07-16T23:59:59.000Z

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability. ''Mailbox'' declarations have been used in the last two decades to verify receipts, production, and shipments at some bulk-handling facilities (e.g., fuel-fabrication plants). The operator declares the status of his plant to the IAEA on a daily basis using a secure ''Mailbox'' system such as a secure tamper-resistant computer. The operator agrees to hold receipts and shipments for a specified period of time, along with a specified number of annual inspections, to enable inspector access to a statistically large enough population of UF{sub 6} cylinders and fuel assemblies to achieve the desired detection probability. The inspectors can access the ''Mailbox'' during randomly timed inspections and then verify the operator's declarations for that day. Previously, this type of inspection regime was considered mainly for verifying the material balance at fuel-fabrication, enrichment, and conversion plants. Brookhaven National Laboratory has expanded the ''Mailbox'' concept with short-notice random inspections (SNRIs), coupled with enhanced video surveillance, to include declaration and verification of UF{sub 6} cylinder operational data to detect activities associated with undeclared LEU production at GCEPs. Since the ''Mailbox'' declarations would also include data relevant to material-balance verification, these randomized inspections would replace the scheduled monthly interim inspections for material-balance purposes; in addition, the inspectors could simultaneously perform the required number of Limited-Frequency Unannounced Access (LFUA) inspections used for HEU detection. This approach would provide improved detection capabilities for a wider range of diversion activities with not much more inspection effort than at present.

  13. Determination of the thermodynamic performance of a bottom outlet cyclone steam-water separator for geothermal use

    E-Print Network [OSTI]

    Chappell, Mark Andrew

    1979-01-01T23:59:59.000Z

    DETERMINATION OF THE THERMODYNAMIC PERFORMANCE OF A BOTTOM OUTLET CYCLONE STEAN-MATER SEPARATOR FOR GEOTHERMAL USE A Thesis by Mark Andrew Chappell Submitted to the Graduate College of Texas AEM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1979 Major Subject: Mechanical Engineering DETERMINATION OF THE THERMODYNAMIC PERFORMANCE OF A BOTTOM OUTLET CYCLONE STEAM-WATER SEPARATOR FOR GEOTHERMAL USE A Thesis by Mark Andrew Chappell...

  14. ,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural GasCoastal

  15. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

  16. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture

    SciTech Connect (OSTI)

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.

  17. The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)

    E-Print Network [OSTI]

    Griffin, B.

    energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large... manufacturing companies (larger than 50 employees) it can be compared in size and industrial output with Michigan or Ohio. All major industrial sectors are represented. The automotive, pulp and paper and steel industries are particulary large energy...

  18. ,"Texas (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to ElectricLNGLiquids Lease

  19. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShare ofPlant Liquids,

  20. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (Million Barrels)"

  1. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT COMMISSIONDECISION ENERGY COMMISSION Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT GAS TURBINE PLANT SMALL POWER PLANT EXEMPTION DOCKET NO. 06-SPPE-1 The California Energy Commission

  2. ,"California--Coastal Region Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural GasCoastal Region

  3. ,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural GasCoastalSan

  4. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect (OSTI)

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01T23:59:59.000Z

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  5. ,"Texas--RRC District 1 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDryCoalbed Methane

  6. ,"Texas--RRC District 10 Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDryCoalbed

  7. ,"Texas--RRC District 3 Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDryCoalbedCoalbedLiquids

  8. ,"California (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonsh ShalePlant

  9. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per ThousandLiquids Lease Condensate,Plant

  10. ,"Federal Offshore--Texas Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per ThousandLiquids LeaseNaturalPlant

  11. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06T23:59:59.000Z

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  12. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05T23:59:59.000Z

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  13. Optimizing Natural Gas Use: A Case Study

    E-Print Network [OSTI]

    Venkatesan, V. V.; Schweikert, P.

    2007-01-01T23:59:59.000Z

    Optimization of Steam & Energy systems in any continuously operating process plant results in substantial reduction in Natural gas purchases. During periods of natural gas price hikes, this would benefit the plant to control their fuel budget...

  14. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    Transportation ? · Fuel Cells ? · Electric Cars ? · Solar Electric Cars · Natural Gas ? · Combo-Cars · Hydrogen Nuclear Plants Operating Very Well · But, Generating Companies not Interested in New Nuclear Plants

  15. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG: Update on the World's Largest Landfill Gas to LNG Plant Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant Success story about LNG from landfill gas....

  16. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    SciTech Connect (OSTI)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01T23:59:59.000Z

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  17. Air/fuel supply system for use in a gas turbine engine

    SciTech Connect (OSTI)

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17T23:59:59.000Z

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  18. Passive gas separator and accumulator device

    DOE Patents [OSTI]

    Choe, H.; Fallas, T.T.

    1994-08-02T23:59:59.000Z

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.

  19. Demonstration of natural gas reburn for NO{sub x} emissions reduction at Ohio Edison Company`s cyclone-fired Niles Plant Unit Number 1

    SciTech Connect (OSTI)

    Borio, R.W.; Lewis, R.D.; Koucky, R.W. [ABB Power Plant Labs., Windsor, CT (United States)] [ABB Power Plant Labs., Windsor, CT (United States); Lookman, A.A. [Energy Systems Associates, Pittsburgh, PA (United States)] [Energy Systems Associates, Pittsburgh, PA (United States); Manos, M.G.; Corfman, D.W.; Waddingham, A.L. [Ohio Edison, Akron, OH (United States)] [Ohio Edison, Akron, OH (United States); Johnson, S.A. [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)] [Quinapoxet Engineering Solutions, Inc., Windham, NH (United States)

    1996-04-01T23:59:59.000Z

    Electric utility power plants account for about one-third of the NO{sub x} and two-thirds of the SO{sub 2} emissions in the US cyclone-fired boilers, while representing about 9% of the US coal-fired generating capacity, emit about 14% of the NO{sub x} produced by coal-fired utility boilers. Given this background, the Environmental Protection Agency, the Gas Research Institute, the Electric Power Research Institute, the Pittsburgh Energy Technology Center, and the Ohio Coal Development Office sponsored a program led by ABB Combustion Engineering, Inc. (ABB-CE) to demonstrate reburning on a cyclone-fired boiler. Ohio Edison provided Unit No. 1 at their Niles Station for the reburn demonstration along with financial assistance. The Niles Unit No. 1 reburn system was started up in September 1990. This reburn program was the first full-scale reburn system demonstration in the US. This report describes work performed during the program. The work included a review of reburn technology, aerodynamic flow model testing of reburn system design concepts, design and construction of the reburn system, parametric performance testing, long-term load dispatch testing, and boiler tube wall thickness monitoring. The report also contains a description of the Niles No. 1 host unit, a discussion of conclusions and recommendations derived from the program, tabulation of data from parametric and long-term tests, and appendices which contain additional tabulated test results.

  20. ELECTRICITY AND NATURAL GAS DATA COLLECTION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION HISTORICAL ELECTRICITY AND NATURAL GAS DATA COLLECTION Formsand of Power Plants Semi-Annual Report ..................................... 44 CEC-1306D UDC Natural Gas Tolling Agreement Quarterly Report.......................... 46 i #12;Natural Gas Utilities and Retailers

  1. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01T23:59:59.000Z

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  2. USING QUAD-POL AND SINGLE-POL RADARSAT-2 DATA FOR MONITORING ALPINE AND OUTLET ANTARCTIC GLACIERS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    USING QUAD-POL AND SINGLE-POL RADARSAT-2 DATA FOR MONITORING ALPINE AND OUTLET ANTARCTIC GLACIERS and antarctic glaciers surfaces. This method is adapted to the statistical characteristic of the new High of this method on glaciers monitoring. Three different glaciers have been chosen to test the algorithm: a cold

  3. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Bring Your Own Container Food Outlet Concept

    E-Print Network [OSTI]

    containers (plastic, glass) and the impact of BYOC program on vendors. The environmental assessment makes caused by BYOC. Also, some researches point out that some chemicals from plastic food containers might Into Bring Your Own Container Food Outlet Concept Xun Lu, Zhen Hong, Chun Teng Chen University of British

  4. System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

    2010-10-01T23:59:59.000Z

    A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

  5. Passive gas separator and accumulator device

    DOE Patents [OSTI]

    Choe, Hwang (Saratoga, CA); Fallas, Thomas T. (Berkeley, CA)

    1994-01-01T23:59:59.000Z

    A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.

  6. Diagnosis of Vascular Compression at the Thoracic Outlet Using Gadolinium-Enhanced High-Resolution Ultrafast MR Angiography in Abduction and Adduction

    SciTech Connect (OSTI)

    Hagspiel, Klaus D.; Spinosa, David J.; Angle, J. Fritz; Matsumoto, Alan H. [Division of Angiography and Interventional Radiology, Department of Radiology, Box 170, University of Virginia Health Sciences Center, Charlottesville, VA 22908 (United States)

    2000-03-15T23:59:59.000Z

    Gadolinium-enhanced magnetic resonance angiography allows rapid evaluation of the vascular structures of the thoracic outlet both in the neutral position and in abduction during one examination within FDA-approved dose limitations for contrast agents. The technique appears to be a good screening one for patients suspected of having vascular thoracic outlet syndrome.

  7. POWER-GEN '91 conference papers: Volume 7 (Non-utility power generation) and Volume 8 (New power plants - Gas and liquid fuels/combustion turbines). [Independent Power Production

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This is book 4 of papers presented at the Fourth International Power Generation Exhibition and Conference on December 4-6, 1991. The book contains Volume 7, Non-Utility Power Generation and Volume 8, New Power Plants - Gas and Liquid Fuels/Combustion Turbines. The topics of the papers include PUHCA changes and transmission access, financing and economics of independent power projects, case histories, combustion turbine based technologies, coal gasification, and combined cycle.

  8. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo (Champaign, IL); Lu, Yonggi (Urbana, IL); Rostam-Abadi, Massoud (Champaign, IL)

    2011-11-22T23:59:59.000Z

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  9. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  10. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01T23:59:59.000Z

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  11. Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb MarProved

  12. Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet) YearLiquids58,899 60,167

  13. Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569 02,208,920 2,175,026

  14. Michigan Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan (MillionProved2008

  15. Mississippi Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) PriceLiquids, Proved Reserves2008

  16. Montana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade Year-0andProved

  17. Tennessee Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel Consumption(Million

  18. Arkansas Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (BillionFuel6,531 2,352 9,599 5,611

  19. California Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (MillionLiquids,

  20. Colorado Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008 2009 2010 2011 2012

  1. Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (Million CubicCubic Feet)2008

  2. Texas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul Aug Sep OctandLiquids,

  3. Utah Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYear Jan2008 2009 2010

  4. Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 201070,174 674,124

  5. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)Sales (BillionIndustrial53,028 248,232 242,444

  6. Alaska Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building Floorspace (Square Feet)SalesYear Jan Feb2009 (Million,901,760

  7. Natural Gas Plant Liquids Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration22)May£661.DataNov-14Liquids

  8. Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation 9Year Jan Feb2008 2009 2010

  9. Oklahoma Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion Cubic Feet)Year2008 2009 2010 2011

  10. Pennsylvania Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuel Consumption (Million2008 2009 2010

  11. Combustor assembly in a gas turbine engine

    DOE Patents [OSTI]

    Wiebe, David J; Fox, Timothy A

    2013-02-19T23:59:59.000Z

    A combustor assembly in a gas turbine engine. The combustor assembly includes a combustor device coupled to a main engine casing, a first fuel injection system, a transition duct, and an intermediate duct. The combustor device includes a flow sleeve for receiving pressurized air and a liner disposed radially inwardly from the flow sleeve. The first fuel injection system provides fuel that is ignited with the pressurized air creating first working gases. The intermediate duct is disposed between the liner and the transition duct and defines a path for the first working gases to flow from the liner to the transition duct. An intermediate duct inlet portion is associated with a liner outlet and allows movement between the intermediate duct and the liner. An intermediate duct outlet portion is associated with a transition duct inlet section and allows movement between the intermediate duct and the transition duct.

  12. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01T23:59:59.000Z

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

  13. Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps

    SciTech Connect (OSTI)

    Boyer, Brian D [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Moran, Bruce W [IAEA; Lebrun, Alain [IAEA

    2009-01-01T23:59:59.000Z

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step in enhancing the ability of NDA beyond present attended systems. The possibility of monitoring the feed, tails, and product header pipes in such a way as to gain safeguards relevant flow and enrichment information without compromising the intellectual property of the operator including proprietary equipment and operational parameters would be a huge step forward. This paper contains an analysis of possible improvements in unattended and attended NDA systems including such process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector measurements reducing the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GeEPs safeguards.

  14. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    natural gas supply contract and gas transportation agreement when required for Texas Tech UniversityPHYSICAL PLANT OPERATING POLICY AND PROCEDURE PP/OP 05.09: Gas Supply and Transportation Contract, 2010 Page 2 PP/OP 05.09 d. Gas Transportation Agreement - Two main gas transportation lines serve

  15. Superfund record of decision (EPA Region 4): USDOE Paducah Gas Diffusion Plant, Northeast Plume Operable Unit, Paducah, KY, June 15, 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The decision document presents the selected interim remedial action for the Northeast Plume at the Paducah Gaseous Diffusion Plant (PGDP) near Paducah, Kentucky. The primary objective of the interim remedial action is to implement a first-phase remedial action as an interim action to initiate hydraulic control of the high concentration area within the Northeast Plume that extends outside the plant security fence.

  16. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  17. CONCEPTUAL STUDIES OF A FUEL-FLEXIBLE LOW-SWIRL COMBUSTION SYSTEM FOR THE GAS TURBINE IN CLEAN COAL POWER PLANTS

    SciTech Connect (OSTI)

    Smith, K.O.; Littlejohn, David; Therkelsen, Peter; Cheng, Robert K.; Ali, S.

    2009-11-30T23:59:59.000Z

    This paper reports the results of preliminary analyses that show the feasibility of developing a fuel flexible (natural gas, syngas and high-hydrogen fuel) combustion system for IGCC gas turbines. Of particular interest is the use of Lawrence Berkeley National Laboratory's DLN low swirl combustion technology as the basis for the IGCC turbine combustor. Conceptual designs of the combustion system and the requirements for the fuel handling and delivery circuits are discussed. The analyses show the feasibility of a multi-fuel, utility-sized, LSI-based, gas turbine engine. A conceptual design of the fuel injection system shows that dual parallel fuel circuits can provide range of gas turbine operation in a configuration consistent with low pollutant emissions. Additionally, several issues and challenges associated with the development of such a system, such as flashback and auto-ignition of the high-hydrogen fuels, are outlined.

  18. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  19. WTE plant planned for Palermo (Sicily, Italy) (Translation of Italian text by Lucia Rigamonti)

    E-Print Network [OSTI]

    Columbia University

    and will have three lines. Each line will be equipped with a water-cooled mobile grate combustor. The emission heating value (LHV) kJ kg-1 11,515 Furnace thermal power MWth 73.5 Gas temperature at furnace outlet °C

  20. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  1. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (“syn-gas”). To date, however, no fuel cell...

  2. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30T23:59:59.000Z

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  3. Convex Relaxations for Gas Expansion Planning

    E-Print Network [OSTI]

    2015-06-24T23:59:59.000Z

    major gas-fired power plants in the northeast of the U.S. were forced to shut .... mission system while minimizing investment, purchase, and transportation costs.

  4. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design 

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    2001-01-01T23:59:59.000Z

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  5. Application of the Concept of Exergy in the Selection of a Gas-Turbine Engine for Combined-Cycle Power Plant Design

    E-Print Network [OSTI]

    Huang, F. F.; Naumowicz, T.

    It has been shown that the second-law efficiency of a gas-turbine engine may be calculated in a rational and simple manner by making use of an algebraic equation giving the exergy content of turbine exhaust as a function of exhaust temperature only...

  6. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  7. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  8. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  9. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  10. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Broader source: Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  11. Final Technical Report for the Period September 2002 through September 2005; H2-MHR Pre-Conceptual Design Report: SI-Based Plant; H2-MHR Pre-Conceptual Design Report: HTE-Based Plant

    SciTech Connect (OSTI)

    M. Richards; A. Shenoy; L. Brown; R. Buckingham; E. Harvego; K. Peddicord; M. Reza; J. Coupey

    2006-04-19T23:59:59.000Z

    For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor, known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For electricity production, the MHR operates with an outlet helium temperature of 850 C to drive a direct, Brayton-cycle power-conversion system with a thermal-to-electrical conversion efficiency of 48 percent. This concept is referred to as the Gas Turbine MHR (GT-MHR). For hydrogen production, both electricity and process heat from the MHR are used to produce hydrogen. This concept is referred to as the H2-MHR. This report provides pre-conceptual design descriptions of full-scale, nth-of-a-kind H2 MHR plants based on thermochemical water splitting using the Sulfur-Iodine process and High-Temperature Electrolysis.

  12. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  13. Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis

    E-Print Network [OSTI]

    Silver, Whendee

    working paper "CO2 Regulations and Electricity Prices: Cost Estimates for Coal-Fired Power Plants." We capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants source of CO2 emissions. For the U.S. alone, coal-fired and natural gas power plants contributed more

  14. Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    SciTech Connect (OSTI)

    Kulcinski, G.L.

    2002-12-01T23:59:59.000Z

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

  15. Ion transport membrane module and vessel system with directed internal gas flow

    DOE Patents [OSTI]

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09T23:59:59.000Z

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  16. Wood Burning Combined Cycle Power Plant 

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  17. Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)

    SciTech Connect (OSTI)

    Jeffrey D Bryan

    2009-09-01T23:59:59.000Z

    This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

  18. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    SciTech Connect (OSTI)

    Gorensek, M.

    2011-07-06T23:59:59.000Z

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  19. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01T23:59:59.000Z

    sensor for measurements of gas turbine exhaust temperature."O, CO 2 , and Temperature in Gas Turbine Exhaust through theview of UCSD power plant gas turbine systems 31

  20. Plants & Animals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. February 2,...

  1. Terra nitrogen Company, L.P.: Ammonia Plant Greatly Reduces Natural Gas Consumption After Energy Assessment. Industrial Technologies Program (ITP) Save Energy Now Case Study.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTank 48HThisDepartmentTerra Nitrogen plant

  2. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    NO x ) in a flue gas desulphurization system. The ventedscrubbing in a flue gas desulphurization (FGD) plant usingx , e.g. , flue gas desulphurization (FGD) through injection

  3. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  4. Researching power plant water recovery

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A range of projects supported by NETl under the Innovations for Existing Plant Program are investigating modifications to power plant cooling systems for reducing water loss, and recovering water from the flue gas and the cooling tower. This paper discusses two technologies showing particular promise condense water that is typically lost to evaporation, SPX technologies' Air2Air{sup trademark} condenses water from a cooling tower, while Lehigh University's process condenses water and acid in flue gas. 3 figs.

  5. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    SciTech Connect (OSTI)

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31T23:59:59.000Z

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  6. Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards

    SciTech Connect (OSTI)

    Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

  7. On-site profiling and speciation of polycyclic aromatic hydrocarbons at manufactured gas plant sites by a high temperature transfer line, membrane inlet probe coupled to a photoionization detector and gas chromatography/mass spectrometer

    SciTech Connect (OSTI)

    Thomas Considine; Albert Robbat Jr. [Tufts University, Medford, MA (United States). Chemistry Department, Center for Field Analytical Studies and Technology

    2008-02-15T23:59:59.000Z

    A new high temperature transfer line, membrane inlet probe (HTTL-MIP) coupled to a photoionization detector (PID) and gas chromatograph/mass spectrometer (GC/MS) was used to rapidly profile and speciate polycyclic aromatic hydrocarbons (PAH) in the subsurface. PID signals were in agreement with GC/MS results. Correlation coefficients of 0.92 and 0.99 were obtained for discrete and composite samples collected from the same exact location. Continuous probe advancement with PID detection found coal tar, a dense nonaqueous phase liquid, in soil channels and saturated media. When samples were collected conventionally, split, solvent extracted, and analyzed in the field and confirmation laboratory, GC/MS measurement precision and accuracy were indistinguishable; despite the fact the field laboratory produced data five times faster than the laboratory using standard EPA methods. No false positive/negatives were found. Based on these findings, increased confidence in site conceptual models should be obtained, since PID response indicated total PAH presence/absence in 'real-time', while GC/MS provided information as to which PAH was present and at what concentration. Incorporation of this tool into a dynamic workplan will provide more data at less cost enabling environmental scientists, engineers, and regulators to better understand coal tar migration and its impact on human health and the environment. 24 refs., 3 figs., 4 tabs.

  8. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01T23:59:59.000Z

    based on (a) natural gas with post-combustion CO 2 capturenatural gas combined cycle (NGCC) plants with post-combustion

  9. Seventy-seventh annual convention Gas Processors Association: Proceedings

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    The 42 papers in these proceedings discuss the following topics: gas hydrates; gas transport; emission abatement; acid gas disposal; control of processing plants; NGL and LPG recovery; marketing; underground storage; NGL fractionation; and plant optimization. Papers have been processed separately for inclusion on the data base.

  10. Low energy synthesis gas systems - New technology

    SciTech Connect (OSTI)

    Julemont, V.; Ribesse, J.

    1988-01-01T23:59:59.000Z

    Natural gas steam reforming today covers more than 70% of synthesis gas production. The gas specific consumption has been largely improved during the last thirty years. It has now reached 32 GJ/metric ton of NH/sub 3/ on HHV, from 45 in the sixties. Ammonia is still the major user of synthesis gas. The successive improvements are: thermal energy recovery from the combustion gases at the outlet of the tubular reformer, where only 40% of the energy input is absorbed by the endothermal reaction; better quality of the reforming and conversion catalysts; better CO/sub 2/ removal processes; improved catalyst for ammonia and methanol synthesis and recovery of the H/sub 2/ from the purge gas. One of these processes has been successfully experimented. It involves the suppression of the tubular steam reforming, replaced by a simpler autothermal catalytic reactor and the new REGATE reheater of reactant gases to 1500/sup 0/C under pressure (air + steam for NH/sub 3/, recycled gas + steam for H/sub 2/ and CH/sub 3/OH). No oxygen is needed. The system is simpler, more efficient (27,0 GJ/metric ton of NH/sub 3/ HHV) and safer.

  11. Acoustic Camera Evaluation of Juvenile Salmonid Approach and Fate at Surface Flow Outlets of Two Hydropower Dams

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Johnson, Gary E.; Weiland, Mark A.; Khan, Fenton; Mueller, Robert P.; Serkowski, John A.; Rakowski, Cynthia L.; Hedgepeth, J.; Skalski, John R.; Ebberts, Blaine D.; Klatte, Bernard A.

    2006-08-04T23:59:59.000Z

    The objective of this study was to estimate and compare fate probabilities for juvenile salmon approaching two surface flow outlets (SFOs) to identify effective design characteristics. The SFOs differed principally in forebay location, depth, discharge, and water velocity over a sharp-crested weir. Both outlets were about 20 ft wide. The 22-ft deep Bonneville Powerhouse 2 Corner Collector (B2CC) was located in the southwest corner of the forebay and passed 5,000 ft3/s of water at normal-pool elevation. In contrast, The Dalles Dam ice and trash sluiceway outlet above Main Unit 1-3 (TDITC) was not located in a forebay corner, was only 7-ft deep, and discharged about 933 ft3/s at normal-pool elevation. The linear velocity of water over the weir was about 15 ft/s at the B2CC and 5 ft/s at the TDITC. We used a Dual-Frequency Identification Sonar (DIDSON) to record movements of fish within about 65 ft of the B2CC and within 35 ft of the TDITC. We actively tracked fish by manually adjusting pan and tilt rotator angles to keep targets in view. Contrary to expectations, active tracking did not provide a predominance of long tracks that clearly indicated fish fate because most tracks were incomplete. Active tracking did increase error in fish-position estimation, which complicated data processing, so we plan to sample multiple fixed zones in the future. The probability of fish entering each SFO was estimated by a Markov chain analysis, which did not require complete fish tracks. At the B2CC, we tracked 7,943 juvenile salmonids and most of them entered the B2CC. Fish moving south 40 to 60 ft upstream of the dam face were more likely to enter the eddy at the south end of the powerhouse than to enter the B2CC. At the TDITC, we tracked 2,821 smolts. Fish movement was complex with active swimming toward and away from the entrance. The high entrance probability zone (EPZ), where over 90% of tracked fish entered the SFO, extended 32 ft out at the B2CC and only 8 ft out at the TDITC. Greater discharge at the B2CC pushed the entrainment zone (EZ - where flow exceeded 7 ft/s) upstream from the entrance so that fish were entrained before they began to struggle against the flow. The high EPZ also was extended by flow along the powerhouse face at both sites, but more at the B2CC (about 450 ft) than at the TDITC (about 50 ft). Fish entering the large south eddy that circulated past the B2CC entrance were provided multiple opportunities to discover and enter. In contrast, fish moving past the sampled TDITC entrance either entered adjacent sluiceway openings or moved west to the spillway because there was no eddy to provide additional opportunities. Information from our study should be useful to fisheries managers and engineers seeking to transfer SFO technologies from one site to another. There are two important components to designing SFOs, the location within the forebay to take advantage of forebay circulation and specific entrance characteristics such as discharge and depth which affect the size and shape of the EZ and the high EPZ. Providing SFOs with an EZ extending upstream of structure could reduce entrance rejection, decrease forebay residence time and risk of predation, and increase passage of schools of smolts.

  12. Simulation of the Visual Effects of Power Plant Plumes1

    E-Print Network [OSTI]

    Standiford, Richard B.

    -fired power plant with six 500 MW coal-fired power plants located at hypothetical sites in southeastern Utah coal-fired power plants are greater than those from oil or natural gas. If we must use more coal, how in a comparison of large and small coal-fired power plants in the West. Using hypothetical power plants

  13. Assessment of next generation nuclear plant intermediate heat exchanger design.

    SciTech Connect (OSTI)

    Majumdar, S.; Moisseytsev, A.; Natesan, K.; Nuclear Engineering Division

    2008-10-17T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP), which is an advanced high temperature gas reactor (HTGR) concept with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 900-1000 C. In the indirect cycle system, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, nitrogen/helium mixture, or a molten salt. The system concept for the vary high temperature reactor (VHTR) can be a reactor based on the prismatic block of the GT-MHR developed by a consortium led by General Atomics in the U.S. or based on the PBMR design developed by ESKOM of South Africa and British Nuclear Fuels of U.K. This report has made an assessment on the issues pertaining to the intermediate heat exchanger (IHX) for the NGNP. A detailed thermal hydraulic analysis, using models developed at ANL, was performed to calculate heat transfer, temperature distribution, and pressure drop. Two IHX designs namely, shell and straight tube and compact heat exchangers were considered in an earlier assessment. Helical coil heat exchangers were analyzed in the current report and the results were compared with the performance features of designs from industry. In addition, a comparative analysis is presented between the shell and straight tube, helical, and printed circuit heat exchangers from the standpoint of heat exchanger volume, primary and secondary sides pressure drop, and number of tubes. The IHX being a high temperature component, probably needs to be designed using ASME Code Section III, Subsection NH, assuming that the IHX will be classified as a class 1 component. With input from thermal hydraulic calculations performed at ANL, thermal conduction and stress analyses were performed for the helical heat exchanger design and the results were compared with earlier-developed results on shell and straight tube and printed circuit heat exchangers.

  14. Apparatus and method for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-11T23:59:59.000Z

    A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.

  15. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01T23:59:59.000Z

    and storage costs) Technology Cost of electricity (excludingstages of commercialization Technology Capital cost Flue gasPlant type and technology Capital cost $/kW NGCC plant

  16. Morris Plant Energy Efficiency Program 

    E-Print Network [OSTI]

    Betczynski, M. T.

    2004-01-01T23:59:59.000Z

    installed on several olefins cracking furnaces in order to improve heat recovery from the cracked process gas. As a result of the additional heat recovery, steam imported from the cogeneration facility was reduced by 45,000 lbs/hr. The large turbines... integrated an Aspen-based plant-wide data historian, which is utilized to compile process data from control and measurement points throughout the Morris plant. On-line optimization using this extensive data repository has helped the plant better...

  17. Feed gas contaminant control in ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Minford, Eric (Laurys Station, PA); Waldron, William Emil (Whitehall, PA)

    2009-07-07T23:59:59.000Z

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  18. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31T23:59:59.000Z

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

  19. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  20. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOE Patents [OSTI]

    Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

    2010-08-10T23:59:59.000Z

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  1. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31T23:59:59.000Z

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  2. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  3. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01T23:59:59.000Z

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  4. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

    2002-01-01T23:59:59.000Z

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    plant’s energy needs. Oil and gas journal, 10 February 1992.of distillation units. Oil and Gas Journal, 21 June, 1999.in Dutch). Oil and Gas Journal (2005). 2005 Worldwide

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    plant’s energy needs. Oil and gas journal, 10 February 1992.of distillation units. Oil and Gas Journal, 21 June, 1999.the Netherlands (in Dutch). Oil and Gas Journal (2005). 2005

  7. ASPEN simulation of the SNG production process in an indirect coal-liquefaction plant

    SciTech Connect (OSTI)

    Bistline, J E; Shafer, T B

    1982-08-01T23:59:59.000Z

    The synthetic natural gas (SNG) production process (methanation, CO-shift, and hydrogen removal) in an indirect coal-liquefaction plant was simulated using the Advanced System for Process Engineering (ASPEN). The simulation of the methanation unit agreed to within 12% of Fluor's design for converting carbon monoxide and carbon dioxide. A parametric study examined the effect of four important operating parameters on product composition, process thermal efficiency, and outlet temperature from the second methanation reactor. The molar split of gas feed to the CO-shift unit before methanation was varied from 0.2 to 0.6; variations of molar recycle ratio (0.01 - 0.67), molar steam-to-feed ratio (0.04 - 0.19), and feed temperature (478 - 533 K, 400-500/sup 0/F) to the first methanation reactor were also studied. A 50%-lower split improved thermal efficiency by 6%, but the mole % hydrogen and carbon monoxide in the product SNG required to meet pipeline-quality standards and temperature constraints were not met. Increasing the steam-to-feed ratio from 0.04 to 0.19 improved product quality but decreased thermal efficiency by 8%. By decreasing the feed temperature from 533 to 477 K (500 to 400/sup 0/F), product specifications and temperature constraints were met with no effect on thermal efficiency. However, it may be impractical to operate the reactor at 477 K (400/sup 0/F) because the kinetics are too slow. Increasing the recycle ratio from 0.4 to 0.67 had no effect on thermal efficiency, and temperature constraints and product specifications were met. The SNG production process should be optimized at recycle ratios above 0.67.

  8. Economics of gobar gas

    SciTech Connect (OSTI)

    Pang, A.; Shrestha, P.C.; Fulford, D.

    1980-01-01T23:59:59.000Z

    This series of reports follows a sequence necessary to start and run a biogas project. The first provides and introduction to biogas, its costs, and its yields. Its use will conserve forests, create clean, healthy fuel and fertilizer, and save Nepal foreign exchange. The feasibility study considered water and dung supply, degree of cooperation among the affected villagers, the need for the plant, and intangibles such as erosion control. The initial survey investigates the community social situation, needs, and cooperation. The Gobar Gas company had had personnel problems which decreased service, but the problems were being worked out. The project has been highly successful. The 11 Chinese plants worked well with no leaks from the cement but the gas valves leaked. The scum breaker also caused problems. The high quality plaster work required is the greatest hindrance.

  9. advanced underground gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a stream of gas from a CO2 well in southwestern Colorado with a Vacuum Pressure Swing Adsorption (VPSA) plant. The gas from the well contains argon at a concentration of...

  10. Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare

    E-Print Network [OSTI]

    Williams, C.

    2004-01-01T23:59:59.000Z

    Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

  11. Experimental Characterization and Molecular Study of Natural Gas Mixtures

    E-Print Network [OSTI]

    Cristancho Blanco, Diego Edison

    2011-08-08T23:59:59.000Z

    ) 5, advanced gas turbine 5 and coal-based zero emissions power plant 6 are some of the technological advances recently reported. It is important to note that these technologies are adaptable to natural gas feedstock. However, until clean coal...

  12. Gas Turbine Technology, Part B: Components, Operations and Maintenance 

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1985-01-01T23:59:59.000Z

    This paper builds on Part A and discusses the hardware involved in gas turbines as well as operations and maintenance aspects pertinent to cogeneration plants. Different categories of gas turbines are reviewed such as heavy duty aeroderivative...

  13. Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare 

    E-Print Network [OSTI]

    Williams, C.

    2004-01-01T23:59:59.000Z

    Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel...

  14. Reliable Gas Turbine Output: Attaining Temperature Independent Performance 

    E-Print Network [OSTI]

    Neeley, J. E.; Patton, S.; Holder, F.

    1992-01-01T23:59:59.000Z

    Improvements in gas turbine efficiency, coupled with dropping gas prices, has made gas turbines a popular choice of utilities to supply peaking as well as base load power in the form of combined cycle power plants. Today, because of the gas turbine...

  15. Samson Sherman President Obama's Energy Plan & Natural Gas

    E-Print Network [OSTI]

    Toohey, Darin W.

    Samson Sherman President Obama's Energy Plan & Natural Gas The Plan On March 30, President Obama" but includes wind, solar, nuclear, natural gas, and coal plants that can capture and store CO2 emissions period. Natural Gas Natural gas is considered the cleanest of all fossil fuels. Mostly comprised

  16. An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-07-31T23:59:59.000Z

    This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.

  17. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  18. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  19. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  20. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008

    SciTech Connect (OSTI)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.; Deng, Zhiqun; Fu, Tao; Monter, Tyrell J.; Johnson, Gary E.; Khan, Fenton; Wilberding, Matthew C.; Cushing, Aaron W.; Zimmerman, Shon A.; Faber, Derrek M.; Durham, Robin E.; Townsend, Richard L.; Skalski, John R.; Kim, Jina; Fischer, Eric S.; Meyer, Matthew M.

    2009-12-01T23:59:59.000Z

    The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

  1. Multifuel fossil fired Power Plant combined with off-shore wind

    E-Print Network [OSTI]

    Straw Wood Oil ESP Desulphurisation plant Air preheater De-NOx plant Heat recovery units Gas turbines #12;Energi E2 Recent powerplants ! AVEDORE UNIT 2 ! 585 MW multifuel unit ! Commissioned 2002 ! NYSTED diagram of the Multifuel Concept Biomass Gas/Coal/ Oil/ Boiler Steam Turbine plant Gas turbine with waste

  2. Water augmented indirectly-fired gas turbine systems and method

    DOE Patents [OSTI]

    Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  3. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy LP","Natural Gas","Entergy RISE",528 2,"Manchester Street","Natural Gas","Dominion Energy New England, LLC",447 3,"Tiverton Power Plant","Natural Gas","Tiverton Power...

  4. Evaluation on Energy Performance of Heating Plant System Installed Energy Saving Technologies 

    E-Print Network [OSTI]

    Song, Y.; Akashi, Y.; Kuwahara, Y.; Baba, Y.; Iribe, M.

    2004-01-01T23:59:59.000Z

    is paper presents all of the heating plant system except steam heating as boilers. Integrated Cooling Tower In general, the traditional relations between cooling towers and refrigerating machines are on a one to one basis. But in the case... water outlet temperature in cooling tower. When the quantity of the flow exceeds the default values, another group of unit cells goes stand by mode. And if the overflow state continues beyond a set time, another group of unit cells runs. In the case...

  5. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    SciTech Connect (OSTI)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21T23:59:59.000Z

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for both the PBMR and prismatic design. The main focus of this report is the RPV for both design concepts with emphasis on material selection.

  6. What You Should Know About Plant Diseases.

    E-Print Network [OSTI]

    Horne, C. Wendell; Smith, Harlan E.

    1962-01-01T23:59:59.000Z

    . From 1845 to 1860, plant disease caused a disaster in Irelantl. Late blight struck the potato- yrowing region and turned the fields into a black- ened, rotting mass. A million people diet1 because I the potato crop failed; numerous families.... OTHER CONDITIONS WHICH MAY CAUSE PLANT IN JURY 1. Drying winds 2. Excessive light 3. Excessive lime in the soil 4. Over-use of commercial fertilizer 5. Gas injury PARASITIC OR SAPROPHYTIC PLANTS MISTLETOE-Mistletoe is a parasitic flowering plant...

  7. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  8. Natural Gas Plant Field Production: Natural Gas Liquids

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb2009Field

  9. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01T23:59:59.000Z

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  10. Light and Plants Plants use light to photosynthesize. Name two places that light can come from

    E-Print Network [OSTI]

    Koptur, Suzanne

    Light and Plants Plants use light to photosynthesize. Name two places that light can come from: 1 (CO2, a gas) from the air and turn it into SUGARS (food). This process is powered by energy from light plants) for energy. Photosynthetically Active Radiation (PAR) is a combination of red light and blue

  11. Small Power Plant Exemption (06-SPPE-1) Imperial County

    E-Print Network [OSTI]

    Small Power Plant Exemption (06-SPPE-1) Imperial County NILAND GAS TURBINE PLANT PRESIDINGMEMBER Member STANLEY VALKOSKY Chief Hearing Adviser GARRET SHEAN Hearing Officer Small Power Plant Exemption to construct and operate large electric power plants, including the authority to exempt proposals under 100 MW

  12. Miniature solid-state gas compressor

    DOE Patents [OSTI]

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07T23:59:59.000Z

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  13. Miniature solid-state gas compressor

    DOE Patents [OSTI]

    Lawless, William N. (518 Illinois Ct., Westerville, OH 43081); Cross, Leslie E. (401 Glenn Rd., State College, PA 16801); Steyert, William A. (c/o Oakhurst Dr., R.D. 1, Box 99, Center Valley, PA 18034)

    1985-01-01T23:59:59.000Z

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described.

  14. Materials performance in coal gasification pilot plants

    SciTech Connect (OSTI)

    Judkins, R.R.; Bradley, R.A.

    1987-10-15T23:59:59.000Z

    This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

  15. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L. [U.S. Steel, Clairton, PA (United States)

    1995-12-01T23:59:59.000Z

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  16. Kansas-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268 258,649 189,679

  17. Kansas-Oklahoma Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268 258,649

  18. Kansas-Texas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268 258,649142 141

  19. Kentucky-Kentucky Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 55 1060,941

  20. Michigan-Michigan Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exportsper Thousand Cubic9 6 2011 2012

  1. Mississippi-Mississippi Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same 2011 2012 2013 View History

  2. South Dakota Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 (Million Cubic(Million

  3. Tennessee-Tennessee Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4.Synthetic 1980-2003 Propane-Air340 2011

  4. Microsoft Word - RBL-RUL_Gas-Plant

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:FEngineers®652 U.S. Department ofRio

  5. Microsoft Word - RBL-RUL_Gas-Plant

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:FEngineers®652 U.S. Department

  6. Arkansas-Arkansas Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0 11 2011 2012

  7. Colorado-Colorado Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602 1,622,434,507,467 1,460,433

  8. Colorado-Kansas Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602 1,622,434,507,467 1,460,43378 151

  9. Colorado-Utah Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain,606,602 1,622,434,507,467 1,460,43378

  10. West Virginia Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(Million Cubic Feet) WestProved2008

  11. Wyoming-Colorado Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan 2012 2013 View

  12. Wyoming-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYearYear Jan 2012 2013

  13. Utah-Utah Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand CubicWorking

  14. Utah-Wyoming Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand CubicWorking11,554

  15. Natural Gas Plant Liquids Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb2009FieldNatural

  16. Natural Gas Lease and Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996)2009 2010 2011

  17. U.S. Natural Gas Plant Processing

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,902 Federal Offshore Gulf

  18. U.S. Natural Gas Processing Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,932 130,902 Federal Offshore

  19. Montana-Montana Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206 12,493

  20. Montana-Wyoming Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206 12,49376

  1. Natural Gas Lease and Plant Fuel Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 3,958,315storage challenges

  2. North Dakota Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1 (Million Cubic Feet)Proved

  3. Ohio-Ohio Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation3,262,7160 0 0Working

  4. Oklahoma-Kansas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion

  5. Oklahoma-Oklahoma Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion,121,999 1,282,707 1,349,870

  6. Oklahoma-Texas Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion,121,999 1,282,707 1,349,8706,462

  7. Renewable Energy: Plants in Your Gas Tank

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3 *Activities)of

  8. Pennsylvania-Pennsylvania Natural Gas Plant Processing

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand CubicFuelDecade Year-0(Dollars per 0 0Cubic2011

  9. Preliminary Assumptions for Natural Gas Peaking

    E-Print Network [OSTI]

    ; adjusted to 2012$, state construction cost index, vintage of cost estimate, scope of estimate to extent's Discussion Aeroderivative Gas Turbine Technology Proposed reference plant and assumptions Preliminary cost Robbins 2 #12;Peaking Power Plant Characteristics 6th Power Plan ($2006) Unit Size (MW) Capital Cost ($/k

  10. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27T23:59:59.000Z

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  12. Fissible Deposit Characterization at the Former Oak Ridge K-25 Gaseous Diffusion Plant by {sup 252}CF-Source-Driven Measurements

    SciTech Connect (OSTI)

    Hannon, T.F.; Mihalczo, J.T.; Mullens, J.A.; Uckan, T.; Valentine, T.E.; Wyatt, M.S.

    1998-05-01T23:59:59.000Z

    The Deposit Removal Project was undertaken with the support of the U. S. Department of Energy at the East Tennessee Technology Park (ETTP) formerly the Oak Ridge K-25 Site. The project team performed the safe removal of the hydrated uranyl fluoride (UO{sub 2}F{sub 2}) deposits from the K-29 Building of the former Oak Ridge Gaseous Diffusion Plant. The deposits had developed as a result of air leakage into UF{sub 6} gas process pipes; UO{sub 2}F{sub 2} became hydrated by moisture from the air and deposited inside the pipes. The mass, its distribution, and the hydrogen content [that is, the ratio of H to U (H/U)], were the key parameters that controlled the nuclear criticality safety of the deposits. Earlier gamma-ray spectrometry measurements in K-29 had identified the largest deposits in the building. The first and third largest deposits in the building were measured in this program. The first deposit, found in the Unit 2, Cell 7, B-Line Outlet process pipe (called the ''Hockey Stick'') was about 1,300 kg ({+-} 50% uncertainty) at 3.34 wt% {sup 235}U enrichment ({+-}50% uncertainty) and according to the gamma-ray spectroscopy was uniformly distributed. The second deposit (the third-largest deposit in the building), found in the Unit 2, Cell 6, A-Line Outlet process pipe (called the ''Tee-Pipe''), had a uranium deposit estimated to be about 240 kg ({+-} 50% uncertainty) at 3.4 wt % {sup 235}U enrichment ({+-} 20% uncertainty). Before deposit removal activities began, the Deposit Removal Project team needed to survey the inside of the pipes intrusively to assess the nuclear criticality safety of the deposits. Therefore, the spatial distribution of the deposits, the total uranium deposit mass, and the moderation level resulting from hydration of the deposits, all of which affect nuclear criticality safety were required. To perform the task safely and effectively, the Deposit Removal Project team requested that Oak Ridge National Laboratory (ORNL) characterize the two largest deposits with the {sup 252}Cf-source-driven transmission (CFSDT) technique, an active neutron interrogation method developed for use at the Oak Ridge Y-12 Plant to identify nuclear weapons components in containers. The active CFSDT measurement technique uses CFSDT time-of-flight measurements of prompt neutrons and gamma rays from an externally introduced {sup 252}Cf source.

  13. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    2000-04-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, the capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons as well as novel sorbents were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  14. Bayou Cogeneration Plant- A Case Study

    E-Print Network [OSTI]

    Bray, M. E.; Mellor, R.; Bollinger, J. M.

    BLOWDOWN ARCO GAS (TOTAL TO COGEN SYSTEM) (10%) Figure 6. The Bayou Cogenerotion Plant is configured into four power generation trains with 0 combined output of 300 MW of electric power and 1.4 million Ib/hr of process steam. ., A gas turbine...

  15. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  16. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

    1981-01-01T23:59:59.000Z

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  17. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  18. A Survey of Power Plant Designs

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    University #12;Combustion Turbine Power Plant Open System The turbine burns either natural gas or oil. Fuel is mixed with compressed air in the combustion chamber and burned. High-pressure combustion gases spin. The Southaven Combined-Cycle Combustion Turbine Plant is located near Desoto County, Mississippi. Running

  19. Targeting of Potential Industrial Cogeneration at the Plant Site

    E-Print Network [OSTI]

    Toy, M. P.; Brown, H. L.; Hamel, B. B.; Hedman, B. A.

    1983-01-01T23:59:59.000Z

    Combined Cycle/Coal 3,000 ... 2,000 - '" a " U a '" g .... ... ':! ~ 1,000 - c:: CJ co a ;..) f Cycle Gas Turbine/ Gas Turbines/Oil/N. Gas 500q...- -:1 -----Il..=~r,:_--.... o sector. A total of 70% of the plants and 92... POIoER OF GENERATION OF GENERATION TECHNOLOGY PLANTS PERCENT (MW) PERC NT PLANTS PERCENT (HW) PERCENT Di sel 7 51 6 1 47 St am Turb in" (Non Coal-Fired) 889 28 848 2 30 3 22 S earn Turbine (Coal-Fired) 1391 44 12051 28 392 39 66 7 23 Gas Turbine...

  20. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01T23:59:59.000Z

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  1. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  2. Recovering Flare Gas Energy - A Different Approach

    E-Print Network [OSTI]

    Brenner, W.

    depend on a compressor to pull suction on the pressurized flare line and pump the gas into a plant-wide fuer gas system. Because SunOlin shares its flare system with an adjacent oil refinery, any change to the flare system operation could have far... design and operating scheme incorporating the results of the HAZOP study. The major features of our flare gas recovery system, then, are as follows: A 30" main flare gas header originating in the adjacent oil refinery is routed through the Sun...

  3. Tips and traps for reapplying used process plants

    SciTech Connect (OSTI)

    Conder, M.W.

    1999-07-01T23:59:59.000Z

    Many gas processing projects are based on reapplying used gas processing plants and equipment. There has been little information or advice in the literature which provides practical advice for this type of project. GPA's Technical Section A Committee has been developing a monograph on experiences in reapplying used plants and equipment. This paper includes excerpts from that monograph and presents advice illustrated by recent experiences with used plants.

  4. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01T23:59:59.000Z

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  5. Final Flue Gas Cleaning (FFGC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    .F., Blythe, OG.M., Carey, T.R., Radian International & Rhudy, R.G., EPRI & Brown, T.D., Federal Energy Technology Center-DOE, ”Enhanced Control of Mercury by Wet FGD Systems, 1999 f Gramite. Evan J. and Pennline, Henry W., “Photochemical Removal of Mercury... from the Texas Commission on Environmental Quality (TCEQ). The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a power plant to determine the optimum emission reduction system...

  6. Modern and Little Ice Age equilibrium-line altitudes on Outlet Valley glaciers from Jostedalsbreen, western Norway: An evaluation of different approaches to their calculation

    SciTech Connect (OSTI)

    Torsnes, I.; Rye, N. (Univ. of Bergen (Norway)); Nesje, A. (Univ. of Bergen, Bergen-Sandviken (Norway))

    1993-05-01T23:59:59.000Z

    The modern and Little Ice Age (LIA) equilibrium-line altitude (ELA) of 20 outlet valley glacier from Jostedalsbreen, western Norway, has been calculated using different approaches. Using an accumulation area ratio (AAR) of 0.6 [+-] 0.05 gave a mean little Ice Age ELA depression of 70 m. A method developed by M. Kuhle, taking the influence by topography into account gave a mean ELA depression of 35-255 m, the median elevation of glaciers 115 m, and the toe-to-headwall altitude ration 140 m. Differences in the ELA estimates can be attributed to the differences in topography and morphology of the glaciers. The AAR method appears to provide the most reliable results. This will aid in determining mean global temperatures during the LIA. 34 refs., 9 figs., 5 tabs.

  7. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.; Erbes, M.

    2011-03-01T23:59:59.000Z

    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  8. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  9. www.biosciencemag.org November 2006 / Vol. 56 No. 11 BioScience 875 Green Plants, Fossil Fuels, and Now Biofuels

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    , and Now Biofuels For 700 million years,green plants contributed to the formation of soil,oil,natural gas

  10. Fiberglass plastics in power plants

    SciTech Connect (OSTI)

    Kelley, D. [Ashland Performance Materials (United States)

    2007-08-15T23:59:59.000Z

    Fiberglass reinforced plastics (FRPs) are replacing metal in FGDs, stacks, tanks, cooling towers, piping and other plant components. The article documents the use of FRP in power plants since the 1970s. The largest volume of FRP in North American power plants is for stack liners and ductwork. Absorber vessel shells and internal components comprise the third largest use. The most common FRP absorber vessels are known as jet bubbling reactors (JBRs). One of the largest JBRs at a plant on the Ohio River removes 99% of sulphur dioxide from high sulphur coal flue gas. FRPs last twice as long as wood structures when used for cooling towers and require less maintenance. 1 tab., 2 photos.

  11. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  12. Strategic Planning, Design and Development of the Shale Gas Supply Chain Network

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and fluids from the pure gas (methane) to produce what is known as "pipeline quality" dry natural gas.[2 in wells, providing raw materials for oil refineries or petrochemical plants, and as sources of energy.[3

  13. Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020

    E-Print Network [OSTI]

    Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

    2007-01-01T23:59:59.000Z

    generation: 50% of electricity from central grid natural gas plantsgeneration: 100% of electricity from central grid natural gas plantselectricity comes from central station natural-gas- fired combined cycle generation, and the other half comes from natural-gas-fired single cycle plants. •

  14. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  15. Final Flue Gas Cleaning (FFGC)

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

  16. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect (OSTI)

    Nick Soelberg; Joe Enneking

    2011-05-01T23:59:59.000Z

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  17. advanced natural gas-fired: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drum Dryer for Food Processing Applications is the final report 8 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Environmental Sciences...

  18. X-ray evaluation of coke-oven gas line deposits

    SciTech Connect (OSTI)

    Swain, Y.T.

    1983-08-01T23:59:59.000Z

    Control of coke-oven gas pipeline deposits has been facilitated through the use of an X-ray technique that provides quantitative data without disrupting plant operations.

  19. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-08-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  20. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-01-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.