National Library of Energy BETA

Sample records for outdoor gas light

  1. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor...

    Office of Environmental Management (EM)

    Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications Fact sheet ...

  2. Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Lighting Outdoor Lighting Outdoor lighting consumes a significant amount of energy-about 1.3 quadrillion Btu annually-costing about $10 billion per year. In the last five years, a number of municipalities have switched to new LED technologies that can reduce energy costs by approximately 50% over conventional lighting technologies and provide additional savings of 20 to 40% with advance lighting controls. Beyond cost and energy savings, the higher efficiency of LED lights provides other

  3. Connected Outdoor Lighting Systems for Municipalities - Text...

    Energy Savers [EERE]

    Outdoor Lighting Systems for Municipalities - Text-Alt Version Connected Outdoor Lighting Systems for Municipalities - Text-Alt Version Welcome, everyone. This is Bruce Kinzey with ...

  4. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  5. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. Outdoor Area Lighting (June 2008) (3.16 MB) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  6. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, N. J.; Koltai, R. N.; McGowan, T. K.

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  7. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  8. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  9. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  10. Outdoor Lighting Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » Municipal Consortium » Outdoor Lighting Resources Outdoor Lighting Resources DOE offers a variety of resources to guide municipalities, utilities, and others in their evaluation of LED street lighting products. The following documents are available as Adobe Acrobat PDFs. POSTINGS The Postings provide updates from DOE on solid-state lighting program events and examine technology trends and performance issues related to solid-state

  11. Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian...

    Office of Environmental Management (EM)

    Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Lead Performer: OLEDWorks LLC - ...

  12. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  13. Outdoor Solar Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on Outdoor Lighting Solar panels are a great way to produce clean energy at home | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Harnessing Solar Energy at Home...

  14. Big Savings on Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Big Savings on Outdoor Lighting Big Savings on Outdoor Lighting July 14, 2014 - 5:47pm Addthis Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights provide attractive lighting around your home's exterior and require little maintenance. | Photo courtesy of ©iStockphoto.com/ndejan Christina Stowers Communications Specialist in the Weatherization and Intergovernmental

  15. Summer Loving-Energy-Efficient Outdoor Lighting! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer Loving-Energy-Efficient Outdoor Lighting! Summer Loving-Energy-Efficient Outdoor Lighting! June 20, 2013 - 9:47am Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Erin

  16. Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast

    Broader source: Energy.gov [DOE]

    In this October 8, 2009 webcast, ENERGY STAR Program Manager Richard Karney gave an overview of ENERGY STAR criteria covering SSL-based outdoor area and roadway lighting, outdoor wall packs,...

  17. Outdoor Solid-State Lighting Technology Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Products & Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The Federal Energy Management Program (FEMP) outdoor SSL initiative offers a unique opportunity for the federal sector to lead large-scale imple-mentation

  18. Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Outdoor OLED Luminaire Using Solar Energy for Lighting Pedestrian Areas Lead Performer: OLEDWorks LLC - Rochester, NY DOE Total Funding: $148,368 Project Term: June 8, 2015 - March 8, 2016 Funding Opportunity: FY2015 Phase I Release 2 SBIR Awards PROJECT OBJECTIVE The recipient, currently the only commercial OLED lighting panel manufacturer in the U.S., will develop a concept for an outdoor OLED

  19. Connected Outdoor Lighting Systems For Municipalities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Outdoor Lighting Systems For Municipalities Connected Outdoor Lighting Systems For Municipalities This webinar is intended for municipal staff who have had some introduction to connected outdoor lighting systems, and want to further explore whether today's commercially available offerings suit their needs. Presented by Michael Poplawski of Pacific Northwest National Laboratory, the webinar covers basic capabilities, key differentiators between systems, and common adoption issues - as

  20. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than street and area lighting, GATEWAY followed t

  1. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than...

  2. Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The DOE Municipal Solid-State Street Lighting Consortium's Model Specification for Networked Outdoor Lighting Control Systems is a tool designed to help cities, utilities, and other local agencies...

  3. Outdoor Solar Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Some solar lighting systems are self-contained units: You only need to place the lights in a sunny location. Others have the lights separate from a solar cell panel, in which case ...

  4. Outdoor Solar Lighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... solar heating and cooling Active solar heating Follow Us followontwitter.png followonfacebook.png Lighting Blogs Buying the Perfect Energy-Efficient Light Bulb in 5 Easy ...

  5. LED Outdoor Area Lighting Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Light distribution and glare LED luminaires use different optics than MH or HPS lamps ... illuminance are possible with LEDs and close-coupled optics, compared to HID luminaires. ...

  6. Text-Alternative Version: Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text-alternative version of the Hitting the Target: ENERGY STAR® SSL Outdoor Area Lighting Webcast.

  7. DOE Publishes CALiPER Snapshot Report on LED Outdoor Area Lighting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy LED Outdoor Area Lighting DOE Publishes CALiPER Snapshot Report on LED Outdoor Area Lighting July 22, 2014 - 10:11am Addthis The U.S. Department of Energy's CALiPER program has released a Snapshot Report on LED outdoor area lighting. Based on LED Lighting Facts® data through the second quarter of 2014, the report focuses on outdoor area/roadway luminaires, parking garage luminaires, canopy luminaires, and outdoor directional luminaires. As of July 1, 2014, area/roadway

  8. LED Lighting Facts/CALiPER Snapshot. Outdoor Ambient Lighting

    SciTech Connect (OSTI)

    2013-07-01

    Snapshot reports reveal how today's products really perform, drawing on analysis of verified performance data from the LED Lighting Facts program's online product list.

  9. The Municipal Solid-State Street Lighting Consortium Public Outdoor Lighting Inventory: Phase I: Survey Results

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Smalley, Edward; Haefer, R.

    2014-09-30

    This document presents the results of a voluntary web-based inventory survey of public street and area lighting across the U.S. undertaken during the latter half of 2013.This survey attempts to access information about the national inventory in a “bottoms-up” manner, going directly to owners and operators. Adding to previous “top down” estimates, it is intended to improve understanding of the role of public outdoor lighting in national energy use.

  10. Energy Department Announces Outdoor Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The 2013 Next Generation LuminairesTM (NGL) Design Competition outdoor lighting category winners were announced Wednesday night at the Strategies in Light conference in Santa Clara, California. The...

  11. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1994-12-31

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multijunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single- and multijunction modules under prevailing conditions.

  12. Outdoor performance stability and controlled light-soak testing of amorphous silicon multijunction modules at NREL

    SciTech Connect (OSTI)

    Mrig, L.; Burdick, J.; Luft, W.; Kroposki, B.

    1995-10-01

    The National Renewable Energy Laboratory (NREL) has been testing amorphous silicon (a-Si) Photovoltaic (PV) modules for more than a decade. NREL has been conducting controlled light-soak testing of multifunction a-Si modules to characterize their performance for stability evaluation as well as to benchmark the technology status. Some of the test modules, after controlled light-soak testing, have been installed outdoors. The authors have observed that under outdoor exposure, the modules further degrade in performance, possibly due to lower outdoor temperatures and varying spectra. The paper presents data on the light-induced degradation for the third controlled light-soak test on multijunction a-Si modules as well as outdoor performance data on single and multijunction modules under prevailing conditions.

  13. FEMP Outdoor Solid-State Lighting Intiative: Resources for Outdoor SSL Applications

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Federal Energy Management Program's (FEMP) solid-state lighting (SSL) initiatives that provide information and resources for the application of SSL lighting in exterior spaces.

  14. FEMP Outdoor Solid State Lighting Intiative: Resources for Outdoor SSL Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Street Lighting Consortium Fact Sheet - The Consortium shares technical information and experi- ences related to LED street and area light- ing demonstrations. The Consortium also serves as an objective resource for evalu- ating new products on the market intended for street and area lighting applications. http://apps1.eere.energy.gov/buildings/ publications/pdfs/ssl/consortium_fs.pdf DOE SSL GATEWAY Demonstration Project Results - DOE GATEWAY dem- onstrations showcase

  15. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Luminaires with less optical punch and less sharp angular variation in candlepower may provide a softer, more visually comfortable lighted environment. Luminaires delivering ...

  16. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Energy Savers [EERE]

    lighting project is different, and tradeoffs between such factors as visual comfort, color, visibility, and efficacy are inevitable. There is no glare metric that works reliably...

  17. CALiPER Snapshot Report: Outdoor Area Lighting

    SciTech Connect (OSTI)

    none,

    2014-07-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  18. Wakefield Municipal Gas & Light Department - Residential Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats: 25 Water Heater: 100 Summary The Wakefield Municipal Gas & Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric...

  19. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as a function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.

  20. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huesemann, Michael H.; Crowe, Braden J.; Waller, Peter; Chavis, Aaron R.; Hobbs, Samuel J.; Edmundson, Scott J.; Wigmosta, Mark S.

    2015-12-11

    Here, a microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in outdoor ponds subjected to fluctuating light intensities and water temperatures. Growth is modeled by first estimating the light attenuation by biomass according to a scatter-corrected Beer-Lambert Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires the following experimentally determined strain-specific input parameters: specific growth rate as a function of light intensity and temperature, biomass loss rate in the dark as amore » function of temperature and average light intensity during the preceding light period, and the scatter-corrected biomass light absorption coefficient. The model was successful in predicting the growth performance and biomass productivity of three different microalgae species (Chlorella sorokiniana, Nannochloropsis salina, and Picochlorum sp.) in raceway pond cultures (batch and semi-continuous) subjected to diurnal sunlight intensity and water temperature variations. Model predictions were moderately sensitive to minor deviations in input parameters. To increase the predictive power of this and other microalgae biomass growth models, a better understanding of the effects of mixing-induced rapid light dark cycles on photo-inhibition and short-term biomass losses due to dark respiration in the aphotic zone of the pond is needed.« less

  1. Municipal Consortium Releases Updated Model Specification for Networked Outdoor Lighting Control Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Municipal Solid-State Street Lighting Consortium (MSSLC) has released an update to its Model Specification for Adaptive Control and Remote Monitoring of LED Roadway...

  2. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  3. Gas separation using ultrasound and light absorption

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  4. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  5. Wakefield Municipal Gas & Light Department- Residential Conservation Services Program

    Broader source: Energy.gov [DOE]

    The Wakefield Municipal Gas & Light Department (WMGLD), offers the "Incentive Rebate Program" to encourage residential customers to improve the energy efficiency of their homes. After a home...

  6. Backscatter absorption gas imaging systems and light sources therefore

    DOE Patents [OSTI]

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  7. Light gas gun with reduced timing jitter

    DOE Patents [OSTI]

    Laabs, G.W.; Funk, D.J.; Asay, B.W.

    1998-06-09

    Gas gun with reduced timing jitter is disclosed. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile. 4 figs.

  8. Light gas gun with reduced timing jitter

    DOE Patents [OSTI]

    Laabs, Gary W.; Funk, David J.; Asay, Blaine W.

    1998-01-01

    Gas gun with reduced timing jitter. A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved and free the projectile.

  9. Alliant Energy Interstate Power and Light (Gas) - Business Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Food Service Equipment: Varies widely Drain water heat transfer system: 400 Outdoor Swimming Pool Cover: 0.50sq.ft. Outdoor SpaHot Tub Cover: 7sq.ft. Steam Trap: 100 Duct...

  10. Energy Department Announces Outdoor Winners of Next Generation...

    Energy Savers [EERE]

    Luminaires(tm) Solid-State Lighting Design Competition Energy Department Announces Outdoor Winners of Next Generation Luminaires(tm) Solid-State Lighting Design Competition ...

  11. Light gas gun with reduced timing jitter

    SciTech Connect (OSTI)

    Laabs, Gary W.; Funk, David J.; Asay, Blaine W.

    1996-12-01

    A gas gun having a prepressurized projectile held in place with a glass rod in compression is described. The glass rod is destroyed with an explosive at a precise time which allows a restraining pin to be moved by pneumatic means and free the projectile.

  12. FEMP Lighting Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Outdoor Lighting Energy Use by Application (Total 5.0 TWh) * Federal Sector Outdoor Lamps by Technology ... * Federal Acquisition Regulation (FAR 23.2 and FAR ...

  13. CONNECTED LIGHTING SYSTEMS RESOURCES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONNECTED LIGHTING SYSTEMS RESOURCES CONNECTED LIGHTING SYSTEMS RESOURCES The following resources provide information about outdoor lighting control systems. 2014 Presentation:...

  14. Repetitive, small-bore two-stage light gas gun

    SciTech Connect (OSTI)

    Combs, S.K.; Foust, C.R.; Fehling, D.T.; Gouge, M.J.; Milora, S.L.

    1991-01-01

    A repetitive two-stage light gas gun for high-speed pellet injection has been developed at Oak Ridge National Laboratory. In general, applications of the two-stage light gas gun have been limited to only single shots, with a finite time (at least minutes) needed for recovery and preparation for the next shot. The new device overcomes problems associated with repetitive operation, including rapidly evacuating the propellant gases, reloading the gun breech with a new projectile, returning the piston to its initial position, and refilling the first- and second-stage gas volumes to the appropriate pressure levels. In addition, some components are subjected to and must survive severe operating conditions, which include rapid cycling to high pressures and temperatures (up to thousands of bars and thousands of kelvins) and significant mechanical shocks. Small plastic projectiles (4-mm nominal size) and helium gas have been used in the prototype device, which was equipped with a 1-m-long pump tube and a 1-m-long gun barrel, to demonstrate repetitive operation (up to 1 Hz) at relatively high pellet velocities (up to 3000 m/s). The equipment is described, and experimental results are presented. 124 refs., 6 figs., 5 tabs.

  15. Next Generation Luminaires Design Competition Announces 2013 Outdoor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Winners | Department of Energy Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 - 12:00am Addthis The 2013 winners in the outdoor category of the Next Generation LuminairesTM Solid-State Lighting Design Competition were announced at the Strategies in Light conference in Santa Clara, CA. Sponsored by DOE, the Illuminating Engineering Society of North America, and the

  16. Lighting Design | Department of Energy

    Energy Savers [EERE]

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways ... Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the ...

  17. ACRV instrumentation plan for NMD HTK light gas gun tests

    SciTech Connect (OSTI)

    Dobie, D W

    1999-04-12

    In support of the NMD Hit-To-Kill Program for the US Army, twenty scaled tests on simulated nuclear targets are planned. The AEDC Light Gas Gun operated by Sverdrup Technology (SVT) in Tullahoma, TN will launch the scaled NMD projectile into scaled targets. The target for all the tests is a 1/4-scale version of the Attitude Controlled Re-Entry Vehicle (ACRV). The targets were designed and fabricated by Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratory (LLNL). ITT Systems (ITT) is the integrating contractor for coordination of the multiple contractors involved in these tests. The targets are inert and contain no hazardous materials. The payloads have been instrumented to aid in post-test evaluation of the functional status of the postulated weapon systems. This document describes the instrumentation methods to be used on these tests.

  18. Alliant Energy Interstate Power and Light (Gas and Electric)...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Heat Pumps: 1,600 - 3,200 Lighting Fixtures: varies, up to 100fixture Light bulbs and lighting: varies, up to 15bulb LED Fixtures: 30 LED Bulbs: 10 FanMotor...

  19. Recovery of nitrogen and light hydrocarbons from polyalkene purge gas

    DOE Patents [OSTI]

    Zwilling, Daniel Patrick; Golden, Timothy Christoph; Weist, Jr., Edward Landis; Ludwig, Keith Alan

    2003-06-10

    A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60.degree. F. to about 105.degree. F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.

  20. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  1. Alliant Energy Interstate Power and Light (Gas and Electric)...

    Broader source: Energy.gov (indexed) [DOE]

    Program Info Sector Name Utility Administrator Alliant Energy-Interstate Power and Light Website http:www.alliantenergy.comSaveEnergyAndMoneyAdditionalWaysSaveFinan......

  2. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ©iStockphoto.com/chandlerphoto. Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of

  3. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  4. Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for:

  5. NREL Assesses Strategies Needed for Light-Duty Vehicle Greenhouse Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction - News Releases | NREL NREL Assesses Strategies Needed for Light-Duty Vehicle Greenhouse Gas Reduction Solutions including electric and hydrogen fuel cell vehicles, vehicle connectivity, and automation examined August 8, 2016 The White House wants to cut U.S. greenhouse gas (GHG) emissions by 80 percent by 2050, but the goal raises questions about one of the greatest sources of those pollutants, light-duty vehicles (LDVs). The Energy Department's National Renewable Energy

  6. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  7. Catalyst for converting synthesis gas to light olefins

    DOE Patents [OSTI]

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  8. Probing the Quantum State of a 1D Bose Gas Using Off-Resonant Light Scattering

    SciTech Connect (OSTI)

    Sykes, A. G.; Ballagh, R. J.

    2011-12-30

    We present a theoretical treatment of coherent light scattering from an interacting 1D Bose gas at finite temperatures. We show how this can provide a nondestructive measurement of the atomic system states. The equilibrium states are determined by the temperature and interaction strength, and are characterized by the spatial density-density correlation function. We show how this correlation function is encoded in the angular distribution of the fluctuations of the scattered light intensity, thus providing a sensitive, quantitative probe of the density-density correlation function and therefore the quantum state of the gas.

  9. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time: 10:00 am - 12:30 pm EDT Purpose: To convene representatives from stakeholder organizations in order to enhance their understanding of the characteristics of condensing natural gas heating and water heating equipment that contribute to the unique installation requirements and challenges of this equipment compared to

  10. Covered Product Category: Exterior Lighting

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for outdoor wall-mounted light fixtures or luminaires, outdoor pole/arm-mounted area and roadway luminaires, outdoor pole/arm-mounted decorative luminaires, fuel pump canopy luminaires, bollards, and parking garage luminaires, all of which are FEMP-designated product categories.

  11. 2016 Animal Responses to Light Meeting Report

    Broader source: Energy.gov (indexed) [DOE]

    ... of the Agency's recent applications of sea turtle lighting in the northern Gulf of Mexico. ... Given sea turtle sensitivities to short wavelengths, outdoor amber LED lighting (with ...

  12. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  13. Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.

    2013-08-01

    Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

  14. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  15. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  16. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  17. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible

  18. Evaluation of fission gas release in high-burnup light water reactor fuel rods

    SciTech Connect (OSTI)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D. )

    1993-05-01

    Research to define the behavior of Zircaloy-clad light water reactor (LWR) UO[sub 2] fuel irradiated to high burnup levels was conducted as part of the High Burnup Effects Program (HBEP). The HBEP was a 12-yr program that ultimately acquired, characterized, irradiated, and examined after irradiation 82 LWR fuel rods ranging in rod-average fuel burnup from 22 to 69 MWd/kgM with a peak pellet burnup of 83 MWd/kg M. A principal emphasis of the HBEP was to evaluate the effect of high burnup on fission gas release. It was confirmed that fission gas release remained as dependent on design and irradiation history parameters at high burnup levels as at low to moderate burnup levels. One observed high-burnup effect was the development of a burnup-dependent microstructure at the fuel pellet surface when pellet-edge burnup exceeded 65 MWd/kgM. This low-temperature rim region' was characterized by a loss of optically definable grain structure, a high volume of porosity, and diffusion of fission gas from the UO[sub 2] matrix to the porosity. Although the rim region has the potential for enhanced fission gas release, it is concluded that no significant enhancement of rod-average fission gas release at high burnup levels was observed for the examined fuel rods.

  19. Lighting

    Broader source: Energy.gov [DOE]

    One of the simplest ways to save energy and money is to switch to energy-efficient lights. Learn about your lighting choices that can save you money.

  20. Techniques for Equation-of-State Measurements on a Three-Stage Light-Gas Gun

    SciTech Connect (OSTI)

    REINHART,WILLIAM D.; CHHABILDAS,LALIT C.; THORNHILL,T.G.

    2000-09-14

    Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.

  1. Ningbo Liaoyuan Lighting Co | Open Energy Information

    Open Energy Info (EERE)

    Engaged in outdoor LED lighting manufacture and design including street lamps and solarwind hybrid street lamps. Coordinates: 30.047501, 121.151222 Show Map Loading map......

  2. Oxygenates from light alkanes catalyzed by NO{sub x} in the gas phase

    SciTech Connect (OSTI)

    Otsuka, Kiyoshi; Takahashi, Ryo; Yamanaka, Ichiro

    1999-07-01

    The partial oxidations of light alkanes (methane, ethane, propane, and iso-butane) catalyzed by NO{sub x} in the gas phase have been studied at a pressure of less than 1 bar. For all the alkanes tested, the addition of NO to the mixture of alkanes and O{sub 2} enhanced the selectivities and the yields of oxygenates remarkably. It was suggested that NO{sub 2} generated from NO and O{sub 2} initiated the oxidation of alkanes and would specifically accelerate the C-C bond fission, enhancing the formation of C{sub 1}-oxygenates from ethane, propane, and iso-butane. No{sub 2} and NO would be used as a homogeneous catalyst at >600 C because nitroalkanes formed were decomposed completely, releasing the NO{sub x}. The comparison of the product distributions for the decomposition and oxidation of nitroalkanes and alkylnitrites strongly suggested that the oxygenates (HCHO, CH{sub 3}CHO, and CH{sub 3}COCH{sub 3}) were formed from the corresponding alkylnitrites which must be the reaction intermediates during the oxidation of alkanes with an O{sub 2} and NO mixture.

  3. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases

  4. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  5. Covered Product Category: Exterior Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exterior Lighting Covered Product Category: Exterior Lighting The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for outdoor wall-mounted light fixtures or luminaires, outdoor pole/arm-mounted area and roadway luminaires, outdoor pole/arm-mounted decorative luminaires, fuel pump canopy luminaires, bollards, and parking garage luminaires, all of which are FEMP-designated product categories. Federal laws and requirements mandate that

  6. SRRL: Broadband Outdoor Radiometer CALibrations (BORCAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibrations Accurate measurements of solar radiation require regular recalibration of the radiometers used to make the irradiance measurement. NREL has developed the Broadband Outdoor Radiometer Calibration (BORCAL) approach for the annual calibration of pyranometers, pyrheliometers, and pyrgeometers used by the Department of Energy. BORCALs are conducted at the Solar Radiation Research Laboratory (SRRL) and at the Atmospheric Radiation Measurement (ARM) Program's

  7. Working with Cities to Light Our Streets Better | Department...

    Energy Savers [EERE]

    to accelerate the adoption and use of high-efficiency outdoor lighting, driving carbon pollution reductions in communities across the nation. The Accelerator will work with...

  8. Energy Star Lighting Fixtures: How Does THAT Work?

    Broader source: Energy.gov [DOE]

    If you're considering replacing your indoor or outdoor home lighting, you might want to give an ENERGY STAR fixture a shot.

  9. Application Assessment of Bi-Level LED Parking Lot Lighting

    SciTech Connect (OSTI)

    Johnson, Megan; Cook, Tyson; Shackelford, Jordan; Pang, Terrance

    2009-02-01

    This report summarizes an assessment project conducted to evaluate light-emitting diode (LED) luminaires with bi-level operation in an outdoor parking lot application.

  10. Development of an Outdoor Temperature-Based Control Algorithm...

    Office of Scientific and Technical Information (OSTI)

    Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control Citation Details In-Document Search Title: Development of an Outdoor ...

  11. 54 USC Subtitle II - Outdoor Recreation Programs | Open Energy...

    Open Energy Info (EERE)

    II - Outdoor Recreation Programs Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 54 USC Subtitle II - Outdoor Recreation...

  12. U.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate Final Report

    SciTech Connect (OSTI)

    None, None

    2002-09-01

    Multiyear study to evaluate light sources and identify opportunities for saving energy. This report estimates energy consumption for residential, commercial, industrial, and outdoor stationary.

  13. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  14. Alliant Energy Interstate Power and Light (Gas and Electric)- Farm Equipment Energy Efficiency Incentives

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy) offers prescriptive rebates for a variety of energy efficient products for agricultural customers. In addition to these incentives, IPL offers a Farm...

  15. Alliant Energy Interstate Power and Light (Gas)- Residential Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light (Alliant Energy) offers residential energy efficiency rebates to Iowa customers for a variety of home upgrades. Rebates are available for certain heating, insulation,...

  16. Safety assessment of outdoor live fire range

    SciTech Connect (OSTI)

    1989-05-01

    The following Safety Assessment (SA) pertains to the outdoor live fire range facility (LFR). The purpose of this facility is to supplement the indoor LFR. In particular it provides capacity for exercises that would be inappropriate on the indoor range. This SA examines the risks that are attendant to the training on the outdoor LFR. The outdoor LFR used by EG&G Mound is privately owned. It is identified as the Miami Valley Shooting Grounds. Mondays are leased for the exclusive use of EG&G Mound.

  17. Bull Outdoor Products: Order (2015-CE-14014)

    Broader source: Energy.gov [DOE]

    DOE ordered Bull Outdoor Products, Inc. to pay a $8,000 civil penalty after finding Bull had failed to certify that refrigerator basic model BC-130 complies with the applicable energy conservation standards.

  18. An evaluation of gas field rules in light of current conditions and production practices in the Panhandle non-associated gas fields

    SciTech Connect (OSTI)

    Brady, C.L.; O`Rear, C.H.

    1996-09-01

    During the early years of development in the Panhandle fields the Rule of Capture was king. Under the Rule of Capture each property owner has the right to drill as many wells as desired at any location. Adjacent property owners protect their rights by doing the same. Courts adopted the Rule of Capture to protect mineral owners from liability due to migration of oil and gas across property boundary lines. This general practice {open_quotes}to go and do likewise{close_quotes} generally leads to enormous economic and natural resource waste. Established to offset the waste created under the Rule of Capture is the doctrine of Correlative Rights. Correlative Rights is the fight of each mineral owner to obtain oil and gas from a common source of supply under lawful operations conducted from his property. However, each mineral owner has a duty to every other mineral owner not to extract oil and gas in a manner injurious to the common source of supply. This paper will examine the historical context of these common law principles with regard to the Panhandle non-associated gas fields. Discovered in 1917, the Panhandle fields are ideal to evaluate the merit of statutes and regulations enacted in response to production practices. As in many Texas fields, proration in the Panhandle fields is the primary mechanism to protect correlative rights and prevent waste. Signed and made effective May 1989, the current field rules pre-date much of the enhanced recovery techniques that use well-head vacuum compression. This paper reviews the gas rules in the 1989 Texas Railroad Commission order in light of current reservoir conditions and production practices.

  19. Fission gas release from UO{sub 2+x} in defective light water reactor fuel rods

    SciTech Connect (OSTI)

    Skim, Y. S.

    1999-11-12

    A simplified semi-empirical model predicting fission gas release form UO{sub 2+x} fuel to the fuel rod plenum as a function of stoichiometry excess (x) is developed to apply to the fuel of a defective LWR fuel rod in operation. The effect of fuel oxidation in enhancing gas diffusion is included as a parabolic dependence of the stoichiometry excess. The increase of fission gas release in a defective BWR fuel rod is at the most 3 times higher than in an intact fuel rod because of small extent of UO{sub 2} oxidation. The major enhancement contributor in fission gas release of UO{sub 2+x} fuel is the increased diffusivity due to stoichiometry excess rather than the higher temperature caused by degraded fuel thermal conductivity.

  20. Alliant Energy Interstate Power and Light (Gas)- Business Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light (IPL) offers a wide variety of incentives for commercial customers to save energy in eligible facilities, whether they are upgrading existing facilities or building new...

  1. Alliant Energy Interstate Power and Light (Gas and Electric)- New Home Construction Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Interstate Power and Light's New Home Program gives incentives to builders and contractors who build energy efficient homes. A base rebate is available to those customers that make the minimum...

  2. Alliant Energy Interstate Power and Light (Gas and Electric)- Low Interest Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Interstate Power and Light (Alliant Energy), in conjunction with Wells Fargo Bank, offers a low-interest loan for residential, commercial and agricultural customers who purchase and install energy...

  3. Solid-State Lighting Webcasts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts Solid-State Lighting Webcasts Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available. OLED Lighting Products-Capabilities, Challenges, Potential July 28, 2016 A presentation on a new DOE market study of OLED lighting products. CONNECTED OUTDOOR LIGHTING SYSTEMS FOR MUNICIPALITIES October 22, 2015 A presentation on the current state of connected outdoor

  4. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  5. Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin

    SciTech Connect (OSTI)

    Lunden, Melissa M.; Kirchstetter, Thomas W.; Thatcher, Tracy L.; Hering, Susanne V.; Brown, Nancy J.

    2007-06-25

    A field study was conducted in an unoccupied single story residence in Clovis, California to provide data to address issues important to assess the indoor exposure to particles of outdoor origin. Measurements of black and organic carbonaceous aerosols were performed using a variety of methods, resulting in both near real-time measurements as well as integrated filter based measurements. Comparisons of the different measurement methods show that it is crucial to account for gas phase adsorption artifacts when measuring organic carbon (OC). Measured concentrations affected by the emissions of organic compounds sorbed to indoor surfaces imply a higher degree of infiltration of outdoor organic carbon aerosols into the indoor environment for our unoccupied house. Analysis of the indoor and outdoor data for black carbon (BC) aerosols show that, on average, the indoor concentration of black carbon aerosols behaves in a similar manner to sulfate aerosols. In contrast, organic carbon aerosols are subject to chemical transformations indoors that, for our unoccupied home, resulted in lower indoor OC concentrations than would be expected by physical loss mechanisms alone. These results show that gas to particle partitioning of organic compounds, as well as gas to surface interactions within the residence, are an important process governing the indoor concentration to OC aerosols of outdoor origin.

  6. Evaluation of the LLNL Spectrometer for Possible use with the NSTec Optical Streak Camera as a Light Gas Gun Diagnostic

    SciTech Connect (OSTI)

    O'Connor, J., Cradick, J.

    2012-09-27

    In fiscal year 2012, it was desired to combine a visible spectrometer with a streak camera to form a diagnostic system for recording time-resolved spectra generated in light gas gun experiments. Acquiring a new spectrometer was an option, but it was possible to borrow an existing unit for a period of months, which would be sufficient to evaluate both “off-line” and in-gas gun shots. If it proved adequate for this application, it could be duplicated (with possible modifications); if not, such testing would help determine needed specifications for another model. This report describes the evaluation of the spectrometer (separately and combined with the NSTec LO streak camera) for this purpose. Spectral and temporal resolutions were of primary interest. The first was measured with a monochromatic laser input. The second was ascertained by the combination of the spectrometer’s spatial resolution in the time-dispersive direction and the streak camera’s intrinsic temporal resolution. System responsivity was also important, and this was investigated by measuring the response of the spectrometer/camera system to black body input—the gas gun experiments are expected to be similar to a 3000K black body—as well as measuring the throughput of the spectrometer separately over a range of visible light provided by a monochromator. The flat field (in wavelength) was also measured and the final part of the evaluation was actual fielding on two gas gun shots. No firm specifications for spectral or temporal resolution were defined precisely, but these were desired to be in the 1–2 nm and 1–2 ns ranges, respectively, if possible. As seen below, these values were met or nearly met, depending on wavelength. Other performance parameters were also not given (threshold requirements) but the evaluations performed with laser, black body, and successful gas gun shots taken in aggregate indicate that the spectrometer is adequate for this purpose. Even still, some (relatively

  7. Light-storing photocatalyst

    SciTech Connect (OSTI)

    Zhang Junying; Pan Feng; Hao Weichang; Ge Qi; Wang Tianmian

    2004-12-06

    Light-storing photocatalyst was prepared by coating light-storing phosphor and TiO{sub 2} photocatalyst in sequence on ceramic. The light-storing photocatalyst can store light irradiation and emit slowly. Consequently, the photocatalyst remains active when the irradiation source is cut off. Rhodamine B (RhB) can be decomposed efficiently by this photocatalyst in the dark after it absorbs light irradiation. This photocatalyst is photoreactive in an outdoor environment or can save energy by supplying irradiation intermittently for the photocatalyst.

  8. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    SciTech Connect (OSTI)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95 wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.

  9. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    SciTech Connect (OSTI)

    Dandina N. Rao

    2003-10-01

    This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and

  10. Model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity

    SciTech Connect (OSTI)

    Yang, J.; Kubota, T.; Zukoski, E.E.

    1994-01-01

    This work investigates the two-dimensional flow of a shock wave over a circular light-gas inhomogeneity in a channel with finite width. The pressure gradient from the shock wave interacts with the density gradient at the edge of the inhomogeneity to deposit vorticity around the perimeter, and the structure rolls up into a pair of counter-rotating vortices. The aim of this study is to develop an understanding of the scaling laws for the flow field produced by this interaction at times long after the passage of the shock across the inhomogeneity. Numerical simulations are performed for various initial conditions and the results are used to guide the development of relatively simple algebraic models that characterize the dynamics of the vortex pair, and that allow extrapolation of the numerical results to conditions more nearly of interest in practical situations. The models are not derived directly from the equations of motion but depend on these equations and on intuition guided by the numerical results. Agreement between simulations and models is generally good except for a vortex-spacing model which is less satisfactory. A practical application of this shock-induced vortical flow is rapid and efficient mixing of fuel and oxidizer in a SCRAMJET combustion chamber. One possible injector design uses the interaction of an oblique shock wave with a jet of light fuel to generate vorticity which stirs and mixes the two fluids and lifts the burning jet away from the combustor wall. Marble proposed an analogy between this three-dimensional steady flow and the two-dimensional unsteady problem of the present investigation. Comparison is made between closely corresponding three-dimensional steady and two-dimensional unsteady flows, and a mathematical description of Marble`s analogy is proposed. 17 refs.

  11. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  12. GATEWAY Demonstration Outdoor Projects | Department of Energy

    Energy Savers [EERE]

    ... Photo of a shopping plaza showing an LED parking lot light to the left and an HPS light to the right. LED Parking Lot Lighting: Manchester, New Hampshire In a shopping plaza ...

  13. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    SciTech Connect (OSTI)

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  14. Next Generation Luminaires: Recognizing Innovative, Energy-Efficient Commercial Lighting Luminaires

    SciTech Connect (OSTI)

    2013-04-01

    Fact sheet that describes the Next Generation Luminaires SSL lighting design competition, which recognizes excellence in technical innovation and design of high-quality, energy-efficient commercial lighting, both indoor and outdoor.

  15. Photoluminescence and Electroluminescence Outdoor Module Imaging; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Johnson, S.; Silverman, T.

    2015-02-24

    This poster describes using camera imaging to characterize PV modules while the modules are still mounted outdoors, details the benefits of outdoor imaging, and provides photos for comparison.

  16. Outdoor durability of radiation-cured coatings

    SciTech Connect (OSTI)

    Holman, R.; Kennedy, R.

    1997-12-31

    Radiation cured coatings are used almost exclusively on products which have little or no exposure to moisture or the weather; inks, furniture varnishes, floor varnishes and coatings for electronic components. However there is considerable interest in being able to use this technology in exterior environments as a substitute for solvent-borne coatings. A 3-year study examining the possible reasons for the poor durability of radiation curable coatings showed that the resistance of the monomers and oligomers to hydrogen abstraction was crucially important, and the water permeability of the cured coating influenced the long-term adhesion performance. The project concluded that with the appropriate combination of curing technology and monomer/oligomer selection, the prospects of UV curable coatings for outdoor exposure are very encouraging.

  17. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    SciTech Connect (OSTI)

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  18. Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico (MCBQ) in Virginia Document provides an overview of how the Marine Corps Base Quantico (MCBQ) achieved 85% energy savings in parking lighting at one of its parking lots as part of a major overhaul of its outdoor lighting (replacing 2,000 fixtures with light-emitting diode lights),

  19. Safety of Hydrogen Systems Installed in Outdoor Enclosures

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2013-11-06

    The Hydrogen Safety Panel brings a broad cross-section of expertise from the industrial, government, and academic sectors to help advise the U.S. Department of Energys (DOE) Fuel Cell Technologies Office through its work in hydrogen safety, codes, and standards. The Panels initiatives in reviewing safety plans, conducting safety evaluations, identifying safety-related technical data gaps, and supporting safety knowledge tools and databases cover the gamut from research and development to demonstration and deployment. The Panels recent work has focused on the safe deployment of hydrogen and fuel cell systems in support of DOE efforts to accelerate fuel cell commercialization in early market applications: vehicle refueling, material handling equipment, backup power for warehouses and telecommunication sites, and portable power devices. This paper resulted from observations and considerations stemming from the Panels work on early market applications. This paper focuses on hydrogen system components that are installed in outdoor enclosures. These enclosures might alternatively be called cabinets, but for simplicity, they are all referred to as enclosures in this paper. These enclosures can provide a space where a flammable mixture of hydrogen and air might accumulate, creating the potential for a fire or explosion should an ignition occur. If the enclosure is large enough for a person to enter, and ventilation is inadequate, the hydrogen concentration could be high enough to asphyxiate a person who entered the space. Manufacturers, users, and government authorities rely on requirements described in codes to guide safe design and installation of such systems. Except for small enclosures used for hydrogen gas cylinders (gas cabinets), fuel cell power systems, and the enclosures that most people would describe as buildings, there are no hydrogen safety requirements for these enclosures, leaving gaps that must be addressed. This paper proposes that a technical

  20. Bull Outdoor Products: Proposed Penalty (2015-CE-14014)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Bull Outdoor Products, Inc. failed to certify refrigerator basic model BC-130 as compliant with the applicable energy conservation standards.

  1. Broadband Outdoor Radiometer Calibration Process for the Atmospheric

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program (Technical Report) | SciTech Connect Technical Report: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program Citation Details In-Document Search Title: Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related

  2. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOE Patents [OSTI]

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  3. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  4. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  5. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  6. Energy Department Announces Winners of Next Generation Luminaires™ Solid-State Lighting Design Competition

    Broader source: Energy.gov [DOE]

    The Energy Department announced winners of its seventh annual Next Generation LuminairesTM (NGL) design competition for indoor and outdoor lighting during the LIGHTFAIR® International trade show in New York.

  7. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  8. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  9. Pedestrian-Friendly Nighttime Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts » Pedestrian-Friendly Nighttime Lighting Pedestrian-Friendly Nighttime Lighting This November 19, 2013 webinar presented issues and considerations related to pedestrian-friendly nighttime lighting, such as color rendering, safety, and adaptation. When it comes to outdoor lighting, the industry has understandably focused on footcandles and uniformity, efficacy, pole spacing, and cutoff-but those are not the chief criteria for all neighborhoods. Presenter Naomi Miller of Pacific

  10. Outdoor Outfitter Gets Greener With Solar Water Heater

    Broader source: Energy.gov [DOE]

    Using Recovery Act funding, L.L. Bean, the popular outdoor apparel company, recently installed a 180-tube solar hot water collector array on the roof of their flagship store in Freeport, Maine. Find out some how much energy and money they're saving thanks to the new solar installation.

  11. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determine the Feasibility of Installing Energy Efficient Lighting In this part of the exercise, you will plan a new approach to lighting your school library. This new plan will use less energy, cost less, and result in less greenhouse gas. Your plan will also include bottom line calculations and decision factors such as: identifying the costs and payback for buying and installing new lighting equipment and making a determination about whether or not the new, more efficient lighting will provide

  12. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  13. Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting LED Parking Lighting in Federal Facilities FEDERAL ENERGY MANAGEMENT PROGRAM With technical assistance from the Federal Energy Management Program (FEMP), the Marine Corps Base Quantico (MCBQ) recently undertook a major overhaul of its outdoor lighting, boosting safety and security throughout the site, while cutting energy costs and earning a national award in the process. The MCBQ replaced nearly 2,000 old and ineffcient street

  14. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  15. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, Robert; Lackey, Robert S.

    1984-01-01

    The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

  16. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect (OSTI)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  17. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  18. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  19. Text-Alternative Version of TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Nebiat Solomon − We are going to give other attendees a few minutes to get on, and then we’ll be ready to start.  Just so you know, if you have questions along the way, just type them into the...

  20. DOE Announces Webinars on Successful Project Financing Mechanisms, the High Performance Outdoor Lighting Accelerator, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

  1. Spectrometry of the Rutherford backscattering of ions and the Raman scattering of light in GaS single crystals irradiated with 140-keV H{sub 2}{sup +} ions

    SciTech Connect (OSTI)

    Garibov, A. A.; Madatov, R. S.; Komarov, F. F.; Pilko, V. V.; Mustafayev, Yu. M.; Akhmedov, F. I.; Jakhangirov, M. M.

    2015-05-15

    The methods of the Raman scattering of light and Rutherford backscattering are used to study the degree of structural disorder in layered GaS crystals before and after irradiation with 140-keV H{sub 2}{sup +} ions. It is shown that the distribution of the crystal’s components over depth is homogeneous; for doses as high as 5 × 10{sup 15} cm{sup −2}, the stoichiometric composition of the compound’s components is retained. The experimental value of the critical dose for the beginning of amorphization amounts to about 5 × 10{sup 15} cm{sup −2} and is in accordance with the calculated value. The results obtained by the method of the Raman scattering of light confirm conservation of crystalline structure and the start of the amorphization process.

  2. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, R.

    1984-05-22

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

  3. Thermosyphon coil arrangement for heat pump outdoor unit

    DOE Patents [OSTI]

    Draper, Robert

    1984-01-01

    For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

  4. Camp Pendleton Saves 91% in Parking Lot Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pendleton Saves 91% in Parking Lot Lighting Camp Pendleton Marine Corps Base (MCBCP) won a 2015 Lighting Energy Effciency in Parking (LEEP) Award for cutting energy use by 91% at one Camp Pendleton parking lot, which was part of a base-wide initiative to retroft parking areas across the 125,000-acre training facility. Prior to the retroft, the parking lot was lighted with 1,000-W high-pressure sodium (HPS) lamps. HPS lamps are commonly used for outdoor lighting and have a signature yellow-tinted

  5. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  6. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    SciTech Connect (OSTI)

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.

  7. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  8. Nicor Gas- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Nicor Gas services 129,000 customers and is the largest natural gas distributor in northern Illinois. Certain energy efficient products are eligible for Nicor Gas rebates such as light bulbs,...

  9. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions resulting from rotational molding. 6 Unlike concentrated solar power firms which focus on utility-scale electric production 7 , LightManufacturing...

  10. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency Partnerships Credit: Northeast Energy Efficiency Partnerships Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: -- Burlington Electric Department -- Cape Light Compact -- Connecticut Light and Power -- Efficiency Vermont -- National Grid -- NSTAR Electric and Gas --

  11. Army Reserve 63d RSC Achieves 85% Savings in Parking Lot Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Army Reserve 63 d RSC Achieves 85% Savings in Parking Lot Lighting In early 2013 the Army Reserve 63 d Regional Support Command (63 d RSC) began working with Pacifc Northwest National Laboratory (PNNL) and the Army Reserve Installation Management Division (ARIMD) to identify energy and water conservation opportunities. The following year, the 63 d RSC installed LED fxtures for outdoor lighting at several facilities. One of these projects, a parking lot lighting retroft in Little Rock, Arkansas,

  12. A sun-tracking environmental chamber for the outdoor quantification of CPV modules

    SciTech Connect (OSTI)

    Faiman, David Melnichak, Vladimir Bokobza, Dov Kabalo, Shlomo

    2014-09-26

    The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

  13. Waveguide gas laser

    SciTech Connect (OSTI)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO/sub 2/ laser is described.

  14. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  15. D0 Collision Hall Outdoor Fresh Air Makeup

    SciTech Connect (OSTI)

    Markley, D.; /Fermilab

    1992-03-27

    This note will briefly describe the collision hall ventilation system and how D0 will monitor outside air makeup and what actions occur in the event of system failures. The Dzero collision hall has two different fresh air makeup conditions it must meet. They are: (1) Tunnel Barriers removed-Fresh air makeup = 4500 CFM; and (2) Tunnel Barriers in place-Fresh air makeup = 2800 CFM. This note demonstrates how the fresh air minimums are met and guaranteed. The air flow paths and ducts at D0 for both AHU1 and EF-7 are fixed. The blower throughputs are not variable. The software stops on AHU1's dampers will be set for a minimum of 2800 cfm or 4500 cfm of outdoor air continuously added to the HVAC flow stream depending on the tunnel barrier state. AHU1 and EF-7 both have monitoring that can determine reliably as to whether the respective blower is on or off. Since the outside air makeup is fixed as long as the blowers are running, and the software AHU1 damper limits are set, we can rely on the blower status indicators to determine as to whether the collision hall is receiving the proper amount of outside makeup air.

  16. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  17. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect (OSTI)

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for

  18. GAS PHOTOTUBE CIRCUIT

    DOE Patents [OSTI]

    Richardson, J.H.

    1958-03-01

    This patent pertains to electronic circuits for measuring the intensity of light and is especially concerned with measurement between preset light thresholds. Such a circuit has application in connection with devices for reading-out information stored on punch cards or tapes where the cards and tapes are translucent. By the novel arrangement of this invention thc sensitivity of a gas phototube is maintained at a low value when the light intensity is below a first threshold level. If the light level rises above the first threshold level, the tube is rendered highly sensitive and an output signal will vary in proportion to the light intensity change. When the light level decreases below a second threshold level, the gas phototube is automatically rendered highly insensitive. Each of these threshold points is adjustable.

  19. Non-contact Electroluminescence Imaging of Outdoor Modules (ROI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The bottom row shows PL imaging using uniform 810-nm laser light for excitation.
    ... to check for shipping and installation damage, such as cracked cells, for quality ...

  20. Environmental chamber studies of atmospheric reactivities of volatile organic compounds: Effects of varying chamber and light source

    SciTech Connect (OSTI)

    Carter, W.; Luo, D.; Malkina, I.; Pierce, J.

    1995-05-01

    Photochemical oxidant models are essential tools for assessing effects of emissions changes on ground-level ozone formation. Such models are needed for predicting the ozone impacts of increased alternative fuel use. The gas-phase photochemical mechanism is an important component of these models because ozone is not emitted directly, but is formed from the gas-phase photochemical reactions of the emitted volatile organic compounds (VOCs) and oxides of nitrogen (NO{sub x}) in air. The chemistry of ground level ozone formation is complex; hundreds of types of VOCs being emitted into the atmosphere, and most of their atmospheric reactions are not completely understood. Because of this, no chemical model can be relied upon to give even approximately accurate predictions unless it has been evaluated by comparing its predictions with experimental data. Therefore an experimental and modeling study was conducted to assess how chemical mechanism evaluations using environmental chamber data are affected by the light source and other chamber characteristics. Xenon arc lights appear to give the best artificial representation of sunlight currently available, and experiments were conducted in a new Teflon chamber constructed using such a light source. Experiments were also conducted in an outdoor Teflon Chamber using new procedures to improve the light characterization, and in Teflon chambers using blacklights. These results, and results of previous runs other chambers, were compared with model predictions using an updated detailed chemical mechanism. The magnitude of the chamber radical source assumed when modeling the previous runs were found to be too high; this has implications in previous mechanism evaluations. Temperature dependencies of chamber effects can explain temperature dependencies in chamber experiments when Ta-300{degree}K, but not at temperatures below that.

  1. Natural gas leak mapper

    DOE Patents [OSTI]

    Reichardt, Thomas A.; Luong, Amy Khai; Kulp, Thomas J.; Devdas, Sanjay

    2008-05-20

    A system is described that is suitable for use in determining the location of leaks of gases having a background concentration. The system is a point-wise backscatter absorption gas measurement system that measures absorption and distance to each point of an image. The absorption measurement provides an indication of the total amount of a gas of interest, and the distance provides an estimate of the background concentration of gas. The distance is measured from the time-of-flight of laser pulse that is generated along with the absorption measurement light. The measurements are formated into an image of the presence of gas in excess of the background. Alternatively, an image of the scene is superimosed on the image of the gas to aid in locating leaks. By further modeling excess gas as a plume having a known concentration profile, the present system provides an estimate of the maximum concentration of the gas of interest.

  2. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. ● Light source luminosity ● Detector resolution & rep-rates ● Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  3. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  4. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  5. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  6. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  7. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  8. (Lighting and) Solid-State Lighting: Science, Technology, Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  9. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1988-04-12

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material. 3 figs.

  10. Gas-sensing optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1988-01-01

    An optrode is provided for sensing dissolved gases or volatile components of a solution. A fiber optic is provided through which light from an associated light source is transmitted from a first end to a second end. A bubble forming means, such as a tube, is attached to the second end of the fiber optic, and an indicator material is disposed in cooperation with the bubble forming means adjacent to the second end of the fiber optic such that it is illuminated by light emanating from the second end. The bubble forming means causes a gas bubble to form whenever the optrode is immersed in the fluid. The gas bubble separates the indicator material from the fluid. Gases, or other volatile components, of the fluid are sensed as they diffuse across the gas bubble from the fluid to the indicator material.

  11. Series cell light extinction monitor

    DOE Patents [OSTI]

    Novick, Vincent J.

    1990-01-01

    A method and apparatus for using the light extinction measurements from two or more light cells positioned along a gasflow chamber in which the gas volumetric rate is known to determine particle number concentration and mass concentration of an aerosol independent of extinction coefficient and to determine estimates for particle size and mass concentrations. The invention is independent of particle size. This invention has application to measurements made during a severe nuclear reactor fuel damage test.

  12. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Shedding Light on Nanocrystal Defects Print Thursday, 20 June 2013 10:41 Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from

  13. DOE - Fossil Energy: A Brief History of Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History An Energy Lesson Natural Gas - Fueling the Blue Flame The History of Natural Gas Gaslight - One of the earliest uses of natural gas was to fuel street lights in the 1800s....

  14. Central Hudson Gas & Electric (Electric) - Commercial Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    project based on the quality assurance plan at completion to verify that the upgrade matches the performance specified in the auditor's proposal. Incentives for this program will...

  15. Department of Energy Announces Philips Lighting North America...

    Energy Savers [EERE]

    ... The product uses solid-state lighting technology, which utilizes light-emitting diodes (LEDs) instead of electrical filaments, plasma, or gas, and has the potential to use far less ...

  16. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  17. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  18. Brighter Lights, Safer Streets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new lights will also cut greenhouse gas emissions by 719 tons. Mayor Vincent Gray, ... traffic signals with LED bulbs, and Mayor Gray said their new goal is to use the energy ...

  19. NGV and FCV Light Duty Transportation Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NGV and FCV Light Duty Transportation Perspective NGV and FCV Light Duty Transportation Perspective Presentation by Matt Fronk, Matt Fronk and Associates, LLC, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois. oct11_infrastructure_fronk.pdf (4.25 MB) More Documents & Publications U.S. Natural Gas Markets and Perspectives Synergies in Natural Gas and Hydrogen Fuels Natural Gas and Hydrogen Infrastructure Opportunities: Markets

  20. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  1. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  2. Incandescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  3. Factors affecting the concentration of outdoor particles indoors (COPI): Identification of data needs and existing data

    SciTech Connect (OSTI)

    Thatcher, Tracy L.; McKone, Thomas E.; Fisk, William J.; Sohn, Michael D.; Delp, Woody W.; Riley, William J.; Sextro, Richard G.

    2001-12-01

    The process of characterizing human exposure to particulate matter requires information on both particle concentrations in microenvironments and the time-specific activity budgets of individuals among these microenvironments. Because the average amount of time spent indoors by individuals in the US is estimated to be greater than 75%, accurate characterization of particle concentrations indoors is critical to exposure assessments for the US population. In addition, it is estimated that indoor particle concentrations depend strongly on outdoor concentrations. The spatial and temporal variations of indoor particle concentrations as well as the factors that affect these variations are important to health scientists. For them, knowledge of the factors that control the relationship of indoor particle concentrations to outdoor levels is particularly important. In this report, we identify and evaluate sources of data for those factors that affect the transport to and concentration of outdoor particles in the indoor environment. Concentrations of particles indoors depend upon the fraction of outdoor particles that penetrate through the building shell or are transported via the air handling (HVAC) system, the generation of particles by indoor sources, and the loss mechanisms that occur indoors, such as deposition. To address these issues, we (i) identify and assemble relevant information including the behavior of particles during air leakage, HVAC operations, and particle filtration; (ii) review and evaluate the assembled information to distinguish data that are directly relevant to specific estimates of particle transport from those that are only indirectly useful and (iii) provide a synthesis of the currently available information on building air-leakage parameters and their effect on indoor particle matter concentrations.

  4. Comparison of indoor-outdoor thermal performance for the Sunpak evacuated tube liquid collector

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    Performance data is provided for current Sunpak production collectors. The effects of an improved manifold are seen from the test results. The test results show excellent correlation between the solar simulator derived test results and outdoor test results. Also, because of different incident angle modifiers, the all-day efficiency of this collector with a diffuse reflector is found to be comparable to the performance with the standard shaped specular reflector.

  5. Temperature-Dependent Light-Stabilized States in Thin-Film PV Modules

    SciTech Connect (OSTI)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-06-14

    Thin-film photovoltaic modules are known to exhibit light-induced transient behavior which interferes with accurate and repeatable measurements of power. Typically power measurements are made after a light exposure in order to target a 'light state' of the module that is representative of outdoor performance. Here we show that the concept of a unique light state is poorly defined for both CIGS and CdTe modules. Instead we find that their metastable state after a light exposure can depend on the temperature of the module during the exposure. We observe changes in power as large as 5.8% for a 20 degrees C difference in light exposure temperature. These results lead us to conclude that for applications in which reproducibility and repeatability are critical, module temperature should be tightly controlled during light exposure.

  6. Temperature-Dependent Light-Stabilized States in Thin-Film PV Modules: Preprint

    SciTech Connect (OSTI)

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-09-17

    Thin-film photovoltaic modules are known to exhibit light-induced transient behavior which interferes with accurate and repeatable measurements of power. Typically power measurements are made after a light exposure in order to target a 'light state' of the module that is representative of outdoor performance. Here we show that the concept of a unique light state is poorly defined for both CIGS and CdTe modules. Instead we find that their metastable state after a light exposure can depend on the temperature of the module during the exposure. We observe changes in power as large as 5.8% for a 20 degrees C difference in light exposure temperature. These results lead us to conclude that for applications in which reproducibility and repeatability are critical, module temperature should be tightly controlled during light exposure.

  7. Performance Stabilization of CdTe PV Modules using Bias and Light

    SciTech Connect (OSTI)

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Kurtz, S. R.

    2014-07-01

    Reversible performance changes due to light exposure frustrate repeatable performance measurements on CdTe PV modules. It is common to use extended light-exposure to ensure that measurements are representative of outdoor performance. We quantify the extent to which such a light-exposed state depends on module temperature and consider bias in the dark to aid in stabilization. We evaluate the use of dark forward bias to bring about a performance state equivalent to that obtained with light exposure, and to maintain a light-exposed state prior to STC performance measurement. Our results indicate that the most promising method for measuring a light-exposed state is to use light exposure at controlled temperature followed by prompt STC measurement with a repeatable time interval between exposure and the STC measurement.

  8. Explosive laser light initiation of propellants

    DOE Patents [OSTI]

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  9. Two-dimensional forced convection perpendicular to the outdoor fenestration surface--FEM solution

    SciTech Connect (OSTI)

    Curcija, D.; Goss, W.P.

    1995-08-01

    Two-dimensional laminar forced convection on an outdoor fenestration surface, with the wind perpendicular to the glazing surface, was analyzed using the penalty function approach finite-element method (FEM). The air far from the fenestration surface (free-stream conditions) was assumed to be at ASHRAE standard fenestration conditions of {minus}18 C (0 F) and 6.7 m/s (15 mph). A prototype fenestration configuration of a typical wood casement window, consisting of a double-step frame and an insulating glazing unit (IGU), was used in defining the outdoor fenestration profile. A flat-plate geometry was also considered for purposes of comparison with other available numerical and experimental results and for validation of the results for the actual fenestration profile. The results are reported in the form of velocity vector plots and local convective surface heat transfer coefficients. Recommendations on the local outdoor surface convective heat transfer coefficient for use in two- and three-dimensional heat transfer analyses of fenestration systems are presented.

  10. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  11. Optical backscatter probe for sensing particulate in a combustion gas stream

    DOE Patents [OSTI]

    Parks, James E; Partridge, William P

    2013-05-28

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  12. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly. Protecting ARM instruments from lightning damage is vital. Putting equipment worth millions of dollars into open fields (Photo: NOAA) ARM Facilities Newsletter is published by Argonne National Laboratory, a multiprogram laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department

  13. Exhibit F-3

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Outdoor Lights No Outdoor Lights or Rarely Used Outdoor Lights Turned On During the Evening, but Turned Off Before Bedtime Outdoor Lights Left on All Night Outdoor Lights with a...

  14. An Assessment of the U.S. Residential Lighting Market

    SciTech Connect (OSTI)

    Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan; Sardinsky, Robert

    1995-10-01

    This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.

  15. Passivation of quartz for halogen-containing light sources

    DOE Patents [OSTI]

    Falkenstein, Zoran

    1999-01-01

    Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.

  16. Gas venting

    DOE Patents [OSTI]

    Johnson, Edwin F.

    1976-01-01

    Improved gas venting from radioactive-material containers which utilizes the passageways between interbonded impervious laminae.

  17. Trial Demonstration of Area Lighting Retrofit: Yuma Border Patrol, Yuma Arizona

    SciTech Connect (OSTI)

    Wilkerson, Andrea M.; McCullough, Jeffrey J.

    2014-12-30

    The Yuma Sector Border Patrol Area is a high flux lighting application in a high temperature environment, presenting a formidable challenge for light-emitting diodes (LEDs). This retrofit is an Energy Savings Performance Contract ENABLE project under the U.S. Department of Energy (DOE) Federal Energy Management Program. If high flux LED technology performs well in a region with high ambient temperature and solar radiation, it can perform well in most outdoor environments. The design process for the Yuma retrofit has already provided valuable knowledge to CBP and DOE. The LED lighting system selected for the retrofit is expected to reduce energy consumption 69% compared to the incumbent quartz metal halide (QMH) lighting system. If the LED lighting system is installed, GATEWAY will continue to document and disseminate information regarding the installation and long-term performance so that others may also gain valuable knowledge from the Yuma Sector Border Patrol Area lighting retrofit.

  18. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect (OSTI)

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  19. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  20. White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... White Light Creation Architectures HomeEnergy ResearchEFRCsSolid-State Lighting Science ...

  1. Light Creation Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Light Creation Materials HomeEnergy ResearchEFRCsSolid-State Lighting Science EFRC...

  2. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cost The high-brightness, rapidly pulsed, multicolor light-emitting diode (LED) driver delivers lighting performance that exceeds that of conventional (laserarc-light) sources ...

  3. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    SciTech Connect (OSTI)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Busque, Marc-Antoine; Duguay, Patrice; Fournier, Michel; Zayed, Joseph; Labrèche, France

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures in 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder

  4. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Print Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from defects. Engineering Nanocrystal Materials Most nanocrystal materials

  5. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Print Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from defects. Engineering Nanocrystal Materials Most nanocrystal materials

  6. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Print Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from defects. Engineering Nanocrystal Materials Most nanocrystal materials

  7. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Print Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from defects. Engineering Nanocrystal Materials Most nanocrystal materials

  8. Shedding Light on Nanocrystal Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shedding Light on Nanocrystal Defects Print Nanocrystals have been the focus of much scientific interest lately, given their various advantageous mechanical properties. Their resistance to stress has had researchers proposing nanocrystals as a promising new protective coating for advanced gas turbine and jet engines. But recent studies conducted at the ALS show that the tiny size of nanocrystals does not safeguard them from defects. Engineering Nanocrystal Materials Most nanocrystal materials

  9. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to State Energy Advisory Board (STEAB) February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov Lawrence Berkeley National Laboratory U.S. Building End Use Energy Consumption Buildings consume 40% of Building
sector
has:
 total U.S. energy Largest
Energy
Use!
 * 71% of electricity *54% of natural gas No Single End Use Dominates Fastest
growth
rate!
 Lawrence

  10. Directed light fabrication

    SciTech Connect (OSTI)

    Lewis, G.K.; Nemec, R.; Milewski, J.; Thoma, D.J.; Cremers, D.; Barbe, M.

    1994-09-01

    Directed Light Fabrication (DLF) is a rapid prototyping process being developed at Los Alamos National Laboratory to fabricate metal components. This is done by fusing gas delivered metal powder particles in the focal zone of a laser beam that is, programmed to move along or across the part cross section. Fully dense metal is built up a layer at a time to form the desired part represented by a 3 dimensional solid model from CAD software. Machine ``tool paths`` are created from the solid model that command the movement and processing parameters specific to the DLF process so that the part can be built one layer at a time. The result is a fully dense, near net shape metal part that solidifies under rapid solidification conditions.

  11. Apparatus and method for monitoring of gas having stable isotopes

    SciTech Connect (OSTI)

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  12. SDG&E (Gas)- Energy Efficiency Business Rebates

    Broader source: Energy.gov [DOE]

    Rebates are available for lighting improvements, refrigeration, natural gas technologies, food service or other improvements. Customers should contact SDG&E regarding eligibility and maximum...

  13. Low-Cost Gas Heat Pump fro Building Space Heating

    Energy Savers [EERE]

    A.O. Smith Gas Technology Institute Target MarketAudience: Residential & Light Commercial ... Partners, Subcontractors, and Collaborators: * AO Smith (OEM): Provides component design, ...

  14. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  15. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  16. Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)

    SciTech Connect (OSTI)

    Jordan, D; Kurtz, S.; Ulbrich, C.; Gerber, A.; Rau, U.

    2014-03-01

    We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.

  17. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  18. Backscatter absorption gas imaging system

    DOE Patents [OSTI]

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  19. Fiber optic coupled multipass gas minicell, design assembly thereof

    DOE Patents [OSTI]

    Bond, Tiziana C.; Bora, Mihail; Engel, Michael A.; McCarrick, James F.; Moran, Bryan D.

    2016-01-12

    A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data.

  20. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  1. W{sub 18}O{sub 49} nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst

    SciTech Connect (OSTI)

    Sun Shibin; Chang Xueting; Dong Lihua; Zhang Yidong; Li Zhenjiang; Qiu Yanyan

    2011-08-15

    A novel gas-sensing material and photocatalyst was successfully obtained by decorating Ag/AgCl nanoparticles on the W{sub 18}O{sub 49} nanorods through a clean photochemical route. The as-prepared samples were characterized using combined techniques of X-ray diffractometry, electron microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. Gas-sensing measurements indicate that the Ag/AgCl/W{sub 18}O{sub 49} NRs sensors exhibit superior reducing gas-sensing properties to those of bare W{sub 18}O{sub 49} NRs, and they are highly selective and sensitive to NH{sub 3}, acetone, and H{sub 2}S with short response and recovery times. The Ag/AgCl/W{sub 18}O{sub 49} NRs photocatlysts also possess higher photocatalytic performance than bare W{sub 18}O{sub 49} NRs for degradation of methyl orange under simulated sunlight irradiation. Possible mechanisms concerning the enhancement of gas-sensing and photocatalytic activities of the Ag/AgCl/W{sub 18}O{sub 49} NRs composite were proposed. - Graphical Abstract: The Ag/AgCl nanoparticles adhered well to the W{sub 18}O{sub 49} nanorod. The Ag could act as transfer center of the photoexcited carriers, prohibiting their recombinations in both W{sub 18}O{sub 49} and AgCl. Highlights: > Ag/AgCl/W{sub 18}O{sub 49} NRs were successfully obtained via a clean photochemical route. > The Ag/AgCl nanoparticles decorated on the W{sub 18}O{sub 49} NRs possessed cladding structure. > The Ag/AgCl/W{sub 18}O{sub 49} NRs exhibited excellent gas-sensing and photocatalytic properties.

  2. solid state lighting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Solid-State Lighting (SSL) is an emerging technology with the potential to address the urgent challenges of revitalizing America's economy, strengthening our national energy security, and reducing our country's greenhouse gas emissions. SSL will mean greener homes and businesses that use substantially less electricity, making them less dependent on fossil fuels. In the coming decade, SSL will become a key to affordable high-performance buildings - buildings that consume less

  3. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  4. Vehicle Technologies Office: Natural Gas Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In addition, natural gas can be a very good choice for light-duty vehicle fleets with central refueling. See the Alternative Fuels Data Center for a description of the uses and ...

  5. Field Results from Application of the Outdoor-Air/Economizer Diagnostician for Commissioning and O&M

    SciTech Connect (OSTI)

    Pratt, Robert G.; Katipamula, Srinivas; Brambley, Michael R.; Blanc, Steven L.

    2000-05-31

    This paper presents results of field testing an automated diagnostician for outdoor-air-supply and economizer systems that can be used for commissioning purposes. The fundamental capabilities of the tool are described and key results of its application on six air handlers in a large hotel building are discussed. Ancillary issues pertinent to the development and application of such tools are also presented.

  6. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    SciTech Connect (OSTI)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slope of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.

  7. A lipid-accumulating alga maintains growth in outdoor, alkaliphilic raceway pond with mixed microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Tisza A.S.; Prithiviraj, Bharath; Wahlen, Brad D.; Fields, Matthew W.; Peyton, Brent M.

    2016-01-07

    Algal biofuels and valuable co-products are being produced in both open and closed cultivation systems. Growing algae in open pond systems may be a more economical alternative, but this approach allows environmental microorganisms to colonize the pond and potentially infect or outcompete the algal “crop.” In this study, we monitored the microbial community of an outdoor, open raceway pond inoculated with a high lipid-producing alkaliphilic alga, Chlorella vulgaris BA050. The strain C. vulgaris BA050 was previously isolated from Soap Lake, Washington, a system characterized by a high pH (~9.8). An outdoor raceway pond (200 L) was inoculated with C. vulgarismore » and monitored for 10 days and then the culture was transferred to a 2,000 L raceway pond and cultivated for an additional 6 days. Community DNA samples were collected over the 16-day period in conjunction with water chemistry analyses and cell counts. Universal primers for the SSU rRNA gene sequences for Eukarya, Bacteria, and Archaea were used for barcoded pyrosequence determination. The environmental parameters that most closely correlated with C. vulgaris abundance were pH and phosphate. Community analyses indicated that the pond system remained dominated by the Chlorella population (93% of eukaryotic sequences), but was also colonized by other microorganisms. Bacterial sequence diversity increased over time while archaeal sequence diversity declined over the same time period. Using SparCC co-occurrence network analysis, a positive correlation was observed between C. vulgaris and Pseudomonas sp. throughout the experiment, which may suggest a symbiotic relationship between the two organisms. The putative relationship coupled with high pH may have contributed to the success of C. vulgaris. As a result, the characterization of the microbial community dynamics of an alkaliphilic open pond system provides significant insight into open pond systems that could be used to control photoautotrophic biomass

  8. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect (OSTI)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  9. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    SciTech Connect (OSTI)

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta; Waller, Peter; Ryan, Randy; Van Wagenen, Jonathan M.; Chavis, Aaron R.; Kyndt, John; Kacira, Murat; Ogden, Kimberly L.; Huesemann, Michael H.

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 C, the water temperature was 18 C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.

  10. Prospects for LED lighting.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

    2003-08-01

    Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

  11. Gas magnetometer

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2016-05-03

    Measurement of a precessional rate of a gas, such as an alkali gas, in a magnetic field is made by promoting a non-uniform precession of the gas in which substantially no net magnetic field affects the gas during a majority of the precession cycle. This allows sensitive gases that would be subject to spin-exchange collision de-phasing to be effectively used for extremely sensitive measurements in the presence of an environmental magnetic field such as the Earth's magnetic field.

  12. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  13. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... Grid Integration & Advanced Inverters Materials & Fabrication Microsystems Enabled ...

  15. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    are also under consideration. Outside the DOE, the Environmental Protection Agency's Green Lights program promotes energy-efficient lighting as a means to reducing...

  16. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  17. Leavenworth Tree Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join HERO for our annual Leavenworth Tree Lighting Ceremony & Shopping SATURDAY DECEMBER 12, 2015 Leavenworth Christmas Lighting Festival Visitors return year after year for some...

  18. Tips: Shopping for Lighting

    Broader source: Energy.gov [DOE]

    When shopping for lighting, you can now use the Lighting Facts label and lumens to compare bulbs and purchase a bulb with the amount of brightness you want.

  19. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    light by passing electricity through mercury vapor, which causes the fluorescent coating to glow or fluoresce. High-Efficiency Ballast (HEB): A lighting conservation feature...

  20. LED Street Lighting

    Energy Savers [EERE]

    1, 2016 LED Street Lighting The American Medical Association's (AMA) recently adopted community guidance on street lighting adds another influential voice to issues that have been ...

  1. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Frontier Research Centers: Solid-State Lighting Science Center for Frontiers of ... Twitter Google + Vimeo Newsletter Signup SlideShare Lighting Developments to 2030 Home...

  2. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  3. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  4. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  5. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Choices to Save You Money Lighting Choices to Save You Money This Energy 101 video explores the different lighting options available to consumers. Light your home using the same amount of light for less money. An average household dedicates about 5% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY

  6. Solid-State Lighting-Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Facts Solid-State Lighting-Lighting Facts Presenter: Marc Ledbetter, Pacific Northwest National Laboratory The LED Lighting Facts program provides credible, verified ...

  7. Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...

    Open Energy Info (EERE)

    LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name: Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place: Morrisville,...

  8. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and ...

  9. EERE Success Story-LED Lighting in the Classroom for Energy Efficiency...

    Energy Savers [EERE]

    easily controllable, because it's based on semiconductors rather than on filaments, plasma, or gas. "In addition to demonstrating the excellent efficiency of LED lighting ...

  10. Demonstration of a light-redirecting skylight system at the Palm Springs Chamber of Commerce

    SciTech Connect (OSTI)

    Lee, E.S.; Beltran, L.O.; Selkowitz, S.E. [Lawrence Berkeley National Lab., CA (United States); Lau, H.; Ander, G.D. [Southern California Edison, San Dimas, CA (United States)

    1996-05-01

    As part of a demonstration project to provide a comprehensive energy upgrade to a 294 m{sup 2} (3168 ft{sup 2}) commercial building, an advanced skylight design was developed using optical light control materials and geometry to provide daylight to two adjoining offices. The skylight system was developed using outdoor physical model tests and simulation tools Limited on-site measurements and occupant polls were conducted. Market issues were addressed. The skylight systems were found to improve lighting quality and to control excessive daylight illuminance levels compared to a conventional diffusing bubble skylight. Daylighting principles developed in earlier work for vertical glazing systems (light shelves and light pipes) were shown to be applicable in skylight designs at full-scale.