Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coal liquefaction quenching process  

DOE Patents [OSTI]

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

2

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

3

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

4

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

5

Catalytic Coal Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

6

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

7

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

8

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

9

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

10

Advanced Coal Conversion Process Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

11

Process for coal liquefaction employing selective coal feed  

DOE Patents [OSTI]

An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

Hoover, David S. (New Tripoli, PA); Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

12

Solvent refined coal (SRC) process  

SciTech Connect (OSTI)

This report summarizes the progress of the Solvent Refined Coal (SRC) project by The Pittsburg and Midway Coal Mining Co. at the SRC Pilot Plant in Fort Lewis, Washington and the Gulf Science and Technology Company Process Development Unit (P-99) in Harmarville, Pennsylvania, for the Department of Energy during the month of October, 1980. The Fort Lewis Pilot Plant was shut down the entire month of October, 1980 for inspection and maintenance. PDU P-99 completed two runs during October investigating potential start-up modes for the Demonstration Plant.

Not Available

1980-12-01T23:59:59.000Z

13

Direct coal liquefaction process  

DOE Patents [OSTI]

An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

Rindt, John R. (Grand Forks, ND); Hetland, Melanie D. (Grand Forks, ND)

1993-01-01T23:59:59.000Z

14

Process for changing caking coals to noncaking coals  

DOE Patents [OSTI]

Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

Beeson, Justin L. (Woodridge, IL)

1980-01-01T23:59:59.000Z

15

Coal liquefaction process streams characterization and evaluation  

SciTech Connect (OSTI)

CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1992-03-01T23:59:59.000Z

16

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

17

Integrated two-stage coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

18

Process for selective grinding of coal  

DOE Patents [OSTI]

A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

1991-01-01T23:59:59.000Z

19

Process for electrochemically gasifying coal using electromagnetism  

DOE Patents [OSTI]

A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

1987-01-01T23:59:59.000Z

20

Coal Direct Chemical Looping (CDCL) Process Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Chemical Looping (CDCL) Retrofit to Direct Chemical Looping (CDCL) Retrofit to Pulverized Coal Power Plants for In-Situ CO 2 Capture William G. Lowrie Department of Chemical & Biomolecular Engineering The Ohio State University Columbus, OH 43210 Award #: DE-NT0005289 PI: Liang-Shih Fan Presenter: Samuel Bayham Department of Chemical and Biomolecular Engineering The Ohio State University 2013 NETL CO2 Capture Technology Meeting July 11, 2013 Pittsburgh, PA Clean Coal Research Laboratory at The Ohio State University Sub-Pilot Scale Unit 250kW th Pilot Unit (Wilsonville, Alabama) Syngas Chemical Looping Coal-Direct Chemical Looping Cold Flow Model Sub-Pilot Scale Unit HPHT Slurry Bubble Column 120kW th Demonstration Unit Calcium Looping Process CCR Process Sub-Pilot Unit F-T Process

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

22

Process for coal liquefaction in staged dissolvers  

DOE Patents [OSTI]

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

Roberts, George W. (Emmaus, PA); Givens, Edwin N. (Bethlehem, PA); Skinner, Ronald W. (Allentown, PA)

1983-01-01T23:59:59.000Z

23

Process May Reduce Pollution From Burning Coal Refuse Piles  

Science Journals Connector (OSTI)

Process May Reduce Pollution From Burning Coal Refuse Piles ... The process uses a heavy liquid to separate marketable high-ash coal from nonburnable waste rock. ... Nearly 500 mountains of coal refuse, waste material from coal cleaning operations, are burning uncontrollably in 15 states in the U.S., according to a Bureau of Mines survey. ...

1965-01-25T23:59:59.000Z

24

Process for separating anthracite coal from impurities  

SciTech Connect (OSTI)

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

25

Process and apparatus for coal hydrogenation  

DOE Patents [OSTI]

In a coal liquefaction process an aqueous slurry of coal is prepared containing a dissolved liquefaction catalyst. A small quantity of oil is added to the slurry and then coal-oil agglomerates are prepared by agitation of the slurry at atmospheric pressure. The resulting mixture of agglomerates, excess water, dissolved catalyst, and unagglomerated solids is pumped to reaction pressure and then passed through a drainage device where all but a small amount of surface water is removed from the agglomerates. Sufficient catalyst for the reaction is contained in surface water remaining on the agglomerates. The agglomerates fall into the liquefaction reactor countercurrently to a stream of hot gas which is utilized to dry and preheat the agglomerates as well as deposit catalyst on the agglomerates before they enter the reactor where they are converted to primarily liquid products under hydrogen pressure.

Ruether, John A. (McMurray, PA)

1988-01-01T23:59:59.000Z

26

Controlled short residence time coal liquefaction process  

DOE Patents [OSTI]

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-04T23:59:59.000Z

27

Process for preparing a stabilized coal-water slurry  

DOE Patents [OSTI]

A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.

Givens, Edwin N. (Bethlehem, PA); Kang, Doohee (Macungie, PA)

1987-01-01T23:59:59.000Z

28

Upgrading low-rank coals using the liquids from coal (LFC) process  

SciTech Connect (OSTI)

Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

Nickell, R.E.; Hoften, S.A. van

1993-12-31T23:59:59.000Z

29

Coal liquefaction process research quarterly report, October-December 1979  

SciTech Connect (OSTI)

This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

1980-03-01T23:59:59.000Z

30

H-Coal process and plant design  

DOE Patents [OSTI]

A process for converting coal and other hydrocarbonaceous materials into useful and more valuable liquid products. The process comprises: feeding coal and/or other hydrocarbonaceous materials with a hydrogen-containing gas into an ebullated catalyst bed reactor; passing the reaction products from the reactor to a hot separator where the vaporous and distillate products are separated from the residuals; introducing the vaporous and distillate products from the separator directly into a hydrotreater where they are further hydrogenated; passing the residuals from the separator successively through flash vessels at reduced pressures where distillates are flashed off and combined with the vaporous and distillate products to be hydrogenated; transferring the unseparated residuals to a solids concentrating and removal means to remove a substantial portion of solids therefrom and recycling the remaining residual oil to the reactor; and passing the hydrogenated vaporous and distillate products to an atmospheric fractionator where the combined products are fractionated into separate valuable liquid products. The hydrogen-containing gas is generated from sources within the process.

Kydd, Paul H. (Lawrenceville, NJ); Chervenak, Michael C. (Pennington, NJ); DeVaux, George R. (Princeton, NJ)

1983-01-01T23:59:59.000Z

31

H-coal process and plant design  

SciTech Connect (OSTI)

A process is disclosed for converting coal and other hydrocarbonaceous materials into useful and valuable liquid products. The process comprises: feeding coal and/or other hydrocarbonaceous mater with a hydrogen-containing gas into an ebullated catalyst bed reactor; passing the reaction product from the reactor to a hot separator where the vaporous and distillate products are separated from residuals; introducing the vaporous and distillate products from the separator directly into a hydrotreater where they are further hydrogenated; passing the residuals from the separator sucessively through flash vessels at reduced pressures where distillates are flashed off and combined with the vaporous and distillate products to be hydrogenated; transferring the unseparated residua to a solids concentrating and removal means to remove a substantial portion of solids therefrom an recycling the remaining residual oil to the reactor; and passing the hydrogenated vaporous and distillate products to an atmospheric fractionator where the combined products are fractionated in separate valuable liquid products. The hydrogen-containing gas is generated from sources within the process.

Kydd, P.H.; Chervenak, M.C.; DeVaux, G.R.

1983-08-23T23:59:59.000Z

32

Studies on design of a process for organo-refining of coal to obtain super clean coal  

SciTech Connect (OSTI)

Organo-refining of coal results in refining the coal to obtain super clean coal and residual coal. Super clean coal may be used to obtain value added chemicals, products, and cleaner fuels from coal. In the present work, studies on the design of a semicontinuous process for organo-refining of one ton of coal have been made. The results are reported. This is only a cursory attempt for the design, and further studies may be required for designing this process for use in the development of a scaled-up process of organo-refining of coal.

Sharma, C.S.; Sharma, D.K. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1999-08-01T23:59:59.000Z

33

Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream  

DOE Patents [OSTI]

A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (S. Somerville, NJ)

1989-01-01T23:59:59.000Z

34

Continuous process for conversion of coal  

DOE Patents [OSTI]

An improved process for converting coal to liquid and gaseous products wherein the liquid products predominate and wherein reactor, tubing, and valve plugging due to carbonate salt formation is reduced by reacting crushed low-rank coal containing about 12 to 30% by weight of water in a solvent at a temperature in the range of about 455.degree. to 500.degree. C., under about 2000 to 5000 psi pressure of a H.sub.2 /CO mixture for a liquid residence time of about 20 to 60 minutes. The solvent is a fraction of liquid product defined on a weight basis as being made up of about 55% of which distills at less than 250.degree. C./lmm, about 20% of which is soluble in THF, and about 25% of which is carbon polymer and indigenous inorganic matter. The solvent is further defined as containing at least about 5 weight % of partially hydrogenated aromatics and/or fully hydrogenated aromatics and little or no alkylated aromatics or higher alkanes.

Knudson, Curtis L. (Grand Forks, ND); Willson, Warrack G. (Grand Forks, ND); Baker, Gene G. (Grand Forks, ND); Sondreal, Everett A. (Grand Forks, ND); Farnum, Sylvia A. (Grand Forks, ND)

1982-01-01T23:59:59.000Z

35

Coal liquefaction process using pretreatment with a binary solvent mixture  

DOE Patents [OSTI]

An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

Miller, R.N.

1986-10-14T23:59:59.000Z

36

Removal of mercury from coal via a microbial pretreatment process  

SciTech Connect (OSTI)

A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

Borole, Abhijeet P. (Knoxville, TN); Hamilton, Choo Y. (Knoxville, TN)

2011-08-16T23:59:59.000Z

37

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

38

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

39

An efficient process for recovery of fine coal from tailings of coal washing plants  

SciTech Connect (OSTI)

Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H. [Dokuz Eylul University, Izmir (Turkey). Dept. for Mining Engineering

2008-07-01T23:59:59.000Z

40

Interlaboratory comparison of advanced fine-coal beneficiation processes  

SciTech Connect (OSTI)

The Pittsburgh Energy Technology Center (PETC) recently completed three interlaboratory test programs involving 21 developers of advanced fine-coal-cleaning processes. The processes consisted of specific gravity separation (aqueous or heavy-liquid), electrostatic separation (dry), advanced froth flotation, selective agglomeration, and surface modification (gas). The participating organizations received representative samples of Illinois No. 6, Pittsburgh, and Upper Freeport bed coals. They ground them to a size appropriate for their particular process and then treated each coal. Their goal was to produce a clean coal with 2--3{percent} ash while recovering maximum energy. The products were returned to the PETC for analysis and performance evaluation. This paper will discuss the processes involved in the three test programs and present the results of the beneficiation tests. 4 refs., 4 figs., 3 tabs.

Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA)); Killmeyer, R.P.; Hucko, R.E. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1989-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect (OSTI)

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

B. K. Parekh; D. P. Patil

2008-04-30T23:59:59.000Z

42

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

43

Process for stabilization of coal liquid fractions  

DOE Patents [OSTI]

Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

1987-01-01T23:59:59.000Z

44

A Characterization and Evaluation of Coal Liquefaction Process Streams  

SciTech Connect (OSTI)

CONSOL characterized 38 process strea m samples from HTI Run PB- 04, in which Black Thunder Mine Coal, Hondo vacuum resid, autom obile shredder residue (ASR), and virgin plastics were used as liquefaction feedstocks with dispersed catalyst. A paper on kinetic modeling of resid reactivity was presented at the DOE Coal Lique -faction and Solid Fuels Contractors Review Conference, September 3- 4, 1997, i n Pittsburgh, PA. The paper, "The Reactivity of Direct Coal Liquefaction Resids", i s appended (Appendix 1). Three papers on characterization of samples from coal/ resid/ waste p lastics co- liquefaction were presented or submitted for presen tation at conferences. Because of their similarity, only one of the papers is appended to this report. The paper, "Characterization o f Process Samples From Co- Liquefaction of Coal and Waste Polymers", (Appendix 2) was presented at the DOE Coal Liquefaction and Solid Fuels C ontractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper, "Characterization of Process Stream Samples From Bench- Scale Co -Liquefaction Runs That Utilized Waste Polymers as Feedstocks" was presented at the 214th National Meeting of the Ameri can Chemical Society, September 7- 11, 1997, in Las Vegas, NV. The paper, "Characterization of Process Oils from Coal/ Waste Co- Liquefaction" wa s submitted for presentation at the 14th Japan/ U. S. Joint Technical Meeting on Coa l Liquefaction and Materials for Coal Liquefaction on October 28, 1997, in Tokyo, Japan. A joint Burns and Roe Services Corp. and CONSOL pap er on crude oil assays of product oils from HTI Run PB- 03 was presented at the DOE Coal Liquefaction and Solid Fuel s Contractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper , "Characterization of Liquid Products from All- Slurry Mode Liquefaction", is appende d (Appendix 3).

G. A. Robbins; R. A. Winschel; S. D. Brandes

1998-06-09T23:59:59.000Z

45

Process for fixed bed coal gasification  

DOE Patents [OSTI]

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

46

Process for forming coal compacts and product thereof  

DOE Patents [OSTI]

A process for forming durable, mechanically strong compacts from coal particulates without use of a binder is disclosed. The process involves applying a compressive stress to a particulate feed comprising substantially water-saturated coal particles while the feed is heated to a final compaction temperature in excess of about 100.degree. C. The water present in the feed remains substantially in the liquid phase throughout the compact forming process. This is achieved by heating and compressing the particulate feed and cooling the formed compact at a pressure sufficient to prevent water present in the feed from boiling. The compacts produced by the process have a moisture content near their water saturation point. As a result, these compacts absorb little water and retain exceptional mechanical strength when immersed in high pressure water. The process can be used to form large, cylindrically-shaped compacts from coal particles (i.e., "coal logs") so that the coal can be transported in a hydraulic coal log pipeline.

Gunnink, Brett (Columbia, MO); Kanunar, Jayanth (Arlington, MA); Liang, Zhuoxiong (San Francisco, CA)

2002-01-01T23:59:59.000Z

47

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

48

Process for removal of hazardous air pollutants from coal  

DOE Patents [OSTI]

An improved process for removing mercury and other trace elements from coal containing pyrite by forming a slurry of finely divided coal in a liquid solvent capable of forming ions or radicals having a tendency to react with constituents of pyrite or to attack the bond between pyrite and coal and/or to react with mercury to form mercury vapors, and heating the slurry in a closed container to a temperature of at least about 50.degree. C. to produce vapors of the solvent and withdrawing vapors including solvent and mercury-containing vapors from the closed container, then separating mercury from the vapors withdrawn.

Akers, David J. (Indiana, PA); Ekechukwu, Kenneth N. (Silver Spring, MD); Aluko, Mobolaji E. (Burtonsville, MD); Lebowitz, Howard E. (Mountain View, CA)

2000-01-01T23:59:59.000Z

49

Co-processing of agriculture and biomass waste with coal  

SciTech Connect (OSTI)

Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P. [West Virginia Univ., Morgantown, WV (United States)

1995-12-01T23:59:59.000Z

50

Coal Fly Ash Chemistry and Carbon Dioxide Infusion Process to Enhance its Utilization  

Science Journals Connector (OSTI)

The increased use of coal in production of electricity is predicted to ... continue well into the 21st century. Thus, coal burning power plants play a key role ... the United States. Like any other process, coal ...

Katta J. Reddy

1999-01-01T23:59:59.000Z

51

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

52

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

53

Process for particulate removal from coal liquids  

DOE Patents [OSTI]

Suspended solid particulates are removed from liquefied coal products by first subjecting such products to hydroclone action for removal in the underflow of the larger size particulates, and then subjecting the overflow from said hydroclone action, comprising the residual finer particulates, to an electrostatic field in an electrofilter wherein such finer particulates are deposited in the bed of beads of dielectric material on said filter. The beads are periodically cleaned by backwashing to remove the accumulated solids.

Rappe, Gerald C. (Macungie, PA)

1983-01-01T23:59:59.000Z

54

Fluidized bed catalytic coal gasification process  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

55

Coal to methanol to gasoline by the hydrocarb process  

SciTech Connect (OSTI)

The HYDROCARB Process converts coal or any other carbonaceous material to a clean carbon fuel and co-product gas or liquid fuel. By directing the co-product to liquid methanol, it becomes possible to produce methanol at costs as low as $0.13 to $0.14/gal as shown in Table 1 for a Western Lignite and Table 2 for an Eastern Bituminous coal. In the case of Western lignite, it is assumed that the carbon black fuel product can be sold at $3.00/MMBtu ($18/Bbl FOE) and for the Eastern coal at $2.50/MMBtu ($15/Bbl FOE). A methanol market is expected to develop due to the need for an automotive fuel with reduced pollutant emissions. However, should the methanol market not materialize as expected, then methanol can be readily converted to conventional gasoline by the addition of an MTG, methanol to gasoline process step. 1 fig., 3 tabs.

Steinberg, M.

1989-08-01T23:59:59.000Z

56

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment  

SciTech Connect (OSTI)

The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

Baldwin, R.M.; Miller, R.L.

1990-01-01T23:59:59.000Z

57

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents [OSTI]

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

1982-05-18T23:59:59.000Z

58

Short residence time coal liquefaction process including catalytic hydrogenation  

DOE Patents [OSTI]

Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-05-18T23:59:59.000Z

59

Lummus process turns coal tar pitch to coke  

Science Journals Connector (OSTI)

Lummus Co. has developed a process for converting coal tar pitch to coke and now has a full-scale commercial plant in operation in Japan. The plant, which is owned by Nittetsu Chemical Industrial Co., a subsidiary of Yawata Iron and Steel, is producing ...

1968-12-09T23:59:59.000Z

60

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Co-processing of agricultural and biomass waste with coal  

SciTech Connect (OSTI)

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

62

Process to improve boiler operation by supplemental firing with thermally beneficiated low rank coal  

DOE Patents [OSTI]

The invention described is a process for improving the performance of a commercial coal or lignite fired boiler system by supplementing its normal coal supply with a controlled quantity of thermally beneficiated low rank coal, (TBLRC). This supplemental TBLRC can be delivered either to the solid fuel mill (pulverizer) or directly to the coal burner feed pipe. Specific benefits are supplied based on knowledge of equipment types that may be employed on a commercial scale to complete the process. The thermally beneficiated low rank coal can be delivered along with regular coal or intermittently with regular coal as the needs require.

Sheldon, Ray W. (Huntley, MT)

2001-01-01T23:59:59.000Z

63

Advanced Development Of The Coal Fired Oxyfuel Process With CO2...  

Open Energy Info (EERE)

Development Of The Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name: Advanced Development Of The Coal-Fired Oxyfuel Process With CO2...

64

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL GGAASSIIFFIIEERR CCOONNTTRROOLL  

E-Print Network [OSTI]

Appendix D: Coal Gasifier Control: A Process Engineering Approach 208 DD.. CCOOAALL 24 June 1998 Coventry University #12;Appendix D: Coal Gasifier Control: A Process Engineering Approach 209 Coal Gasifier Control: A Process Engineering Approach B N Asmar, W E Jones and J A Wilson

Skogestad, Sigurd

65

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

66

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

67

Fluidized-bed bioreactor process for the microbial solubiliztion of coal  

DOE Patents [OSTI]

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

1989-01-01T23:59:59.000Z

68

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

SciTech Connect (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

69

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

70

Design of generic coal conversion facilities: Process release---Direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

Not Available

1991-09-01T23:59:59.000Z

71

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS  

SciTech Connect (OSTI)

This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the extraction products indicated that they had the requisite properties of viable carbon-product precursors.

Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

2002-03-31T23:59:59.000Z

72

Advanced Development Of The Coal Fired Oxyfuel Process With CO2 Separation  

Open Energy Info (EERE)

Coal Fired Oxyfuel Process With CO2 Separation Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) Place Germany Product Dresden based initiative that has been formed to assess oxyfuel CCS technology. References Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) is a company located in Germany . References ↑ "Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS)" Retrieved from "http://en.openei.org/w/index.php?title=Advanced_Development_Of_The_Coal_Fired_Oxyfuel_Process_With_CO2_Separation_ADECOS&oldid=341776

73

A novel technique for assessing the coking potential of coals/coal blends for non-recovery coke making process  

Science Journals Connector (OSTI)

Abstract In an effort to broaden the scope of coal selection, the authors have developed a novel procedure based on a coefficient, named as Composite Coking Potential (CCP). CCP value assesses the suitability of a coal/coal blend for producing coke of desired quality; measured by the parameter coke strength after reaction (CSR). The coking potential takes into account of various properties of the coals and their proportions in a given coal blend and convert them into a single value. This technique is having advantage since each of these parameters represents different aspects of the coking phenomena along with inter dependence of some of these parameters also exists. This makes the coal selection process extremely difficult and in majority of the cases, decision is taken based on experience. In this investigation, CCP model has been used for selecting the least expensive coal blends which will comply with the minimum coke quality requirements of blast furnace. The study confirms the inter relations between the CCP and the hot strength of coke i.e. CSR. Actual plant data of a non-recovery coke oven have been used for developing and validation of the model. The technique was successfully used in identifying cheaper coals for producing coke with desired quality.

H.P. Tiwari; P.K. Banerjee; V.K. Saxena

2013-01-01T23:59:59.000Z

74

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

SciTech Connect (OSTI)

This is the Technical Progress Report for the eleventh quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1997. Described in this report are the following activities: (1) CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. These results are described in the Results and Discussion section of this report. (2) Oil assays were completed on the HT I Run PB-05 product blend. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 1. (3) Fractional distillation of the net product oil of HTI Run POC-1 was completed. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 2. (4) CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. Those results are described briefly in the Results and Discussion section of this report. The full report is presented in Appendix 3. (5) At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. These activities are described in Appendix 4. (6) The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. A summary of Delaware's progress is provided in the Results and Discussion section. (7) The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL (Appendix 5). (8) The University of Delaware submitted a paper on the resid reactivity work for presentation at the 213th National Meeting of the American Chemical Society, April 13-17, 1997 in San Francisco, California. The paper, ''Kinetics of Hydroprocessing of Coal-Derived Vacuum Resids'', is appended (Appendix 6).

G.A. Robbins; G.W. Heunisch; R.A. Winschel; S.D. Brandes

1998-04-01T23:59:59.000Z

75

Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991  

SciTech Connect (OSTI)

CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1992-03-01T23:59:59.000Z

76

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

77

Producing and controlling of the pollutant in the coal`s coking process  

SciTech Connect (OSTI)

In the process of heating and coke shaping, different pollutants and polluting factors will be produced and lost to the environment due to the different coking methods. The paper analyzes the production mechanism, type, emission, average quantity, and damage to the environment of the major pollutants and polluting factors produced in several kinds of coking processes in China at the present. Then, the paper concludes that an assessment for any coking method should include a comprehensive beneficial assessment of economical benefit, environmental benefit and social benefit. The items in the evaluation should consist of infrastructure investment, which includes production equipment and pollution control equipment, production cost, benefit and profit produced by one ton coal, whether the pollution complies with the environmental requirement, extent of the damage, influence to the social development, and etc.

Li, S. [Shanxi Environmental Protection Bureau (China); Fan, Z. [Shanxi Central Environmental Monitoring Station (China)

1997-12-31T23:59:59.000Z

78

Development of biological coal gasification (MicGAS Process)  

SciTech Connect (OSTI)

The overall goal of the project is to develop an advanced, clean coal biogasification (MicGAS) Process. The objectives of the research during FY 1993--94 were to: (1) enhance kinetics of methane production (biogasification, biomethanation) from Texas lignite (TxL) by the Mic-1 consortium isolated and developed at ARCTECH, (2) increase coal solids loading, (3) optimize medium composition, and (4) reduce retention time. A closer analysis of the results described here indicate that biomethanation of TxL at >5% solids loading is feasible through appropriate development of nutrient medium and further adaptation of the microorganisms involved in this process. Further understanding of the inhibitory factors and some biochemical manipulations to overcome those inhibitions will hasten the process considerably. Results are discussed on the following: products of biomethanation and enhance of methane production including: bacterial adaptation; effect of nutrient amendment substitutes; effects of solids loading; effect of initial pH of the culture medium; effect of hydrogen donors and carbon balance.

Walia, D.S.; Srivastava, K.C.

1994-10-01T23:59:59.000Z

79

Chapter 3 - Coal Processing and Use for Power Generation  

Science Journals Connector (OSTI)

Coal is an important source of energy and raw material for electric power production. Despite climate change legislation, growth in coal consumption thus far outpaced that of other fossil fuels in the twenty-first century. Coal is a reliable energy source, abundant, easily transported, easily traded and competitive in terms of price compared to other fossil fuels. The technology of coal preparation, coal cleaning and use in power generation is discussed. It covers issues such as coal properties and how these relate to coal performance in power generation, as well as ways to remove sulphur, mineral matter and water before coal combustion to improve the efficiency of power generation and reduce emissions from coal use.

Maria E. Holuszko; Arno de Klerk

2014-01-01T23:59:59.000Z

80

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling Li…

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process for clean-burning fuel from low-rank coal  

DOE Patents [OSTI]

A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

1994-01-01T23:59:59.000Z

82

Techno-Economic Analysis of Coal-Based Hydrogen and Electricity Cogeneration Processes with CO2 Capture  

Science Journals Connector (OSTI)

The baseline coal gasification process and the novel membrane and syngas chemical-looping processes are evaluated. ... burner ...

Fanxing Li; Liang Zeng; Liang-Shih Fan

2010-07-29T23:59:59.000Z

83

A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS  

SciTech Connect (OSTI)

This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.

G.A. Robbins; R.A. Winschel; S.D. Brandes

1999-05-01T23:59:59.000Z

84

Economic feasibility study: CFR advanced direct coal liquefaction process. Volume 4  

SciTech Connect (OSTI)

Preliminary technical and economic data are presented on the CFR Advanced Coal Liquefaction Process. Operating cost estimates and material balances are given.

Not Available

1994-09-01T23:59:59.000Z

85

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents [OSTI]

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

86

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING  

SciTech Connect (OSTI)

This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

NONE

1998-01-01T23:59:59.000Z

87

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

88

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites have been selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's site using waste from Midwest Grain's FBC unit in central Illinois. A fourth site is under consideration at the Dakota Gasification Company in North Dakota. The first two tasks of this project involved the development of test plans and obtaining site access.

Not Available

1990-01-01T23:59:59.000Z

89

Research on the evolvement of morphology of coking coal during the coking process  

Science Journals Connector (OSTI)

Abstract The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

Xiangyun Zhong; Shiyong Wu; Yang Liu; Zhenning Zhao; Yaru Zhang; Jinfeng Bai; Jun Xu; Bai Xi

2013-01-01T23:59:59.000Z

90

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network [OSTI]

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures Elodie Salmon a , Adri C.T. van Duin b , François Lorant Brown coal using the ReaxFF reactive force field. We find that these reactive MD simulations

Goddard III, William A.

91

Analyses of two-stage coal liquefaction processes  

SciTech Connect (OSTI)

The objectives of this study was to identify the most promising coal liquefaction configuration. Investigators evaluated six process configurations that have been tested at the Wilsonville facility and Lummus Crest. Plants with one- and two-reactor stages were included. The investigators evaluated both nonintegrated and integrated (interstate recycle) versions of the two-stage concept. They also looked at variations of the integrated mode, including short contact time versus back-mixed first stages, antisolvent versus critical solvent de-ashing, and coupled reactors versus interstage de-ashing. They performed sensitivity analyses to determine the effects of reducing the number of hydrotreater (second-stage) reactors either by increasing the catalyst replacement rate or by using a catalytic first-stage reactor in place of a thermal first-stage reactor. 15 figs., 54 tabs.

Peluso, M. (Lummus Crest, Inc., Bloomfield, NJ (USA))

1991-05-01T23:59:59.000Z

92

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect (OSTI)

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

93

Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams  

SciTech Connect (OSTI)

This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

Not Available

1981-01-01T23:59:59.000Z

94

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-07-13T23:59:59.000Z

95

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-02-23T23:59:59.000Z

96

Carbon formation and metal dusting in advanced coal gasification processes  

SciTech Connect (OSTI)

The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

1997-02-01T23:59:59.000Z

97

Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products  

SciTech Connect (OSTI)

This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

Elliot B. Kennel

2006-12-31T23:59:59.000Z

98

CBM and CO2-ECBM related sorption processes in coal: A review  

Science Journals Connector (OSTI)

This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams. Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters. Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach. In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank. Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes. This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.

Andreas Busch; Yves Gensterblum

2011-01-01T23:59:59.000Z

99

Process for the production of fuel gas from coal  

DOE Patents [OSTI]

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

100

AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL  

SciTech Connect (OSTI)

Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behavior of fly ash in the PEG-2000 Na{sub 2}SO{sub 4}/H{sub 2}O system was studied and the solid in each fraction was characterized by CHN analysis (carbon content), X-ray diffraction (XRD; crystal component), and inductively coupled plasma spectrophotometry (ICP; elemental composition in the ash). In the pH range from 2 to 5, the particles separated into two different layers, i.e., the polymer-rich (top) and salt-rich (bottom) layers. However, above pH 5, the particles in the polymer-rich phase split into two zones. The percent carbon content of the solids in the upper zone ({approximately}80 wt%) was higher than that in the parent sample (63.2 wt%), while the lower zone in the polymer-rich phase had the same percent ash content as the original sample. The particles in the salt-rich phase were mainly composed of ash (with < 4 wt% carbon content). However, when the solid concentration in the whole system increased from 1 wt% to 2 wt%, this 3-fraction phenomenon only occurred above pH 10. XRD results showed that the main crystal components in the ash included quartz, hematite, and mullite. The ICP results showed that Si, Al, and Fe were the major elements in the fly ash, with minor elements of Na, K, Ca, Mg, and Ba. The composition of the ash in the lower zone of the polymer-rich phase remained almost the same as that in the parent fly ash. The largest amount of product ({approximately}60% yield) with the highest carbon content ({approximately}80 wt% C) was obtained in the range pH 6-9. Based on the experimental results obtained, a flowsheet is proposed for the beneficiation of high-carbon fly ash with the aqueous biphase extraction process.

K. Osseo-Asare

2000-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal liquefaction process streams characterization and evaluation: Analysis of coal-derived synthetic crude from HRI CTSL Run CC-15 and HRI Run CMSL-2  

SciTech Connect (OSTI)

Under subcontract from CONSOL Inc. (US DOE Contract No. DE-AC22-89PC89883), IIT Research Institute, National Institute for Petroleum and Energy Research applied a suite of petroleum inspection tests to two direct coal liquefactions net product oils produced in two direct coal liquefaction processing runs. Two technical reports, authored by NIPER, are presented here. The following assessment briefly describes the two coal liquefaction runs and highlights the major findings of the project. It generally is concluded that the methods used in these studies can help define the value of liquefaction products and the requirements for further processing. The application of these methods adds substantially to our understanding of the coal liquefaction process and the chemistry of coal-derived materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of this contract.

Sturm, G.P. Jr.; Kim, J.; Shay, J. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

1994-01-01T23:59:59.000Z

102

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

103

PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-06-20T23:59:59.000Z

104

Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2  

SciTech Connect (OSTI)

Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

Moretti, C.J.; Olson, E.S.

1992-09-01T23:59:59.000Z

105

Methodology for technology evaluation under uncertainty and its application in advanced coal gasification processes  

E-Print Network [OSTI]

Integrated gasification combined cycle (IGCC) technology has attracted interest as a cleaner alternative to conventional coal-fired power generation processes. While a number of pilot projects have been launched to ...

Gong, Bo, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

106

Contamination from a Coal Tar Processing Chemical Industry: Investigations and Remedial Actions  

Science Journals Connector (OSTI)

One of the major cases of soil contamination in The Netherlands is presented: the site of a coal tar processing chemical industry and its surroundings. The environmental contamination, with PAH’s in particular, i...

Martien W. F. Yland

1986-01-01T23:59:59.000Z

107

Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process  

SciTech Connect (OSTI)

Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phase distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.

Oguejiofor, G.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Chemical Engineering

2008-07-01T23:59:59.000Z

108

Flotation machine and process for removing impurities from coals  

DOE Patents [OSTI]

The present invention is directed to a type of flotation machine that combines three separate operations in a single unit. The flotation machine is a hydraulic separator that is capable of reducing the pyrite and other mineral matter content of a coal. When the hydraulic separator is used with a flotation system, the pyrite and certain other minerals particles that may have been entrained by hydrodynamic forces associated with conventional flotation machines and/or by the attachment forces associated with the formation of microagglomerates are washed and separated from the coal.

Szymocha, Kazimierz (Edmonton, CA); Ignasiak, Boleslaw (Edmonton, CA); Pawlak, Wanda (Edmonton, CA); Kulik, Conrad (Newark, CA); Lebowitz, Howard E. (Mountain View, CA)

1997-01-01T23:59:59.000Z

109

A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of chemical analyses to direct coal liquefaction process development. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, new analytical instruments and techniques to examine coal-derived samples are being evaluated. The data obtained form this study are used to guide process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and experimental data, a kinetic model of resid conversion will be constructed. Such a model will provide insights to improve process performance and the economics of direct coal liquefaction.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

1997-03-01T23:59:59.000Z

110

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feed-stocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-12-12T23:59:59.000Z

111

Integrated coal preparation and CWF processing plant: Conceptual design and costing  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

1992-12-01T23:59:59.000Z

112

Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

1992-12-01T23:59:59.000Z

113

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2  

E-Print Network [OSTI]

Early maturation processes in coal.1 Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the2 Morwell Brown Coal seam3 4 Elodie Salmon a, c , Françoise Behar a , François Lorant force21 field to simulate the thermal stress. The Morwell coal has been selected to study the thermal22

Paris-Sud XI, Université de

114

Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction  

DOE Patents [OSTI]

A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

1989-10-17T23:59:59.000Z

115

Slipstream Testing of a Membrane CO2 Capture Process for Existing Coal-Fired Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of a Membrane CO Testing of a Membrane CO 2 Capture Process for Existing Coal-Fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of

116

Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report  

SciTech Connect (OSTI)

This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

Not Available

1982-05-01T23:59:59.000Z

117

Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Final report, September 20, 1991--September 19, 1993  

SciTech Connect (OSTI)

One of the main goals for competitive coal liquefaction is to decrease gas yields to reduce hydrogen consumption. Complexing this element as methane and ethane decreases process efficiently and is less cost effective. To decrease the gas yield and increase the liquid yield, an effective preconversion process has been explored on the basis of the physically associated molecular nature of coal. Activities have been focused on two issues: (1) maximizing the dissolution of associated coal and (2) defining the different reactivity associated with a wide molecular weight distribution. Two-step soaking at 350{degrees}C and 400{degrees}C in a recycle oil was found to be very effective for coal solubilization. No additional chemicals, catalysts, and hydrogen are required for this preconversion process. High-volatile bituminous coals tested before liquefaction showed 80--90% conversion with 50--55% oil yields. New preconversion steps suggested are as follows: (1) dissolution of coal with two-step high-temperature soaking, (2) separation into oil and heavy fractions of dissolved coal with vacuum distillation, and (3) selective liquefaction of the separated heavy fractions under relatively mild conditions. Laboratory scale tests of the proposed procedure mode using a small autoclave showed a 30% increase in the oil yield with a 15--20% decrease in the gas yield. This batch operation projects a substantial reduction in the ultimate cost of coal liquefaction.

Not Available

1993-09-01T23:59:59.000Z

118

Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.  

SciTech Connect (OSTI)

A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

Brandes, S.D.; Winschel, R.A.

1997-05-01T23:59:59.000Z

119

Slag processing system for direct coal-fired gas turbines  

DOE Patents [OSTI]

Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

Pillsbury, Paul W. (Winter Springs, FL)

1990-01-01T23:59:59.000Z

120

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

SciTech Connect (OSTI)

High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Innovative process for concentration of fine particle coal slurries. Technical report, March 1- May 31, 1996  

SciTech Connect (OSTI)

Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be, concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated using the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

Rajchel, M.; Ehrlinger, H.P.; Fonseca, A.; Mauer, R.

1996-12-31T23:59:59.000Z

122

Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers  

DOE Patents [OSTI]

There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

1983-01-01T23:59:59.000Z

123

Environmental impact and techno-economic analysis of the coal gasification process with/without CO2 capture  

Science Journals Connector (OSTI)

Abstract Coal gasification, the technology for high-efficient utilization of coal, has been widely used in China. However, it suffers from high CO2 emissions problem due to the carbon-rich character of coal. To reduce CO2 emissions, different CO2 capture technologies are developed and integrated into the coal gasification based processes. However, involving CO2 capture would result in energetic and economic penalty. This paper analyses three cases of coal gasification processes from environmental, technical, and economical points of view. These processes are (1) a conventional coal gasification process; (2) a coal gasification process with CO2 capture and sequestration, in which CO2 is stored by mineral sequestration; (3) a coal gasification process with CO2 capture and utilization, in which CO2 is reused to produce syngas. The results show that the coal gasification process with CO2 capture and sequestration has advantage only in environmental aspect compared to the conventional process. The process with CO2 capture and utilization has advantages in both technical and environmental aspects while disadvantage in economic aspect. However, if the carbon tax higher than 15 USD/t CO2 is introduced, this disadvantage will be negligible.

Yi Man; Siyu Yang; Dong Xiang; Xiuxi Li; Yu Qian

2014-01-01T23:59:59.000Z

124

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

125

Innovative process for concentration of fine particle coal slurries. Technical report, September 1--November 30, 1995  

SciTech Connect (OSTI)

Williams Technologies, Inc. and Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and re-mixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project is to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology will enable Illinois coal producers and users to realize significant coast and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. In addition, testing is also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back-, filled and thus eliminate the need for tailings ponds. This reporting period, September 1, 1995 through November 30, 1995, marked the inception of this project. During this period Task No. 1, Procurement and Set-Up, was completed. The pilot plant apparatus was constructed at the SIU Coal Research Center in Carterville, Illinois. All equipment and feedstock were received at the site.

Rajchel, M. [Williams Technologies, Inc. (United States)]|[Clarke Rajchel Engineering, Arvada, CO (United States); Harnett, D. [Williams Technologies, Inc. (United States); Fonseca, A. [CONSOL, Pittsburgh, PA (United States); Maurer, R. [Destec (United States); Ehrlinger, H.P.

1995-12-31T23:59:59.000Z

126

Multi-gravity separator: an alternate gravity concentrator to process coal fines  

SciTech Connect (OSTI)

The multi-gravity separator (MGS) is a novel piece of equipment for the separation of fine and ultra-fine minerals. However, the published literature does not demonstrate its use in the separation of coal fines. Therefore, an attempt was made to study the effects of different process variables on the performance of an MGS for the beneficiation of coal fines. The results obtained from this study revealed that among the parameters studied, drum rotation and feed solids concentration play dominating roles in controlling the yield and ash content of the clean coal. Mathematical modeling equations that correlate the variables studied and the yield and ash contents of the clean coal were developed to predict the performance of an MGS under different operating and design conditions. The entire exercise revealed that the MGS could produce a clean coal with an ash content of 14.67% and a yield of 71.23% from a feed coal having an ash content of 24.61 %.

Majumder, A.K.; Bhoi, K.S.; Barnwal, J.P. [Regional Research Laboratories, Bhopal (India)

2007-08-15T23:59:59.000Z

127

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

128

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect (OSTI)

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

129

Process for removal of mineral particulates from coal-derived liquids  

DOE Patents [OSTI]

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01T23:59:59.000Z

130

Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process  

Science Journals Connector (OSTI)

Abstract Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive.

Dong Xiang; Yu Qian; Yi Man; Siyu Yang

2014-01-01T23:59:59.000Z

131

PHYSICAL CHANGES IN THE PORE STRUCTURE OF COAL WITH CHEMICAL PROCESSING  

E-Print Network [OSTI]

of Raw Ro 1and Seam Coal . A. B. C. D. Introduction . . . .iv IV. Physical Properties of Extracted Coals A. B.Extracted Coal Samples . . . . . . . . . . . • . .

Harris Jr, E.C.

2011-01-01T23:59:59.000Z

132

Mathematical Modeling of Coal Gasification Processes in a Well-Stirred Reactor: Effects of Devolatilization and Moisture Content  

E-Print Network [OSTI]

Mathematical Modeling of Coal Gasification Processes in a Well- Stirred Reactor: Effects in coal and biomass play an important role on the gasification performance of these fuels to simulate the gasification processes in a well-stirred reactor. This model is a first

Qiao, Li

133

Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report  

SciTech Connect (OSTI)

The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

Kabadi, V.N.

1995-06-30T23:59:59.000Z

134

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

DOE Patents [OSTI]

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

135

Re-imaging coal: novel process removes mercury while retaining ash sales  

SciTech Connect (OSTI)

A two-stage thermal pretreatment process for removing moisture and mercury from raw coal has been developed by the Western Research Institute. This allows sales of ash from power plants to continue since no sorbents end up in the ash. 3 figs., 1 photo.

Bland, A. [Western Research Institute (United States)

2008-07-01T23:59:59.000Z

136

An evaluation of Substitute natural gas production from different coal gasification processes based on modeling  

Science Journals Connector (OSTI)

Coal and lignite will play a significant role in the future energy production. However, the technical options for the reduction of CO2 emissions will define the extent of their share in the future energy mix. The production of synthetic or substitute natural gas (SNG) from solid fossil fuels seems to be a very attractive process: coal and lignite can be upgraded into a methane rich gas which can be transported and further used in high efficient power systems coupled with CO2 sequestration technologies. The aim of this paper is to present a modeling analysis comparison between substitute natural gas production from coal by means of allothermal steam gasification and autothermal oxygen gasification. In order to produce SNG from syngas several unit operations are required such as syngas cooling, cleaning, potential compression and, of course, methanation reactors. Finally the gas which is produced has to be conditioned i.e. removal of unwanted species, such as CO2 etc. The heat recovered from the overall process is utilized by a steam cycle, producing power. These processes were modeled with the computer software IPSEpro™. An energetic and exergetic analysis of the coal to SNG processes have been realized and compared.

S. Karellas; K.D. Panopoulos; G. Panousis; A. Rigas; J. Karl; E. Kakaras

2012-01-01T23:59:59.000Z

137

Catalyst system and process for benzyl ether fragmentation and coal liquefaction  

DOE Patents [OSTI]

Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

Zoeller, Joseph Robert (Kingsport, TN)

1998-04-28T23:59:59.000Z

138

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES  

SciTech Connect (OSTI)

Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

1998-04-30T23:59:59.000Z

139

Mathematical modelling of some chemical and physical processes in underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification normally involves two vertical wells which must be linked by a channel having low resistance to gas flow. There are several ways of establishing such linkage, but all leave a relatively open horizontal hole with a diameter on the order of a meter. To increase our understanding of the chemical and physical processes governing underground coal gasification LLNL has been conducting laboratory scale experiments accompanied by mathematical modelling. Blocks of selected coal types are cut to fit 55 gallon oil drums and sealed in place with plaster. A 1 cm. diameter hole is drilled the length of the block and plumbing attached to provide a flow of air or oxygen/steam mixture. After an instrumented burn the block is sawed open to examine the cavity. Mathematical modelling has been directed towards predicting the cavity shape. This paper describes some sub-models and examines their impact on predicted cavity shapes.

Creighton, J. R.

1981-08-01T23:59:59.000Z

140

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

1998-08-01T23:59:59.000Z

142

Development of an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an Integrated an Integrated Multicontaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems Background The U.S. has more coal than any other country, and it can be converted through gasification into electricity, liquid fuels, chemicals, or hydrogen. However, for coal gasification to become sufficiently competitive to benefit the U.S. economy and help reduce our dependence on foreign fuels, gasification costs must be reduced

143

A study of ignition and combustion characteristics of isolated coal water slurry droplet using digital image processing technique  

E-Print Network [OSTI]

at constant pressure Coal water slurry Diffusion coefficient (Damkohler number) Activation energy Higher heating value Gasification rate constant Flame lift off distance Mass of CWS drop Number of coal particles in a single CWS drop Prandtl number... of gasification and combustion of liquid and coal. This is due to the fact that basic combustion theories apply to both processes with some differences to compensate for the difference in the ignition and combustion characteristics of a liquid drop and slurry...

Bhadra, Tanmoy

2012-06-07T23:59:59.000Z

144

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-08T23:59:59.000Z

145

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2006-03-27T23:59:59.000Z

146

Process modeling and thermodynamic analysis of Lurgi fixed-bed coal gasifier in an SNG plant  

Science Journals Connector (OSTI)

Abstract This paper presents a comprehensive steady state kinetic model of a commercial-scale pressurized Lurgi fixed-bed dry bottom coal gasifier. The model is developed using the simulator Aspen Plus. Five sequential modules: drying zone, pyrolysis zone, gasification zone, combustion zone and overall heat recovery unit, are considered in the main process model. A non-linear programming (NLP) model is employed to estimate the pyrolysis products, which include char, coal gas and high-weight hydrocarbons/distillable liquids (tar, phenol, naphtha and oil). To accelerate solution convergence, an external FORTRAN subroutine is used to simulate the kinetics of the combustion and gasification processes which are formulated in terms of a series of continuous stirred-tank reactors. The model is validated with industrial data. The effects of two key operating parameters, namely oxygen/coal mass ratio and steam/coal mass ratio, on the thermodynamic efficiencies of the Lurgi gasifier and the gasification system as a whole are investigated via extensive simulation studies.

Chang He; Xiao Feng; Khim Hoong Chu

2013-01-01T23:59:59.000Z

147

Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal. Final report  

SciTech Connect (OSTI)

Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. [Battelle, Columbus, OH (United States); Johnson, H.R.; Eason, R. [Ashbrook-Simon-Hartley Corp., Houston, TX (United States); Chiang, S.M.; Cheng, Y.S. [Pittsburgh Univ., PA (United States); Kehoe, D. [CQ, Inc., Homer City, PA (United States)

1991-10-31T23:59:59.000Z

148

Development of the electroacoustic dewatering (EAD) process for fine/ultrafine coal  

SciTech Connect (OSTI)

Battelle (Columbus, Ohio) undertook development of its electro-acoustic (EAD) process to demonstrate its commercial potential for continuous dewatering of fine and ultrafine coals. The pilot plant and laboratory results, provided in this report, show that a commercial-size EAD machine is expected to economically achieve the dewatering targets for {minus}100 mesh and {minus}325 mesh coals. The EAD process utilizes a synergistic combination of electric and acoustic (e.g., ultrasonic) fields in conjunction with conventional mechanical processes, such as belt presses, screw presses, plate and frame filter presses, and vacuum filters. The application of EAD is typically most beneficial after a filter cake is formed utilizing conventional mechanical filtration. (VC)

Chauhan, S.P.; Kim, B.C.; Menton, R.; Senapati, N.; Criner, C.L.; Jirjis, B.; Muralidhara, H.S.; Chou, Y.L.; Wu, H.; Hsieh, P. (Battelle, Columbus, OH (United States)); Johnson, H.R.; Eason, R. (Ashbrook-Simon-Hartley Corp., Houston, TX (United States)); Chiang, S.M.; Cheng, Y.S. (Pittsburgh Univ., PA (United States)); Kehoe, D. (CQ, Inc., Homer City, PA (United States))

1991-10-31T23:59:59.000Z

149

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

150

Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Quarterly technical progress report, March--May 1990  

SciTech Connect (OSTI)

The objectives of the project are to investigate various coal pretreatment techniques and to determine the effect of these pretreatment procedures on the reactivity of the coal. Reactivity enhancement will be evaluated under both direct hydroliquefaction and co-processing conditions. Coal conversion utilizing low rank coals and low severity conditions (reaction temperatures generally less than 350{degrees}C) are the primary focus of the liquefaction experiments, as it is expected that the effect of pretreatment conditions and the attendant reactivity enhancement will be greatest for these coals and at these conditions. This document presents a comprehensive report summarizing the findings on the effect of mild alkylation pretreatment on coal reactivity under both direct hydroliquefaction and liquefaction co-processing conditions. Results of experiments using a dispersed catalyst system (chlorine) are also presented for purposes of comparison. IN general, mild alkylation has been found to be an effective pretreatment method for altering the reactivity of coal. Selective (oxygen) methylation was found to be more effective for high oxygen (subbituminous) coals compared to coals of higher rank. This reactivity enhancement was evidenced under both low and high severity liquefaction conditions, and for both direct hydroliquefaction and liquefaction co-processing reaction environments. Non-selective alkylation (methylation) was also effective, although the enhancement was less pronounced than found for coal activated by O-alkylation. The degree of reactivity enhancement was found to vary with both liquefaction and/or co-processing conditions and coal type, with the greatest positive effect found for subbituminous coal which had been selectively O-methylated and subsequently liquefied at low severity reaction conditions. 5 refs., 18 figs., 9 tabs.

Baldwin, R.M.; Miller, R.L.

1990-12-31T23:59:59.000Z

151

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

152

Clean Coal Power Initiative  

Broader source: Energy.gov [DOE]

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

153

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

154

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

155

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-08-11T23:59:59.000Z

156

Process for minimizing solids contamination of liquids from coal pyrolysis  

DOE Patents [OSTI]

In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

1981-04-21T23:59:59.000Z

157

Instrumentation and process control development for in situ coal gasification  

SciTech Connect (OSTI)

This report describes (1) the results of calculations made to determine the influence of various permeability structures on reverse combustion linkage for UCG, and (2) the results of heavy oil fireflood mapping by the Controlled Source Audio Magnetotelluric (CSAMT) method proposed for UCG process mapping. A two-phase, two-dimension reservoir model called RESEV was used for the permeability effects work; the results indicate that high permeability horizontal zones, well completion and separation, and orthotropic permeability all have significant influence on the success of reverse combustion linkage. Specific conclusions are made which emphasize the need for careful site characterization and for proper well completions. Regarding the second activity, CSAMT-derived resistivity maps provided good descriptions of the progress of the fireflood, which is being conducted by BETC near Bartlette, KS. The combustion front apparently did not proceed in a uniform, radial manner.

Love, S.L. (ed.)

1981-03-01T23:59:59.000Z

158

Application of the Granuflow Process to Pipeline-Transported Coal Slurry CRADA PC96-010, Final Report  

SciTech Connect (OSTI)

In light of the current difficulties in processing fine coal and the potential for a significant increase in fines due to more demanding quality specifications, the U.S. Department of Energy's Federal Energy Technology Center (FETC) has been involved in the reconstitution of the fine clean coal resulting from advanced fine coal cleaning technologies. FETC has invented and developed a new strategy that combines fine-coal dewatering and reconstitution into one step. The process reduces the moisture content of the clean coal, and alleviates handling problems related to dustiness, stickiness, flowability, and freezing. This process has been named the GranuFlow Process. Early work successfully demonstrated the feasibility of the process for laboratory-scale vacuum filtration dewatering using asphalt emulsion. Further tests focused on the application of the process to a screen-bowl centrifuge via batch mode tests at 300 lb/hr. These tests produced roughly the same results as the laboratory filtration tests did, and they included some testing using Orimulsion, a bitumen emulsion. The Orimulsion seemed to offer greater potential for moisture reduction and was less affected by colder slurry temperatures. Most recently, FETC has conducted several series of tests in its Coal Preparation Process Research Facility. These tests dramatically showed the visible difference in the dewatered product by applying the GranuFlow Process, turning it from a clumpy, wet, sticky material into a granular, dry free-flowing product. In addition, it verified previous results with improvements in moisture content, dustiness, stickiness, and freezing. Orimulsion showed a significant benefit over asphalt emulsion in moisture reduction at additions more than 5%. The overall goal of this project was to successfully apply FETC'S GranuFlow Process to improve coal slurry pipeline operations. Williams Technologies, Inc. (WTI), a leader in pipeline technology, has an interest in reducing the moisture content of the coal at the end of a coal slurry pipeline beyond what is being achieved with conventional mechanical dewatering technology. In addition, they would like to improve the handling characteristics of the dewatered coal. The GranuFlow Process has the potential of assisting in both of these areas, and its degree of applicability needed to be explored. A formal Cooperative Research and Development Agreement (CRADA) between FETC and WTI was signed in November 1996. This CRADA consisted of 6 tasks progressing from preliminary scoping tests to a commercial field test. Task 1 was completed in February 1997, and it provided sufficient information about the applicability of the GranuFlow Process to coal slurry pipelines that further testing was not needed at the present time. Thus the CRADA was terminated.

Richard P. Killmeyer; Wu-Wey Wen

1997-09-24T23:59:59.000Z

159

A coal-fired combustion system for industrial process heating applications  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

160

Improving process performances in coal gasification for power and synfuel production  

SciTech Connect (OSTI)

This paper is aimed at developing process alternatives of conventional coal gasification. A number of possibilities are presented, simulated, and discussed in order to improve the process performances, to avoid the use of pure oxygen, and to reduce the overall CO{sub 2} emissions. The different process configurations considered include both power production, by means of an integrated gasification combined cycle (IGCC) plant, and synfuel production, by means of Fischer-Tropsch (FT) synthesis. The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. As a result, no or little nitrogen is present in the syngas produced by the gasifier; the required heat is transferred by using an inert solid as the carrier, which is circulated between the two modules. First, a thermodynamic study of the dual-bed gasification is carried out. Then a dual-bed gasification process is simulated by Aspen Plus, and the efficiency and overall CO{sub 2} emissions of the process are calculated and compared with a conventional gasification with oxygen. Eventually, the scheme with two reactors (gasifier-combustor) is coupled with an IGCC process. The simulation of this plant is compared with that of a conventional IGCC, where the gasifier is fed by high purity oxygen. According to the newly proposed configuration, the global plant efficiency increases by 27.9% and the CO{sub 2} emissions decrease by 21.8%, with respect to the performances of a conventional IGCC process. 29 refs., 7 figs., 5 tabs.

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana [University of Padova, Milan (Italy). Italy and Foster Wheeler Italiana Spa

2008-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

162

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-04-13T23:59:59.000Z

163

The hybrid plant concept: Combining direct and indirect coal liquefaction processes  

SciTech Connect (OSTI)

The objective of this study is to assess the technical and economic impacts of siting direct two-stage coal liquefaction and indirect liquefaction, using slurry Fischer-Tropsch (F-T) reactors, at the same location. The incentives for this co-siting include the sharing of the large number of common unit process operations and the potential blending of the very different, but complementary, products from the two processes, thereby reducing the refining required to produce specification transportation fuels. Both direct and indirect coal liquefaction share a large number of unit operations. This paper reports on the results of a study that attempts to quantify the extent of these potential synergisms by estimating the costs of transportation fuels produced by direct liquefaction, indirect liquefaction, and by combined direct and indirect hybrid plant configuration under comparable conditions. The technical approach used was to combine the MITRE computer simulated coal liquefaction models for the direct and indirect systems into one integrated model. An analysis of refining and blending of the raw product streams to produce specification diesel and gasoline fuels was included in the direct, indirect and hybrid models so that comparable product slates could be developed. 8 refs., 8 figs., 2 tabs.

Gray, D.; Tomlinson, G.C.; El Sawy, A. (Mitre Corp., McLean, VA (USA))

1990-01-01T23:59:59.000Z

164

EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I  

SciTech Connect (OSTI)

All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

None

1984-02-01T23:59:59.000Z

165

Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995  

SciTech Connect (OSTI)

Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

Zygourakis, K.

1996-02-01T23:59:59.000Z

166

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

SciTech Connect (OSTI)

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

167

Effect of nanosilicon carbide on the carbonisation process of coal tar pitch  

Science Journals Connector (OSTI)

Abstract The study describes the effect of silicon carbide (SiC) nanopowder on the process of coal tar pitch thermal decomposition during heat treatment to a temperature of 2000 °C. The influence of nanosized SiC powder on the pyrolysis mechanism of carbonisation product yield, as well as structural and microstructural parameters of carbon obtained via carbonisation and further heating up to 2000 °C was studied. The results show that the incorporation of a suitable amount of ceramic nanopowder into the liquid coal tar pitch results in a decrease in the crystallite sizes of carbon residue, while further heating up to 2000 °C gives rise to two carbon phases, differing in crystallinity and interplanar distance between graphene layers. The SiC addition enhances the formation of well-ordered graphite domains in comparison with those present within a pure carbon matrix.

Danuta Mikociak; Anna Magiera; Grzegorz Labojko; Stanislaw Blazewicz

2014-01-01T23:59:59.000Z

168

Two-stage coal liquefaction process performance with close-coupled reactors  

Science Journals Connector (OSTI)

Close-coupled operation reactors in integrated two-stage liquefaction is an important development in coal liquefaction technology. One such run was completed at the Wilsonville pilot plant using Illinois No. 6 coal. Product yield and product quality data are presented. Comparisons are made with previous data obtained without close-coupling of the reactors. Also, a broad comparison of the performance of a unimodal Shell 324 and a bimodal Amocat 1C catalyst is made. The effect of higher system space velocity on process performance and the impact of solids recycle are discussed. Finally, catalyst replacement rates for “all-distillate” product slate are projected as a function of hydrotreater temperature and system space rate.

Ramakrishna V. Nalitham; Jun M. Lee; Charles W. Lamb; Thomas W. Johnson

1987-01-01T23:59:59.000Z

169

Process for the production of ethylene and other hydrocarbons from coal  

SciTech Connect (OSTI)

A process is claimed for the production of substantial amounts of ethylene and other hydrocarbon compounds, such as benzene from coal. Coal is reacted with methane at a temperature in the approximate range of 500/sup 0/C to 1100/sup 0/C at a partial pressure less than about 200 psig for a period of less than 10 seconds, and preferably at a temperature of approximately 850/sup 0/C, and a partial pressure of 50 psig for a period of approximately 2 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, M.; Fallon, P.

1982-02-16T23:59:59.000Z

170

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

2009-12-31T23:59:59.000Z

171

Supercritical fluid reactions for coal processing. Quarterly progress report, July 1, 1995--September 30, 1995  

SciTech Connect (OSTI)

The goal of this work is to design benign solvent/cosolvent systems for reactions which will achieve optimum desulfurization and/or denitrogenation in the pre-treatment of coal or coal liquids. Supercritical fluids present excellent opportunities for the pretreatment of coal, hence we shall utilize supercritical fluids as a reaction medium. A number of possible Diels-Alder reactive systems involving anthracene (diene) in supercritical solvent were proposed at the outset of research. Scouting experiments designed to select out the optimum reactive system from among the candidate dienophiles and solvents have been completed. The nitrogen bearing compound 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) has demonstrated superior reactivity and sensitivity to cosolvent additions and has been selected as dienophile. A convenient half-life of reaction between PTAD and anthracene is obtained at temperatures in the neighborhood of 50{degree}C. Carbon dioxide has been selected as the solvent because of its convenient critical properties, and also to optimize the safety of the experiments. In the process of completing these scouting experiments, the experimental apparatus that will be used to obtain kinetic data for calculation of partial molar volumes of the reaction transition state has also been optimized.

Eckert, C.A

1995-12-31T23:59:59.000Z

172

Solvent refined coal (SRC) process. Annual technical progress report, January 1979-December 1979  

SciTech Connect (OSTI)

A set of statistically designed experiments was used to study the effects of several important operating variables on coal liquefaction product yield structures. These studies used a Continuous Stirred-Tank Reactor to provide a hydrodynamically well-defined system from which kinetic data could be extracted. An analysis of the data shows that product yield structures can be adequately represented by a correlative model. It was shown that second-order effects (interaction and squared terms) are necessary to provide a good model fit of the data throughout the range studied. Three reports were issued covering the SRC-II database and yields as functions of operating variables. The results agree well with the generally-held concepts of the SRC reaction process, i.e., liquid phase hydrogenolysis of liquid coal which is time-dependent, thermally activated, catalyzed by recycle ash, and reaction rate-controlled. Four reports were issued summarizing the comprehensive SRC reactor thermal response models and reporting the results of several studies made with the models. Analytical equipment for measuring SRC off-gas composition and simulated distillation of coal liquids and appropriate procedures have been established.

Not Available

1980-11-01T23:59:59.000Z

173

Heavy media coal hydro-transport in Malinau, Indonesia: a process study  

Science Journals Connector (OSTI)

In Indonesia, coal transportation has traditionally been handled by trucks and by other mechanical means. With the expansion plan of coal production and increasing truck costs, Kayan Putra Utama Coal believes that alternative modes of transportation must be considered. For long distance transport of export size coal, one of the most viable options is to use coal slurry pipeline. This paper compares the technical issues involved in all coal pipeline options. Economic analysis compares the cost of transporting coal from the mines to ports by the best option of coal slurry pipeline or truck. On the basis of these comparisons, recommendations are made on how coal slurry pipeline can help in achieving proposed increased production targets and decreasing the operation's export coal transportation costs.

Antony Lesmana; Michael Hitch

2011-01-01T23:59:59.000Z

174

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

175

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

176

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

177

Characteristics of process oils from HTI coal/plastics co-liquefaction runs  

SciTech Connect (OSTI)

The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are: (1) to determine the fate of the plastics feedstocks, relative to coal-only operation; (2) to determine the conversion of the feedstocks; (3) to determine the product streams to which the feedstocks are converted (bottoms vs. distillate); (4) to determine interactions of feedstocks; (5) to determine how use of plastics feedstocks affect product quality; and (6) to determine to what degree property differences reflect feedstock differences vs. other (process) condition changes, such as unit operations, space velocity, and catalyst age.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1995-12-31T23:59:59.000Z

178

Innovative process for concentration of fine particle coal slurries. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect (OSTI)

Williams Technologies, Inc. And Clarke Rajchel Engineering are developing a technology (patent pending) to produce high quality coal water slurries from preparation plant fine coal streams. The WTI/CRE technology uses the novel implementation of high-shear cross-flow separation which replaces and enhances conventional thickening processes by surpassing normally achievable solids loadings. Dilute ultra-fine (minus 100 mesh) solids slurries can be concentrated to greater than 60 weight percent and remixed, as required, with de-watered coarser fractions to produce pumpable, heavily loaded coal slurries. The permeate (filtrate) resulting from this process has been demonstrated to be crystal clear and totally free of suspended solids. The primary objective of this project was to demonstrate the WTI/CRE coal slurry production process technology at the pilot scale. The technology can enable Illinois coal producers and users to realize significant cost and environmental benefits both by eliminating fine coal waste disposal problems and producing an IGCC fuel to produce power which meets all foreseeable clean air standards. Testing was also directed at concentrating mine tailings material to produce a tailings paste which can be mine-back- filled, eliminating the need for tailings ponds. During the grant period, a laboratory-scale test apparatus (up to 3 GPM feed rate) was assembled and operated to demonstrate process performance over a range of feed temperatures and pressures. A dilute coal/water slurry from Consol, Inc.`s Rend Lake Preparation Plant was concentrated with the process to a maximum recorded solids loading of 61.9% solids by weight. Analytical results from the concentrate were evaluated by Destec Energy for suitability as an IGCC fuel.

Rajchel, M.; Ehrlinger, H.P.; Harnett, D.; Fonseca, A.; Maurer, R.

1997-05-01T23:59:59.000Z

179

Development of Biological Coal Gasification (MicGAS Process). Topical report, July 1991--February 1993  

SciTech Connect (OSTI)

Laboratory and bench scale reactor research carried out during the report period confirms the feasibility of biomethanation of Texas lignite (TxL) and some other low-rank coals to methane by specifically developed unique anaerobic microbial consortia. The data obtained demonstrates specificity of a particular microbial consortium to a given lignite. Development of a suitable microbial consortium is the key to the success of the process. The Mic-1 consortium was developed to tolerate higher coal loadings of 1 and 5% TxL in comparison to initial loadings of 0.01% and 0.1% TxL. Moreover, the reaction period was reduced from 60 days to 14 to 21 days. The cost of the culture medium for bioconversion was reduced by studying the effect of different growth factors on the biomethanation capability of Mic-1 consortium. Four different bench scale bioreactor configurations, namely Rotating Biological Contactor (RBC), Upflow Fluidized Bed Reactor (UFBR), Trickle Bed Reactor (TBR), and Continuously Stirred Tank Reactor (CSTR) were evaluated for scale up studies. Preliminary results indicated highest biomethanation of TxL by the Mic-1 consortium in the CSTR, and lowest in the trickle bed reactor. However, highest methane production and process efficiency were obtained in the RBC.

Srivastava, K.C.

1993-06-01T23:59:59.000Z

180

A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion  

SciTech Connect (OSTI)

Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"An Economic Process for Coal Liquefaction to Liquid Fuels" SBIR Phase II -- Final Scientific/Technical Report  

SciTech Connect (OSTI)

The current commercial processes for direct coal liquefaction utilize expensive backmix-flow reactor system and conventional catalysts resulting in incomplete and retrogressive reactions that produce low distillate liquid yield and high gas yield, with high hydrogen consumption. The new process we have developed, which uses a less expensive reactor system and highly active special catalysts, resulted in high distillate liquid yield, low gas yield and low hydrogen consumption. The new reactor system using the special catalyst can be operated smoothly for direct catalytic coal liquefaction. Due to high hydrogenation and hydrocracking activities of the special catalysts, moderate temperatures and high residence time in each stage of the reactor system resulted in high distillate yield in the C{sub 4}-650{degrees}F range with no 650{degrees}F{sup +} product formed except for the remaining unconverted coal residue. The C{sub 4}-650{degrees}F distillate is more valuable than the light petroleum crude. Since there is no 650{degrees}F{sup +} liquid product, simple reforming and hydrotreating of the C{sub 4}-650{degrees}F product will produce the commercial grade light liquid fuels. There is no need for further refinement using catalytic cracking process that is currently used in petroleum refining. The special catalysts prepared and used in the experimental runs had surface area between 40-155 m{sup 2}/gm. The liquid distillate yield in the new process is >20 w% higher than that in the current commercial process. Coal conversion in the experimental runs was moderate, in the range of 88 - 94 w% maf-coal. Though coal conversion can be increased by adjustment in operating conditions, the purpose of limiting coal conversion to moderate amounts in the process was to use the remaining unconverted coal for hydrogen production by steam reforming. Hydrogen consumption was in the range of 4.0 - 6.0 w% maf-coal. A preliminary economic analysis of the new coal liquefaction process was carried out by comparing the design and costs of the current commercial plant of the Shenhua Corporation in Erdos, Inner Mongolia. The cost of producing synthetic crude oil from coal in the current commercial process was estimated to be $50.5 per barrel compared to the estimated cost of $41.7 per barrel in the new process. As mentioned earlier, the light distillate product in the new process is of higher quality and value than the C{sub 4}-975{degrees}F product in the current commercial process adopted by the Shenhua Corporation. In sum, the new coal liquefaction process is superior and less capital intensive to current commercial process, and has a high potential for commercialization.

Ganguli, Partha Sarathi

2009-02-19T23:59:59.000Z

182

Evaluation of coal and its influence on coke quality and the coking process  

Science Journals Connector (OSTI)

The evaluation of coal batch is considered, along with its influence on coke quality and the coking properties. The quality of the coal available for coking at OAO Zapadno-Sibirskii Metallurgicheskii Kombinat is ...

G. R. Gainieva; V. I. Byzova; N. N. Nazarov; L. D. Nikitin…

2008-10-01T23:59:59.000Z

183

Early maturation processes in coal. Part 1: Pyrolysis mass balances and structural evolution of coalified wood from the Morwell Brown Coal seam  

E-Print Network [OSTI]

In this work, we develop a theoretical approach to evaluate maturation process of kerogen-like material, involving molecular dynamic reactive modeling with a reactive force field to simulate the thermal stress. The Morwell coal has been selected to study the thermal evolution of terrestrial organic matter. To achieve this, a structural model is first constructed based on models from the literature and analytical characterization of our samples by modern 1-and 2-D NMR, FTIR, and elemental analysis. Then, artificial maturation of the Morwell coal is performed at low conversions in order to obtain, quantitative and qualitative, detailed evidences of structural evolution of the kerogen upon maturation. The observed chemical changes are a defunctionalization of the carboxyl, carbonyl and methoxy functional groups coupling with an increase of cross linking in the residual mature kerogen. Gaseous and liquids hydrocarbons, essentially CH4, C4H8 and C14+ liquid hydrocarbons, are generated in low amount, merely by clea...

Salmon, Elodie; Lorant, François; Hatcher, Patrick G; Marquaire, Paul-Marie; 10.1016/j.orggeochem.2009.01.004

2009-01-01T23:59:59.000Z

184

Improving Process Performances in Coal Gasification for Power and Synfuel Production  

Science Journals Connector (OSTI)

The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ... Considering the world’s insatiable appetite for energy and oil, the only reasonable large-scale conventional source left in the medium term will have to be coal. ...

M. Sudiro; A. Bertucco; F. Ruggeri; M. Fontana

2008-09-17T23:59:59.000Z

185

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

2006-03-07T23:59:59.000Z

186

Critical Material and Process Issues for CO2 Separation from Coal-Powered Plants  

SciTech Connect (OSTI)

Concentrating CO2 from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO2 emissions by capture and sequestration schemes. This paper provides a short review of CO2 capture incentives, current separation processes, and research progress of various new technologies. Technically, CO2 can be separated out of a gas mixture by all the methods discussed in this work, such as distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in determining which approach is the most practical or feasible, and ultimately the most cost-efficient. Important material issues and their impacts on the process viability will be discussed.

Liu, Wei; King, David L.; Liu, Jun; Johnson , Brad R.; Wang, Yong; Yang, Zhenguo

2009-04-30T23:59:59.000Z

187

Critical material and process issues for CO{sub 2} separation from coal-powered plants  

SciTech Connect (OSTI)

Concentrating CO{sub 2} from the dilute coal combustion or gasification gas stream to a level suitable for sequestration purposes represents a major cost factor to curtail CO{sub 2} emissions by capture and sequestration. This paper provides a short review of CO{sub 2} capture incentives, current separation processes, and research progress of various new technologies. Scientifically, CO{sub 2} can be separated from a gas mixture by all the methods reviewed in this work: distillation, absorption, adsorption, gas/solid reaction, membrane, electrochemical pump, hydrate formation, etc. The challenge lies in practical feasibility and ultimately the cost. Important material issues and their impacts to the process viability will be discussed.

Liu, W.; King, D.; Liu, J.; Johnson, B.; Wang, Y.; Yang, Z.G. [Pacific North West National Laboratory, Richland, WA (United States)

2009-04-15T23:59:59.000Z

188

Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process  

Science Journals Connector (OSTI)

In China, coal-fired power plants are the main supplier of electricity, as well as the largest consumer of coal and water resources and the biggest emitter of SOx, NOx, and greenhouse gases (GHGs). Therefore, it is important to establish a scientific, reasonable, and feasible comprehensive evaluation system for coal-fired power plants to guide them in achieving multi-optimisation of their thermal, environmental, and economic performance. This paper proposes a novel comprehensive evaluation method, which is based on a combination of the grey relational analysis (GRA) and the analytic hierarchy process (AHP), to assess the multi-objective performance of power plants. Unlike the traditional evaluation method that uses coal consumption as a basic indicator, the proposed evaluation method also takes water consumption and pollutant emissions as indicators. On the basis of the proposed evaluation method, a case study on typical 600 MW coal-fired power plants is carried out to determine the relevancy rules among factors including the coal consumption, water consumption, pollutant, and GHG emissions of power plants. This research offers new ideas and methods for the comprehensive performance evaluation of complex energy utilisation systems, and is beneficial to the synthesised consideration of resources, economy, and environment factors in system optimising and policy making.

Gang Xu; Yong-ping Yang; Shi-yuan Lu; Le Li; Xiaona Song

2011-01-01T23:59:59.000Z

189

Solvent refined coal process: operation of the solvent refined coal pilot plant, Wilsonville, Alabama. First quarter report, January-March 1981  

SciTech Connect (OSTI)

This report summarizes the operating conditions and test results obtained during the first quarter of 1981 at the six ton per day solvent refined coal (SRC-I) pilot plant in Wilsonville, Alabama. The plant operated for approximately two-thirds of the period with a scheduled shutdown, from 22 February to 17 March, accounting for most of the downtime. Kentucky 9 coal from the Fies mine was processed throughout the period. The following potential process improvements and tests were evaluated in the respective process units. SRC Unit: Low severity run tests to evaluate SRC reactor conditions for two-stage liquefaction; process solvent quality studies while simulating demonstration plant conditions with low quality process solvent (anthracene oil); operation of the new, reduced volume and residence time, V103 High Pressure Separator; Evaluation of the hot separator mode of operation; and adjustment of the T102 Vacuum Column operation to determine if it can produce a combined trays 3 and 8 stream that would be an acceptable process solvent (95% boiling at over 450/sup 0/F). CSD Unit: Steam stripping of SRC and LSRC to reduce product-related DAS losses; and ambient and cryogenic SRC sampling comparisons for DAS determination tests. Pressure checking of the hydrotreater unit was completed, and the Dowtherm system was placed in service. Solvent circulation was initiated in the unit as efforts continued to verify equipment performance.

Lewis, H.E.

1981-01-01T23:59:59.000Z

190

Removal of organic and inorganic sulfur from Ohio coal by combined physical and chemical process. Final report  

SciTech Connect (OSTI)

This project consisted of three sections. In the first part, the physical cleaning of Ohio coal by selective flocculation of ultrafine slurry was considered. In the second part, the mild oxidation process for removal of pyritic and organic sulfur.was investigated. Finally, in-the third part, the combined effects of these processes were studied. The physical cleaning and desulfurization of Ohio coal was achieved using selective flocculation of ultrafine coal slurry in conjunction with froth flotation as flocs separation method. The finely disseminated pyrite particles in Ohio coals, in particular Pittsburgh No.8 seam, make it necessary to use ultrafine ({minus}500 mesh) grinding to liberate the pyrite particles. Experiments were performed to identify the ``optimum`` operating conditions for selective flocculation process. The results indicated that the use of a totally hydrophobic flocculant (FR-7A) yielded the lowest levels of mineral matters and total sulfur contents. The use of a selective dispersant (PAAX) increased the rejection of pyritic sulfur further. In addition, different methods of floc separation techniques were tested. It was found that froth flotation system was the most efficient method for separation of small coal flocs.

Attia, Y.A.; Zeky, M.El.; Lei, W.W.; Bavarian, F.; Yu, S. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

1989-04-28T23:59:59.000Z

191

DOE/EA-1498: Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky (01/05)  

Broader source: Energy.gov (indexed) [DOE]

EA-1498 EA-1498 Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky Final Environmental Assessment January 2005 Note: No comments were received during the public comment period from September 25 to October 25, 2004. Therefore, no changes to the Draft Environmental Assessment were necessary. National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed Federal action is to provide funding, through a cooperative agreement with the University of Kentucky Research Foundation (UKRF), Center for Applied Energy Research (CAER), for the design, construction, and operation of an advanced coal ash beneficiation processing plant at Kentucky Utilities (KU) Ghent Power Station in Carroll County, Kentucky.

192

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

2006-05-12T23:59:59.000Z

193

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES  

SciTech Connect (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

2003-11-24T23:59:59.000Z

194

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

195

CORROSION OF IRON-BASE ALLOYS BY COAL CHAR AT 871 AND 982 C  

E-Print Network [OSTI]

Introduction Chapter 1. A. B. C. D. E. Coal Processingand Coal Char iThe Energy Crisis Coal Processing . Corrosion .

Gordon, Bruce Abbott

2011-01-01T23:59:59.000Z

196

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

197

Measurement and modeling of advanced coal conversion processes, Volume I, Part 2. Final report, September 1986--September 1993  

SciTech Connect (OSTI)

This report describes work pertaining to the development of models for coal gasification and combustion processes. This volume, volume 1, part 2, contains research progress in the areas of large particle oxidation at high temperatures, large particle, thick-bed submodels, sulfur oxide/nitrogen oxides submodels, and comprehensive model development and evaluation.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1995-09-01T23:59:59.000Z

198

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

199

Conditions of utilization of coal mining and processing sludges as slurry fuel  

SciTech Connect (OSTI)

The results of this study have shown that coal sludge can be used as slurry fuel (like coal-water fuel (CWF)) providing that its ash content does not exceed 30% and the amount in the fuel is at least 55%. The conventional CWF preparation technologies are inapplicable to the fabrication of water-sludge fuel; therefore, special technologies with allowance for the ash content, the particle size, and the water content of coal sludge are demanded.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-12-15T23:59:59.000Z

200

Clean coal technology using process integration : a focus on the IGCC.  

E-Print Network [OSTI]

?? The integrated gasification combined cycle (IGCC) is the most environmentally friendly coal-fired power generation technology that offers near zero green house gas emissions. This… (more)

Madzivhandila, Vhutshilo

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High ash non-coking coal preparation by tribo-electrostatic dry process.  

E-Print Network [OSTI]

??Coal is the single largest fossil fuel used world-wide and accounts for more than 60% of the total commercial energy consumed. Between 60 to 80%… (more)

Ranjan Dwari

2008-01-01T23:59:59.000Z

202

Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report  

SciTech Connect (OSTI)

This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

Prausnitz, J.M.

1980-05-01T23:59:59.000Z

203

Development and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO2 Removal from Coal-Fired Flue Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Demonstration of and Demonstration of Waste Heat Integration with Solvent Process for More Efficient CO 2 Removal from Coal-Fired Flue Gas Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-

204

Computational Modeling of Coal Water Slurry Combustion Processes in Industrial Heating Boiler  

Science Journals Connector (OSTI)

Coal water slurry (CWS) is typically composed of 60–70% coal, 30–40% water, and 1% chemical additives. It has been developed over the last 20 years as an alternative to fuel oil mainly in industrial and utility b...

L. J. Zhu; B. Q. Gu

2007-01-01T23:59:59.000Z

205

Monitoring temperatures in coal conversion and combustion processes via ultrasound. [Ultrasonic thermometry proposal  

SciTech Connect (OSTI)

A study of the state-of-the-art of instrumentation for monitoring temperatures in coal conversion and combustion systems has been carried out. The instrumentation types studied include Thermocouples, Radiation Pyrometers, and Acoustical Thermometers. The capabilities and limitations of each type are reviewed. The study determined that ultrasonic thermometry has the potential of providing viable instrumentation. Consequently, a feasibility study of the ultrasonic thermometry was undertaken. A mathematical model of a pulse-echo ultrasonic temperature measurement system is developed using linear system theory. The mathematical model lends itself to the adaptation of generalized correlation techniques for the estimation of propagation delays. Computer simulations are made to test the efficacy of the signal processing techniques for noise-free as well as noisy signals. Based on the theoretical study, acoustic techniques to measure temperature in reactors and combustors are feasible. To experimentally verify the technique it is needed (a) to test the available sensor materials at high temperatures under erosive and corrosive conditions and (b) upon the selection of the appropriate sensor material to validate the proposed signal processing technique. The base for the applicability of this technique will be the frequency of operation, which will determine the length of the sensor and the noise background at the frequency of interest. It is, however, believed that the proposed technique will provide reliable estimates under the noise background.

Gopalsami, N.; Raptis, A. C.; Mulcahey, T. P.

1980-02-01T23:59:59.000Z

206

Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products  

SciTech Connect (OSTI)

In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

2006-09-30T23:59:59.000Z

207

A CO-UTILIZATION OF COAL WITH E-FUEL FROM ENERTECH'S SLURRYCARBtm PROCESS  

SciTech Connect (OSTI)

In August 1999, EnerTech Environmental, LLC (EnerTech) and the Federal Energy Technology Center (FETC) entered into a Cooperative Agreement to develop the first SlurryCarb{trademark} facility for converting Municipal Sewage Sludge (MSS) into a high-density slurry fuel, which could be co-utilized with coal in various industrial applications. Funded primarily by private investors, this program was divided into two major phases, Project Definition (Phase 0) and Design, Construction, and Operation (Phase 1). Project Definition, performed during this reporting period, was designed to define the project from a technical, economic, and scheduling standpoint. Once defined, much of the project risk would be appropriately mitigated thereby providing stakeholders, such as FETC, less risk when investing in the more costly Phase 1, which includes the design, construction, and operation of the first SlurryCarb{trademark} facility. Since May 1999, EnerTech has made significant progress in the tasks required in Phase 0 for bringing this project to Phase 1. These accomplishments have enhanced the probability for success thereby reducing the risk to the United States Department of Energy's (DOE) for its investment in the project. Phase 0 technical accomplishments include: Locating and securing a project site for the 60 dry ton per day (DTPD) SlurryCarb{trademark} facility; Locating and securing a project partner who will supply the necessary MSS for the project revenue stream; Completing the basic engineering of the project, which included value engineering for reducing technical risk and lowering project costs (final drawings, detail technical review, test runs on process development unit, fuel production for fuel usage research, and final cost estimate all pending); Research and a market study necessary for finding a potential fuel user, which included working with General Electric Environmental Research Corporation (EER) with a focus on coal utilization (locate actual fuel user and detailed combustion research pending); Beginning the National Environmental Policy Act (NEPA) process necessary for the DOE involvement (final NEPA report pending); Completing the basic design for the fuel delivery system and developing a research protocol for testing required by the fuel user (actual fuel testing pending); and Locating engineering, procurement, and construction firm (EPC) to provide a fixed price guaranteed schedule for the project (EPC contract negotiation pending). For this project, a semi-annual technical progress report is required to describe the technical progress made during the duration of the budget period.

Susan L. Hoang

2000-03-02T23:59:59.000Z

208

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

209

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS  

SciTech Connect (OSTI)

The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2005-06-23T23:59:59.000Z

210

Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus  

Science Journals Connector (OSTI)

Abstract This work focuses on the amounts and components of flue gas for oxy-fuel combustion in a coal-fired power plant (CFPP). The combustion process of pulverized coal in a 300 MW power plant is studied using Aspen Plus software. The amount of each component in flue gas in coal-fired processes with air or O2/CO2 as oxidizer is obtained. The differences between the two processes are identified, and the influences of temperature, excess oxygen ratio and molar fraction of O2/CO2 on the proportions of different components in flue gas are examined by sensitivity analysis. The process simulation results show that replacing atmospheric air by a 21%O2/79%CO2 mixture leads the decrease of the flame temperature from 1789 °C to 1395 °C. The equilibrium amount of \\{NOx\\} declines obviously but the \\{SOx\\} are still at the same level. The mass fraction of CO2 in flue gas increased from 21.3% to 81.5%. The amount of \\{NOx\\} is affected sensitively by the change of temperature and the excess oxygen ratio, but the change of O2/CO2 molar fraction has a little influence to the generation of NOx. With the increasing of O2 concentration, the flame temperature and \\{NOx\\} emission enhance rapidly. When the molar fraction of O2 increases to 30%, the flame temperature is similar and the mass fraction of \\{NOx\\} is about 1/8 of that air atmosphere.

Xiaohui Pei; Boshu He; Linbo Yan; Chaojun Wang; Weining Song; Jingge Song

2013-01-01T23:59:59.000Z

211

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

212

Development of the Shell-Koppers Coal Gasification Process [and Discussion  

Science Journals Connector (OSTI)

...research-article Development of the Shell-Koppers...entrained-bed technology, is characterized...production of a clean gas without by-products...featuring both gas and steam turbines. The integration...feed coals. The development programme includes...

1981-01-01T23:59:59.000Z

213

MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION  

E-Print Network [OSTI]

ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

Joyce, Peter James

2011-01-01T23:59:59.000Z

214

Theoretical and experimental investigations into the particular features of the process of converting coal gas hydrocarbons on incandescent coke  

SciTech Connect (OSTI)

The prospects of the use of reducing gases in ferrous metallurgy and the possibilities for using them as a basis for coke production have been presented by the authors of the present article in the past. In the present report, the authors present certain results of theoretical and experimental investigations into the process of converting coal gas hydrocarbons on incandescent coke. The modification of the present-day method of thermodynamically calculating stable compositions of coking products, which was developed by the authors, has made it possible to apply it to specific chemical systems and process conditions not met with before, such as the conversion of hydrocarbons in mixtures of actual industrial gases (coal gas and blast furnace gas) in the presence of carbon and considerable amounts of hydrogen.

Zubilin, I.G.; Umanskii, V.E.

1984-01-01T23:59:59.000Z

215

An Integrated Approach to Coal Gasifier Testing, Modeling, and Process Optimization  

SciTech Connect (OSTI)

Gasification is an important method of converting coal into clean burning fuels and high-value industrial chemicals. However, gasifier reliability can be severely limited by rapid degradation of the refractory lining in hot-wall gasifiers. The Pacific Northwest National Laboratory (PNNL) is performing multidisciplinary research to provide the experimental data and the engineering models needed to control gasifier operation for extended refractory life. Our experimental program includes prediction of slag viscosity using empirical viscosity models encompassing US coals, characterization of selected slag-refractory interaction including transport of slag/refractory components at the slag-refractory interface, and measurement of slag penetration into refractories as a function of time and temperature. The experimental data is used in slag flow, slag penetration, and refractory damage models to predict the operating temperature limits for increased refractory life. A simplified entrained flow gasifier model is also being developed to simulate one-dimensional axial flow with average axial velocity, coal devolatilization, and combustion kinetics. Combining the slag flow, refractory degradation, and gasifier models will provide a powerful tool to predict the coal and oxidant feed rates and control the gasifier operation to balance coal conversion efficiency with increased refractory life. A research scale gasifier has also been constructed at PNNL to provide syngas for coal conversion and carbon sequestration research, and also valuable datasets on operating conditions for validating the modeling results.

Sundaram, S. K.; Johnson, Kenneth I.; Matyas, Josef; Williford, Ralph E.; Pilli, Siva Prasad; Korolev, Vladimir N.

2009-10-01T23:59:59.000Z

216

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

217

Climate change impacts on nutrient loads in theYorkshire Ouse catchment (UK) Hydrology and Earth System Sciences, 6(2), 197209 (2002) EGS  

E-Print Network [OSTI]

Climate change impacts on nutrient loads in theYorkshire Ouse catchment (UK) 197 Hydrology and Earth System Sciences, 6(2), 197­209 (2002) © EGS Climate change impacts on nutrient loads for corresponding author: faycal.bouraoui@jrc.it Abstract This study assessed the impact of potential climate change

Paris-Sud XI, Université de

218

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

219

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989  

SciTech Connect (OSTI)

The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

NONE

1989-12-31T23:59:59.000Z

220

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO4 Oxygen Carrier in the CO2 Atmosphere  

Science Journals Connector (OSTI)

Reaction Mechanism of Coal Chemical Looping Process for Syngas Production with CaSO4 Oxygen Carrier in the CO2 Atmosphere ... (5) One is to carry out first coal gasification and subsequently to introduce the syngas produced in the CLC system,(6) while the other is to feed the solid fuel directly to the fuel reactor in a CLC process. ... When oxygen supported by oxygen carrier is enough for converting the coal into CO2 and H2O, a considerable amount of heat will produce for electricity generation. ...

Yongzhuo Liu; Qingjie Guo; Yu Cheng; Ho-Jung Ryu

2012-07-13T23:59:59.000Z

222

A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992  

SciTech Connect (OSTI)

PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

Not Available

1992-09-03T23:59:59.000Z

223

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

224

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

225

The First Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

226

Coal Production 1992  

SciTech Connect (OSTI)

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

227

Nitrogen oxide removal processes for coal-fueled electric power generation  

SciTech Connect (OSTI)

There is a global trend requiring lower NO{sub x}, emissions from stationary combustion sources. When NO{sub x} is released into the atmosphere it contributes to photochemical smog and acid rain. Elevated ozone concentrations have been implicated in crop and forest damage, and adverse effects on human health. Several alternative technologies have been developed to reduce NO{sub x} emissions resulting from the combustion of coal. The alternatives, which range from combustion modifications, to addition of post-combustion systems, to use of alternate coal combustion technologies, provide different degrees of NO{sub x} reduction efficiency with different associated costs. Only by careful evaluation of site specific factors can the optimum technology for each application be chosen. This chapter will investigate the alternatives for NO{sub x} control for new, large utility steam generators using coal as a fuel.

Van Nieuwenhuizen, Wm.

1993-12-31T23:59:59.000Z

228

Corrosion and degradation of test materials in the Westinghouse 15 ton/day Coal Gasification Process Development Unit  

SciTech Connect (OSTI)

Two periods of in-plant exposures of candidate materials in the Westinghouse PDU have been completed. Coupons were exposed in the gasifier, hot-gas cyclone, quench scrubber, and gas cooler vessels. Corrosion monitoring of test materials is currently being conducted in the Westinghouse Coal Gasification Process Development Unit (PDU) coal gasification pilot plant. The corrosion data presented are from work during 1981 through 1984. During these two exposure periods, several coals ranging from lignites to bituminous coals and two petroleum cokes were gasified in the steam-oxygen mode. Fouling was observed on most corrosion racks. The effect of this process-related material was to promote corrosion. In the gasifier environment, alloys 6B, IN 671, and 18SR were the best performing alloys. Nickel-base alloys with Ni/Cr ratios >1.5, namely IN-617, IN-825, and alloy X, incurred severe corrosion attack in both exposures. Other alloys, although generally acceptable in corrosion performance, were not immune to solids-induced corrosion around coupon mounting holes. Several refractories such as Brickram 90, Harbison-Walker Ruby, and Chemal 85B showed little degradation in both gasifier exposures. Nitride bonded silicon carbon Refrax 20 had the greatest reduction in abrasion resistance as well as other properties. Single-phase structural ceramics including siliconized SiC, sintered ..cap alpha..-SiC, and Al/sub 2/O/sub 3/ did not suffer any noticeable damage. Materials evaluation in the hot-gas cyclone showed IN-671 and 26-1 to be more resistant than Type 310 and Type 310 aluminized. 18 refs., 23 figs., 24 tabs.

Yurkewycz, R.

1985-01-31T23:59:59.000Z

229

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

230

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

231

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

232

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

233

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

234

ARC-coal acetylene process development program. Phase 1B. Final technical progress report, 15 September 1979-31 September 1980  

SciTech Connect (OSTI)

For many years, acetylene was a major feedstock in the chemical industry, being used for the manufacture of such important large-volume chemicals as vinyl chloride, vinyl acetate, acrylonitrile, acetaldehyde, and several others chemicals. Since the mid-1960's, however, acetylene has been largely replaced by olefins like ethylene and propylene. These olefins, though sometimes less suitable as feedstocks than acetylene, became more economical as they became readily available at prices considerably lower than acetylene. The successful development of the Arc-Coal process appears to offer a new competitive option to ethylene while reducing the risk of feedstock shortage by relying on the vast coal resources within the US. The Arc-Coal Acetylene process has been tested successfully at both the 100 kW and 1 MW levels, clearly demonstrating that acetylene can be economically produced from coal in a one-step reaction, and that the current reactor design approach is capable of being scaled up to commercial size. The process is shown to be commercially competitive with the currently available process for acetylene manufacture and, more importantly, competes attractively with ethylene in the manufacture of vinyl chloride and vinyl acetate. With the commercial advent of the arc-coal acetylene process, it will become possible to manufacture acetylene more economically than by conventional process. Substantial ethylene price increases tied closely to, and driven by, higher crude oil and natural gas prices are a clear long-term trend which appears certain to continue well into the foreseeable future with periodic market variations. This situation will make the Arc-coal Acetylene process a leading contender for the production of chemicals such as vinyl chloride and vinyl acetate, substituting a coal feedstock process for the current liquid hydrocarbon-fed ethylene-to-vinyl monomers processes.

Not Available

1980-10-30T23:59:59.000Z

235

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

236

Materials technology for coal-conversion processes. Progress report, April-June 1981  

SciTech Connect (OSTI)

Materials research activities have included work in the areas of coal-slag/refractory interactions, ultrasonic erosion monitoring of metals, fluid acoustics, high-temperature gaseous corrosion of metal alloys, and failure analysis. Work on coal-slag/refractory interaction has included the design of a gas-fired rotating-drum dynamic-slag corrosion test furnace. Field tests on the high-pressure loop (1 1/4-in. 321 SS piping) at the Solvent Refined Coal Liquefaction Pilot Plant were terminated because of excessive erosive wear (1.27 mm lost). Longitudinal and shear-wave velocity measurements from room temperature to 540/sup 0/C were obtained on Types 304, 304L, 316, 347, and 410 stainless steels, Fe-2 1/4Cr-1Mo steel, Stellite 6B, Haynes metal, cold-rolled steel, and cast stainless steel. Work on the fluid-acoustic test loop included changing all seals at the flange joints and calibrating the volumetric flowmeter by using an ASME orifice plate installed in the test section. Agreement within 10% was achieved. The loop has now been cycled several dozen times over a wide range of flow rates. Corrosion experiments have been conducted to evaluate the influence of combustion gas stoichiometry and deposits, such as CaSO/sub 4/, on the corrosion behavior of materials for use as air and steam heat-exchanger tubes. Analyses of failed components from the Grand Forks Energy Technology Center's Slagging Coal-gasification Pilot Plant have been completed.

Not Available

1981-09-01T23:59:59.000Z

237

An integrated approach to coal gasifier testing, modeling, and process optimization  

SciTech Connect (OSTI)

Gasification is an important method of converting coal into clean-burning fuels and high-value industrial chemicals. However, gasifier reliability can be severely limited by rapid degradation of the refractory lining in hot-wall gasifiers. This paper describes an integrated approach to provide the experimental data and engineering models needed to better understand how to control gasifier operation for extended refractory life. The experimental program includes slag viscosity testing and measurement of slag penetration into refractories as a function of time and temperature. The experimental data is used in slag flow, slag penetration, and refractory damage models to predict the limits on operating temperature for increased refractory life. A simplified entrained flow gasifier model is also described to simulate one-dimensional axial flow with average axial velocity, coal devolatilization, and combustion kinetics. The goal of this experimental and model program is to predict coal and oxidant feed rates and to control the gasifier operation to balance coal conversion efficiency with increased refractory life. 26 refs., 7 figs., 3 tabs.

S.K. Sundaram; K.I. Johnson; J. Matyas; R.E. Williford; S.P. Pilli; V.N. Korolev [Pacific Northwest National Laboratory, Richland, WA (United States)

2009-09-15T23:59:59.000Z

238

Development of biological coal gasification (MicGAS Process). Quarterly report, January--March 1995  

SciTech Connect (OSTI)

This paper reports on the progress of several subtasks of the project. Another test with dual bioreactors was started to confirm the results obtained previously. Coal samples from the experiment in upflow bioreactors were characterized for mineral content. Solid residues from the bioreactor experiment were analyzed for humic acid content. Results are given for all three investigations.

NONE

1995-04-01T23:59:59.000Z

239

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

SciTech Connect (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

240

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect (OSTI)

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The recovery of purified coal from solution.  

E-Print Network [OSTI]

??A new process is being developed to produce graphite from prime coking coal. Coal is dissolved in dimethylformamide (DMF), on addition of sodium hydroxide. The… (more)

Botha, Mary Alliles

2008-01-01T23:59:59.000Z

242

Structure and thermoplasticity of coal  

SciTech Connect (OSTI)

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

243

Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock  

DOE Patents [OSTI]

An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

Groombridge, Clifton E. (Hardin, MT)

1996-01-01T23:59:59.000Z

244

Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report  

SciTech Connect (OSTI)

Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

1993-03-01T23:59:59.000Z

245

Bench-scale Development of an Advanced Solid sorbent-based CO2 Capture Process for Coal-fired Power Plalnts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scale Development of an scale Development of an Advanced Solid Sorbent-based CO 2 Capture Process for Coal-fired Power Plants Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions, & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current

246

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

247

Integrated process and apparatus for control of pollutants in coal-fired boilers  

DOE Patents [OSTI]

A method and apparatus for reducing SO.sub.x and NO.sub.x levels in flue gases generated by the combustion of coal in a boiler in which low NO.sub.x burners and air staging ports are utilized to inhibit the amount of NO.sub.x initially produced in the combustion of the coal, a selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300.degree. F. to 2000.degree. F., and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200.degree. F. to 900.degree. F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants.

Hunt, Terry G. (Aurora, CO); Offen, George R. (Woodside, CA)

1992-01-01T23:59:59.000Z

248

Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process  

SciTech Connect (OSTI)

Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.

Jacqui F. Hamilton; Alistair. C. Lewis; Marcos Millan; Keith D. Bartle; Alan A. Herod; Rafael Kandiyoti [University of York, York (United Kingdom). Department of Chemistry

2007-01-15T23:59:59.000Z

249

Development of biological coal gasification (MicGAS process); 14th Quarterly report  

SciTech Connect (OSTI)

Reported here is the progress on the Development of Biological Coal Gasification for DOE contract No. DE-AC21-90MC27226 MOD A006. Task 1, NEPA Compliance and Updated Test Plan has been completed. Progress toward Task 2, Enhanced Methane Production, is reported in the areas of bacterial strain improvement, addition of co-substrates, and low cost nutrient amendment. Conclusions reached as a result of this work are presented. Plans for future work are briefly outlined.

NONE

1993-01-28T23:59:59.000Z

250

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

251

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

252

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

253

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

254

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, November 1991--January 1992  

SciTech Connect (OSTI)

The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Accomplishments for this past quarter are as follows: The 9th quarterly measurements at the Colorado site took place in December, 1991. Permeability and neutron absorption moisture content measurements were made and on site data was collected from the data logger; The 9th quarterly sampling at the Ohio site took place in November 1991. Permeability and moisture content measurements were made, and water samples were collected from the wells and lysimeters; The second quarterly core and water samples from the first Illinois test case were collected in mid November, and field data were collected from the data logger; Chemical analysis of all core and water samples continued; all chemical analyses except for some tests on Illinois second quarter cores are now complete.

Not Available

1992-08-01T23:59:59.000Z

255

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

256

Techno-economic analysis of CO2 conditioning processes in a coal based oxy-combustion power plant  

Science Journals Connector (OSTI)

Oxy-combustion is a competitive technology to enable the capture of CO2 from coal based power plants. The CO2 conditioning process is an important contributor to the power penalty related to CO2 capture in such power plants. The two-stage flash process is commonly proposed in literature. This paper presents a study on the CO2 conditioning process in three cases: one-stage flash, two-stage flash and three-stage flash. The composite curves are applied to investigate the improvement potential. A detailed exergy analysis has been performed to compare the plant performance in the three cases. Considering the one-stage flash process as the base case, the specific power consumption is reduced by 7.3% in the two-stage flash process and 8.1% in the three-stage flash process. The investment cost will of course increase. The economic analysis shows that the two-stage flash process is the most cost effective alternative. However, a higher recovery rate can be achieved in the three-stage flash process when the CO2 purity is designed to be the same for the three cases.

Chao Fu; Truls Gundersen

2012-01-01T23:59:59.000Z

257

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14T23:59:59.000Z

258

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

259

Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

260

Development of a technology for coal conversion in the presence of coal tar  

Science Journals Connector (OSTI)

A new process for the hydrogenation of coal in the presence of wide-cut coal tar was proposed; it involves cavitation treatment...

M. I. Baikenov; T. B. Omarbekov; Ma Fengyun; Sh. K. Amerkhanova…

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermodynamic properties of pulverized coal during rapid heating devolatilization processes. Quarterly progress report, April--June 1993  

SciTech Connect (OSTI)

Knowledge of the thermodynamic and morphological properties of coal associated with rapid heating decomposition pathways is essential to progress in coal utilization technology. Specifically, knowledge of the heat of devolatilization, surface area and density of coal as a function of rank characteristics, temperature and extent of devolatilization in the context of rapid heating conditions is essential to the fundamental determination of kinetic parameters of coal devolatilization. These same properties are also needed to refine existing devolatilization sub-models utilized in large-scale modeling of coal combustion systems. The objective of this research is to obtain data on the thermodynamic properties and morphology of coal under conditions of rapid heating. Specifically, the total heat of devolatilization, external surface area, BET surface area and true density will be measured for representative coal samples. The coal ranks to be investigated will include a high volatile A bituminous (PSOC 1451 D) and a low volatile bituminous (PSOC 1516D). An anthracite (PSOC 1468) will be used as a non-volatile coal reference. In addition, for one coal, the contribution of each of the following components to the overall heat of devolatilization will be measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars.

Proscia, W.M.; Freihaut, J.D.

1993-08-01T23:59:59.000Z

262

Field study of disposed solid wastes from advanced coal processes. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the three landfill test cases constructed in 1989 were completed. Monitoring continued at Test Case Four. Two cells for Test Case Five were constructed in Illinois.

Not Available

1993-10-01T23:59:59.000Z

263

Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1987--August 1988  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Mining and Mineral Resources Research Institute (MMRRI) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. The first two tasks of this project involve the development of test plans. Through July of 1988 we have developed a generic test design manual, detailed test procedures manual, and test plans for three sites. Task three, field studies, will be initiated as soon as final site access is obtained and the facilities producing the waste are fully operational.

NONE

1988-08-01T23:59:59.000Z

264

Process for separating coal synthesized methane from unreacted intermediate and contaminant gases  

DOE Patents [OSTI]

Gas produced from coal and containing CH.sub.4, CO, CO.sub.2, H.sub.2 and H.sub.2 S is contacted with CO.sub.2 scrub liquid to form (1) a liquid CO.sub.2 stream containing as solutes CH.sub.4, H.sub.2 S and minor portions of the CO and H.sub.2, and (2) a gas stream containing CO.sub.2 and major portions of the CO and H.sub.2, the CO and H.sub.2 in this stream being recycled to the means which produces gas from coal, and CO.sub.2 in the stream being recycled to the scrub liquid. The solute-bearing liquid CO.sub.2 stream is fractionated into (1) a liquid CO.sub.2 stream containing CH.sub.4 and H.sub.2 S, and (2) a H.sub.2 /CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO.sub.2 stream is fractionated into (1) a CH.sub.4 /CO.sub.2 gas stream the CO.sub.2 of which is recycled to the scrub liquid, and (2) a liquid CO.sub.2 stream containing H.sub.2 S, and CO.sub.2 of this stream is also recycled to the scrub liquid.

Barker, Ray E. (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN); Ryon, Allen D. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

265

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

266

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

267

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect (OSTI)

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

268

Effects of high pressure-dependent leakoff and high process-zone stress in coal-stimulation treatments  

SciTech Connect (OSTI)

Hydraulic fracturing in coals has been studied extensively over the last two decades; however, there are factors that were often ignored or incorrectly diagnosed, resulting in screenouts. Assuming that a majority of the perforations are open and there are no problems with the stimulation fluids, screenouts during coal hydraulic-fracture treatments can be attributed to either high pressure-dependent leakoff (PDL), high process-zone stress (PZS) or in some cases both. The objective of this work is to discuss, help identify, and present solutions to address these reservoir-related issues such that screenouts can be avoided in optimized refracture treatments and new well stimulations. The tools for identifying these reservoir-related parameters include a diagnostic fracture-injection test (DFIT) and a grid-oriented fully functional 3D fracture simulator with shear decoupling. An example for each respective case is presented in this paper. In the first example, in which high PZS was considered to be the dominant reason for screenout or pressure out, the well was restimulated successfully by implementing the solutions presented in this paper. In the second example, in which high PDL was considered to be the main reason for screenout, there were several wells in the same project area that exhibited the same behavior resulting in screenouts. After implementing the solutions presented in this paper to address high PDL, all new wells were stimulated successfully without any issues.

Ramurthy, M.; Lyons, B.; Hendrickson, R.B.; Barree, R.D.; Magill, D.R. [Halliburton, Denver, CO (United States)

2009-08-15T23:59:59.000Z

269

Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980  

SciTech Connect (OSTI)

This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

Not Available

1981-01-20T23:59:59.000Z

270

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

271

Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing  

SciTech Connect (OSTI)

This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

Later, D.W.

1985-01-01T23:59:59.000Z

272

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect (OSTI)

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

273

Evaluation of ultrafine spiral concentrators for coal cleaning.  

E-Print Network [OSTI]

??Although froth flotation methods are the major processes being used in treating ultrafine coal in coal preparation plant, the processes might require large quantities of… (more)

Yang, Meng, 1976-

2010-01-01T23:59:59.000Z

274

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

275

Development of biological coal gasification (MicGas process): 12th Quarterly report  

SciTech Connect (OSTI)

Several experiments were conducted to study the efficiency of granulated sludge consortium (GSC) on the biomethanation of Texas lignite (TxL). With an aim of obtaining a better culture than Mic-1, GSC was used as inoculum at different concentrations. The first experiment was conducted under anaerobic conditions in 60-mL vials containing 40 mL 0.01% SNTM + 1% TxL + 10% GSC. Methane production was measured periodically in the vial headspace and after 20 days of incubation, methane was found to be up to 67 mole%. The second experiment was conducted to determine whether methane production was from biogasification of coal or from substrates used for growing the GSC. The effect of two different anaerobic conditions on biomethanation of Texas lignite was also studied.

Not Available

1993-07-29T23:59:59.000Z

276

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

277

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

278

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

for Liquefaction and Gasification of Western Coals", in5272 (1976). COal Processing - Gasification, Liguefaction,or gaseous fuels, coal gasification has advanced furthest

Holten, R.R.

2010-01-01T23:59:59.000Z

279

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power From Western Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel C. Cicero Daniel C. Cicero Hydrogen & Syngas Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4826 daniel.cicero@netl.doe.gov Gary J. stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Elaine Everitt Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4491 elaine.everitt@netl.doe.gov 4/2009 Hydrogen & Syngas Technologies Gasification Technologies Development of a HyDrogasification process for co-proDuction of substitute natural gas (sng) anD electric power from western coals Description In the next two decades, electric utilities serving the Western United States must install

280

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

282

Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals  

SciTech Connect (OSTI)

This report presents the results of the research and development conducted on an Advanced Hydrogasification Process (AHP) conceived and developed by Arizona Public Service Company (APS) under U.S. Department of Energy (DOE) contract: DE-FC26-06NT42759 for Substitute Natural Gas (SNG) production from western coal. A double-wall (i.e., a hydrogasification contained within a pressure shell) down-flow hydrogasification reactor was designed, engineered, constructed, commissioned and operated by APS, Phoenix, AZ. The reactor is ASME-certified under Section VIII with a rating of 1150 pounds per square inch gage (psig) maximum allowable working pressure at 1950 degrees Fahrenheit ({degrees}F). The reaction zone had a 1.75 inch inner diameter and 13 feet length. The initial testing of a sub-bituminous coal demonstrated ~ 50% carbon conversion and ~10% methane yield in the product gas under 1625{degrees}F, 1000 psig pressure, with a 11 seconds (s) residence time, and 0.4 hydrogen-to-coal mass ratio. Liquid by-products mainly contained Benzene, Toluene, Xylene (BTX) and tar. Char collected from the bottom of the reactor had 9000-British thermal units per pound (Btu/lb) heating value. A three-dimensional (3D) computational fluid dynamic model simulation of the hydrodynamics around the reactor head was utilized to design the nozzles for injecting the hydrogen into the gasifier to optimize gas-solid mixing to achieve improved carbon conversion. The report also presents the evaluation of using algae for carbon dioxide (CO{sub 2}) management and biofuel production. Nannochloropsis, Selenastrum and Scenedesmus were determined to be the best algae strains for the project purpose and were studied in an outdoor system which included a 6-meter (6M) radius cultivator with a total surface area of 113 square meters (m{sup 2}) and a total culture volume between 10,000 to 15,000 liters (L); a CO{sub 2} on-demand feeding system; an on-line data collection system for temperature, pH, Photosynthetically Activate Radiation (PAR) and dissolved oxygen (DO); and a ~2 gallons per minute (gpm) algae culture dewatering system. Among the three algae strains, Scenedesmus showed the most tolerance to temperature and irradiance conditions in Phoenix and the best self-settling characteristics. Experimental findings and operational strategies determined through these tests guided the operation of the algae cultivation system for the scale-up study. Effect of power plant flue gas, especially heavy metals, on algae growth and biomass adsorption were evaluated as well.

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

283

Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report  

SciTech Connect (OSTI)

Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

Wilson, B.W.; Buhl, P.; Moroni, E.C.

1983-07-01T23:59:59.000Z

284

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

285

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

286

Coal-Fuelled Combined Cycle Power Plants  

Science Journals Connector (OSTI)

Combined cycle power plant, when used as a generic ... which converts heat into mechanical energy in a combined gas and steam turbine process. Combined cycle processes with coal gasification or coal combustion .....

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

287

Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol  

SciTech Connect (OSTI)

The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing at realistic conditions (e.g., elevated pressures) and differential conversions (to measure true kinetics, to avoid deactivation, and to avoid condensable concentrations of products in the outlet gas).

James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

2011-07-29T23:59:59.000Z

288

Life Cycle Comparison of Coal Gasification by Conventional versus Calcium Looping Processes  

Science Journals Connector (OSTI)

After separation of H2, the remaining gas is used as fuel in a boiler to produce steam that is used in a steam turbine to produce electricity. ... Note that, as described in Section 2.1, the conventional process has nonzero GHG emissions due to combustion of the gases remaining after CO2 and H2S removal, while CLP does not have any GHG emissions. ... The conventional process with CO2 recovery from flue gas was compared with the calcium looping process based on their life cycle land use, water use, and GHG emissions. ...

Berrin Kursun; Shwetha Ramkumar; Bhavik R. Bakshi; Liang-Shih Fan

2014-03-10T23:59:59.000Z

289

Characteristics of coking coal burnout  

SciTech Connect (OSTI)

An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

Nakamura, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Bailey, J.G. [Univ. of Newcastle, New South Wales (Australia)

1996-12-31T23:59:59.000Z

290

A characterization and evaluation of coal liquefaction process streams. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

This is the Technical Progress Report for the twelfth quarter of activities. Described in this report are the following activities: (1) Thirty-nine samples from four run conditions of HTI Run PB-07 were received. Appropriate samples were characterized by proton NMR spectroscopy, Fourier transform infrared spectroscopy, vacuum distillation, and solvent quality tests. (2) The University of Delaware completed their subcontract this quarter. A meeting was held on April 30, 1997 at the University to close out the subcontract. (3) Twelve sets of samples were chosen from the CONSOL sample bank for the study of the insoluble and presumed unreactive material from process stream samples. Each set consists of the whole process stream and the 454 C{sup +} (850 F{sup +}) distillation resid derived from that process stream. Processing data for all samples were compiled. The samples represent four Wilsonville pilot plant runs and two HTI runs.

Brandes, S.D.; Robbins, G.A.; Winschel, R.A.

1997-12-31T23:59:59.000Z

291

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

292

Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report  

SciTech Connect (OSTI)

Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

Later, D.W.; Pelroy, R.A.; Wilson, B.W.

1984-05-01T23:59:59.000Z

293

Design of generic coal conversion facilities: Process release---Refining and upgrading  

SciTech Connect (OSTI)

The refinery and upgrade process development unit (PDU) is designed to upgrade liquid hydrocarbon products from the direct and indirect liquefaction PDU's to transportation fuels. The refinery will comprise of the following reactor systems: (a) Hydrotreating (b) Hydrocracking (c) Reforming. The three reactor systems will share common feed preparation, product separation and fractionation sections. The refinery is being designed to operate independently of the other PDU's. The use of common feed and product handling systems will permit operation of one process reactor system at a time in the refinery. In addition, the hydrotreater and hydrocracker will be operable in series. The process is designed to utilize intermediate storage and maximize the use of equipment.

Not Available

1991-09-01T23:59:59.000Z

294

Design of generic coal conversion facilities: Process release---Refining and upgrading  

SciTech Connect (OSTI)

The refinery and upgrade process development unit (PDU) is designed to upgrade liquid hydrocarbon products from the direct and indirect liquefaction PDU`s to transportation fuels. The refinery will comprise of the following reactor systems: (a) Hydrotreating (b) Hydrocracking (c) Reforming. The three reactor systems will share common feed preparation, product separation and fractionation sections. The refinery is being designed to operate independently of the other PDU`s. The use of common feed and product handling systems will permit operation of one process reactor system at a time in the refinery. In addition, the hydrotreater and hydrocracker will be operable in series. The process is designed to utilize intermediate storage and maximize the use of equipment.

Not Available

1991-09-01T23:59:59.000Z

295

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal Progress toward Biomass and Coal-Derived Syngas...

296

Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993  

SciTech Connect (OSTI)

The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

1995-09-01T23:59:59.000Z

297

Development of the Shell-Koppers Coal Gasification Process [and Discussion  

Science Journals Connector (OSTI)

...The gas produced (93-98 vol.% hydrogen and carbon monoxide) is suitable for the manufacture of hydrogen or reducing gas and, with further processing...of 2500 t/day are contemplated. The economy, especially of these large size units...

1981-01-01T23:59:59.000Z

298

Valves - current operating experience of slurry valves (block and letdown) in coal liquefaction processes. Third quarter report  

SciTech Connect (OSTI)

This paper summarizes the recent letdown and block valve experience in the liquefaction pilot plants. Also included is a brief description of the research and development activities on valves which are conducted in supporting laboratories. The purpose of the summary is to concentrate on critical component problems common to all liquefaction plants, to avoid duplication of efforts, and to help provide timely solutions to the valve problems. The main source of information used in this paper is the Minutes of the Critical Component and Materials Meeting which is sponsored by the Office of Coal Processing, Fossil Energy, Department of Energy. Other sources of information such as the technical progress reports are also included based on availability and relevance to topics covered in this paper. It is intended that this report will be followed by updates as pertinent information concerning valves becomes available. In the subsequent sections of this paper a brief outline of past valve studies is given as background material followed by a summary of the most recent valve operating experience at the liquefaction plants.

NONE

1996-07-01T23:59:59.000Z

299

Utilization of Coal Ash As Recycling Material Options in View Point of Geoenvironment  

Science Journals Connector (OSTI)

Disposed coal ash is result from the residual of coal refinery processes and become environmentalimportant issues. Coal ash consists of bottom ash and fly ash. The number of coal ash production is abundant, and c...

Ahmad Rifa’I; Noriyuki Yasufuku; Kiyoshi Omine…

2010-01-01T23:59:59.000Z

300

Separation of solids from coal liquefaction products using sonic waves  

SciTech Connect (OSTI)

Product streams containing solids are generated in both direct and indirect coal liquefaction processes. This project seeks to improve the effectiveness of coal liquefaction by novel application of sonic and ultrasonic energy to separation of solids from coal liquefaction streams.

Slomka, B.J.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. A mobile demonstration unit has been designed and constructed for field demonstration. The demonstration unit was hauled to the test site on trailers that were place on a test pad located adjacent to the ash pond and re-assembled. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities. Representative feed ash for the operation of the filed testing unit was excavated from a location within the lower ash pond determined from coring activities. Approximately 150 tons of ash was excavated and pre-screened to remove +3/8 inch material that could cause plugging problems during operation of the demonstration unit.

Thomas Robl; John Groppo

2005-09-01T23:59:59.000Z

302

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

303

Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali  

SciTech Connect (OSTI)

The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii [National Academy of Sciences of Ukraine, Kiev (Ukraine). Dumanskii Institute of Colloid and Water Chemistry

2009-07-01T23:59:59.000Z

304

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect (OSTI)

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. Filter media candidates were evaluated for dewatering the ultrafine ash (UFA) product. Media candidates were selected based on manufacturer recommendations and evaluated using standard batch filtration techniques. A final media was selected; 901F, a multifilament polypropylene. While this media would provide adequate solids capture and cake moisture, the use of flocculants would be necessary to enable adequate filter throughput. Several flocculant chemistries were also evaluated and it was determined that polyethylene oxide (PEO) at a dosage of 5 ppm (slurry basis) would be the most suitable in terms of both settling rate and clarity. PEO was evaluated on a continuous vacuum filter using 901F media. The optimum cycle time was found to be 1.25 minutes which provided a 305% moisture cake, 85% solids capture with a throughput of 115 lbs dry solids per hour and a dry cake rate of 25 lb/ft2/hr. Increasing cycle time not did not reduce cake moisture or increase throughput. A mobile demonstration unit has been designed and constructed for field demonstration. The continuous test unit will be operated at the Ghent site and will evaluate three processing configurations while producing sufficient products to facilitate thorough product testing. The test unit incorporates all of the unit processes that will be used in the commercial design and is self sufficient with respect to water, electricity and processing capabilities.

John Groppo; Thomas Robl

2005-06-01T23:59:59.000Z

305

Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-12-31T23:59:59.000Z

306

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

307

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

308

Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process  

SciTech Connect (OSTI)

Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

Not Available

1980-01-01T23:59:59.000Z

309

Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems  

SciTech Connect (OSTI)

A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2009-09-15T23:59:59.000Z

310

Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture  

SciTech Connect (OSTI)

Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

Edward Levy

2012-06-29T23:59:59.000Z

311

Development of biological coal gasification (MicGAS Process). Fifteenth quarterly report, [January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

Maximum methane production was obtained in the experimental vials that contained 0.2% SNTM supplemented with 10 mM sodium citrate and 1% TxL (144 cc), while in the control vials CH{sub 4} production was only 58 cc. The conversion efficiency was 24%. This clearly shows citrate to be an important mediator for the formation of acetate (main precursor for CH{sub 4} formation) in the glyoxylate cycle, on the one hand, and as a sequestering agent, on the other. These results further indicate that citrate can, be successfully used as co-substrate for enhancement of the TxL biogasification process. The results obtained reconfirmed our hypothesis that the metals (such as Fe{sup 3+}, Mn{sup 2+}, Mg{sup 2+}, CO{sup 2+}, Zr{sup 2+}, etc., present in the coal structure) are chelated/sequestered by the addition of citrate. Mass balance calculations show that this increase in CH{sup 4} production is due to the biomethanation of TxL and not because of the chemical conversion of co-substrate(s) to CH{sub 4} (Table 1). The effect of sodium citrate on biomethanation of TXL from the first experiment ``Effect of co-substrate addition No. 1`` was reconfirmed in this experiment. The peak in acetate concentration (1317 ppm) on day 7 was followed by a rapid conversion of this precursor to CH{sub 4} (Figure 16). The VFA data obtained from both experiments (``Effect of co-substrate addition No. 1 and No. 2``) confirms the hypothesis that citrate and methanol can significantly enhance the biomethanation of TxL (Figure 17).

Srivastava, K.C.

1994-04-26T23:59:59.000Z

312

Coal surface control for advanced physical fine coal cleaning technologies  

SciTech Connect (OSTI)

This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

1992-01-01T23:59:59.000Z

313

Conventional coal preparation in the United States  

SciTech Connect (OSTI)

Processing of bituminous and anthracite coal is widely practiced in the United States and, as mentioned earlier, about 80 percent of the production of these coals is processed as clean coal in preparation plants. Subbituminous coal is not widely processed, primarily because these low rank raw coals are low in sulfur (0.5 to 1.0 percent) and relatively low in ash (8 to 15 percent). They are also relatively low in heat content due to their high inherent moisture. Lignite coals, to the best of the authors{close_quote} knowledge, are not presently being processed in Conventional Coal Preparation plants. This is due to their unstable nature and putting them in water in a coal preparation plant is likely to cause severe degradation in particle size and add to their already high inherent moisture content. The following are the benefits of clean coal processing: produces a uniform product which can be utilized more efficiently; produces a higher quality product which results in higher efficiency at the power station or the steel mill; reduces sulfur dioxide and other adverse stack emissions during coal firing which is a very important environmental consideration; reduces ash or slag handling costs by the user; reduces shipping costs; and reduces handling and storage costs. Processing any stable raw coal in a coal preparation plant will always produce a higher grade product which is a more efficient and a more environmentally acceptable fuel for use at power stations, steel mills, home heating or industrial boilers.

Beck, M.K.; Taylor, B.

1993-12-31T23:59:59.000Z

314

Coal Conversion Processes  

Science Journals Connector (OSTI)

...combination of a gasifier and a Stirling engine. The second method is to burn...combustor that forms part of the Stirling engine proper. Both ways are being...efficiency of 37 percent). The Stirling engine has not yet been mass-produced...

HAROLD M. AGNEW

1981-11-20T23:59:59.000Z

315

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

316

Coal cleaning program for Kazakstan  

SciTech Connect (OSTI)

In 1992 the United States Agency for International Development (USAID) started sponsoring general projects in the Energy and Environmental Sector to improve health and well-being, to improve the efficiency of the existing fuel and energy base, and to assist in the establishment of a strong private sector. Coal Cleaning Program, covered in this report, is one of the recently completed projects by Burns and Roe, which is a prime USAID contractor in the field of energy and environment for the NIS. The basis for coal cleaning program is that large coal resources exist in northeast Kazakstan and coal represents the major fuel for heat and electricity generation at present and in the foreseeable future. The coal mined at Karaganda and Ekibastuz, the two main coal mining areas of Kazakstan, currently contains up to 55% ash, whereas most boilers in Kazakstan are designed to fire a coal with an ash content no greater than 36%. The objective of the task was to determine optimum, state-of-the-art coal cleaning and mining processes which are applicable to coals in Kazakstan considering ultimate coal quality of 36% ash, environmental quality, safety and favorable economics.

Popovic, N. [Burns and Roe Enterprises, Oradell. NJ (United States); Daley, D.P. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Jacobsen, P.S. [Jacobsen (P. Stanley), Littleton, CO (United States)

1996-12-31T23:59:59.000Z

317

Chapter 3 - Coal-fired Power Plants  

Science Journals Connector (OSTI)

Abstract Coal provides around 40% of the world’s electricity, more than any other source. Most modern coal-fired power stations burn pulverized coal in a boiler to raise steam for a steam turbine. High efficiency is achieved by using supercritical boilers made of advanced alloys that produce high steam temperatures, and large, high-efficiency steam turbines. Alternative types of coal-fired power plants include fluidized bed boilers that can burn a variety of poor fuels, as well as coal gasifiers that allow coal to be turned into a combustible gas that can be burned in a gas turbine. Emissions from coal plants include sulfur dioxide, nitrogen oxide, and trace metals, all of which must be controlled. Capturing carbon dioxide from a coal plant is also under consideration. This can be achieved using post-combustion capture, a pre-combustion gasification process, or by burning coal in oxygen instead of air.

Paul Breeze

2014-01-01T23:59:59.000Z

318

Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994  

SciTech Connect (OSTI)

A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

NONE

1995-09-26T23:59:59.000Z

319

Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant  

Science Journals Connector (OSTI)

Abstract The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the optimized boiler combustion can keep higher heat transfer efficiency than that of the non-optimized boiler combustion. The software is developed to realize the proposed method and obtain the encouraging results through combining ANSYS 14.5, ANSYS Fluent 14.5 and CORBA C++.

Xingrang Liu; R.C. Bansal

2014-01-01T23:59:59.000Z

320

Time phased alternate blending of feed coals for liquefaction  

DOE Patents [OSTI]

The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

Schweigharett, Frank (Allentown, PA); Hoover, David S. (New Tripoli, PA); Garg, Diwaker (Macungie, PA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process development studies in coal gasification. Volume II. Reaction of aromatic compounds with steam. Final report, August 1, 1979-November 30, 1983  

SciTech Connect (OSTI)

The objective of this research has been to explore and define the potential of steam reforming to produce light gases from coal-derived liquids. This was achieved through a study of the reaction of a model aromatic compound and of a coal-derived liquid with steam over an alumina supported nickel catalyst. The reaction of steam with benzene and SRC-II liquids over an alumina supported nickel catalyst has been investigated in a plug flow reactor. The primary process variables investigated were reactor pressure and temperature, contact time, and steam/carbon ratio. A proposed reaction network was also developed to explain the data obtained in this study. The effect of process variables on the conversion and product distribution when steam reforming the SRC-II coal-derived liquid was similar to that observed for benzene-steam reforming. The results indicated that a high yield of methane is favored at high pressures, low temperatures, and low steam-to-carbon ratios; and that a high yield of hydrogen is favored at low pressures and high steam-to-carbon ratios. The empirical rate equation for the benzene steam reforming reaction at 973 K, 300 psig, and a steam/carbon ratio of approximately 3 was r/sub C/sub 6/H/sub 6// = 1.92 x 10/sup -3/ P/sub C/sub 6/H/sub 6//. The activation energy was 88 KJ/mol, or 21 kcal/mol in the temperature range 748-973 K. A correlation was developed to predict product yields and hydrocarbon conversion over the range of process variables investigated. A second correlation was developed to predict the yields and conversion beyond the range of variables investigated. A reaction network for aromatic steam reforming was proposed. 87 refs., 47 figs., 3 tabs.

Oblad, A.G.

1984-12-12T23:59:59.000Z

322

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

323

THE USE OF FERRIC SULFATE - ACID MEDIA FOR THE DESULFURIZATION OF MODEL COMPOUNDS OF COAL  

E-Print Network [OSTI]

of Cleaning Processes to U.S. Coals • . 23 B. Purpose . C.Low Temp. Processes for Coal Desulfurization", M.S. Thesis,R.A. , "Chem. Desulf. of Coal", AIChE Sym:p. Series, Meyers,

Clary, Lloyd R.

2014-01-01T23:59:59.000Z

324

Studies in coal liquefaction with application to the SRC and related processes. Quarterly report, November 1981-January 1982  

SciTech Connect (OSTI)

The concentration of hydroaromatics in a coal liquefaction solvent is regarded as a significant factor in the determination of solvent quality. An analytical method is described based on catalytic solvent dehydrogenation (CSD) for the measurement of transferable hydrogen, including hydroaromatic sources, in a solvent. The dehydrogenation of several model compounds in the presence of Pd/CaCO/sub 3/ was conducted under batch conditions. Hydroaromatics containing six-member rings were found to dehydrogenate effectively. Lesser degrees of dehydrogenation were found for alkyl-substituted aromatics and saturated compounds. CSD was applied to a series of hydrogenated creosote oils plus several light recycle oils. The normalized H/sub 2/ volumes obtained by CSD could be correlated with the coal-dissolution ability of the creosote oils. It was not possible to include the light recycle oils in the same correlation. /sup 13/C-NMR was used to measure the transferable hydrogen of selected hydrogenated creosote oils and light recycle oils. Values of transferable hydrogen determined by /sup 13/C-NMR were generally larger than the corresponding values obtained by CSD. A smooth correlation was found between coal conversion and transferable hydrogen as measured by /sup 13/C-NMR. The light recycle oils could not be fitted to the curve defined by the creosote oils. Minerals indigenous to coal provide an internal but weak source of catalytic activity during liquefaction reactions. A sensitive probe reaction, cyclohexene hydrogenation/isomerization, was used to compare the catalytic activity of several clay minerals, oxides used as catalyst supports, pyrite and liquefaction residue ashes.

Tarrer, A.R.; Guin, J.A.; Curtis, C.W.

1982-01-01T23:59:59.000Z

325

The Shenhua coal direct liquefaction plant  

Science Journals Connector (OSTI)

Hydrocarbon Technologies (HTI) has been working on a feasibility study for the construction of a Direct Coal Liquefaction Plant in Shenhua coalfield of China. HTI's direct coal liquefaction process, consisting primarily of two backmixed reactor stages plus a fixed-bed inline hydrotreater, operates at a pressure of 17 \\{MPa\\} and reactor temperatures in the range of 400–460°C. A dispersed superfine iron catalyst, GelCat®, is used in the process. Phase I of the study was successfully completed. Two coal sample from a coal mine in Shenhua coalfield were tested on HTI's continuous flow unit (CFU). Results were very encouraging. Though Shenhua coals are high in inert materials, HTI's coal liquefaction process has been able to achieve coal conversion of higher than 91 wt.% (on moisture and ash free, maf, coal) under all test conditions. Under the best conditions tested, distillate product yields from Shenhua coals are between 63–68 wt.% (maf coal). Liquid products are very low in sulfur and nitrogen, thus, very clean. Phase II is now underway. An additional test was conducted on a coal from another coal mine in Shenhua coalfield, which showed similar performance on liquefaction. Preliminary economic assessment is also discussed.

Alfred G. Comolli; Theo L.K. Lee; Gabriel A. Popper; Peizheng Zhou

1999-01-01T23:59:59.000Z

326

Coal production 1984. [USA; 1984  

SciTech Connect (OSTI)

Coal Production 1984 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (PL 93-275) as amended. All data presented in this report, except the total production table presented in the Highlights section, the demonstrated reserve base data presented in Appendix A, and the 1983 coal preparation and shipments data presented in Appendix C, were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1984. These mining operations accounted for 99.4% of total US coal production and represented 76.3% of all US coal mining operations in 1984. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1984.

Not Available

1984-01-01T23:59:59.000Z

327

PNW Coal Closure Study Resource Adequacy Advisory Committee  

E-Print Network [OSTI]

PNW Coal Closure Study 1 y Resource Adequacy Advisory Committee Steering Committee Meeting outage calculations)100 MW (for forced outage calculations) #12;Coal Replacement Plans 4 Coal Replacement Plans · Boardman ­ 601 MW · The 2016 PGE IRP process will include the Boardman coal plant replacement

328

DOE Selects Nine New University Coal Research Projects to Advance Coal-Based Power  

Broader source: Energy.gov (indexed) [DOE]

Selects Nine New University Coal Research Projects to Advance Coal-Based Power Selects Nine New University Coal Research Projects to Advance Coal-Based Power Systems Nine new projects selected by the U.S. Department of Energy (DOE) under the University Coal Research program will seek long-term solutions for the clean and efficient use of our nation's abundant coal resources. The announcement today of the selections marks the 34 th round of the Department's longest-running coal program, which began in 1979. This research continues DOE efforts to improve the understanding of the chemical and physical processes governing coal conversion and utilization, and support the technological development of the advanced coal power systems of the future. These advanced systems include ultra-clean

329

Pyrolysis of coal  

DOE Patents [OSTI]

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

330

Parametric and kinetic studies on deactivation and regeneration of hydrotreating catalysts in solvent refined coal upgrading process and an evaluation of the liquid vaporization effects on hydrotreater performance  

SciTech Connect (OSTI)

Catalysts used in hydrotreating the solvent refined coal were rapidly deactivated during the initial stages of processing. The major cause of deactivation appears to be the deposition of carbonaceous material on the catalyst. A simulated aging technique involving a series of reactions on the same batch of catalyst and a model compound activity test were developed and used to study the effects of process conditions, feedstock characteristics, catalyst properties, and catalyst pretreatment on initial catalyst deactivation. The variables shown to increase the rate of deactivation are: increased catalyst loading, high reaction temperature, low hydrogen pressure, unsulfiding the catalyst, and high concentrations of preasphaltenes and insoluble organic matter in the feedstock. The loss in catalyst surface area during the aging process was substantial, being as high as 95%. A simple kinetic model, including a first-order catalyst deactivation rate, was applied to upgrading of two-coal derived feedstocks. A catalyst deactivation mechanism was proposed which involves the adsorption and surface reaction of coke precursors on catalytic active sites. Catalyst regeneration of aged catalysts from the LC-Finer and the ITSL process has been accomplished through oxidative treatment followed by presulfiding. A parametric study has been performed to identify the optimum regeneration conditions. The degree of regeneration appears to be dependent on the feed material and reaction history of the catalyst. Liquid vaporization affects the hydrotreater performance significantly. The hydrotreater is simulated to study the effects of the solvent volatility, hydrogen flow rate, feed concentration, temperature, and pressure. A gradientless reactor system was designed, built, and used to verify the key result ofthe simulation study.

Nalitham, R.V.

1983-01-01T23:59:59.000Z

331

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

332

THE EFFECT OF COAL CHAR ON THE CORROSION OF 304 SS  

E-Print Network [OSTI]

of Materials for Coal Gasification Applications". of Highcommercially proven coal gasification processes exist. Theseprocesses. more efficient gasification Much of this work is

Foerster, Thomas Friedrich Wilhelm

2011-01-01T23:59:59.000Z

333

CORROSION OF IRON-BASE ALLOYS BY COAL CHAR AT 871 AND 982 C  

E-Print Network [OSTI]

Composition of Illinois #6 ash and coal char (6). ASH SiO Zcombustion waste gases and ash Coal can be processed,

Gordon, Bruce Abbott

2011-01-01T23:59:59.000Z

334

Pyrolysis behavior of coal and petroleum coke at high temperature and high pressure.  

E-Print Network [OSTI]

??While pyrolysis of coal is a well-studied thermal process, little is known about pressurized pyrolysis of coal and petroleum coke. This study aims to interpret… (more)

Wagner, David Ray

2011-01-01T23:59:59.000Z

335

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

336

High temperature properties and reactivity of coal and coke for ironmaking.  

E-Print Network [OSTI]

??Rapid growth of the steel industry in coming years will be strongly dependent upon coal. Understanding of coal behavior in current or emerging ironmaking processes… (more)

Kim, Byong-Chul

2012-01-01T23:59:59.000Z

337

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

338

Chemistry and mechanism of molten-salt catalysts in coal-gasification processes. Final report, January 1984-January 1985  

SciTech Connect (OSTI)

Alkali metal salts have been recognized as effective catalysts in coal gasification. However, the presence of reducing gases, in particular carbon monoxide, has recently been shown to have serious inhibitory effects on the catalyst performance. This program has addressed the question of the chemical interactions between carbon monoxide gas containing mixtures and the salt catalysts in liquid form by probing the solution chemistry by dynamic electrochemical techniques. The results of this study show that oxalate ions are formed by the reaction between carbonate ions and carbon monoxide gas. At temperatures above 700/sup 0/C, sulfate ions are directly attacked by carbon monoxide. The oxalate ions are electroactive and their electrochemistry has been studied and found to involve adsorption of oxalate and formation of reactive intermediates. The pathway likely involves an ECE sequence. The formation of active adsorbed species such as oxalate or sulfides at high temperature may be the means by which catalytic function of the salts is inhibited.

White, S.H.; Twardoch, U.M.

1985-02-01T23:59:59.000Z

339

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

340

Thermodynamic properties of materials derived from coal liquefaction  

SciTech Connect (OSTI)

Few measurements of the thermodynamic properties of materials obtained from the liquefaction of coal have been reported. Because several sets of well-defined fractions of coal-derived materials existed that had been separated and characterized by the Characterization Branch of the Division of Processing and Thermodynamics of this Center, the expertise of the Thermodynamics Research Branch was utilized to measure enthalpies of combustion and heat capacities of these materials. The sets of fractions came from five sources: a synthetic crude oil derived from western Kentucky coal by the char-oil-energy development (COED) process, a synthetic crude oil derived from Utah A-seam coal by the COED process, material derived from West Virginia Pittsburgh seam coal by the Synthoil process, material derived from Illinois No. 6 coal by the H-Coal process and materials derived from subbituminous coal by the Conoco Colstrip zinc chloride hydrocracking process.

Smith, N.K.; Lee-Bechtold, S.H.; Good, W.D.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ZINC CHLORIDE CATALYSIS IN COAL AND BIOMASS LIQUEFACTION AT PREPYROLYSIS TEMPERATURES  

E-Print Network [OSTI]

Bodily, Stanford Res Inst. , Coal Chemistry Workshop, 1,News, (Aug. 27, 1979). C2 Coal Processing-Gasification,L.W. Vernon, and E.L. Wilson, Coal Liquefaction by the Exxon

Onu, Christopher O.

2013-01-01T23:59:59.000Z

342

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

343

Biochemical Removal of HAP Precursors from Coal  

SciTech Connect (OSTI)

Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory?s (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

Gregory J. Olson

1997-05-12T23:59:59.000Z

344

Coal and Biomass to Liquids | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal to Liquids » Coal and Coal to Liquids » Coal and Biomass to Liquids Coal and Biomass to Liquids Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology improvements and cost reductions that were achieved led to the construction of demonstration-scale facilities. The program is now supporting work to reduce the carbon footprint of coal derived liquids by incorporating the co-feeding of biomass and carbon capture. In the area of direct coal liquefaction, which is the process of breaking down coal to maximize the correct size of molecules for liquid products, the U.S. DOE made significant investments and advancements in technology in the 1970s and 1980s. Research enabled direct coal liquefaction to produce

345

Techno-economic evaluation of an ammonia-based post-combustion process integrated with a state-of-the-art coal-fired power plant  

Science Journals Connector (OSTI)

Abstract A techno-economic evaluation of the application of an ammonia-based post-combustion CO2 capture system to an existing, state-of-the-art, coal-fired power plant. The study comprised an assessment of the ammonia-based capture process together with a detailed cost analysis, based on which the overall design of the capture process is presented, including a power plant integration strategy and estimates of the specific CO2 capture cost (€/tCO2). The evaluations of the power plant and the CO2 capture plant were based on process modeling. The cost analysis was based on the installed cost of each unit in the equipment list derived from the process simulation, which was determined using detailed-factor estimation. We show that the steam required for a CO2 capture efficiency of 90% lowers the electric output from 408.0 MWel to 341.8 MWel. The capital expenditure related to the retrofit of the reference power plant with CO2 capture is 230M€ and the operating expenditure is determined to be 66.5M€/year, corresponding to a relative capture cost of 35€/tCO2. Furthermore, the present work proposes design improvements that may reduce the cost of capture to 31€/tCO2.

Henrik Jilvero; Nils-Henrik Eldrup; Fredrik Normann; Klas Andersson; Filip Johnsson; Ragnhild Skagestad

2014-01-01T23:59:59.000Z

346

Patterns of coal workers' pneumoconiosis in Appalachian former coal miners  

SciTech Connect (OSTI)

To aid in diagnostic chest film interpretation of coal workers' pneumoconiosis, a composite profile of common radiologic patterns was developed in 98 Appalachian former coal miners who were diagnosed as having coal miner's pneumoconiosis and who applied for black lung benefits. The mean age was 61 years, with a lifetime coal mine dust exposure of 18.7 years. Results showed that chest radiographs of coal workers' simple pneumoconiosis contained small irregular linear opacities more frequently (47%) than small rounded opacities. Sparse profusion of all small opacities was the rule. Small opacities involved two out of six lung zones simultaneously 39% of the time while other combinations occurred less frequently. Lower zones were involved more frequently than upper ones. Thickened pleura occurred in 18% of radiographs. Other frequent radiographic abnormalities were parenchymal calcifications (19%), marked emphysema (12%), and inactive tuberculosis (12%). Calcification of the aortic knob, a degenerative process reflecting age, occurred in 9%. Only one instance of complicated coal workers' pneumoconiosis (progressive massive fibrosis) was encountered (0.7%). Many of the descriptive features of coal workers' pneumoconiosis noted in the literature were not observed in this study. Only one instance of complicated pneumoconiosis was encountered.43 references.

Young, R.C. Jr.; Rachal, R.E.; Carr, P.G.; Press, H.C. (College of Pharmacy, Xavier University of Louisiana, New Orleans (United States))

1992-01-01T23:59:59.000Z

347

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

348

Chemical structure of coal tar during devolatilization  

SciTech Connect (OSTI)

Enormous progress has been made in coal pyrolysis research during the last two decades. Models of coal devolatilization have progressed from simple rate expressions based on total mass release to empirical relationships based on the elemental composition of the parent coal to models that attempt to describe the macromolecular network of the coal. In the last several years, advancements in chemical analysis techniques have allowed quantitative investigations of the chemical structure of both coal and its pyrolysis products, including the nature of the resulting char. A prominent research goal is to accurately predict the rates, yields, and products of devolatilization from measurements of the parent coal structure. The prediction of nitrogen species evolved during devolatilization is of current interest. These goals necessitate modeling the reaction processes on the molecular scale, with activation energies that relate to chemical bond breaking rather than to the mass of products released from the coal. Solid-state {sup 13}C NMR spectroscopy has proven particularly useful in obtaining average values of chemical structure features of coal and char, while liquid phase {sup 1}H NMR spectroscopy has been used to determine some of the chemical features of coal tar. Pyridine extract residues from coal and partially-pyrolyzed coal chars have also been analyzed by solid-state {sup 13}C NMR spectroscopy, and the extracts have been analyzed by {sup 1}H NMR spectroscopy.

Fletcher, T.H.; Watt, M. [Bringham Young Univ., Provo, UT (United States); Bai, S.; Solum, M.S. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1996-12-31T23:59:59.000Z

349

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents [OSTI]

A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

1986-01-01T23:59:59.000Z

350

Catalytic coal liquefaction with treated solvent and SRC recycle  

DOE Patents [OSTI]

A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

Garg, D.; Givens, E.N.; Schweighardt, F.K.

1986-12-09T23:59:59.000Z

351

Coal liquefaction. Quarterly report, July-September 1979  

SciTech Connect (OSTI)

The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

None

1980-07-01T23:59:59.000Z

352

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

353

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4 MPa and temperatures of 800, 900, 950, and 1000 °C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

354

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect (OSTI)

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

355

Coal/biomass gasifier lab tests are a success  

Science Journals Connector (OSTI)

Coal/biomass gasifier lab tests are a success ... The process produces a medium-Btu gas from a mixture of coal, municipal solid waste, and dewatered sewage sludge. ...

1980-02-25T23:59:59.000Z

356

Quality Guidelines for Energy System Studies: Detailed Coal Specificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(dry) process in the U.S. It is typically applied to the coal less than inch in size. The raw coal may be screened upstream from the cleaning plant with larger fractions...

357

TRW advanced slagging coal combustor utility demonstration  

SciTech Connect (OSTI)

The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

Not Available

1990-01-01T23:59:59.000Z

358

Multisolvent successive extractive refining of coal  

SciTech Connect (OSTI)

A selected group of commercial solvents, namely, anthracene oil (AO), ethylenediamine (EDA), and liquid paraffin (LP), were used for successive extraction of Assam coal. Hot AO provided a wide range of mixed solvents that dissociate chemically and interact favorably with dissociated and undissociated coal macromolecules (like dissolves like). This resulted in the enhancement of the EDA extractability of the AO-pretreated residual coal. EDA is a good swelling solvent and results in physical dissociation of coal molecules. The residual coal obtained after EDA extraction was subjected to extraction with LP, an H-donor, high-boiling (330--360 C) solvent. LP thermally dissociates coal macromolecules and interacts with the coal at its plastic stage at the free radical pockets. The mechanism and molecular dynamics of the multisolvent successive extraction of Assam coal using AO-EDA-LP solvents are discussed. In early attempts, successive extractions did not modify the extraction yield in the single solvent showing the maximum extraction. However, the AO-EDA-LP extraction resulted in the extraction of 70% coal, more than for any of the individual solvents used. Therefore, AO-EDA-LP extraction of coal affords a process yielding a superclean, high-heating value fuel from coal under milder conditions. Several uses of superclean coal have been recommended. Present studies have revealed a new concept concerning the structure of coal having 30% polyaromatic condensed entangled rings and 70% triaromatic-heterocyclic-naphthenic-aliphatic structure. The insolubility of coal is due to the polyfunctional-heterocyclic-condensed structure having a polyaromatic core with intermacromolecular entanglements.

Sharma, D.K.; Singh, S.K. [Indian Inst. of Tech., New Delhi (India)

1996-01-01T23:59:59.000Z

359

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

360

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect (OSTI)

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

362

The methods of steam coals usage for coke production  

SciTech Connect (OSTI)

Nowadays, high volatile bituminous coals are broadly used for metallurgical coke production in Russia. The share of such coals in the coking blend is variable from 20 to 40% by weight. There are some large coal deposits in Kuznetskii basin which have coals with low caking tendency. The low caking properties of such coals limit of its application in the coking process. At the same time the usage of low caking coals for coke production would allow flexibility of the feedstock for coke production. Preliminary tests, carried out in COAL-C's lab has shown some differences in coal properties with dependence on the size distribution. That is why the separation of the well-caking fraction from petrographically heterogeneous coals and its further usage in coking process may be promising. Another way for low caking coals application in the coke industry is briquettes production from such coals. This method has been known for a very long time. It may be divided into two possible directions. First is a direct coking of briquettes from the low caking coals. Another way is by adding briquettes to coal blends in defined proportion and combined coking. The possibility of application of coal beneficiation methods mentioned above was investigated in present work.

Korobetskii, I.A.; Ismagilov, M.S.; Nazimov, S.A.; Sladkova, I.L.; Shudrikov, E.S.

1998-07-01T23:59:59.000Z

363

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect (OSTI)

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

Slomka, B.J.

1994-10-01T23:59:59.000Z

364

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

365

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

366

Normalized Normal Constraint Algorithm Based Multi-objective Optimal Tuning of Decentralised PI Controller of Nonlinear Multivariable ProcessCoal Gasifier  

Science Journals Connector (OSTI)

Almost all the industrial processes are multivariable in nature and are very difficult to control, since it involves many variables, strong interactions and nonlinearities. Conventional controllers are most widel...

Rangasamy Kotteeswaran; Lingappan Sivakumar

2013-01-01T23:59:59.000Z

367

Kinetics of coal pyrolysis and devolatilization  

SciTech Connect (OSTI)

An experimentally based, conceptual model of the devolatilization of a HV bituminous coal is outlined in this report. This model contends that the relative dominance of a process type-chemical kinetic, heat transport, mass transport -- varies with the extent of reaction for a given set of heating conditions and coal type and with experimental conditions for a given coal type and extent of reaction. The rate of devolatilization mass loss process is dominated initially by heat transfer processes, then coupled mass transfer and chemical kinetics, and finally by chemical processes alone. However, the chemical composition of the initial tars are determined primarily by the chemical characteristics of the parent coal. Chemically controlled gas phase reactions of the initial tars and coupled mass transfer and chemically controlled reactions of heavy tars determine the bulk of the light gas yields. For a HV bituminous coal this conceptual model serves to quantify the Two-Component Hypothesis'' of volatiles evolution. The model postulates that the overall rates of coal devolatilization should vary with coal type insofar as the characteristics of the parent coal determine the potential tar yield and the chemical characteristics of the initial tars. Experimental evidence indicates chemical characteristics and yields of primary'' tars vary significantly with coal type. Consequently, the conceptual model would indicate a shift from transport to chemical dominance of rate processes with variation in coal type. Using the conceptual model, United Technologies Research Center has been able to correlate initial mass loss with a heat transfer index for a wide range of conditions for high tar yielding coals. 33 refs., 30 figs., 6 tabs.

Not Available

1987-01-01T23:59:59.000Z

368

Coal conversion. 1979 technical report  

SciTech Connect (OSTI)

Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

None

1980-09-01T23:59:59.000Z

369

Method of operating a two-stage coal gasifier  

DOE Patents [OSTI]

A method of operating an entrained flow coal gasifier (10) via a two-stage gasification process. A portion of the coal (18) to be gasified is combusted in a combustion zone (30) with near stoichiometric air to generate combustion products. The combustion products are conveyed from the combustion zone into a reduction zone (32) wherein additional coal is injected into the combustion products to react with the combustion products to form a combustible gas. The additional coal is injected into the reduction zone as a mixture (60) consisting of coal and steam, preferably with a coal-to-steam weight ratio of approximately ten to one.

Tanca, Michael C. (Tariffville, CT)

1982-01-01T23:59:59.000Z

370

American Coal Council 2004 Spring Coal Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

371

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

372

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

373

The use of solid-state NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Quarterly report, March 1, 1994--May 31, 1994  

SciTech Connect (OSTI)

One area for improvement in the economics of coal liquefaction is coal drying, particularly for the lower rank coals. However, there is considerable evidence to show that drying has a detrimental effect on the liquefaction behavior of coals. Regarding the liquefaction of coal, there does not appear to have been any systematic study of the methods of coal drying on coal structure and the role water plays in enhancing or lessening coal reactivity toward liquefaction. For the research program reported here, different methods of drying are being investigated to determine if drying can be accomplished without destroying coal reactivity toward liquefaction. In an effort to understand the mechanism of water for enhancing coal liquefaction yield, the reactions of D{sub 2}O with the molecular constituents of coal during coal liquefaction are being investigated. This study involves the use of solution-state deuterium NMR, as well as, conventional solution-state {sup 1}H and {sup 13}C NMR analyses of the coal, and the coal liquids and residue from a coal liquefaction process. These D{sub 2}O transfer reactions will be conducted on coals which have been dried by various methods and rehydrated using D{sub 2}O and by successive exchange of H{sub 2}O associated with the coals with D{sub 2}O. The drying methods include thermal, microwave, and chemical dehydration of the coal.

Netzel, D.A.

1994-08-01T23:59:59.000Z

374

Coal liquefaction  

DOE Patents [OSTI]

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

375

X-ray Computed Tomography of coal: Final report  

SciTech Connect (OSTI)

X-ray Computed Tomography (CT) is a method of mapping with x-rays the internal structures of coal. The technique normally produces 2-D images of the internal structures of an object. These images can be recast to create pseudo 3-D representations. CT of coal has been explored for a variety of different applications to coal and coal processing technology. In a comparison of CT data with conventional coal analyses and petrography, CT was found to offer a good indication of the total ash content of the coal. The spatial distribution of the coal mineral matter as seen with CT has been suggested as an indicator of coal washability. Studies of gas flow through coal using xenon gas as a tracer have shown the extremely complicated nature of the modes of penetration of gas through coal, with significant differences in the rates at which the gas can pass along and across the bedding planes of coal. In a special furnace designed to allow CT images to be taken while the coal was being heated, the pyrolysis and gasification of coal have been studied. Gasification rates with steam and CO/sub 2/ for a range of coal ranks have been obtained, and the location of the gasification reactions within the piece of coal can be seen. Coal drying and the progress of the pyrolysis wave into coal have been examined when the coal was subjected to the kind of sudden temperature jump that it might experience in fixed bed gasifier applications. CT has also been used to examine stable flow structures within model fluidized beds and the accessibility of lump coal to microbial desulfurization. 53 refs., 242 figs., 26 tabs.

Maylotte, D.H.; Spiro, C.L.; Kosky, P.G.; Lamby, E.J.

1986-12-01T23:59:59.000Z

376

Coal gasification 2006: roadmap to commercialization  

SciTech Connect (OSTI)

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15T23:59:59.000Z

377

Improved catalysts for carbon and coal gasification  

DOE Patents [OSTI]

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

378

5 - Introduction to Coal Utilization Technologies  

Science Journals Connector (OSTI)

Publisher Summary The primary applications for coal use became electricity generation and the production of iron and steel. Coal has varied uses in the industrial sector for producing steam and electricity and also some chemicals are produced from coal. This chapter introduces the technologies and explains the processes for generating power, heat, coke, and chemicals including carbonization, combustion, liquefaction and gasification. These are referred to as “grand processes” in coal utilization and are explained in detail under separate sections. A brief history on the history of the processes and designs are provided with figures. The modern designs and processes are explained further with diagrams and the different boiler types and their relevance in technologies are available. The chemical processes involved in coal combustion, the involved and characteristics are summarized in table. Emphasis is also made on coal combustion and sets the stage for further reading on clean coal technologies in later portion of the book. Several direct liquefaction processes are introduced in this chapter. Although these are important, however, there are other processes conceived and researched.

Bruce G. Miller

2011-01-01T23:59:59.000Z

379

Liquefaction of calcium-containing subbituminous coals and coals of lower rank  

DOE Patents [OSTI]

A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

Gorbaty, Martin L. (Sanwood, NJ); Taunton, John W. (Seabrook, TX)

1980-01-01T23:59:59.000Z

380

Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes  

SciTech Connect (OSTI)

Dense Pd, Pd-Cu and Pd-Ag composite membranes on microporous stainless steel substrate (MPSS) were fabricated by a novel electroless plating (EP) process. In the conventional Pd-EP process, the oxidation-reduction reactions between Pd-complex and hydrazine result in an evolution of NH{sub 3} and N{sub 2} gas bubbles. When adhered to the substrate surface and in the pores, these gas bubbles hinder uniform Pd-film deposition which results in dendrite growth leading to poor film formation. This problem was addressed by introducing cationic surfactant in the electroless plating process known as surfactant induced electroless plating (SIEP). The unique features of this innovation provide control of Pd-deposition rate, and Pd-grain size distribution. The surfactant molecules play an important role in the EP process by tailoring grain size and the process of agglomeration by removing tiny gas bubbles through adsorption at the gas-liquid interface. As a result surfactant can tailor a nanocrystalline Pd, Cu and Ag deposition in the film resulting in reduced membrane film thickness. Also, it produces a uniform, agglomerated film structure. The Pd-Cu and Pd-Ag membranes on MPSS support were fabricated by sequential deposition using SIEP method. The pre- and post-annealing characterizations of these membranes (Pd, Pd-Cu and Pd-Ag on MPSS substrate) were carried out by SEM, EDX, XRD, and AFM studies. The SEM images show significant improvement of the membrane surface morphology, in terms of metal grain structures and grain agglomeration compared to the membranes fabricated by conventional EP process. The SEM images and helium gas-tightness studies indicate that dense and thinner films of Pd, Pd-Cu and Pd-Ag membranes can be produced with shorter deposition time using surfactant. H{sub 2} Flux through the membranes fabricated by SIEP shows large improvement compared to those by CEP with comparable permselectivity. Pd-MPSS composite membrane was subjected to test for long term performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

Ilias, Shamsuddin; Kumar, Dhananjay

2012-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Inclined fluidized bed system for drying fine coal  

DOE Patents [OSTI]

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

382

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

383

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

384

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

385

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

386

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

387

Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application  

SciTech Connect (OSTI)

Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold promise for a warm cleanup of a variety of contaminant species within warm syngas.

Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

2013-06-19T23:59:59.000Z

388

The Pittsburg & Midway Coal Mining Co. Kemmerer Mine coal blending facility  

SciTech Connect (OSTI)

The Pittsburg & Midway Coal Mining Company`s Kemmerer Mine recently completed a new coal processing facility for blending the mine`s low, medium, and high sulfur coals to meet the needs of our customers. This article will discuss the geology; mining and market conditions that led to the need for this facility; design considerations; the construction; and the system`s controls and performance.

Mulhall, K.; Crank, G. [Pittsburg & Midway Coal Mining Co., Kemmerer, WY (United States)

1995-08-01T23:59:59.000Z

389

Method for producing catalysts from coal  

DOE Patents [OSTI]

A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

1998-02-24T23:59:59.000Z

390

Method for producing catalysis from coal  

DOE Patents [OSTI]

A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

Farcasiu, Malvina (Pittsburgh, PA); Derbyshire, Frank (Lexington, KY); Kaufman, Phillip B. (Library, PA); Jagtoyen, Marit (Lexington, KY)

1998-01-01T23:59:59.000Z

391

Chapter 5 - Technologies for Coal Utilization  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with the technologies for coal utilization. Coal use in the United States had been primarily for iron and steel production, locomotives for transportation, and household heat. In addition, many chemicals, including medicines, dyes, flavorings, ammonia, and explosives were produced from coal. Coal is used in the industrial sector for producing steam and to a lesser extent electricity, and some chemicals are produced from coal. The chapter explores the technologies used for generating power, heat, coke, and chemicals and includes combustion, carbonization, gasification, and liquefaction, which have been referred to as the four “grand processes” of coal utilization. Advances in materials of construction, system designs, and fuel firing have led to increasing capacity and higher steam operating temperatures and pressures. In the United States, utilities typically choose between two basic pulverized coal-fired watertube steam generators: subcritical drum-type boilers with nominal operating pressures of either 1900 or 2600 psig or once-through supercritical units operating at 3800 psig advances. The chapter concludes by emphasizing on coal combustion, as this technology is the single largest user of coal.

Bruce G. Miller

2005-01-01T23:59:59.000Z

392

ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS  

SciTech Connect (OSTI)

The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

E. James Davis

1999-12-18T23:59:59.000Z

393

Development of biological coal gasification (MicGas process): 13th Quarterly report, [July 1--September 30, 1993  

SciTech Connect (OSTI)

In examining methods for enhancing the biomethanation of TxL, several experiments were conducted to study the mechanisms of lowering the pH during biomethanation of Texas lignite (TxL) at higher solids loadings. Results indicated that: Treatment of TxL with different pH solutions did not influence the biomethanation process; The decrease in methane production at higher solids loadings still needs further investigations; Anaerobic conditions containing deoxygenated nitrogen:carbon dioxide provide better methanation of TxL; The most promising combination between the isolates from Mic-1 and Mic-4 was found to be combination D (KS14RMK8-1458); The KS14RMK8 shows the highest accumulation of acetate in the cell-free culture broth from this consortium.

Not Available

1993-10-28T23:59:59.000Z

394

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

395

Surface properties of coal and their role in coal beneficiation: Technical progress report, March 15, 1989--June 14, 1989  

SciTech Connect (OSTI)

The main goal of this research is to delineate the wetting behavior of coal and its subsequent effects on fine coal processing. As both bulk and surface properties of coal are interrelated and have a controlling role in the performance of these processes, a detailed study has been undertaken to correlate their influence on both wetting behavior and the response of coal to flotation. During this current reporting period, the major effort was directed towards investigation of the effect of pH and oxidation on the induction time of coal.

Fuerstenau, D.W.

1989-07-01T23:59:59.000Z

396

Development of a Novel Oxygen Supply Process and its Integration with an Oxy-Fuel Coal-Fired Boiler  

SciTech Connect (OSTI)

BOC, the world's second largest industrial gas company, has developed a novel high temperature sorption based technology referred to as CAR (Cyclic Autothermal Recovery) for oxygen production and supply to oxy-fuel boilers with flue gas recycle. This technology is based on sorption and storage of oxygen in a fixed bed containing mixed ionic and electronic conductor materials. The objective of the proposed work was to construct a CAR PDU that was capable of producing 10-scfm of oxygen, using steam or recycled flue gas as the sweep gas, and install it in the Combustion Test Facility. The unit was designed and fabricated at BOC/The Linde Group, Murray Hill, New Jersey. The unit was then shipped to WRI where the site had been prepared for the unit by installation of air, carbon dioxide, natural gas, nitrogen, computer, electrical and infrastructure systems. Initial experiments with the PDU consisted of flowing air into both sides of the absorption systems and using the air heaters to ramp up the bed temperatures. The two beds were tested individually to operational temperatures up to 900 C in air. The cycling process was tested where gases are flowed alternatively from the top then bottom of the beds. The PDU unit behaved properly with respect to flow, pressure and heat during tests. The PDU was advanced to the point where oxygen production testing could begin and integration to the combustion test facility could occur.

None

2006-12-31T23:59:59.000Z

397

Seven Projects Aimed at Advancing Coal Research Selected for DOE's  

Broader source: Energy.gov (indexed) [DOE]

Seven Projects Aimed at Advancing Coal Research Selected for DOE's Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program Seven Projects Aimed at Advancing Coal Research Selected for DOE's University Coal Research Program May 13, 2010 - 1:00pm Addthis Washington, DC -- Seven projects aimed at advancing coal research and development while providing research exposure to a new generation of scientists and engineers have been selected to participate in the U.S. Department of Energy's (DOE) University Coal Research (UCR) program. The projects aim to improve the basic understanding of the chemical and physical processes that govern coal conversion and utilization, by-product utilization, and technological development for advanced energy systems. These advanced systems -- efficient, ultra-clean energy plants -- are

398

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

399

Cooperative research in coal liquefaction  

SciTech Connect (OSTI)

Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

Huffman, G.P.; Sendlein, L.V.A. (eds.)

1991-05-28T23:59:59.000Z

400

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

402

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

403

HIGH TEMPERATURE REMOVAL OF H{sub 2}S FROM COAL GASIFICATION PROCESS STREAMS USING AN ELECTROCHEMICAL MEMBRANE SYSTEM  

SciTech Connect (OSTI)

A bench scale set-up was constructed to test the cell performance at 600-700 C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO{sub 2}, 35% H{sub 2}, 8% H{sub 2}O, and 450-2000 ppm H{sub 2}S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H{sub 2}S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H{sub 2}S removal. The results identify sulfide diffusion across the membrane as the rate-limiting step in H{sub 2}S removal. The maximum H{sub 2}S removal flux of 1.1 x 10-6 gmol H{sub 2}S min{sup -1} cm{sup -2} (or 3.5 mA cm{sup -2}) was obtained at 650 C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell will depend heavily on the lifetime of the cathode material, which is exposed to very sour gas. Materials that showed success in the past (i.e. cobalt sulfides and Y{sub 0.9}Ca{sub 0.1}FeO{sub 3}) were examined but were seen to have limitations in operating environment and temperature. Therefore, other novel metal oxide compounds were studied to find possible candidates for full cell trials. Gd{sub 2}TiMoO{sub 7} and La{sub 0.7}Sr{sub 0.3}VO{sub 3} were the compounds that retained their structure best even when exposed to high H{sub 2}S, CO{sub 2}, and H{sub 2}O concentrations.

Jack Winnick; Meilin Liu

2003-06-01T23:59:59.000Z

404

Coal cleans up its act  

SciTech Connect (OSTI)

The paper gives an overview of current clean coal conversion processes. Gasification of coal is seen as preferable to combustion, along with CO{sub 2} separation technologies. One scheme which minimises the parasitic energy requirement for CO{sub 2} separation is based on the calcium-based carbonation-calcination reaction (CCR) process which utilises limestone at 600-700{sup o}C. The key to success lies in process integration by combining various modules in one step of operation. Current stages of development vary from conceptualisation to pilot demonstration and commercial process construction. Projects mentioned include the FutureGen project and the HyPr-ring chemical looping process. 2 figs.

Liang-Shih Fan; Mahesh Lyer [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-10-15T23:59:59.000Z

405

The Role of Oxygen in Coal Gasification  

E-Print Network [OSTI]

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

Klosek, J.; Smith, A. R.; Solomon, J.

406

Coal and Biomass to Liquid Fuels  

Science Journals Connector (OSTI)

Figure 3.3 illustrates the main processing steps in coal to gasoline using MTG. Methanol synthesis is large-scale commercial technology...2]. Single-train methane-based methanol plants up to 5,500 tonnes of metha...

James R. Katzer

2011-01-01T23:59:59.000Z

407

Minimizing corrosion in coal liquid distillation  

DOE Patents [OSTI]

In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

Baumert, Kenneth L. (Emmaus, PA); Sagues, Alberto A. (Lexington, KY); Davis, Burtron H. (Georgetown, KY)

1985-01-01T23:59:59.000Z

408

Clean Coal Technology and the Clean Coal Power Initiative | Department of  

Broader source: Energy.gov (indexed) [DOE]

Clean Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies tested in the original program achieved commercial success. The early program, however, was focused on the environmental challenges of the time - primarily concerns over the impact of acid rain on forests and

409

Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, December 1, 1992--February 28, 1993  

SciTech Connect (OSTI)

Very little data is available on the thermodynamic properties of coal model compounds in liquid phase at high pressures. The authors present preliminary compilations of available data. It is anticipated that they will require vapor pressure and saturated liquid density data for coal model compounds in their high pressure liquid equation of state development. These data sets have also been compiled and are presented. They have at this time completed a review of techniques for high pressure density measurements. Some thought is being given to the possibility of building an apparatus to carry out density measurements for selected model compounds. Finally, they reproduce the Thomson et al equation and describe their preliminary procedure to test this equation with available high pressure thermodynamic data. They acknowledge the possibility that a number of modifications of the Thomson equation will be necessary before a reasonably accurate liquid state equation of state for coal model compound emerges.

Kabadi, V.N.; Ilias, S.

1993-12-31T23:59:59.000Z

410

Method for reducing NOx during combustion of coal in a burner  

DOE Patents [OSTI]

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

411

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Advanced Coal Conversion Process Demonstration - Project Brief [PDF-192KB] Rosebud SynCoal Partnership, Colstrip, MT PROGRAM PUBLICATIONS Final Reports Advanced Coal Conversion Process Demonstration Final Technical Report [PDF-362KB] (Sept 2004) Annual/Quarterly Technical Reports Advanced Coal Conversion Process Demonstration Annual Technical Progress Reports January - December 1991 [PDF-920KB] January - December 1992 [PDF-2.9MB] January - December 1993 [PDF-3.3MB] January - December 1995 [PDF-2.9MB] January - December 1996 [PDF-250KB] January - December 1997 [PDF-264KB] January - December 1998 [PDF-188KB] January - December 1999 [PDF-212KB] January - December 2000 [PDF-231KB] Advanced Coal Conversion Process Demonstration Quarterly Technical Progress Reports

412

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

413

Trace element content of magnetohydrodynamic coal combustion effluents  

Science Journals Connector (OSTI)

Trace element contents from effluents of a simulated coal-fired magnetohydrodynamic (MHD) combustion process have been determined using thermal neutron activation analysis techniques. The quality control consi...

M. S. Akanni; V. O. Ogugbuaja; W. D. James

1983-01-01T23:59:59.000Z

414

Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals  

SciTech Connect (OSTI)

The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

Nabeel, A.; Khan, T.A.; Sharma, D.K. [Jamia Millia Islamia, New Delhi (India). Dept. of Chemistry

2009-07-01T23:59:59.000Z

415

Coal pulverizing systems for power generation  

SciTech Connect (OSTI)

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

416

NETL: CCPI/Clean Coal Demonstrations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topical Reports Topical Reports CCPI/Clean Coal Demonstrations Topical Reports General Topical Report #18: Environmental Benefits of Clean Coal Technologies[PDF-2MB] (Apr 2001) This report describes a variety of processes that are capable of meeting existing and emerging environmental regulations and competing economically in a deregulated electric power marketplace. Topical Report #17: Software Systems in Clean Coal Demonstration Projects [PDF-650KB] (Dec 2001) This report describes computer software systems used to optimize coal utilization technologies. Environmental Control Technologies Sulfur Dioxide Control Technologies Topical Report #12: Advanced Technologies for the Control of Sulfur Dioxide Emissions from Coal-Fired Boilers [PDF-1.6MB] (June 1999) A discussion of three CCT projects that demonstrate innovative wet flue gas desulfurization technologies to remove greater than 90% SO2.

417

Land reclamation and strip-mined coal production in appalachia  

Science Journals Connector (OSTI)

This study quantifies the short-run impacts of reclamation on strip mining costs, coal prices, production, and employment in Appalachia. A process analysis model is developed and used to estimate short-run strip-mined coal supply functions under conditions of alternative reclamation requirements. Then, an econometric model is developed and used to estimate coal demand relations. Our results show that full reclamation has rather minor impacts. In 1972, full reclamation would have increased strip-mined coal production costs an average of $0.35 per ton, reduced strip-mined coal production by 10 million tons, and cost approximately 1600 jobs in Appalachia.

William Lin; Robert L Spore; Edmund A Nephew

1976-01-01T23:59:59.000Z

418

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

419

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

420

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "ous coal processing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

422

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

423

Indonesian coal mining  

SciTech Connect (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

424

Novel process for depolymerization of coal to C{sub 2}-C{sub 4} hydrocarbons. Final report, 1 September 1989--31 August 1993  

SciTech Connect (OSTI)

A principal objective of this work was to study the conversion of coal to C{sub 2} {minus} C{sub 4} hydrocarbons in a two-stage reactor system. Coal was converted to liquids at 440{degrees}C in a stirred batch autoclave using tetralin as the hydrogen donor solvent. The liquids produced were separated from the unreacted coal and ash by filtration. The liquids were then fed into a second stage fixed bed reactor containing sulfided Ni-Mo/Al{sub 2}O{sub 3} and SiO{sub 2{minus}}Al{sub 2}O{sub 3} catalyst. The liquids were hydrocracked on the dual functional catalyst giving high yields of C{sub 2} {minus} C{sub 4}. hydrocarbons. The pressure was 1800 psi and the temperatures were in the range of 425 to 500{degrees}C. The kinetic parameters of the conversion of coal liquids to gases were determined. The activation energy was determined.

Wiser, W.H.; Oblad, A.G.

1994-07-08T23:59:59.000Z

425

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

426

Ore components in coal  

SciTech Connect (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

427

Fluidized-bed bioreactor system for the microbial solubilization of coal  

DOE Patents [OSTI]

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

Scott, C.D.; Strandberg, G.W.

1987-09-14T23:59:59.000Z

428

Fixed-bed bioreactor system for the microbial solubilization of coal  

DOE Patents [OSTI]

A fixed-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fixed-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the large scale production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fixed-bed bioreactor. 1 fig., 1 tab.

Scott, C.D.; Strandberg, G.W.

1987-09-14T23:59:59.000Z

429

Chapter 12 - Coal use in iron and steel metallurgy  

Science Journals Connector (OSTI)

Abstract: This chapter discusses the role of coal in iron and steel metallurgy. The chapter first gives information about routes for steel manufacture, current levels of steel production and forecasts for the future. It then discusses the use of coal in different metallurgical processes with emphasis on various ironmaking technologies as the most energy consuming step of the process chain. Alternatives to coal like biomass, hydrogen or waste plastics are discussed from the point of view of CO2 reduction.

A. Babich; D. Senk

2013-01-01T23:59:59.000Z

430

Coal Study Guide for Elementary School  

Broader source: Energy.gov [DOE]

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

431

EFFECTS OF LEWIS ACID CATALYSTS ON THE HYDROGENATION AND CRACKING OF TWO-RING AROMATIC AND HYDROAROMATIC STRUCTURES RELATED TO COAL  

E-Print Network [OSTI]

Asphaltenes in Processed Coal", EPRI Report AF-480, preparedS. A. and Bell, A. T. , "Coal Liquefaction Using ZincJ. H. , and Vermeulen, T. , "Coal Conversion Using Zinc

Salim, Sadie S.

2013-01-01T23:59:59.000Z

432

HYDROGENATION AND CRACKING OF COAL RELATED FUSED-RING STRUCTURES USING ZnCl2 AND AlCl3 CATALYSTS  

E-Print Network [OSTI]

The Na enes in Processed Coal EPRI Report AF- & DevelopmentCA (1976). Whitehurst, Coals in Behavior of Western at EPRIH. H. , ed. , Chemistry of Coal Utilization~~_:e.l~mer:

Salim, Sadie S.

2013-01-01T23:59:59.000Z

433

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

434

Application of surface and bulk characterization techniques for coal preparation  

SciTech Connect (OSTI)

With the recent acceleration of development of surface-property-based processes for the beneficiation of ultrafine coal, it is essential to establish their underlying scientific principles and to develop mathematical models able to predict how the process will perform on an unknown coal. Various surface properties of importance, surface characterization techniques, and application of these techniques to coal are reviewed. Instrumental techniques used for analyzing bulk composition of organic and/or inorganic matter are also reviewed. The differences in coal and mineral matter properties are highlighted. The effect of particle history, including grinding and oxidation, on the surface properties of coal is discussed. The mechanisms of advanced physical beneficiation processes are reviewed, and the influence of surface properties on the effectiveness of separation between coal and the liberated mineral matter is discussed. Finally, recommendations for future areas of research are made. 121 refs., 19 figs., 17 tabs.

Gala, H.B. (Burns and Roe Services Corp., Pittsburgh, PA (USA)); Hucko, R.E. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation and Solids Transportation Div.)

1990-01-01T23:59:59.000Z

435

Fluidized bed selective pyrolysis of coal  

DOE Patents [OSTI]

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

1992-01-01T23:59:59.000Z

436

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

437

Coal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture