National Library of Energy BETA

Sample records for othere factors total

  1. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  2. A comparative study of small field total scatter factors and dose profiles using plastic scintillation detectors and other stereotactic dosimeters: The case of the CyberKnife

    SciTech Connect (OSTI)

    Morin, J.; Beliveau-Nadeau, D.; Chung, E.; Seuntjens, J.; Theriault, D.; Archambault, L.; Beddar, S.; Beaulieu, L.

    2013-01-15

    Purpose: Small-field dosimetry is challenging, and the main limitations of most dosimeters are insufficient spatial resolution, water nonequivalence, and energy dependence. The purpose of this study was to compare plastic scintillation detectors (PSDs) to several commercial stereotactic dosimeters by measuring total scatter factors and dose profiles on a CyberKnife system. Methods: Two PSDs were developed, having sensitive volumes of 0.196 and 0.785 mm{sup 3}, and compared with other detectors. The spectral discrimination method was applied to subtract Cerenkov light from the signal. Both PSDs were compared to four commercial stereotactic dosimeters by measuring total scatter factors, namely, an IBA dosimetry stereotactic field diode (SFD), a PTW 60008 silicon diode, a PTW 60012 silicon diode, and a microLion. The measured total scatter factors were further compared with those of two independent Monte Carlo studies. For the dose profiles, two commercial detectors were used for the comparison, i.e., a PTW 60012 silicon diode and Gafchromics EBT2. Total scatter factors for a CyberKnife system were measured in circular fields with diameters from 5 to 60 mm. Dose profiles were measured for the 5- and 60-mm cones. The measurements were performed in a water tank at a 1.5-cm depth and an 80-cm source-axis distance. Results: The total scatter factors measured using all the detectors agreed within 1% with the Monte Carlo values for cones of 20 mm or greater in diameter. For cones of 10-20 mm in diameter, the PTW 60008 silicon diode was the only dosimeter whose measurements did not agree within 1% with the Monte Carlo values. For smaller fields (<10 mm), each dosimeter type showed different behaviors. The silicon diodes over-responded because of their water nonequivalence; the microLion and 1.0-mm PSD under-responded because of a volume-averaging effect; and the 0.5-mm PSD was the only detector within the uncertainties of the Monte Carlo simulations for all the cones. The PSDs, the PTW 60012 silicon diode, and the Gafchromics EBT2 agreed within 2% and 0.2 mm (gamma evaluation) for the measured dose profiles except in the tail of the 60-mm cone. Conclusions: Silicon diodes can be used to accurately measure small-field dose profiles but not to measure total scatter factors, whereas PSDs can be used to accurately measure both. The authors' measurements show that the use of a 1.0-mm PSD resulted in a negligible volume-averaging effect (under-response of Almost-Equal-To 1%) down to a field size of 5 mm. Therefore, PSDs are strong candidates to become reference radiosurgery detectors for beam characterization and quality assurance measurements.

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  4. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases Propane/Propylene Normal Butane/Butylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending Components Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Sulfur

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500... 3.2 Q 0.8 0.9 0.8 0.5 500 to 999......

  6. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500... 3.2 357 336 113 188 177 59 500 to 999......

  7. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.4 500 to 999......

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.9 0.5 0.9 1.0 500 to 999......

  9. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500... 3.2 0.5 0.3 Q 500 to 999......

  10. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592

  11. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release

  12. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  13. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1

  14. Total................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  15. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  16. Total..........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  17. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  18. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  19. U.S. Natural Gas % of Total Commercial Delivered for the Account of Others

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Commercial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Commercial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10.9 1990's 13.4 14.9 16.8 16.1 20.7 23.3 22.4 29.2 33.0 33.9 2000's 36.1 34.0 36.4 34.9 35.9 35.0 36.3 37.6 38.1 40.8 2010's 42.5 44.2 46.8 46.1 46.2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. U.S. Natural Gas % of Total Industrial Delivered for the Account of Others

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Industrial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Industrial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63.1 1990's 64.8 67.3 69.7 70.7 74.8 76.0 80.6 81.9 83.9 81.3 2000's 80.2 79.2 77.3 77.9 76.3 75.9 76.6 77.8 79.6 81.2 2010's 82.8 83.7 83.8 83.4 84.1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  1. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10Gy total body irradiation

    SciTech Connect (OSTI)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; Komorowski, Richard; Fish, Brian L.; Migrino, Raymond Q.; Harmann, Leanne; Hopewell, John W.; Kronenberg, Amy; Patel, Shailendra; Moulder, John E.; Baker, John E.

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.

  2. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  3. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body ?-Irradiation

    SciTech Connect (OSTI)

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 ?g/kg/day for 17 days), at the estimated LD70/30 total-body ?-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  4. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

  5. Affordability and other factors affecting the purchase of energy-efficient manufactured homes

    SciTech Connect (OSTI)

    Hattrup, M.P.; Lee, A.D.; Sandahl, L.J.; Onisko, S.A.

    1993-06-01

    The Pacific Northwest Laboratory (PNL) and the Bonneville Power Administration (Bonneville) conducted this study to evaluate the manufactured home owner`s purchase decision process and to provide Bonneville with a better understanding of how consumers view a manufactured home`s affordability and energy efficiency. This study addresses manufactured homes built under the US Department of Housing and Urban Development (HUD) standards; these homes are sometimes referred to as HUD-code homes or mobile homes. Manufactured home owners in Idaho, Montana, Oregon, and Washington were included in this analysis. This report adds to the information presented in Sandahl et al. (1992), which discussed the practices of lenders, appraisers, and dealers -- all of whom play a key role in the manufactured home market due to the impact their practices have on the overall affordability of manufactured homes. This report focuses exclusively on the most important, and probably least understood, player -- the home buyer. The primary data were collected via a mail survey sent to 1,550 manufactured home owners in Idaho, Montana, Oregon, and Washington in late 1992. A 71% response rate was achieved; 1,106 usable responses were received. This study focuses on the Pacific Northwest but presents information that may be relevant to other parts of the country.

  6. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  7. Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lenarczyk, Marek; Su, Jidong; Haworth, Steven T.; Komorowski, Richard; Fish, Brian L.; Migrino, Raymond Q.; Harmann, Leanne; Hopewell, John W.; Kronenberg, Amy; Patel, Shailendra; et al

    2015-06-01

    The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age-matched, sham-irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total- and LDL-cholesterol (low-density lipoprotein-cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9more » days after irradiation mitigated TBI-induced increases in total- and LDL-cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri-arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation-induced cardiac disease.« less

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  11. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  17. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.3 Relative Standard Errors for Table 2.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel

  18. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  19. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  20. Other Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics See also: Equipment |...

  1. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  2. Total Crude by Pipeline

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign

  3. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 5,864,402 6,958,125 8,225,321 689,082 633,853 595,158 1991-2015 From Gas Wells 2,523,173 2,599,172 3,177,021 362,605 328,809 1991-2014 From Oil Wells 691,643 728,857 279,627 23,391 22,817 1991-2014 From

  4. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    52,422 52,053 51,181 51,756 49,472 48,285 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 50,729 50,372 49,527 50,084 47,874 46,725 1989-2015 Dry Production 2006-2

  5. Total Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  6. Other Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    since 2009 5 U.S.C. § 552 10 CFR 1004 Other Documents Transuranic Waste Defense Determination Approval Form

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  12. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  13. Total Blender Net Input of Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids OxygenatesRenewables ...

  14. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  15. Summary Max Total Units

    Energy Savers [EERE]

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  16. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  17. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  18. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  19. 21 briefing pages total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law

  20. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    ... 50.0 2.6 7.1 5.2 1.9 17.7 0.3 5.7 1.2 2.4 5.8 Other Excluding Electricity ... 52.4 1.3 6.4 7.9 (*) 20.5 0.4 6.2 1.0 2.7 6.0 Bldgs without Water...

  1. TotalView Training 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TotalView Training 2015 TotalView Training 2015 NERSC will host an in-depth training course on TotalView, a graphical parallel debugger developed by Rogue Wave Software, on...

  2. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  3. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  4. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  5. A comparative study of small field total scatter factors and...

    Office of Scientific and Technical Information (OSTI)

    diameter. For cones of 10-20 mm in diameter, the PTW 60008 silicon diode was the only dosimeter whose measurements did not agree within 1% with the Monte Carlo values. For smaller...

  6. A comparative study of small field total scatter factors and...

    Office of Scientific and Technical Information (OSTI)

    DOSIMETRY; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 62 RADIOLOGY AND NUCLEAR MEDICINE; 60 APPLIED LIFE SCIENCES; COMPUTERIZED SIMULATION; DOSEMETERS;...

  7. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San

  8. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Sasabe, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass,

  9. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  10. Total........................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351

  11. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space

  12. Total...........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing

  13. Total............................................................

    Gasoline and Diesel Fuel Update (EIA)

  14. Total.............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer....................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Most-Used Personal Computer Type of PC Desk-top Model.................................. 58.6 7.6 14.2 13.1 9.2 14.6 5.0 14.5 Laptop Model...................................... 16.9 2.0 3.8 3.3 2.1 5.7 1.3 3.5 Hours Turned on Per Week Less than 2 Hours..............................

  15. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  16. Total..............................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat

  17. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  18. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  19. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  20. Total...............................................................

    Gasoline and Diesel Fuel Update (EIA)

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  1. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  2. Total.................................................................

    Gasoline and Diesel Fuel Update (EIA)

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  3. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat

  4. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat

  5. Total..................................................................

    Gasoline and Diesel Fuel Update (EIA)

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  6. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  7. Total...................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units........................................ 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  8. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  9. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  10. Total.......................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  11. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  12. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing

  13. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  14. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  15. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One

  16. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  17. Total........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7

  18. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  19. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  20. Total...........................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  1. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  2. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  3. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  4. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  5. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  6. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  7. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  8. Total.............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  9. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  10. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  11. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  12. Total..............................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  13. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat

  14. Total.................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    7.1 7.0 8.0 12.1 Do Not Have Cooling Equipment................................... 17.8 1.8 Q Q 4.9 Have Cooling Equipment................................................ 93.3 5.3 7.0 7.8 7.2 Use Cooling Equipment................................................. 91.4 5.3 7.0 7.7 6.6 Have Equipment But Do Not Use it............................... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System.............................................................. 65.9 1.1 6.4 6.4 5.4 Without a

  15. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  16. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  17. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  18. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  19. Total....................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  20. Total.........................................................................................

    Gasoline and Diesel Fuel Update (EIA)

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  1. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 2.0 0.4 Q 0.3 Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings Yes......

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Housing Units Living Space Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Single-Family Units Detached...

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  6. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  7. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  8. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC13.10 Home Appliances Usage Indicators by South Census Region, 2005 Million U.S. Housing Units South Census Region Home Appliances Usage Indicators South Atlantic East ...

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC8.10 Home Appliances Usage Indicators by UrbanRural Location, 2005 Million U.S. Housing Units UrbanRural Location (as Self-Reported) Housing Units (millions) Home ...

  10. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.8 10.5 2,263 1,669 1,079 1,312 1,019 507 N N N ConcreteConcrete Block... 5.3 3.4 2,393 1,660 1,614 Q Q Q Q Q Q Composition...

  11. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  12. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  13. Using Other Agencies' Contracts

    Broader source: Energy.gov [DOE]

    The Department of Energy's (DOE) use of other agencies contracts has increased in recent years. Other agency contracts include Economy Act interagency agreements, Franchise Fund Organizations,...

  14. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  15. Total Energy Outcome City Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Outcome City Pilot 2014 Building Technologies Office Peer Review Targeted Energy Outcomes A New City Energy Policy for Buildings Ken Baker - kbaker@neea.org Northwest Energy Efficiency Alliance Project Summary Timeline: Key Partners: Start date: 09/01/2012 Planned end date: 08/31/2015 Key Milestones 1. Produce outcome based marketing collateral; 04/03/14 New Buildings Institute Two to three NW cities 2. Quantify and define participating city actions; 04/03/14 3. Quantify ongoing

  16. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee Available $208,620 Fee

  17. A total risk assessment methodology for security assessment.

    SciTech Connect (OSTI)

    Aguilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

    2009-06-01

    Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a small comparable target cohort group) is more likely to choose to attack the specific target under analysis because he perceives it to be a relatively unique attack opportunity. The opposite is also true. Thus, total risk is related to the number of targets that exist in each scenario cohort group. This paper describes the Total Risk Assessment Methodology and illustrates it through an example.

  18. U.S. Total Stocks

    Gasoline and Diesel Fuel Update (EIA)

    Stock Type: Total Stocks Strategic Petroleum Reserve Non-SPR Refinery Tank Farms and Pipelines Leases Alaskan in Transit Bulk Terminal Pipeline Natural Gas Processing Plant Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Stock Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum Products 1,968,618 1,991,182 2,001,135 2,009,097 2,021,553 2,014,788 1956-2015 Crude Oil

  19. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG

  20. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  1. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  2. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  3. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  4. Total Imports of Residual Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. Total 4,471 6,479 7,281 4,217 5,941 6,842 1936-2015 PAD District 1 1,854 1,956 4,571 2,206 2,952 3,174 1981-2015 Connecticut 1995-2015 Delaware 204 678 85 1995-2015 Florida 677 351 299 932 836 1995-2015 Georgia 232 138 120 295 1995-2015 Maine 50 1995-2015 Maryland 1995-2015 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,328 780 1,575 400 1,131 1,712 1995-2015 New York 7 6 1,475 998 350 322 1995-2015 North Carolina

  5. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  6. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  7. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  8. Other | Open Energy Information

    Open Energy Info (EERE)

    of the floorspace, but whose largest single activity is agricultural, industrial manufacturing, or residential; and all other miscellaneous buildings that do not fit into any...

  9. Work for Others Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-09-24

    The Guide has been developed to assist Operations/Field Offices in developing their local WFO processes. Does not cancel/supersede other directives.

  10. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Light Water Reactors (CASL) and led by Oak Ridge National Laboratory (ORNL), the five-year, 122 million project includes partners from universities, industry, and other...

  11. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015-Jan. 2016 all issues All Issues submit In other news Novel therapy for stomach cancer; grand opening of Manhattan Project National Historical Park; 2015 Northern New Mexico...

  12. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Science Showdown in Espaola draws close to 400 visitors; Monte del Sol Charter School students win top Supercomputing award; Future entrepreneurs develop...

  13. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit In other news Past Platinum Award winner discusses LAESF impact in new podcast; Free admission for active-duty military, family members; High-angle canyon-side legacy...

  14. Bylaws and Other Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bylaws and Other Documents Postdoc Association Bylaws Bylaws and information about rules of order, meeting conduct, and motions. Contact Postdoc Program Office Email How to go about properly conducting business at a General Assembly Meeting Refer to the postdoc bylaws and other documents, below, for information on how to go about properly conducting business at a LAPA General Assembly (GA) Meeting. The first two documents will be available on the tables at the GA meetings for reference: Bylaws

  15. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Laboratory helps Ohkay Owingeh find math, science tutors; giving students a chance to work, learn and earn; Los Alamos, Van Andel Research Institute to study lung cancer; Lab to team with Procter & Gamble in clean energy manufacturing initiative November 2, 2015 Even the most carefully crafted science projects

  16. ARM - Other Science Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesOther Science Resources Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Other Science Resources AIMS Education Foundation This website offers tools, activities, and information "designed by teachers for teachers." AIMS activities and curricula are extensively field tested and

  17. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News LANL employee chosen for "Frontiers of Engineering" Symposium; 16th Annual Hazmat Challenge strengthens response skills. September 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email LANL Employee Chosen for "Frontiers of

  18. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News Help us make Connections better! October 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Help us make Connections better! Periodically, we like to get feedback on this publication so we can make it even better and more useful to you. Well, that

  19. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News Richard Marquez Leadership and Service Award established at NNMC; Lab employees recognized for Mars Rover contribution; Connections survey feedback results. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Richard Marquez Leadership and

  20. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News New Lab program reinforces safety behavior; Laboratory Fellows announced. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Chuck, Steven, and Mikhail have made exceptional contributions in their fields and to national security. New Lab

  1. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News Community Leaders survey results; NNSA orders security enhancements; Scientists awarded Fellowships from APS. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The American Physical Society recognized 10 Laboratory scientists for

  2. In Other News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Other News Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In Other News Lecture on Sandia Lab history; LANL Foundation personnel changes. March 1, 2013 Rebbecca Ullrich is Sandia National Laboratories' historian Rebbecca Ullrich is Sandia National Laboratories' historian. Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The Bradbury Science Museum's next

  3. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Environmental sustainability, Science Bowl winners and new Pinterest site. April 1, 2013 The Lab's Pinterest site The Lab's Pinterest site. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email 2013 Site Sustainability Plan released The Lab looked 50 years into the future to write a strategy

  4. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Connections has a new title, winners of the Robot Rodeo, local firm gets large grant and new kits available for regional teachers July 1, 2013 A new STEM teacher kit is being distributed throughout the region A new STEM teacher kit is being distributed throughout the region Contact Editor Linda Anderman Email Community

  5. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news New Mexico small businesses can submit leveraged proposals beginning August 20 August 1, 2013 Previous leveraged-project winner Nanotitanium Dental Implants (Walt Shuman, Dan Blacklock and Terry Lowe) Previous leveraged-project winner Nanotitanium Dental Implants (Walt Shuman, Dan Blacklock and Terry Lowe) Contact

  6. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Local nonprofits can apply for development grants, the Regional Development Corporation is recognized for its efforts and Northern New Mexico College receives grant September 1, 2013 The Regional Development Corporation was recently recognized for its economic development efforts The Regional Development Corporation was

  7. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Community Commitment Plan renewed, plus stories on giving, economic development and education November 1, 2013 The Regional Development Corporation was recently recognized for its economic development efforts New Mexico-based Ideum is just one of the organizations that has benefited from investments made through Los

  8. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Readers' survey, protecting Lab bird residents and major media mentions December 1, 2013 Community Connections readers' survey Please participate in our readers' survey Contacts Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email Community Connections readers survey - please let your voice

  9. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Science Cinema, crowdfunding and giving programs wrap up February 1, 2014 Crowdsourcing class at UNM-LA The Bradbury Science Museum in Los Alamos Contact Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email Lab supports local business through crowdfunding class A recent crowdfunding course

  10. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Regional science event winners, environmental protection and state STEM week March 1, 2014 Los Alamos Middle School wins regional Science Bowl (From left to right: David Gao, Phillip Martin, Sonyia Williams, Presley Gao and coach Naomi Unger) Los Alamos Middle School wins regional Science Bowl (From left to right: David

  11. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news New podcast, Supercomputing winners May 5, 2014 Elmer Torres (r) recently participated in a podcast on Native American entrepreneurs. Here, Torres receives a Native American Venture Acceleration Fund award from Kurt Steinhaus (l), director of the Laboratory's Community Programs Office, and Kathy Keith (m), executive

  12. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news New Mexico helps Fukushima; 2014 VAF winners; new scholarship July 1, 2014 Los Alamos National Laboratory postdoctoral researcher Elena Guardincerri (r) and undergraduate research assistant Shelby Fellows (l) prepare a lead hemisphere inside a muon tomography machine. Los Alamos National Laboratory postdoctoral

  13. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news School drive results; New Mexico Middle School Electric Car Challenge; Española Valley Teen Biz Challenge September 1, 2014 A San Ildefonso Day School student selects from a mountain of backpacks collected during this year's backpack and school supply drive. A San Ildefonso Day School student selects from a mountain of

  14. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Employee Giving Campaign, Entrepreneurial Teen Grand Challenge, 2015 MidSchoolMath conference, new podcasts October 1, 2014 Winners of the 2014 Entrepreneurial Teen Grand Challenge; left to right Xena Martinez, Alejandro Atencio and Joshua Lopez. Winners of the 2014 Entrepreneurial Teen Grand Challenge; left to right

  15. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Call for Venture Acceleration Fund applications, including information sessions March 5 and 11; opportunity to own a Habitat for Humanity home; Luján and Fleischmann to lead House Nuclear Cleanup Caucus March 1, 2015 FLUTe, a flexible liner manufacturer located in Alcalde, New Mexico, was one of the Venture Acceleration

  16. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Laboratory dramatically reduces water use; Legislative measures recognize private STEM support; New grant will help expand Venture Acceleration Fund; Discover E; Embudo Valley Library; Santa Fe Radio Café replay April 1, 2015 State Representative Stephanie Garcia-Richard (far right) greets Kurt Steinhaus, Los Alamos

  17. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Manhattan Project park planning committee visits Los Alamos; Native American Economic Summit was a success; Laboratory giving supports United Way of Northern New Mexico grants; New "Science on the Hill" column in Santa Fe New Mexican; Thirteen area students receive Oppenheimer memorial scholarships; Book Fair

  18. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Maestas-Swazo named Lab's tribal liaison; new head for DOE's Los Alamos cleanup office; 2015 recipients of Northern New Mexico Tribal Business Scholarship; LANL Laces and school supplies drive invest in students; seven Mexican spotted owl chicks hatch on Lab property; new podcast September 1, 2015 Baxter the Bear of Del

  19. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news White House honors LANL Foundation; Lab Director meets with Santa Clara Pueblo leaders; Lab partners with colleges to help students make a good first impression; San Ildefonso Pueblo summer school emphasizes math and science learning; book fair raises funds for Food Depot October 1, 2015 Laboratory Director Charles

  20. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Los Alamos cancer research highlighted on NBC News; top YouTube videos featuring Los Alamos science; new tribal governors; "New Mexico Women in Science" calendar; Future City winners share visions of the future; Podcast introduces new internship opportunities February 1, 2016 The Pueblo of Pojoaque celebrated

  1. Other File Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other File Systems Other File Systems User Home Directories Your home directory is located at /home/login-name. Home directories are mounted to all PDSF nodes, are regularly backed up, and currently have 5 GB disk quotas. The "myquota" command shows quotas and usage in terms of space (GB) and inodes (the number of files and directories). Use the -M option of myquota to display in MB instead of GB. See also Checking quotas for more about myquota. Home directories are backed up as

  2. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Holiday Gift Drive; Electric Car Challenge success; national Wreaths Across America December 1, 2014 The holiday season is a good time to make a difference. The holiday season is a good time to make a difference. Contact Community Programs Director Kurt Steinhaus Email Editor Ute Haker Email Please click on the title(s)

  3. In other news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In other news Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit In other news Request for proposals for Venture Acceleration Fund opening soon, news updates on recent STEM activities, a scholarship opportunity for northern New Mexico students, and notice to businesses to register on the System for Award Management March 1, 2016 UbiQD received VAF funding in 2015 UbiQD received VAF funding in 2015.

  4. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 59,693 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  5. WIPP Documents - Other

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Accelerating Cleanup: Paths to Closure The Department of Energy Carlsbad Field Office's proposed approach to cleaning up and closing transuranic waste storage sites. August 2004 Solid Waste Management Report Solid Waste Management Unit Activities from May 1, 2004 through July 31, 2004, August 2004 Quarterly Progress Report The Karst and Related Issues at the Waste Isolation Pilot Plant Dated 6/23/09 Pioneering Nuclear Waste Disposal DOE/CAO-00-3124, Feb. 2000 Documents the 40-plus year

  6. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  1. Total System Performance Assessment Peer Review Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  2. Product Supplied for Total Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished

  3. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  4. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storm Events for Select Western U.S. Cities (adapted from Energy Independence and Security Act Technical Guidance, USEPA, 2009) City 95th Percentile Event Rainfall Total...

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  16. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  17. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  18. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  19. Other Positions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Careers » Other Positions Other Positions Other Positions The OIG occasionally hires administrative and technical support positions such as program and budget analysts, human resources specialists, attorneys, IT specialists, and other staff support positions. Leadership Careers Auditor Criminal Investigator Inspector Other Positions Vacancies New Employees Audits & Inspections Investigations Management & Administration Field Offices Contact Us

  20. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  1. RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"

    U.S. Energy Information Administration (EIA) Indexed Site

    "RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"TOTAL"

  2. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  3. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  4. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  5. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  6. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  7. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  8. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  9. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  10. Hydrocarbon/Total Combustibles Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon/Total Combustibles Sensor Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing Summarythe invention is an electrochemical hydrocarbon sensor that is more reliable and reproducible than any other hydrocarbon sensor on the market today. The patented method for producing the sensor ensures reproducibility and reduces the need for calibration of every sensor coming off the production line.DescriptionLiquefied petroleum gas (LPF) is transported around the

  11. AEO2013 Early Release Base Overnight Project Technological Total Overnight

    Gasoline and Diesel Fuel Update (EIA)

    3 Early Release Base Overnight Project Technological Total Overnight Variable Fixed Heatrate 6 nth-of-a- kind Online Size Lead time Cost in 2012 Contingency Optimism Cost in 2012 4 O&M 5 O&M in 2012 Heatrate Technology Year 1 (MW) (years) (2011 $/kW) Factor 2 Factor 3 (2011 $/kW) (2011 $/MWh) (2011$/kW) (Btu/kWh) (Btu/kWh) Scrubbed Coal New 7 2016 1300 4 2,694 1.07 1.00 2,883 4.39 30.64 8,800 8,740 Integrated Coal-Gasification Comb Cycle (IGCC) 7 2016 1200 4 3,475 1.07 1.00 3,718 7.09

  12. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  13. Other Policy | Open Energy Information

    Open Energy Info (EERE)

    Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Portfolio Standard (Massachusetts) Other Policy Massachusetts Investor-Owned Utility...

  14. Untitled Page -- Other Sites Summary

    Office of Legacy Management (LM)

    Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites 11 E (2) Disposal Cell - 037 ANC Gas Hills Site - 040 Argonne National Laboratory - West - 014 Bodo Canyon Cell - 006 Burro Canyon Disposal Cell - 007 Cheney Disposal Cell - 008 Chevron Panna Maria Site - 030 Clive Disposal Cell - 036 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 Conoco Conquista Site - 031 Cotter Canon City Site - 009 Dawn Ford Site - 038 EFB White Mesa

  15. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  16. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  17. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  18. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  19. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  20. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  1. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  2. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  3. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  4. Multi-factor authentication

    DOE Patents [OSTI]

    Hamlet, Jason R; Pierson, Lyndon G

    2014-10-21

    Detection and deterrence of spoofing of user authentication may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a user of the hardware device. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a PUF value. Combining logic is coupled to receive the PUF value, combines the PUF value with one or more other authentication factors to generate a multi-factor authentication value. A key generator is coupled to generate a private key and a public key based on the multi-factor authentication value while a decryptor is coupled to receive an authentication challenge posed to the hardware device and encrypted with the public key and coupled to output a response to the authentication challenge decrypted with the private key.

  5. OTHER INDUSTRIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTHER INDUSTRIES OTHER INDUSTRIES AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy savings to a wide array of industries from information and communications technologies to food and beverage and others. Many more of the technologies developed with AMO support have applications across multiple industries because they target common industrial processes.

  6. Other Solicitations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Solicitations Other Solicitations The following are links to information on solicitations offered by the Department of Energy (DOE) and other federal programs and offices that may be investing in biomass and related renewable technologies. Bioenergy Small Business Solicitations The Bioenergy Technologies Office has an annual Small Business Innovation Research (SBIR) / Small Business Technology Transfer (STTR) solicitation. The topics are generally posted in the first quarter of the fiscal

  7. Other Incentive | Open Energy Information

    Open Energy Info (EERE)

    Local Government Multi-Family Residential Nonprofit Residential Schools State Government Photovoltaics Yes Lakeland Electric - Solar Water Heating Program (Florida) Other...

  8. Leveraging Holidays and Other Events

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Driving Demand Peer Exchange Call Series: Leveraging Holidays and Other Events, Call Slides and Discussion Summary, November 7, 2013.

  9. Re-engineering the Federal planning process: A total Federal planning strategy, integrating NEPA with modern management tools

    SciTech Connect (OSTI)

    Eccleston, C.H.

    1997-09-05

    The National Environmental Policy Act (NEPA) of 1969 was established by Congress more than a quarter of a century ago, yet there is a surprising lack of specific tools, techniques, and methodologies for effectively implementing these regulatory requirements. Lack of professionally accepted techniques is a principal factor responsible for many inefficiencies. Often, decision makers do not fully appreciate or capitalize on the true potential which NEPA provides as a platform for planning future actions. New approaches and modem management tools must be adopted to fully achieve NEPA`s mandate. A new strategy, referred to as Total Federal Planning, is proposed for unifying large-scale federal planning efforts under a single, systematic, structured, and holistic process. Under this approach, the NEPA planning process provides a unifying framework for integrating all early environmental and nonenvironmental decision-making factors into a single comprehensive planning process. To promote effectiveness and efficiency, modem tools and principles from the disciplines of Value Engineering, Systems Engineering, and Total Quality Management are incorporated. Properly integrated and implemented, these planning tools provide the rigorous, structured, and disciplined framework essential in achieving effective planning. Ultimately, the goal of a Total Federal Planning strategy is to construct a unified and interdisciplinary framework that substantially improves decision-making, while reducing the time, cost, redundancy, and effort necessary to comply with environmental and other planning requirements. At a time when Congress is striving to re-engineer the governmental framework, apparatus, and process, a Total Federal Planning philosophy offers a systematic approach for uniting the disjointed and often convoluted planning process currently used by most federal agencies. Potentially this approach has widespread implications in the way federal planning is approached.

  10. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  11. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  12. Award Number: Federal Non-Federal Federal Non-Federal Total

    Gasoline and Diesel Fuel Update (EIA)

    Award Number: Federal Non-Federal Federal Non-Federal Total (a) (b) (c ) (d) (e) (f) (g) 1. - 2. - 3. - 4. - 5. Totals - - - - - (1) (2) (3) (4) - - - - - - - - - - - - - - - - - - - 7. - SF-424A (Rev. 4-92) Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a.

  13. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prescribed by OMB Circular A-102 Previous Edition Usable Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic Assistance Number Grant Program Function or Activity Estimated Unobligated Funds e. Supplies i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. j. Indirect Charges k. Totals (sum of 6i-6j)

  14. Award Number: Federal Non-Federal Federal Non-Federal Total

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    j. Indirect Charges k. Totals (sum of 6i-6j) Program Income Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a. Personnel b. Fringe Benefits c. Travel d. Equipment 6. Total (5) f. Contractual g. Construction Section B - Budget Categories Catalog of Federal Domestic

  15. MESA Other GFP.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MESA Other GFP BARCODE DESCRIPTION MFG MODEL SN COST BLDG ROOM INVT DATE S10345 REFRIGERATOR ABSOCOLD 0000 430308515 206.66 922 136 7222013 0000031174 HEADSET PLNM22 UNIVE...

  16. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  17. 2014 Utility Bundled Retail Sales- Total

    Gasoline and Diesel Fuel Update (EIA)

    Total (Data from forms EIA-861- schedules 4A & 4D and EIA-861S) Entity State Ownership Customers (Count) Sales (Megawatthours) Revenues (Thousands Dollars) Average Price (cents/kWh) Alaska Electric Light&Power Co AK Investor Owned 16,464 399,492 41,691.0 10.44 Alaska Power and Telephone Co AK Investor Owned 7,630 63,068 17,642.0 27.97 Alaska Village Elec Coop, Inc AK Cooperative 10,829 97,874 53,522.0 54.68 Anchorage Municipal Light and Power AK Municipal 30,791 1,012,784 134,950.6 13.32

  18. Total Estimated Contract Cost: Performance Period

    Office of Environmental Management (EM)

    Fee Available (N/A) Total Fee Paid $23,179,000 $18,632,000 $16,680,000 $18,705,000 $25,495,000 $34,370,000 $32,329,000 $33,913,000 $66,794,000 $10,557,000 $3,135,000 $283,789,000 FY2015 FY2014 FY2013 FY2009 FY2010 FY2011 FY2012 Fee Information Minimum Fee Maximum Fee Dec 2015 Contract Number: Cost Plus Incentive Fee Contractor: $3,264,909,094 Contract Period: EM Contractor Fee s Idaho Operations Office - Idaho Falls, ID Contract Name: Idaho Cleanup Project $0 Contract Type: CH2M Washington Group

  19. Performance Period Total Fee Paid FY2001

    Office of Environmental Management (EM)

    FY2001 $4,547,400 FY2002 $4,871,000 FY2003 $6,177,902 FY2004 $8,743,007 FY2005 $13,134,189 FY2006 $7,489,704 FY2007 $9,090,924 FY2008 $10,045,072 FY2009 $12,504,247 FY2010 $17,590,414 FY2011 $17,558,710 FY2012 $14,528,770 Cumulative Fee Paid $126,281,339 Cost Plus Award Fee DE-AC29-01AL66444 Washington TRU Solutions LLC Contractor: Contract Number: Contract Type: $8,743,007 Contract Period: $1,813,482,000 Fee Information Maximum Fee $131,691,744 Total Estimated Contract Cost: $4,547,400

  20. Performance Period Total Fee Paid FY2008

    Office of Environmental Management (EM)

    FY2008 $87,580 FY2009 $87,580 FY2010 $171,763 FY2011 $1,339,286 FY 2012 $38,126 FY 2013 $42,265 Cumulative Fee Paid $1,766,600 $42,265 Cost Plus Incentive Fee/Cost Plus Fixed Fee $36,602,425 Contract Period: September 2007 - November 30, 2012 Target Fee $521,595 Total Estimated Contract Cost Contract Type: Maximum Fee $3,129,570 $175,160 $377,516 $1,439,287 Fee Available $175,160 $80,871 Accelerated Remediation Company (aRc) DE-AT30-07CC60013 Contractor: Contract Number: Minimum Fee $2,086,380

  1. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  2. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 618 165 379 8 109 12 1 38 0 10 3112 Grain and Oilseed Milling 115

  5. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  6. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  7. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Kunz, Walter E. (Santa Fe, NM); Cates, Michael R. (Oak Ridge, TN); Franks, Larry A. (Santa Barbara, CA)

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  8. Natural Gas and Other Petroleum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end,

  9. Other Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents Other Documents December 16, 2015 EA-2005: Floodplain Statement of Findings Chromium Plume Control Interim Measure and Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM June 24, 2014 EIS-0501: FERC Project Update Golden Pass LNG Export and Pipeline Project, Texas and Louisiana October 30, 2013 EIS-0283-S2: Amended Interim Action Determination Disposition of Certain Plutonium Materials at the K-Area Complex, Savannah River Site April 25, 2013 EIS-0283-S2:

  10. Other Notices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notices Other Notices December 24, 2015 EIS-0283-S2: Notice of Preferred Alternative Surplus Plutonium Disposition Supplemental Environmental Impact Statement December 14, 2015 DOE/EIS-0463 and EIS-0463-S1: EPA Notice of Public Comment Period Extension Northern Pass Transmission Line Project, New Hampshire November 20, 2015 EIS-0463 and EIS-0463-S1: DOE Notice of Public Hearings Northern Pass Transmission Line Project, New Hampshire November 4, 2015 EA-2005: Notice of Proposed Floodplain Action

  11. Natural Gas and Other Petroleum

    Office of Environmental Management (EM)

    Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end,

  12. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  13. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the ...

  14. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  15. NREL: Building America Total Quality Management - 2015 Peer Review...

    Energy Savers [EERE]

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the...

  16. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

  17. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... PM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  18. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  19. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    SciTech Connect (OSTI)

    WESTSIK, G.A.

    2001-06-06

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a container, particularly for low to medium density (0-2.5 g/cc) container matrices. The SGSAS system provides a full gamma characterization of the container content. This document is an edited version of the Rocky Flats TMU Report for the Can Scan Segment Gamma Scanners, which are in use for the plutonium residues projects at the Rocky Flats plant. The can scan segmented gamma scanners at Rocky Flats are the same design as the PFP SGSAS system and use the same software (with the exception of the plutonium isotopics software). Therefore, all performance characteristics are expected to be similar. Modifications in this document reflect minor differences in the system configuration, container packaging, calibration technique, etc. These results are supported by the Quality Assurance Objective (QAO) counts, safeguards test data, calibration data, etc. for the PFP SGSAS system. Other parts of the TMU analysis utilize various modeling techniques such as Monte Carlo N-Particle (MCNP) and In Situ Object Counting Software (ISOCS).

  20. MESA Other GFP.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MESA Other GFP BARCODE DESCRIPTION MFG MODEL SN COST BLDG ROOM INVT DATE S10345 REFRIGERATOR ABSOCOLD 0000 430308515 $206.66 922 136 7/22/2013 0000031174 HEADSET PLNM22 UNIVE PLANTRONICSPLNM22 AV4357H7 $123.99 B01 282 7/2/2012 0000106508 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 B01 179 7/17/2013 0000106505 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 B01 272 7/17/2013 0000106506 HEADSET PLANTRONICS PLANTRONICSCS50EX N/A $267.95 922 104C 3/1/2013 0000106507 HEADSET PLANTRONICS

  1. U.S. Natural Gas % of Total Residential Consumers Delivered for the Account

    U.S. Energy Information Administration (EIA) Indexed Site

    of Others (Percent) % of Total Residential Consumers Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Residential Consumers Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 10 11 2010's 12 12 13 14 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  2. ANALYTICAL METHOD FOR MEASURING TOTAL PROTIUM AND TOTAL DEUTERIUM IN A GAS MIXTURE CONTAINING H2, D2,AND HD VIA GAS CHAROMATOGRAPHY

    SciTech Connect (OSTI)

    Sessions, H

    2007-08-07

    The most common analytical method of identifying and quantifying non-radioactive isotopic species of hydrogen is mass spectrometry. A low mass, high resolution mass spectrometer with adequate sensitivity and stability to identify and quantify hydrogen isotopes in the low ppm range is an expensive, complex instrument. A new analytical technique has been developed that measures both total protium (H) and total deuterium (D) in a gas mixture containing H{sub 2}, D{sub 2}, and HD using an inexpensive micro gas chromatograph (GC) with two molecular sieve columns. One column uses D{sub 2} as the carrier gas and the other uses H{sub 2} as the carrier gas. Laboratory tests have shown that when used in this configuration the GC can measure both total protium and total deuterium each with a detection and quantification limit of less than 20 ppm.

  3. Net Imports of Total Crude Oil and Products into the U.S. by Country

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500

  4. Reducing Power Factor Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low power factor is expensive and inefficient. Many utility companies charge you an additional fee if your power factor is less than 0.95. Low power factor also reduces your electrical system's distribu- tion capacity by increasing current flow and causing voltage drops. This fact sheet describes power factor and explains how you can improve your power factor to reduce electric bills and enhance your electrical system's capacity. REDUCING POWER FACTOR COST To understand power factor, visualize a

  5. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  6. Table A26. Total Quantity of Purchased Energy Sources by Census Region and

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  7. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 73,551 1,887 55,824 711 823 0 111 45 0 205 3112 Grain and Oilseed Milling

  8. Radiation Exposure Monitoring Systems - Other Related Sites ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiation Exposure Monitoring Systems - Other Related Sites Radiation Exposure Monitoring Systems - Other Related Sites Other Related Sites DOE - Main Home Page - the home page for ...

  9. FY 2007 Total System Life Cycle Cost, Pub 2008

    Broader source: Energy.gov [DOE]

    The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management’s (OCRWM) May 2007 total...

  10. Total China Investment Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Investment Co Ltd Jump to: navigation, search Name: Total (China) Investment Co. Ltd. Place: Beijing, China Zip: 100004 Product: Total has been present in China for about 30...

  11. Texas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Texas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  12. Texas Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Texas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  13. West Virginia Natural Gas % of Total Residential Deliveries ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) West Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  14. Connecticut Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Connecticut Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  16. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. North Carolina Natural Gas % of Total Residential Deliveries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) North Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  18. New York Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  19. New York Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    % of Total Residential Deliveries (Percent) New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  20. Project Functions and Activities Definitions for Total Project Cost

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides guidelines developed to define the obvious disparity of opinions and practices with regard to what exactly is included in total estimated cost (TEC) and total project cost (TPC).

  1. The MX Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The MX Factor National Security Science Latest Issue:July 2015 past issues All Issues submit The MX Factor Data from atmospheric test films persuaded Department of Defense...

  2. Landslide hazard mapping with selected dominant factors: A study case of Penang Island, Malaysia

    SciTech Connect (OSTI)

    Tay, Lea Tien; Alkhasawneh, Mutasem Sh.; Ngah, Umi Kalthum; Lateh, Habibah

    2015-05-15

    Landslide is one of the destructive natural geohazards in Malaysia. In addition to rainfall as triggering factos for landslide in Malaysia, topographical and geological factors play important role in the landslide susceptibility analysis. Conventional topographic factors such as elevation, slope angle, slope aspect, plan curvature and profile curvature have been considered as landslide causative factors in many research works. However, other topographic factors such as diagonal length, surface area, surface roughness and rugosity have not been considered, especially for the research work in landslide hazard analysis in Malaysia. This paper presents landslide hazard mapping using Frequency Ratio (FR) and the study area is Penang Island of Malaysia. Frequency ratio approach is a variant of probabilistic method that is based on the observed relationships between the distribution of landslides and each landslide-causative factor. Landslide hazard map of Penang Island is produced by considering twenty-two (22) landslide causative factors. Among these twenty-two (22) factors, fourteen (14) factors are topographic factors. They are elevation, slope gradient, slope aspect, plan curvature, profile curvature, general curvature, tangential curvature, longitudinal curvature, cross section curvature, total curvature, diagonal length, surface area, surface roughness and rugosity. These topographic factors are extracted from the digital elevation model of Penang Island. The other eight (8) non-topographic factors considered are land cover, vegetation cover, distance from road, distance from stream, distance from fault line, geology, soil texture and rainfall precipitation. After considering all twenty-two factors for landslide hazard mapping, the analysis is repeated with fourteen dominant factors which are selected from the twenty-two factors. Landslide hazard map was segregated into four categories of risks, i.e. Highly hazardous area, Hazardous area, Moderately hazardous area and Not hazardous area. The maps was assessed using ROC (Rate of Curve) based on the area under the curve method (AUC). The result indicates an increase of accuracy from 77.76% (with all 22 factors) to 79.00% (with 14 dominant factors) in the prediction of landslide occurrence.

  3. Estimating Radiation Risk from Total Effective Dose Equivalent (TEDE) ISCORS Technical Report No. 1

    National Nuclear Security Administration (NNSA)

    and UNSCEAR 1988 in Radiation Risk Assessment - Lifetime Total Cancer Mortality Risk Estimates at Low Doses and Low Dose Rates for Low-LET Radiation, Committee on Interagency Radiation Research and Policy Coordination, December 1992. DOE, 1988a. E xternal Dose-Rate Conversion Factors for Calculation of Dose to the Public, DOE Report DOE/EH-0070, July 1988. DOE, 1988b. Internal Dose Conversion Factors for Calculation of Dose to the Public, DOE Report DOE/EH-0071, July 1988. EPA, 1988. Federal

  4. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    Gasoline and Diesel Fuel Update (EIA)

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  5. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  6. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  7. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  8. NREL: Building America Total Quality Management - 2015 Peer Review |

    Energy Savers [EERE]

    Department of Energy NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the Presentation PDF icon NREL: Building America Total Quality Management - 2015 Peer Review More Documents & Publications Home Performance with ENERGY STAR - 2014 BTO Peer Review Residential Buildings Integration Program Overview - 2015 BTO Peer Review LBNL's FLEXLAB test facility, which includes

  9. Trends in Commercial Buildings--Total Primary Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Primary Energy Consumption Graph Detail and Data Table 1979 to 1992 primary consumption trend with 95% confidence ranges 1979 to 1992 primary...

  10. Trends in Commercial Buildings--Total Site Energy Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Graph Total Site Energy Consumption Graph Detail and Data Table 1979 to 1992 site consumption trend with 95% confidence ranges 1979 to 1992 site...

  11. Table 3a. Total Natural Gas Consumption per Effective Occupied...

    Gasoline and Diesel Fuel Update (EIA)

    3a. Natural Gas Consumption per Sq Ft Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas...

  12. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  13. ,"U.S. Total Refiner Petroleum Product Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    NUSDPG","EMAEPPRPTGNUSDPG","EMAEPPRLPTGNUSDPG","EMAEPPRHPTGNUSDPG" "Date","U.S. Total Gasoline Retail Sales by Refiners (Dollars per Gallon)","U.S. Aviation Gasoline...

  14. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","U.S. Total Refiner Acquisition Cost of Crude Oil",3,"Annual",2014,"6301968" ,"Release Date:","212016" ,"Next Release Date:","312016" ,"Excel File...

  15. TENESOL formerly known as TOTAL ENERGIE | Open Energy Information

    Open Energy Info (EERE)

    search Name: TENESOL (formerly known as TOTAL ENERGIE) Place: la Tour de Salvagny, France Zip: 69890 Sector: Solar Product: Makes polycrystalline silicon modules, and PV-based...

  16. Total Agroindustria Canavieira S A | Open Energy Information

    Open Energy Info (EERE)

    Agroindustria Canavieira S A Jump to: navigation, search Name: Total Agroindustria Canavieira SA Place: Bambui, Minas Gerais, Brazil Product: Ethanol producer in Minas Gerais,...

  17. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  18. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  19. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release...

  20. Refinery & Blender Net Production of Total Finished Petroleum...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases EthaneEthylene Ethane Ethylene PropanePropylene Propane Propylene Normal Butane...

  1. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  2. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    Broader source: Energy.gov [DOE]

    Urban form has evolved in response to a variety of demographic, social, economic, technological, and policy drivers. While direct authority over land use resides primarily at the local level, the federal government's transportation and housing policies have indirectly influenced the built environment.Local governments are increasingly implementing smart growth policies in attempts to manage growth and land use change, and constrain sprawl, with governments at higher levels supporting initiatives through funding, technical assistance, and incentives. This study examines the energy implications of the built environment, and the role the federal government could play.

  3. Effects of Increased Upward Flux of Saline Water Caused by CO2 Storage or Other Factors

    SciTech Connect (OSTI)

    Murdoch, Lawrence; Xie, Shuang; Falta, Ronald W.; Yonkofski, Catherine MR

    2015-08-01

    Injection of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. Saline groundwater occurs naturally at shallow depths in many sedimentary basins, so an upward flux of solutes could degrade the quality of freshwater aquifers and threaten aquatic ecosystems. One problem could occur where saline water flowed upward along preferential paths, like faults or improperly abandoned wells. Diffuse upward flow through the natural stratigraphy could also occur in response to basin pressurization. This process would be slower, but diffuse upward flow could affect larger areas than flow through preferential paths, and this motivated us to evaluate this process. We analyzed idealized 2D and 3D geometries representing the essential details of a shallow, freshwater aquifer underlain by saline ground water in a sedimentary basin. The analysis was conducted in two stages, one that simulated the development of a freshwater aquifer by flushing out saline water, and another that simulated the effect of a pulse-like increase in the upward flux from the basin. The results showed that increasing the upward flux from a basin increased the salt concentration and mass loading of salt to streams, and decrease the depth to the fresh/salt transition. The magnitude of these effects varied widely, however, from a small, slow process that would be challenging to detect, to a large, rapid response that could be an environmental catastrophe. The magnitude of the increased flux, and the initial depth to the fresh/salt transition in groundwater controlled the severity of the response. We identified risk categories for salt concentration, mass loading, and freshwater aquifer thickness, and we used these categories to characterize the severity of the response. This showed that risks would likely be minor if the upward flux was smaller than a few tenths of the magnitude of recharge, according to the 2D analyses. The 3D analyses also show that upward flux could occur without a significant increase in the risk categories. The major contribution of this work is that it shows how a large increase in diffuse upward flux from a basin could cause significant problems, but a small increase in upward flux may occur without significantly affecting risks to the shallow freshwater flow system. This heightens the importance of understanding interactions between shallow and deep hydrologic systems when characterizing CO2 storage projects.

  4. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect (OSTI)

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  5. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  6. Other Alternative Fuel Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Vehicles Jump to: navigation, search TODO: Add description List of Other Alternative Fuel Vehicles Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherAlternati...

  7. Property:Other Characteristics | Open Energy Information

    Open Energy Info (EERE)

    Characteristics Jump to: navigation, search Property Name Other Characteristics Property Type String Pages using the property "Other Characteristics" Showing 8 pages using this...

  8. Other World Computing | Open Energy Information

    Open Energy Info (EERE)

    World Computing Jump to: navigation, search Name Other World Computing Facility Other World Computing Sector Wind energy Facility Type Community Wind Facility Status In Service...

  9. Chapter 15: Contracts, Agreements, and other Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clean Energy Finance Guide, Third Edition, December 9, 2010, Chapter 15: Contracts, Agreements, and Other Resources.

  10. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  11. Reports and Other Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports and Other Documents Reports and Other Documents Reports and other documents from DOE and other relevant agencies, listed by topic. AUGUST 2003 BLACKOUT CONTROL SYSTEMS SECURITY COORDINATION OF FEDERAL TRANSMISSION AUTHORIZATIONS DEMAND RESPONSE DISTRIBUTED ENERGY ELECTRICITY RELIABILITY EMERGENCY PREPAREDNESS AND EMERGENCY RESPONSE EMERGENCY RELIABILITY ORDERS ENERGY ASSURANCE ENERGY CORRIDORS ON FEDERAL LANDS ENERGY EFFICIENCY ENERGY INDEPENDENCE AND SECURITY ACT OF 2007 (EISA) ENERGY

  12. Ethics - Seeking Other Employment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seeking Other Employment Ethics - Seeking Other Employment I'm looking for a part-time job ... Talk with an ethics official before you look for a job, whether full or part-time. He or ...

  13. 47 OTHER INSTRUMENTATION; VALVES; ACTUATORS; MINIATURIZATION...

    Office of Scientific and Technical Information (OSTI)

    characterization of active MEMS valves. Barnard, Casey Anderson 47 OTHER INSTRUMENTATION; VALVES; ACTUATORS; MINIATURIZATION; MICROELECTRONICS; PERFORMANCE TESTING; OPERATION;...

  14. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 4,645 824 442 84...

  15. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 64,783 12,208...

  16. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    SciTech Connect (OSTI)

    2011-02-08

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  17. SPECIAL SEMINAR - The NOTTE experiment, or how to become a Total Solar Eclipse chaser

    ScienceCinema (OSTI)

    None

    2011-10-06

    The NOTTE experiment (Neutrino Oscillations with Telescope during Total Eclipse) aims at searching for visible photons emitted through a possible radiative decay of solar neutrinos. The experiment and the expeditions organized by a group of physicists and astrophysicists from INFN and INAF Bologna hunting for Total Solar Eclipses from 1998 to 2006 wil be described. The results of observations performed during total solar eclipse expeditions in 2001 (Zambia) and 2006 (Sahara desert, Libya) are presented and a beautiful photo gallery will be shown. Other peculiar observations that can be made during a solar eclipse are also illustrated. The seminar will be followed by a brief presentation of future camps for solar eclipse chasers and scientists organized in 2008 in Russia, Kazakhstan, China and Mongolia, in 2009 in Shanghai and on the Easter Island in 2010.

  18. Gathering total items count for pagination | OpenEI Community

    Open Energy Info (EERE)

    Gathering total items count for pagination Home > Groups > Utility Rate Hi I'm using the following base link plus some restrictions to sector, utility, and locations to poll for...

  19. Property:Building/SPElectrtyUsePercTotal | Open Energy Information

    Open Energy Info (EERE)

    PElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 +...

  20. Prisms with total internal reflection as solar reflectors

    DOE Patents [OSTI]

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  1. AEO2011:Total Energy Supply, Disposition, and Price Summary ...

    Open Energy Info (EERE)

    case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Data and Resources AEO2011:Total...

  2. CIGNA Study Uncovers Relationship of Disabilities to Total Benefits Costs

    Broader source: Energy.gov [DOE]

    The findings of a new study reveal an interesting trend. Integrating disability programs with health care programs can potentially lower employers' total benefits costs and help disabled employees get back to work sooner and stay at work.

  3. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  4. "Table A45. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," 500 and Over",1166.9,4,1.9,0.9,5.3,12.7 ,"Total",806,6.7,2.7,0.2,7.7,5 2011,"Meat Packing Plants" ,"Value of Shipments and Receipts " ,"(million dollars)" ," Under ...

  5. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  6. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:RenewableFuelStandardTotal Jump to: navigation, search This is a property of type Number. Pages using the...

  7. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  8. Physisorption and Chemisorption Methods for Evaluating the Total Surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area and Active Surface Area of Two Types of Carbon Materials | Department of Energy Physisorption and Chemisorption Methods for Evaluating the Total Surface Area and Active Surface Area of Two Types of Carbon Materials Physisorption and Chemisorption Methods for Evaluating the Total Surface Area and Active Surface Area of Two Types of Carbon Materials TSA is a gross indicator of soot reactivity and does not always correlate well with the real reactivity. This research shows that a more

  9. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  10. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  11. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  12. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  13. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  14. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total","

  16. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  17. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  18. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  19. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  20. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. Estimation of Anisotoropy from Total Cross Section and Optical Model

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and Optical Model Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-03 OSTI Identifier: 1082234 Report Number(s): LA-UR-13-24025 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Working Party

  2. Webtrends Archives by Fiscal Year - EERE Totals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account. Microsoft Office document icon EERE FY07 Microsoft Office document icon EERE FY08 Microsoft Office document icon EERE FY09 Microsoft Office document icon EERE FY10 Microsoft Office document icon EERE FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Information Center Webtrends Archives by Fiscal

  3. Form factor dark matter (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Form factor dark matter Citation Details In-Document Search Title: Form factor dark matter We present a dynamical alternative to inelastic dark matter as a way of reconciling the modulating signal seen at DAMA with null results at other direct detection experiments. The essential ingredient is a new form factor which introduces momentum dependence in the interaction of dark matter with nuclei. The role of the form factor is to suppress events at low momentum transfer. We find that a form factor

  4. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOE Patents [OSTI]

    Pipino, Andrew C. R. (Gaithersburg, MD); Hudgens, Jeffrey W. (Rockville, MD)

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  5. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOE Patents [OSTI]

    Pipino, Andrew Charles Rule (Gaithersburg, MD)

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  6. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  7. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline, Tanker, Barge and Rail Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other

  8. All Other Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All Other Sites All Other Sites Compliance agreements for other sites not identified above are listed here. Summaries of these agreements also are listed. PDF icon Brookhaven National Laboratory Federal Facility Agreement, February 28, 1992 PDF icon Brookhaven National Laboratory Federal Facility Agreement, February 28, 1992 Summary PDF icon Energy Technology and Engineering Center Compliance Order, October 6, 1995 PDF icon Energy Technology and Engineering Center Compliance Order, October 6,

  9. Work for Others | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work for Others Work for Others The Department of Energy (DOE) national laboratories are available to conduct work for other Federal agencies and non-Federal customers on a 100% reimbursable basis. This work uses laboratory personnel and/or facilities; pertains to the mission of the laboratory; does not conflict or interfere with the achievement of DOE program objectives; does not place the laboratory in direct competition with the domestic private sector; and does not create a potential future

  10. Other Hydrothermal Deposits | Open Energy Information

    Open Energy Info (EERE)

    Capping Other Hydrothermal Alteration Products Colorful hydrothermal deposits dot the landscape at the Hverir Geothermal Area, Iceland. Photo by Darren Atkins User-specified field...

  11. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  12. Other Regulatory Efforts | Department of Energy

    Energy Savers [EERE]

    trade, the Office of Electricity Delivery and Energy Reliability participates in other regulatory activities. These include: Collecting and providing notice in the Federal...

  13. Teen's passion for learning serves others

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for modeling lung cancer. In other news December, 1 2015 - Novel therapy for stomach cancer; grand opening of Manhattan Project National Historical Park; 2015 Northern New...

  14. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",64783,12208,6628,1549,4031 "Building...

  15. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",4645,824,442,84,298 "Building Floorspace"...

  16. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect (OSTI)

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  17. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  18. U.S. Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Deliveries (Percent) U.S. Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 100 100 100 100 100 100 100 2000's 100 100 100 100 100 100 100 100 100 100 2010's 100 100 100 100 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Share of Total U.S. Natural Gas

  19. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  20. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOE Patents [OSTI]

    Dolbeare, Frank A. (Livermore, CA); Gray, Joe W. (Livermore, CA)

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  1. Proton form factor effects in hydrogenic atoms

    SciTech Connect (OSTI)

    Daza, F. Garcia; Kelkar, N. G.; Nowakowski, M.

    2011-10-21

    The proton structure corrections to the hyperfine splittings in electronic and muonic hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, the Breit equation with q{sup 2} dependent form factors is just an extension of the standard Breit equation which gives the hyperfine splitting Hamiltonian. Precise QED corrections are comparable to the structure corrections which therefore need to be evaluated ab initio.

  2. The MX Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MX Factor Test films played a strategic-planning role in the debates of the late 1970s and early 1980s about where and how to deploy the MX intercontinental ballistic missile...

  3. Total dissolved gas prediction and optimization in RiverWare

    SciTech Connect (OSTI)

    Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem

    2015-09-01

    Management and operation of dams within the Columbia River Basin (CRB) provides the region with irrigation, hydropower production, flood control, navigation, and fish passage. These various system-wide demands can require unique dam operations that may result in both voluntary and involuntary spill, thereby increasing tailrace levels of total dissolved gas (TDG) which can be fatal to fish. Appropriately managing TDG levels within the context of the systematic demands requires a predictive framework robust enough to capture the operationally related effects on TDG levels. Development of the TDG predictive methodology herein attempts to capture the different modes of hydro operation, thereby making it a viable tool to be used in conjunction with a real-time scheduling model such as RiverWare. The end result of the effort will allow hydro operators to minimize system-wide TDG while meeting hydropower operational targets and constraints. The physical parameters such as spill and hydropower flow proportions, accompanied by the characteristics of the dam such as plant head levels and tailrace depths, are used to develop the empirically-based prediction model. In the broader study, two different models are developed a simplified and comprehensive model. The latter model incorporates more specific bubble physics parameters for the prediction of tailrace TDG levels. The former model is presented herein and utilizes an empirically based approach to predict downstream TDG levels based on local saturation depth, spillway and powerhouse flow proportions, and entrainment effects. Representative data collected from each of the hydro projects is used to calibrate and validate model performance and the accuracy of predicted TDG uptake. ORNL, in conjunction with IIHR - Hydroscience & Engineering, The University of Iowa, carried out model adjustments to adequately capture TDG levels with respect to each plant while maintaining a generalized model configuration. Validation results indicate excellent model performance with coefficient of determination values exceeding 92% for all sites. This approach enables model extension to an increasingly wider array of hydropower plants, i.e., with the proper data input, TDG uptake can be calculated independent of actual physical component design. The TDG model is used as a module in the systematic optimization framework of RiverWare, a river and reservoir modeling tool used by federal agencies, public utility districts, and other dam owners and operators to forecast, schedule, and manage hydropower assets. The integration and testing of the TDG module within RiverWare, led by University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), will allow users to generate optimum system schedules based on the minimization of TDG. Optimization analysis and added value will be quantified as system wide reductions in TDG achieved while meeting existing hydropower constraints. Future work includes the development of a method to predict downstream reservoir forebay TDG levels as a function of upstream reservoir tailrace TDG values based on river hydrodynamics, hydro operations, and reservoir characteristics. Once implemented, a holistic model that predicts both TDG uptake and transport will give hydropower operators valuable insight into how system-wide environmental effects can be mitigated while simultaneously balancing stakeholder interests.

  4. PREDICTION OF TOTAL DISSOLVED GAS EXCHANGE AT HYDROPOWER DAMS

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Pasha, MD Fayzul K; Stewart, Kevin M; Bender, Merlynn; Schneider, Michael L.

    2012-07-01

    Total dissolved gas (TDG) supersaturation in waters released at hydropower dams can cause gas bubble trauma in fisheries resulting in physical injuries and eyeball protrusion that can lead to mortality. Elevated TDG pressures in hydropower releases are generally caused by the entrainment of air in spillway releases and the subsequent exchange of atmospheric gasses into solution during passage through the stilling basin. The network of dams throughout the Columbia River Basin (CRB) are managed for irrigation, hydropower production, flood control, navigation, and fish passage that frequently result in both voluntary and involuntary spillway releases. These dam operations are constrained by state and federal water quality standards for TDG saturation which balance the benefits of spillway operations designed for Endangered Species Act (ESA)-listed fisheries versus the degradation to water quality as defined by TDG saturation. In the 1970s, the United States Environmental Protection Agency (USEPA), under the federal Clean Water Act (Section 303(d)), established a criterion not to exceed the TDG saturation level of 110% in order to protect freshwater and marine aquatic life. The states of Washington and Oregon have adopted special water quality standards for TDG saturation in the tailrace and forebays of hydropower facilities on the Columbia and Snake Rivers where spillway operations support fish passage objectives. The physical processes that affect TDG exchange at hydropower facilities have been studied throughout the CRB in site-specific studies and routine water quality monitoring programs. These data have been used to quantify the relationship between project operations, structural properties, and TDG exchange. These data have also been used to develop predictive models of TDG exchange to support real-time TDG management decisions. These empirically based predictive models have been developed for specific projects and account for both the fate of spillway and powerhouse flows in the tailrace channel and resultant exchange in route to the next downstream dam. Currently, there exists a need to summarize the general finding from operational and structural TDG abatement programs conducted throughout the CRB and for the development of a generalized prediction model that pools data collected at multiple projects with similar structural attributes. A generalized TDG exchange model can be tuned to specific projects and coupled with water regulation models to allow the formulation of optimal daily water regulation schedules subject to water quality constraints for TDG supersaturation. A generalized TDG exchange model can also be applied to other hydropower dams that affect TDG pressures in tailraces and can be used to develop alternative operational and structural measures to minimize TDG generation. It is proposed to develop a methodology for predicting TDG levels downstream of hydropower facilities with similar structural properties as a function of a set of variables that affect TDG exchange; such as tailwater depth, spill discharge and pattern, project head, and entrainment of powerhouse releases. TDG data from hydropower facilities located throughout the northwest region of the United States will be used to identify relationships between TDG exchange and relevant dependent variables. Data analysis and regression techniques will be used to develop predictive TDG exchange expressions for various structural categories.

  5. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOE Patents [OSTI]

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  6. "Table A46. Selected Energy Operating Ratios for Total Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," 1000 and Over",447.9,4.3,1.6,0.9,7,7.8 ,"Total",806,6.7,2.7,0.2,7.7,5 2011,"Meat Packing Plants" ,"Employment Size " ," Under 50"," Q "," Q "," Q ",0," Q ",0 ," ...

  7. Elba Island, GA Liquefied Natural Gas Total Imports (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Gas Total Imports (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 3,066 367 1,939 1,784 2015 2,847 3,010 3,004 2,925 - No Data Reported; -- ...

  8. FGF growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  9. NREL: Technology Deployment - Other Federal Agency Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Federal Agency Support Photo of a man and a woman standing behind a ground-mounted solar panel installation. Merry Edwards Winery in California is almost 100% solar powered and just one example of the more than 77,511 project applications reviewed by NREL prior to receiving funding through the U.S. Department of Treasury Recovery Act Section 1603 Treasury Grant Program. Courtesy of Ben Miller, Merry Edwards Winery Through work-for-others agreements, NREL supports other federal agencies in

  10. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples. [Patent application

    DOE Patents [OSTI]

    Caldwell, J.T.; Kunz, W.E.; Cates, M.R.; Franks, L.A.

    1982-07-07

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fission are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for /sup 239/Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  11. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3/31/2008 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe Technical Report NREL/TP-510-42621 Revised March 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

  12. Observation of CH4 and other Non-CO2 Green House Gas Emissions from California

    SciTech Connect (OSTI)

    Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

    2009-01-09

    In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

  13. Hadronic form factors in kaon photoproduction

    SciTech Connect (OSTI)

    Syukurilla, L. Mart, T.

    2014-09-25

    We have revisited the effect of hadronic form factors in kaon photoproduction process by utilizing an isobaric model developed for kaon photoproduction off the proton. The model is able to reproduce the available experimental data nicely as well as to reveal the origin of the second peak in the total cross section, which was the main source of confusion for decades. Different from our previous study, in the present work we explore the possibility of using different hadronic form factors in each of the K?N vertices. The use of different hadronic form factors, e.g. dipole, Gaussian, and generalized dipole, has been found to produce a more flexible isobar model, which can provide a significant improvement in the model.

  14. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV....

  15. Grant Acquisition and Other Funding Opportunities Webinar

    Broader source: Energy.gov [DOE]

    Kerretv Online is hosting a free webinar on grant acquisition and other funding opportunities. The training will cover developing relationships with funders, finding the right funder, writing the proposal, and understanding how to report back to the funder.

  16. Facility Management Contractors and other Contractors Directory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Facility Management Contractors and other Contractors Directory Facility Management Contractors and other Contractors Directory FMCs achieve the mission of the field site they manage and operate, they have independent buying authority and use best commercial practices to subcontract for supplies and services. Moreover, the Department flows-down small business buying preferences in order to help the FMCs meet their small business subcontracting plan goals. Historically,

  17. Other DOE Tribal Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Tribal Programs Other DOE Tribal Programs Learn about other U.S. Department of Energy (DOE) programs in addition to the Office of Indian Energy that offer helpful information for Tribes. Office of Energy Efficiency and Renewable Energy Tribal Energy Program The Tribal Energy Program offers financial and technical assistance to Indian Tribes to help them evaluate and develop renewable energy resources and reduce energy consumption through efficiency and weatherization. As building knowledge

  18. Other Regulatory Efforts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts Other Regulatory Efforts In addition to regulating international electricity trade, the Office of Electricity Delivery and Energy Reliability participates in other regulatory activities. These include: Collecting and providing notice in the Federal Register when self certification for coal fired generation have been filed under Title II of the Power Plant and Industrial Fuel Use Act. Providing guidance on the implementation of the Public Utilities Regulatory Policies Act of 1978 (PURPA),

  19. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; et al

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by amore » suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.« less

  20. A statistical study of the macroepidemiology of air pollution and total mortality

    SciTech Connect (OSTI)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  1. Airborne aerosol in situ measurements during TCAP: A closure study of total scattering

    SciTech Connect (OSTI)

    Kassianov, Evgueni; Sedlacek, Arthur; Berg, Larry K.; Pekour, Mikhail; Barnard, James; Chand, Duli; Flynn, Connor; Ovchinnikov, Mikhail; Schmid, Beat; Shilling, John; Tomlinson, Jason; Fast, Jerome

    2015-07-31

    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively.

  2. Minnesota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.52 2.65 2.72 2.59 2.44 2.52 2000's 2.60 2.62 2.77 2.72 2.73 2.66 2.68 2.73 2.85 2.79 2010's 2.57 2.66 2.63 2.86 2.88 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.56 0.56 0.58 0.55 0.55 0.52 2000's 0.54 0.59 0.54 0.52 0.50 0.51 0.49 0.47 0.49 0.49 2010's 0.57 0.52 0.47 0.51 0.56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Missouri Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Missouri Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.71 2.53 2.58 2.62 2.56 2.45 2.37 2000's 2.31 2.44 2.34 2.26 2.25 2.21 2.18 2.15 2.33 2.22 2010's 2.25 2.18 2.00 2.17 2.27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  5. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.41 0.39 0.41 0.42 0.42 0.42 0.42 2000's 0.40 0.42 0.44 0.40 0.41 0.41 0.45 0.42 0.44 0.46 2010's 0.44 0.46 0.46 0.42 0.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Nebraska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nebraska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.97 0.92 0.93 0.94 0.95 0.90 0.86 2000's 0.85 0.98 0.90 0.83 0.79 0.79 0.82 0.82 0.87 0.84 2010's 0.84 0.84 0.75 0.84 0.83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Nevada Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Nevada Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.42 0.44 0.43 0.43 0.51 0.66 0.61 2000's 0.60 0.68 0.65 0.65 0.75 0.75 0.87 0.81 0.79 0.81 2010's 0.82 0.86 0.89 0.85 0.69 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. New Hampshire Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Hampshire Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.13 0.14 0.13 0.13 0.14 0.14 0.14 2000's 0.15 0.14 0.14 0.16 0.15 0.16 0.15 0.16 0.14 0.15 2010's 0.14 0.15 0.15 0.15 0.15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. New Jersey Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.95 4.47 4.01 4.25 4.35 4.35 4.43 2000's 4.40 4.51 4.29 4.80 4.77 4.79 4.51 4.83 4.51 4.73 2010's 4.58 4.53 4.61 4.62 4.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. New Mexico Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.64 0.64 0.59 0.64 0.74 0.79 0.75 2000's 0.72 0.73 0.69 0.62 0.71 0.69 0.70 0.71 0.69 0.68 2010's 0.74 0.73 0.78 0.74 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Ohio Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Ohio Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.14 7.08 7.38 7.15 7.11 6.56 6.73 2000's 6.88 6.47 6.57 6.75 6.59 6.69 6.23 6.34 6.27 6.12 2010's 5.93 6.07 6.05 6.07 6.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  12. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.58 1.43 1.42 1.46 1.44 1.47 1.30 2000's 1.34 1.35 1.37 1.29 1.22 1.23 1.21 1.27 1.35 1.30 2010's 1.37 1.30 1.18 1.35 1.36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. Oregon Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Oregon Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.60 0.60 0.58 0.63 0.65 0.76 0.82 2000's 0.78 0.80 0.79 0.73 0.79 0.82 0.94 0.91 0.92 0.94 2010's 0.85 0.99 1.04 0.94 0.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. Pennsylvania Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Pennsylvania Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5.43 5.54 5.40 5.32 5.27 4.82 5.11 2000's 5.26 5.01 4.89 5.22 5.09 5.08 4.71 4.90 4.69 4.76 2010's 4.68 4.66 4.76 4.73 5.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Colorado Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Colorado Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.14 2.05 2.15 2.12 2.32 2.45 2.37 2000's 2.33 2.59 2.64 2.45 2.48 2.57 2.73 2.77 2.74 2.70 2010's 2.74 2.76 2.79 2.76 2.60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.18 0.18 0.19 0.18 0.17 0.19 2000's 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.20 0.21 2010's 0.21 0.21 0.21 0.21 0.22 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. District of Columbia Natural Gas % of Total Residential Deliveries

    Gasoline and Diesel Fuel Update (EIA)

    (Percent) % of Total Residential Deliveries (Percent) District of Columbia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.34 0.33 0.32 0.33 0.32 0.29 0.30 2000's 0.31 0.27 0.29 0.30 0.29 0.29 0.26 0.28 0.27 0.28 2010's 0.28 0.26 0.27 0.27 0.28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  18. Florida Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Florida Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.29 0.30 0.31 0.26 0.31 0.29 2000's 0.30 0.33 0.31 0.31 0.33 0.33 0.36 0.32 0.32 0.32 2010's 0.39 0.35 0.35 0.31 0.33 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Georgia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Georgia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.33 2.18 2.36 2.42 2.30 2.38 2.09 2000's 2.82 2.51 2.59 2.56 2.60 2.58 2.52 2.37 2.44 2.48 2010's 2.90 2.40 2.35 2.48 2.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Hawaii Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Hawaii Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2000's 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2010's 0.01 0.01 0.01 0.01 0.01 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Idaho Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Idaho Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.27 0.29 0.31 0.35 0.38 2000's 0.38 0.40 0.42 0.37 0.42 0.45 0.51 0.50 0.56 0.53 2010's 0.50 0.57 0.58 0.56 0.48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  2. Illinois Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Illinois Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 9.99 9.77 10.33 10.28 9.98 9.07 9.42 2000's 9.35 8.95 9.40 9.32 9.11 9.07 9.12 9.17 9.52 9.21 2010's 8.71 8.87 8.70 9.24 9.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Indiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Indiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.31 3.25 3.32 3.43 3.39 3.10 3.21 2000's 3.23 3.09 3.21 3.10 3.05 3.08 2.92 3.02 3.12 2.92 2010's 2.89 2.80 2.78 2.95 3.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Iowa Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Iowa Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.68 1.61 1.70 1.68 1.64 1.52 1.51 2000's 1.48 1.49 1.46 1.46 1.40 1.39 1.42 1.43 1.54 1.47 2010's 1.43 1.42 1.35 1.48 1.51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  5. Kansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.71 1.53 1.56 1.63 1.39 1.55 1.44 2000's 1.41 1.47 1.45 1.39 1.34 1.35 1.31 1.34 1.44 1.49 2010's 1.40 1.39 1.22 1.39 1.40 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.35 1.29 1.36 1.34 1.33 1.23 1.25 2000's 1.29 1.19 1.21 1.22 1.16 1.16 1.08 1.09 1.12 1.08 2010's 1.14 1.08 1.04 1.11 1.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.14 1.09 1.09 1.08 1.06 1.05 0.95 2000's 1.00 1.03 1.01 0.93 0.88 0.85 0.77 0.79 0.76 0.76 2010's 0.95 0.84 0.77 0.79 0.87 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  8. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  9. Maine Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maine Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2000's 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 2010's 0.03 0.03 0.04 0.04 0.05 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  10. Maryland Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Maryland Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 1.58 1.58 1.63 1.56 1.51 1.58 2000's 1.68 1.48 1.64 1.79 1.77 1.78 1.63 1.77 1.66 1.73 2010's 1.75 1.65 1.70 1.70 1.78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  11. Massachusetts Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Massachusetts Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.45 2.47 2.18 2.18 2.25 2.26 2.24 2000's 2.28 2.24 2.24 2.48 2.32 2.46 2.38 2.44 2.71 2.78 2010's 2.63 2.74 2.78 2.39 2.49 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Michigan Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Michigan Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 7.46 7.52 7.84 7.62 7.62 7.07 7.42 2000's 7.36 7.20 7.52 7.59 7.44 7.43 7.23 6.95 6.99 6.84 2010's 6.36 6.75 6.67 6.82 6.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  13. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Alaska Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Alaska Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.28 0.31 0.31 0.31 0.30 0.35 0.37 2000's 0.32 0.35 0.33 0.33 0.37 0.37 0.47 0.42 0.44 0.42 2010's 0.39 0.43 0.52 0.39 0.35 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  15. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  16. Arizona Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arizona Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.57 0.61 0.55 0.53 0.62 0.80 0.70 2000's 0.70 0.76 0.72 0.71 0.78 0.74 0.83 0.81 0.79 0.73 2010's 0.79 0.82 0.84 0.81 0.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Arkansas Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Arkansas Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.92 0.86 0.85 0.88 0.85 0.85 0.77 2000's 0.85 0.78 0.80 0.75 0.71 0.70 0.72 0.69 0.73 0.70 2010's 0.76 0.72 0.63 0.71 0.75 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. California Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) California Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 10.11 10.75 9.85 9.03 9.61 12.17 12.03 2000's 10.34 10.75 10.45 9.80 10.52 10.02 11.26 10.43 10.00 10.06 2010's 10.35 10.87 11.52 9.84 7.81 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  19. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  20. Rhode Island Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Rhode Island Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.40 0.36 0.36 0.36 0.36 0.36 0.35 2000's 0.37 0.38 0.36 0.40 0.40 0.40 0.39 0.37 0.36 0.37 2010's 0.35 0.36 0.38 0.37 0.39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. South Carolina Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Carolina Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.49 0.48 0.52 0.56 0.52 0.56 0.54 2000's 0.58 0.58 0.56 0.57 0.60 0.59 0.57 0.53 0.55 0.57 2010's 0.68 0.57 0.55 0.58 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  2. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.25 0.25 0.26 0.27 0.27 0.26 0.25 2000's 0.25 0.26 0.26 0.26 0.25 0.25 0.26 0.26 0.28 0.28 2010's 0.27 0.27 0.26 0.28 0.28 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  3. Tennessee Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Tennessee Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.19 1.18 1.24 1.34 1.29 1.31 1.28 2000's 1.37 1.43 1.42 1.37 1.34 1.37 1.40 1.29 1.41 1.38 2010's 1.55 1.43 1.30 1.45 1.54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948

  5. AGA Producing Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116

  6. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Kentucky Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 227,931 205,129 218,399 2000's 225,168 208,974 227,920 223,226 225,470 234,080 211,049 229,799 225,295 206,833 2010's 232,099 223,034 225,924 229,983 254,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  7. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Louisiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,661,061 1,569,190 1,495,478 2000's 1,536,725 1,219,013 1,341,444 1,233,505 1,281,428 1,254,370 1,217,871 1,289,421 1,238,661 1,189,744 2010's 1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Maine Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Maine Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 44,779 95,733 101,536 70,832 72,565 57,835 49,605 63,183 70,146 70,334 2010's 77,575 71,690 68,266 64,091 60,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. Maryland Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Maryland Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 212,017 188,552 196,350 2000's 212,133 178,376 196,276 197,024 194,725 202,509 182,294 201,053 196,067 196,510 2010's 212,020 193,986 208,946 197,356 207,527 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Massachusetts Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Massachusetts Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 402,629 358,846 344,790 2000's 343,314 349,103 393,194 403,991 372,532 378,068 370,664 408,704 406,719 395,852 2010's 432,297 449,194 416,350 421,001 418,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  11. Michigan Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Michigan Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 994,342 876,444 951,143 2000's 963,136 906,001 966,354 924,819 916,629 913,827 803,336 798,126 779,602 735,340 2010's 746,748 776,466 790,642 814,635 850,974 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  12. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 354,092 330,513 344,591 2000's 362,025 340,911 371,583 371,261 359,898 367,825 352,570 388,335 425,352 394,136 2010's 422,968 420,770 422,263 467,874 473,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  13. Mississippi Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Mississippi Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 255,475 241,342 306,733 2000's 300,652 332,589 343,890 265,842 282,051 301,663 307,305 364,067 355,006 364,323 2010's 438,733 433,538 494,016 420,594 412,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  14. Missouri Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Missouri Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 283,294 258,652 265,798 2000's 284,763 283,793 275,629 262,529 263,945 268,040 252,697 272,536 296,058 264,867 2010's 280,181 272,583 255,875 276,967 296,605 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  15. Montana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Montana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 59,851 59,840 62,129 2000's 67,955 65,051 69,532 68,473 66,829 68,355 73,879 73,822 76,422 75,802 2010's 72,025 78,217 73,399 79,670 78,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Nebraska Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Nebraska Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 132,221 130,730 121,487 2000's 126,962 121,984 120,333 118,922 115,011 119,070 129,885 150,808 171,005 163,474 2010's 168,944 171,777 158,757 173,376 172,749 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. Nevada Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Nevada Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 132,128 148,539 154,689 2000's 189,170 176,835 176,596 185,846 214,984 227,149 249,608 254,406 264,596 275,468 2010's 259,251 249,971 273,502 272,965 252,097 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. New Hampshire Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) New Hampshire Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,848 19,127 20,313 2000's 24,950 23,398 24,901 54,147 61,172 70,484 62,549 62,132 71,179 59,950 2010's 60,378 69,978 72,032 54,028 57,017 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  19. California Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,146,211 2,309,883 2,339,521 2000's 2,508,797 2,464,565 2,273,193 2,269,405 2,406,889 2,248,256 2,315,721 2,395,674 2,405,266 2,328,504 2010's 2,273,128 2,153,186 2,403,494 2,415,571 2,344,977 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. Colorado Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 314,486 330,259 333,085 2000's 367,920 463,738 459,397 436,253 440,378 470,321 450,832 504,775 504,783 523,726 2010's 501,350 466,680 443,750 467,798 480,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  1. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  2. District of Columbia Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) District of Columbia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,105 30,409 32,281 2000's 33,468 29,802 32,898 32,814 32,227 32,085 29,049 32,966 31,880 33,177 2010's 33,251 32,862 28,561 32,743 34,057 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  3. Florida Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Florida Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 522,116 503,844 559,366 2000's 541,847 543,143 689,337 689,986 734,178 778,209 891,611 917,244 942,699 1,055,340 2010's 1,158,452 1,217,689 1,328,463 1,225,676 1,231,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  4. Georgia Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Georgia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 371,376 368,579 337,576 2000's 413,845 351,109 383,546 379,761 394,986 412,560 420,469 441,107 425,043 462,799 2010's 530,030 522,897 615,771 625,283 652,230 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  5. Hawaii Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Hawaii Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,774 2,795 2,783 2,850 2,702 2,607 2010's 2,627 2,619 2,689 2,855 2,928 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  6. Idaho Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Idaho Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 68,669 69,277 70,672 2000's 72,697 80,279 71,481 69,868 75,335 74,540 75,709 81,937 88,515 85,197 2010's 83,326 82,544 89,004 104,783 91,514 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  7. Illinois Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Illinois Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,077,139 957,254 1,004,281 2000's 1,030,604 951,616 1,049,878 998,486 953,207 969,642 893,997 965,591 1,000,501 956,068 2010's 966,678 986,867 940,367 1,056,826 1,092,999 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Indiana Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Indiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 556,624 521,748 556,932 2000's 570,558 501,711 539,034 527,037 526,701 531,111 496,303 535,796 551,424 506,944 2010's 573,866 630,669 649,921 672,751 710,838 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  9. Iowa Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Iowa Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 254,489 232,057 230,691 2000's 232,565 224,336 226,457 230,161 226,819 241,340 238,454 293,274 325,772 315,186 2010's 311,075 306,909 295,183 326,140 330,433 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  10. Kansas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Kansas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 338,231 326,674 302,932 2000's 312,369 272,500 304,992 281,346 256,779 255,123 264,253 286,538 282,904 286,973 2010's 275,184 279,724 262,316 283,177 285,969 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  11. Midwest Region Natural Gas Total Underground Storage Capacity (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) Midwest Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,721,231 2,723,336 2,725,497 2,725,535 2015 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,725,587 2,716,587 2,715,888 2,717,255 2,718,087 2,718,087 - = No Data Reported; -- = Not Applicable;

  12. South Central Region Natural Gas Total Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Total Underground Storage Capacity (Million Cubic Feet) South Central Region Natural Gas Total Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 2,578,946 2,577,866 2,578,498 2,578,547 2,590,575 2,599,184 2,611,335 2,616,178 2,612,570 2,613,746 2,635,148 2,634,993 2015 2,631,717 2,630,903 2,631,616 2,631,673 2,631,673 2,631,444 2,631,444 2,631,444 2,636,984 2,637,895 2,637,895 2,640,224 - = No Data Reported; -- =

  13. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Liquids Extracted (Thousand Barrels) U.S. Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 569,968 599,518 584,160 571,256 587,502 594,306 569,913 1990's 573,054 602,734 626,320 634,481 635,983 649,149 689,314 690,999 668,011 686,862 2000's 721,895 682,873 681,646 622,291 657,032 619,884 637,635 658,291 673,677 720,612 2010's 749,095 792,481 873,563 937,591 1,124,416 - = No Data Reported; -- = Not

  14. Utah Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Utah Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.05 1.01 1.01 1.04 1.17 1.26 1.17 2000's 1.11 1.15 1.21 1.08 1.24 1.20 1.37 1.28 1.35 1.36 2010's 1.38 1.49 1.44 1.44 1.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  15. Vermont Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Vermont Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.05 0.05 0.05 0.05 0.05 0.05 0.05 2000's 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 2010's 0.06 0.07 0.07 0.07 0.08 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  16. Virginia Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Virginia Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.32 1.34 1.42 1.45 1.48 1.40 1.46 2000's 1.60 1.47 1.54 1.68 1.70 1.77 1.64 1.71 1.63 1.77 2010's 1.84 1.68 1.70 1.75 1.82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  17. Washington Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Washington Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.08 1.10 1.09 1.20 1.24 1.37 1.52 2000's 1.44 1.77 1.50 1.40 1.46 1.53 1.73 1.70 1.73 1.76 2010's 1.58 1.81 1.93 1.70 1.55 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Wisconsin Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wisconsin Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.63 2.64 2.80 2.82 2.73 2.57 2.70 2000's 2.70 2.63 2.81 2.80 2.78 2.72 2.76 2.78 2.87 2.79 2010's 2.58 2.75 2.71 2.92 2.96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  19. Wyoming Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Wyoming Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.26 0.24 0.25 0.26 0.26 0.28 0.26 2000's 0.24 0.23 0.27 0.24 0.25 0.24 0.27 0.26 0.27 0.26 2010's 0.27 0.28 0.28 0.28 0.26 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Alabama Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 324,158 329,134 337,270 2000's 353,614 332,693 379,343 350,345 382,367 353,156 391,093 418,512 404,157 454,456 2010's 534,779 598,514 666,712 615,407 634,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release