Powered by Deep Web Technologies
Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico (Million Cubic Feet) Otay Mesa, CA Natural Gas Pipeline Exports to Mexico...

2

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Exports to...

3

Otay Mesa, CA Liquefied Natural Gas Exports to Mexico (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 7312013 Next Release Date: 8302013 Referring Pages: U.S. Price of Liquefied Natural Gas Exports by Point of Exit Otay Mesa, CA Natural Gas Imports by Pipeline from...

4

Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section Page S:\COMM\NEPA\TODO \EA1383\EATOC1 -R.DOC 4/1/02 -i- 1.0 INTRODUCTION 1-1 1.1 BACKGROUND 1-1 1.2 SCOPE OF PROJECT 1-2 1.3 PURPOSE AND NEED 1-3 1.4 AGENCY ACTIONS 1-3 1.4.1 Federal 1-3 1.4.1.1 U.S. Department of Energy 1-3 1.4.1.2 U.S. Fish and Wildlife Service 1-4 1.4.2 Other Agenc y Actions 1-4 1.4.2.1 California Energy Commission 1-4 1.4.2.2 California Department of Fish and Game 1-4 1.4.2.3 State Historic Preservation Office 1-5 1.4.2.4 San Diego County 1-5 2.0 PROPOSED ACTION AND ALTERNATIVES 2-1 2.1 NO ACTION ALTERNATIVE 2-1 2.2 PROPOSED ACTION 2-1 2.2.1 Proposed Amendment to Presidential Permit (PP-68) 2-2 2.2.2 Description of Proposed Project Components and Activities 2-3 2.2.2.1 Otay Mesa 230 kV Switchyard 2-3

5

Otay Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Otay Biomass Facility Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

Otay Mesa, CA Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba...

7

Mesa Energy formerly called Mesa Environmental Sciences | Open Energy  

Open Energy Info (EERE)

called Mesa Environmental Sciences called Mesa Environmental Sciences Jump to: navigation, search Name Mesa Energy (formerly called Mesa Environmental Sciences) Place Pennsylvania Zip 19355 Sector Services, Solar Product Environmental and energy services company focused on solar PV design and installation. References Mesa Energy (formerly called Mesa Environmental Sciences)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mesa Energy (formerly called Mesa Environmental Sciences) is a company located in Pennsylvania . References ↑ "Mesa Energy (formerly called Mesa Environmental Sciences)" Retrieved from "http://en.openei.org/w/index.php?title=Mesa_Energy_formerly_called_Mesa_Environmental_Sciences&oldid=34874

8

MESA Makes It Real The  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems & Engineering Microsystems & Engineering Sciences Applications (MESA) MESA Makes It Real The Microsystems & Engineering Sciences Applications (MESA) Complex represents the essential facilities and equipment to design, develop, manufacture, integrate, and qualify microsystems for national security needs that cannot or should not be made in industry- either because the low volumes required for these applications are not profitable for the private sector, or because of stringent security requirements for high-consequence systems. Microsystems extend the information processing capabilities of silicon integrated circuits to add functions such as sensing, actuation, and communication-all integrated within a single package. The MESA Complex integrates the scientific,

9

High Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Jump to: navigation, search Name High Mesa Facility High Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Idaho Power Location Bliss ID Coordinates 42.88797667°, -115.0169849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.88797667,"lon":-115.0169849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Red Mesa | Open Energy Information  

Open Energy Info (EERE)

Mesa Mesa Facility Red Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Wanzek Construction Location Cibola County near Seboyeta NM Coordinates 35.197003°, -107.372611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.197003,"lon":-107.372611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

MSTC - Microsystems Science, Technology, and Components - MESA  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems > MESA Microsystems > MESA Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News MESA MESA Logo Microsystems and Engineering Sciences Applications (MESA) Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most advanced and failsafe technologies to fulfill our responsibilities as stewards of the nuclear stockpile, Sandia is responsible for the development, design and maintenance of approximately 90 percent of the several thousand parts found in any given weapon system, including radiation-hardened microelectronics. In support of this mission,

12

Mesa Top Photovoltaic Array (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet overview of the Mesa Top Photovoltaic Array project implemented by the Department of Energy Golden Office and National Renewable Energy Laboratory.

Not Available

2009-07-01T23:59:59.000Z

13

Aragonne Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Aragonne Mesa Wind Farm Aragonne Mesa Wind Farm Jump to: navigation, search Name Aragonne Mesa Wind Farm Facility Aragonne Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GE Energy Developer Babcock & Brown Energy Purchaser Arizona Public Service Location Guadalupe County NM Coordinates 34.796889°, -105.054188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.796889,"lon":-105.054188,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

Trent Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trent Mesa Wind Farm Trent Mesa Wind Farm Facility Trent Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner American Electric Power Developer American Electric Power Energy Purchaser TXU Electric & Gas Location Nolan and Taylor Counties TX Coordinates 32.295161°, -100.150645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.295161,"lon":-100.150645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

East Brawley East MesaHeber  

E-Print Network (OSTI)

East Brawley Glamis Dunes East MesaHeber Salton Sea South Brawley Randsburg Sespe Hot Springs Coso Randsburg Sespe Hot Springs Coso Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Hot Springs Mono - Long Valley Bodie Saline Valley Calistoga The Geysers Lassen Wendel - Amedee Glass

16

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

17

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

18

Southwest Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Southwest Mesa Wind Farm Jump to: navigation, search Name Southwest Mesa Wind Farm Facility Southwest Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power Energy Purchaser American Electric Power Location McCamey TX Coordinates 30.933346°, -102.154191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.933346,"lon":-102.154191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

East Mesa Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Mesa Geothermal Area East Mesa Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Mesa Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (3) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.78333333,"lon":-115.25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

DOE and Colorado Mesa University Education Agreement Expands LM's Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Colorado Mesa University Education Agreement Expands LM's and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio DOE and Colorado Mesa University Education Agreement Expands LM's Site Reuse Portfolio October 16, 2012 - 2:49pm Addthis Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. Rich Bush, DOE Site Manager, explains the Grand Junction, Colorado, Disposal Site to Colorado Mesa University students. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project to Colorado Mesa University students while standing next to one of LM’s Systems Operation and Analysis at Remote Sites locations, which collects data remotely and transmits it to LM servers daily. DOE Site Manager Rich Bush explains the Enhanced Cover Assessment Project

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

22

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472: Uranium...

23

South Trent Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Trent Mesa Wind Farm Trent Mesa Wind Farm Jump to: navigation, search Name South Trent Mesa Wind Farm Facility South Trent Mesa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Location Trent TX Coordinates 32.444461°, -100.236819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.444461,"lon":-100.236819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Alta Mesa I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mesa I Wind Farm Mesa I Wind Farm Jump to: navigation, search Name Alta Mesa I Wind Farm Facility Alta Mesa I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Indian Mesa Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

Mesa Wind Farm II Mesa Wind Farm II Jump to: navigation, search Name Indian Mesa Wind Farm II Facility Indian Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Vestas Developer Great Plains Windpower Location Hansford County TX Coordinates 36.278°, -101.345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.278,"lon":-101.345,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Sigma Mesa: Background elemental concentrations in soil and vegetation, 1979  

DOE Green Energy (OSTI)

In 1979, soil and vegetation samples were collected on Sigma Mesa to provide background data before construction on the mesa. Elemental data are presented for soil, grass, juniper, pinon pine, and oak. None of the data looks out of the ordinary. The purpose of the sampling program was to acquire, before any disturbance, a set of data to be used as background for future impact analysis. 6 refs., 2 figs., 7 tabs.

Ferenbaugh, R.W.; Gladney, E.S.; Brooks, G.H. Jr.

1990-10-01T23:59:59.000Z

27

City of Mesa, Arizona (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mesa, Arizona (Utility Company) Mesa, Arizona (Utility Company) Jump to: navigation, search Name City of Mesa Place Arizona Utility Id 12351 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dusk to Dawn Commercial Lighting Service (Existing Wood Pole) Lighting Dusk to Dawn Commercial Lighting Service (New Wood Pole) Lighting Dusk to Dawn Commercial Lighting Service (Steel Pole) Lighting Dusk to Dawn Residential Lighting Service Lighting

28

Alta Mesa II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Alta Mesa II Wind Farm Alta Mesa II Wind Farm Facility Alta Mesa II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

30

Timber Mountain Precipitation Monitoring Station  

SciTech Connect

A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

Lyles Brad,McCurdy Greg,Chapman Jenny,Miller Julianne

2012-01-01T23:59:59.000Z

31

San Juan Mesa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name San Juan Mesa Wind Farm Facility San Juan Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Edison Mission Group owns majority Developer Edison Mission Group Energy Purchaser Xcel Energy Location Elida County NM Coordinates 33.9697°, -103.844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9697,"lon":-103.844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Mesa County Valley Wind Project | Open Energy Information  

Open Energy Info (EERE)

Valley Wind Project Valley Wind Project Jump to: navigation, search Name Mesa County Valley Wind Project Facility Mesa County Valley Sector Wind energy Facility Type Community Wind Location CO Coordinates 39.076191°, -108.508514° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.076191,"lon":-108.508514,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

Costa Mesa, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Costa Mesa, California: Energy Resources Costa Mesa, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6411316°, -117.9186689° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6411316,"lon":-117.9186689,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Battlement Mesa, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Battlement Mesa, Colorado: Energy Resources Battlement Mesa, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.441367°, -108.0250738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.441367,"lon":-108.0250738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada  

SciTech Connect

This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

Ebel, Brian A.; Nimmo, John R.

2009-12-29T23:59:59.000Z

37

Preliminary evaluation of fluid chemistry in the East Mesa KGRA  

DOE Green Energy (OSTI)

One of the major problems needing consideration when bringing a geothermal field into production is the anticipation and control of mineral precipitation in both the producing formations and production equipment. Prediction of the chemical interactions between natural multicomponent thermal fluids and the minerals comprising a producing formation can be accomplished by the study of equilibrium models approximating the natural system. Models are constructed from theoretically and experimentally derived thermodynamic data for the involved minerals and aqueous species. This equilibrium modeling approach was applied to the rock-water system at the East Mesa geothermal area in the Imperial Valley of California. Results of petrographic and fluid analyses are given. (JGB)

Hoagland, J.R.

1976-10-04T23:59:59.000Z

38

Estimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test  

E-Print Network (OSTI)

of Las Vegas. The NTS is bordered by the Nellis Air Force Range and the Tonopah 5 #12;Test RangeEstimation of Unsaturated Zone Traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential

39

2010 Google -Map data 2010 Google -Driving directions to 1850 Table Mesa Dr, Boulder, CO 80305  

E-Print Network (OSTI)

©2010 Google - Map data ©2010 Google - Driving directions to 1850 Table Mesa Dr, Boulder, CO 80305 obey all signs or notices regarding your route. Map data ©2010 Google Report a problem Print Send Link, CO 80305 to 1850 Table Mesa... http://maps.google.com/maps?f=d&source=s_d&saddr=32... 1 of 1 9

40

Indian Mesa Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Wind Farm I Wind Farm I Jump to: navigation, search Name Indian Mesa Wind Farm I Facility Indian Mesa Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer National Wind Power; Orion Energy Energy Purchaser TXU Electric & Gas- Lower Colorado River Authority Location Pecos County TX Coordinates 30.920167°, -102.116811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.920167,"lon":-102.116811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

42

East Mesa geothermal pump test facility (EMPTF). Final report  

DOE Green Energy (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

43

Recording experiment on Rainier Mesa in conjunction with a reflection survey  

SciTech Connect

The chemical explosion of the NPE was recorded on the surface of Rainier Mesa along the same line which had previously been the site of a high resolution reflection survey. Six three-component accelerometer stations where distributed along the 550 meter line, which was offset about 600 meters from the epicenter of the explosion. The bandwidth of the acceleration data extends to 100 Hz. Even though the separations of the stations was only about 100 meters, the waveforms and the amplitudes exhibited considerable variability, especially for the transverse component of motion. The maximum accelerations ranged between 0.27 g and 1.46 g, with the maximums of the average traces being 0.57 g on the radial component, 0.28 on the transverse component, and 0.50 g on the vertical component. Using the results of the reflection survey to help constrain the velocity model, the acceleration data were inverted to obtain a preliminary estimate of the seismic moment tensor of the NPE. This result is a strong diagnostic for the NPE being an explosion, showing a somewhat asymmetric extensional source with very small shear components. When interpreted in terms of a spectral model and scaling relationships, the isotropic moment tensor indicates a yield of 1.4 kt, an elastic radius of 116 meters and a cavity radius of 15.5 meters. This interpretation includes a source time function which contains appreciable overshoot, and, if shown to be reliable, this feature of the explosion could have a significant effect upon the analyses of other types of seismic data.

Johnson, L.R.

1994-06-01T23:59:59.000Z

44

Archaeological investigations on the Buckboard Mesa Road Project  

SciTech Connect

In 1986, the Desert Research Institute (DRI) conducted an archaeological reconnaissance of a new alignment for the Buckboard Mesa Road on the Nevada Test Site for the Department of Energy (DOE). During this reconnaissance, several archaeological sites of National Register quality were discovered and recorded including a large quarry, site 26Ny4892, and a smaller lithic scatter, site 26Ny4894. Analysis of the debitage at 26Ny4892 indicates that this area was used primarily as a quarry for relatively small cobbles of obsidian found in the alluvium. Lithic reduction techniques used here are designed for efficiently reducing small pieces of toolstone and are oriented towards producing flake blanks from small cores and bifacially reducing exhausted cores. Projectile point cross references indicate that the area has seen at least casual use for about 10,000 years and more sustained use for the last 3,000 years. Initial obsidian hydration measurements indicate sustained use of the quarry for about the last 3,000 years although the loci of activities appear to change over time. Based on this study, the DRI recommends that quarrying activities in the area of 26Ny4892 are sufficiently sampled and that additional investigations into that aspect of prehistoric activity in the area are not necessary. This does not apply to other aspects of prehistoric use. DRI recommends that preconstruction surveys continue to identify nonquarrying, prehistoric utilization of the area. With the increased traffic on the Buckboard Mesa Road, there is a greater potential for vandalism to sites of National Register-quality located near the road. The DRI recommends that during the orientation briefing the workers at the Test Site be educated about the importance of cultural resources and the need for their protection. 202 refs., 41 figs., 52 tabs.

Amick, D.S.; Henton, G.H.; Pippin, L.C.

1991-10-01T23:59:59.000Z

45

EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Uranium Leasing Program, Mesa, Montrose, and San Miguel 2: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472: Uranium Leasing Program, Mesa, Montrose, and San Miguel Counties, Colorado Summary This EIS evaluates the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium ores. The cooperating agencies are U.S. Department of the Interior; Bureau of Land Management; U.S. Environmental Protection Agency; Colorado Department of Transportation; Colorado Division of Reclamation, Mining, and Safety; Colorado Parks and Wildlife; Mesa County Commission; Montrose County Commission; San Juan County Commission; San Miguel County Board of

46

Observations of Silver Iodide Plumes over the Grand Mesa of Colorado  

Science Conference Proceedings (OSTI)

A series of wintertime airborne tracing experiments was examined to determine some characteristics of the plumes of silver iodide smoke released either from the ground or from an aircraft over the Grand Mesa of Colorado. The plumes were ...

Edmond W. Holroyd III; Jack T. McPartland; Arlin B. Super

1988-10-01T23:59:59.000Z

47

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

48

Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method  

SciTech Connect

Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

Cooper, Clay A [DRI] [DRI; Hershey, Ronald L [DRI] [DRI; Healey, John M [DRI] [DRI; Lyles, Brad F [DRI] [DRI

2013-07-01T23:59:59.000Z

49

EA-1383: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Final Environmental Assessment 83: Final Environmental Assessment EA-1383: Final Environmental Assessment Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California Otay Mesa Generating Company, LLC (OMGC) proposes to construct a nominal 510 megawatt (MW) combined cycle, natural gas- fired power plant on east Otay Mesa in southwestern San Diego County adjacent to the existing Miguel- Tijuana 230 kV transmission line. OMGC proposes to interconnect the Otay Mesa Generating Project (OMGP) to the SDG&E grid. Interconnection of the OMGP to the SDG&E grid will require significant modification of the existing Miguel-Tijuana transmission line and, therefore, an Amendment to

50

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California September 24, 2001 EA-1383: Finding of No Significant Impact Amendment of...

51

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

52

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

53

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

54

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

55

U.S. LNG Imports from Qatar  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

56

U.S. LNG Imports from Equatorial Guinea  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

57

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

58

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

59

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

60

U.S. Natural Gas Exports to Mexico  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

62

U.S. LNG Imports from Australia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

63

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

64

U.S. LNG Imports from Algeria  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

65

U.S. Natural Gas Exports to Canada  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

66

DOE - Office of Legacy Management -- Chupadera Mesa NM Site - NM 04  

Office of Legacy Management (LM)

Chupadera Mesa NM Site - NM 04 Chupadera Mesa NM Site - NM 04 FUSRAP Considered Sites Chupadera Mesa, NM Alternate Name(s): None Location: Approximately 28 miles northeast of the Trinity nuclear test site on the White Sands Missile Range, Northeast of Bingham, New Mexico NM.04-5 Historical Operations: Received the deposition of longer-lived radionuclides in the fallout from the nuclear test, primarily cesium-137, strontium-90, plutonium-239, cobalt-60, and europium-155. NM.04-2 NM.04-5 Eligibility Determination: No further action required. Radiation levels below cleaunup criteria. NM.04-1 NM.04-2 Radiological Survey(s): Assessment Surveys NM.04-3 NM.04-4 Site Status: NA - No Further Action Required NM.04-1 NM.04-2 Long-term Care Requirements: Long-Term Surveillance and Maintenance Requirements for Remediated FUSRAP Sites S07566_FUSRAP

67

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

Science Conference Proceedings (OSTI)

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

68

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New Mexico, USA)  

E-Print Network (OSTI)

Coal petrographic genetic units in deltaic-plain deposits of the Campanian Mesa Verde Group (New stratigraphy; Coal; Maceral analysis; Microlithotype Abstract The Campanian rocks of the Mesa Verde Group units, i.e. intermediate term cycles. The continental facies consist of coastal-plain deposits (coals

Paris-Sud XI, Université de

69

Geothermal resource and reservoir investigations of U. S. Bureau of Reclamation leaseholds at East Mesa, Imperial Valley, California  

DOE Green Energy (OSTI)

The study included five parts: geology, seismicity, well testing, reservoir simulation, and geochemistry. Included in appendices are: production test data and discussion, interference tests, production tests in the northern portion of the East Mesa KGRA, conversion tables, chemical analysis of fluids from East Mesa wells, and results of laboratory studies of scale samples taken from the vertical tube evaporator. (MHR)

Howard, J.; Apps, J.A.; Benson, S.

1978-10-01T23:59:59.000Z

70

Thermal management in large Bi2212 mesas used for terahertz sources.  

SciTech Connect

We present a thermal analysis of a patterned mesa on a Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) single crystal that is based on tunneling characteristics of the c-axis stack of {approx}800 intrinsic Josephson junctions in the mesa. Despite the large mesa volume (e.g., 40 times 300 times 1.2 mum{sup 3}) and power dissipation that result in self-heating and backbending of the current-voltage curve (I-V), there are accessible bias conditions for which significant polarized THz-wave emission can be observed. We estimate the mesa temperature by equating the quasiparticle resistance, R{sub qp}(T), to the ratio V/I over the entire I-V including the backbending region. These temperatures are used to predict the unpolarized black-body radiation reaching our bolometer and there is substantial agreement over the entire I-V. As such, backbending results from the particular R{sub qp}(T) for Bi2212, as first discussed by Fenton, rather than a significant suppression of the energy gap. This model also correctly predicts the observed disappearance of backbending above {approx}60 K.

Kurter, C.; Gray, K. E.; Zasadzinski, J. F.; Ozyuzer, L.; Koshelev, A. E.; Li, Q.; Yamamoto, T.; Kadowaki, K.; Kwok, W.-K.; Tachiki, M.; Welp, U.; Materials Science Division; Izmir Inst. of Tech.; Illinois Inst. of Tech.; Univ. Tsukuba; Univ. Tokyo

2009-06-01T23:59:59.000Z

71

Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline  

SciTech Connect

The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

Hochstein, R. F.; Warner, R.; Wetz, T. V.

2003-02-26T23:59:59.000Z

72

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

73

Rethink DC Metro Stations.  

E-Print Network (OSTI)

??This thesis intends to rethink the role of Metro stations in the Washington Metropolitan Area. It considers Metro stations as more than infrastructure, but with (more)

Leung, Yathim

2009-01-01T23:59:59.000Z

74

Completion Report for Well ER-20-4 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-20-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site, Nye County, Nevada. The well was drilled in August and September 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to investigate the possibility of radionuclide transport from up-gradient underground nuclear tests conducted in central Pahute Mesa. This well also provided detailed hydrogeologic information in the Tertiary volcanic section that will help reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

75

Completion Report for Well ER-EC-15 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-15 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in October and November 2010, as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters of volcanic aquifers potentially down-gradient from underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

76

Completion Report for Well ER-EC-12 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-12 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly known as the Nevada Test Site), Nye County, Nevada. The well was drilled in June and July 2010 as part of the Pahute Mesa Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information in the Tertiary volcanic section in the area between Pahute Mesa and the Timber Mountain caldera complex that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic model. In particular, the well was intended to help define the structural position and hydraulic parameters for volcanic aquifers potentially down-gradient from historic underground nuclear tests on Pahute Mesa. It may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-04-30T23:59:59.000Z

77

Earth Tidal Analysis At East Mesa Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be directly used only to evaluate porous medium compressibility if porosity is

78

Geohydrologic data and models of Rainier Mesa and their implications to Yucca Mountain  

Science Conference Proceedings (OSTI)

The geohydrologic data collected at Rainier Mesa provide the only extensive observations in tunnels presently available on flow and transport in tuff units similar to those of a potential nuclear waste repository at Yucca Mountain. This information can, therefore, be of great value in planning the Exploratory Studies Facility (ESF) testing in underground drifts at Yucca Mountain. In this paper, we compare the geohydrologic characteristics of tuff units of these two sites and summarize the hydrochemical data indicating the presence of nearly meteoric water in Rainier Mesa tunnels. A simple analytic model is used to evaluate the possibility of propagating transient pulses of water along fractures or faults through the Paintbrush nonwelded tuff unit to reach the tunnel beds below. The results suggest that fast flow could occur without significant mixing between meteoric fracture water and matrix pore water. The implications of these findings on planning for the ESF Calico Hills study at Yucca Mountain are discussed.

Wang, J.S.Y.; Cook, N.G.W.; Wollenberg, H.A.; Carnahan, C.L.; Javandel, I.; Tsang, C.F.

1993-01-01T23:59:59.000Z

79

NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste  

Office of Legacy Management (LM)

AM? 2 2 1986 AM? 2 2 1986 NE-23 Elimination of the Chupadera Mesa and Los Alamos County Industrial Waste Line Sites from Further Consideration for FUSRAP Inclusion Carlos E. Garcia, Director Environmental Safety and Health Division Albuquerque Operations Office The enclosed material is being provided to you to document the final actions taken under the Department's Formerly Utilized Sites Remedial Action Program (FUSRAP) for the Chupadera Mesa area and the Los Alamos County Industrial Waste Lines, New Mexico. Copies of designation/ elimination reviews for each of the sites are enclosed for your records. We have determined that neither site warrants inclusion in the remedial action program. Primary sources of data for this determination were two survey reports prepared through your Division, LA-10256-MS, "Radiological

80

Variation in the annual average radon concentration measured in homes in Mesa County, Colorado  

Science Conference Proceedings (OSTI)

The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.

Rood, A.S.; George, J.L.; Langner, G.H. Jr.

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Origin of elevated water levels encountered in Pahute Mesa emplacement boreholes: Preliminary investigations  

SciTech Connect

The presence of standing water well above the predicted water table in emplacement boreholes on Pahute Mesa has been a recurring phenomenon at the Nevada Test Site (NTS). If these levels represent naturally perched aquifers, they may indicate a radionuclide migration hazard. In any case, they can pose engineering problems in the performance of underground nuclear tests. The origin of these elevated waters is uncertain. Large volumes of water are introduced during emplacement drilling, providing ample source for artificially perched water, yet elevated water levels can remain constant for years, suggesting a natural origin instead. In an effort to address the issue of unexpected standing water in emplacement boreholes, three different sites were investigated in Area 19 on Pahute Mesa by Desert Research Institute (DRI) staff from 1990-93. These sites were U-19az, U-19ba, and U-19bh. As of this writing, U-19bh remains available for access; however, nuclear tests were conducted at the former two locations subsequent to this investigations. The experiments are discussed in chronological order. Taken together, the experiments indicate that standing water in Pahute Mesa emplacement holes originates from the drainage of small-volume naturally perched zones. In the final study, the fluids used during drilling of the bottom 100 m of emplacement borehole U-19bh were labeled with a chemical tracer. After hole completion, water level rose in the borehole, while tracer concentration decreased. In fact, total mass of tracer in the borehole remained constant, while water levels rose. After water levels stabilized in this hole, no change in tracer mass was observed over two years, indicating that no movement of water out of the borehole is taking place (as at U- 19ba). Continued labeling tests of standing water are recommended to confirm the conclusions made here, and to establish their validity throughout Pahute Mesa.

Brikowski, T.; Chapman, J.; Lyles, B.; Hokett, S.

1993-11-01T23:59:59.000Z

82

CAISO Station Displays  

Science Conference Proceedings (OSTI)

The objective of this report is to describe the results of a project to build Station One-Line Diagram displays for the California Independent System Operator (CAISO) system. The development and maintenance of the Station One-line displays for energy management system applications has historically been a very time consuming, tedious and error prone task. Several man-years of effort may be required to build the station displays for a large interconnected power system. Once these stations displays have bee...

2003-05-07T23:59:59.000Z

83

WWVB Station Library  

Science Conference Proceedings (OSTI)

... NIST time and frequency broadcast stations. ... International Conference, Washington, DC, August 2001. WWVB Improvements: New Power from an ...

2010-10-05T23:59:59.000Z

84

Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA  

DOE Green Energy (OSTI)

Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

Miller, K.R.; Elders, W.A.

1980-08-01T23:59:59.000Z

85

Stations in Special Wind Regions  

Science Conference Proceedings (OSTI)

Stations in Special Wind Regions. ... station_matrix_912850.xlsx (Excel file). [ SED Home | Extreme Winds Home | Previous | Next ] ...

2013-03-11T23:59:59.000Z

86

Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site  

SciTech Connect

The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15 to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.

Zhao, P; Zavarin, M; Leif, R; Powell, B; Singleton, M; Lindvall, R; Kersting, A

2007-12-17T23:59:59.000Z

87

SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS  

Office of Legacy Management (LM)

SUMMARY REPORT SUMMARY REPORT For MONITORTNG AND MITIGATlON OF MESA VERDE CACTUS (SCLEROCACTUS MESAEVERDAE) NAVAJO TRIBAL UTILITY AUTHORITY POWERLINE UMTRA GROUND WATER PROJECT, SHIPROCK SlTE ON NAVAJO NATION TRIBAL LAND IN SAN JUAN COUNTY, NEW MEXICO Prepared For: S. M. STOLLER CORPORATION GRAND JUNCTION, COLORADO On Behalf of DEPARTMENT O W ENERGY GRAND JUNCTION, COLORADO Prepared By: ECOSPHERE ENVIRONMENTAL SERVICES NAVAJO FISH AND WJLDLIli'E PERMIT #000802-001 FARIVWGTON, NEW MEXICO NOVEMBER 2003 RECORD COP\' TABLE OF CONTENTS EXECUTIVE SUMMARY 1 LOCATION ... . . , , . . . . . . . . . . . . . . . . 1 WORK SUMMA 3 LIST OF PREPARER 7 CONSULTATION AND COORDINATION ...... ........ .. ,, . . . . . . . . 7 ATTACHMENTS ATTACHMENT A NFWD September 30,2002 Letter EXECUTIVE SUMMARY

88

Failure analysis report: 10 MW geothermal binary turbine, Magma Electric Company, East Mesa, California  

SciTech Connect

The cause of failure of two isobutane turbines at the East Mesa geothermal plant was investigated. One turbine lost all the vanes in all three stages, while the other turbine sustained dings and nicks in the vanes, but remained intact. The exact cause of failure could not be determined. Three possibilities were determined: (1) a single foreign object, possibly a bolt; (2) foreign substance (geothermal fluid, oil, liquid isobutane, or particulate corrosion products) entered both turbines; or (3) one or more brazed joints failed by fatigue or by a corrosive process. 5 refs., 13 figs. (ACR)

Anliker, D.M.

1981-01-01T23:59:59.000Z

89

Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits  

DOE Patents (OSTI)

A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides.

Vawter, Gregory A. (Albuquerque, NM); Smith, Robert E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

90

Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping  

Science Conference Proceedings (OSTI)

The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

2011-02-01T23:59:59.000Z

91

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

92

Predicted Geology of the Pahute Mesa-Oasis Valley Phase II Drilling Initiative  

SciTech Connect

Pahute MesaOasis Valley (PM-OV) Phase II drilling will occur within an area that encompasses approximately 117 square kilometers (45 square miles) near the center of the Phase I PM-OV hydrostratigraphic framework model area. The majority of the investigation area lies within dissected volcanic terrain between Pahute Mesa on the north and Timber Mountain on the south. This area consists of a complex distribution of volcanic tuff and lava of generally rhyolitic composition erupted from nearby calderas and related vents. Several large buried volcanic structural features control the distribution of volcanic units in the investigation area. The Area 20 caldera, including its structural margin and associated caldera collapse collar, underlies the northeastern portion of the investigation area. The southern half of the investigation area lies within the northwestern portion of the Timber Mountain caldera complex, including portions of the caldera moat and resurgent dome. Another significant structural feature in the area is the west-northwest-trending Northern Timber Mountain moat structural zone, which bisects the northern portion of the investigation area and forms a structural bench. The proposed wells of the UGTA Phase II drilling initiative can be grouped into four generalized volcanic structural domains based on the stratigraphic distribution and structural position of the volcanic rocks in the upper 1,000 meters (3,300 feet) of the crust, a depth that represents the approximate planned total depths of the proposed wells.

NSTec Environmental Restoration

2009-04-20T23:59:59.000Z

93

A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada  

SciTech Connect

A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

2001-12-01T23:59:59.000Z

94

Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system  

DOE Green Energy (OSTI)

Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

Goldstein, N.E.; Carle, S.

1986-05-01T23:59:59.000Z

95

Computer Simulations of Edge Effects in a Small-Area Mesa N-P Junction Diodes: Preprint  

DOE Green Energy (OSTI)

In this work, computer simulations are used to determine the influence of edge conditions on the overall performance of mesa diodes under dark and illuminated conditions. In particular, we examine the effect of edge shape on the I-V characteristics of the diode.

Appel, J.; Sopori, B.; Ravindra, N. M.

2009-02-01T23:59:59.000Z

96

Hydraulic-fracture stimulation treatments at East Mesa, Well 58-30. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

East Mesa Well 58-30 was selected for two stimulation treatments: a conventional hydraulic fracture in a deep, low permeability interval, and a dendritic fracture in a shallow, high permeability interval of completion. The well selection, pre-stimulation evaluation, fracture treatment design, and post-stimulation evaluation are presented.

Not Available

1981-02-01T23:59:59.000Z

97

A Geomorphological Assessment of Armored Deposits Along the Southern Flanks of Grand Mesa, CO, USA  

E-Print Network (OSTI)

A series of deposits, located along the southern flanks of Grand Mesa, Colorado, and extending to the south, are problematic, and the processes related to emplacement are not understood. The overall area is dominated by two landform systems, Grand Mesa, which supported a Pleistocene ice cap, and the North Fork Gunnison River drainage. Thus, one has to ask: Are these deposits the result of the melting of the ice cap or are they fluvial terraces associated with the evolution of the ancestral Gunnison River? The goal of this research was to map the areal extent of the deposits and to interpret the formation and climatic significance in understanding the evolution of the Pleistocene landscape in the region. An extensive exposure, parallel to State Highway 65 near Cory Grade, was used for detailed description and sampling. Three additional exposures, ~10 to 20 km (~6 to 12 mi) were used to extend the areal extent of sampling. The study area was mapped using aerial photography and traditional field mapping aided by GPS. From the field work, a detailed stratigraphic column, including lithology and erodability, was constructed. Vertical exposures of the deposits were described, mapped, and recorded in the field and using detailed photo mosaics. Samples were collected from each stratum of the deposits for grain-size, shape, and sorting analyses. Five distinct depositional facies were identified. Sieve analysis on collected samples shows that four distinct grain-sizes occur in the outcrops; coarse sand, very-coarse sand, granule, and pebble and boulder. Mean grain-sizes range from 0.0722 to 0.9617, -0.0948 to -0.9456, -1.0566 to -1.9053, and -2.0050 to -3.4643, respectively. Glacio-fluvial depositional environments were identified and supported with observations of sedimentary structures and clast composition. Two major environments of deposition are recorded in the deposits; fluvial deposits from glacial outburst floods, and debris flow deposits. Imbrication of clasts in the strata suggests the flow came from the direction of Grand Mesa to the north. Facies and subsequent sequences were constructed to portray evidence that supports the glacio-fluvial mode of deposition.

Brunk, Timothy J.

2010-05-01T23:59:59.000Z

98

Environmental assessment for the new looped power system on Rainier Mesa  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is the single location within the continental United States where tests involving nuclear explosive devices are conducted. The NTS is a land mass of 1,350 square miles. It is located 65 miles northwest of Las Vegas, Nevada, on the eastern edge of the Great Mohave Desert in high desert country where altitude ranges from 3,500 feet to approximately 7,700 feet. It is in a remote, isolated and sparsely populated area. The proposed action supports the underground nuclear weapons test program conducted on the NTS as defined in the Nevada Test Site Final Environmental Impact Statement, dated September 1977. The project involves the construction of a new looped power system, to be performed in three phases, indicated on Rainier Mesa in Area 12 at the NTS. The phases are described in this paper.

Not Available

1992-08-26T23:59:59.000Z

99

Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California  

DOE Green Energy (OSTI)

Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

1977-09-01T23:59:59.000Z

100

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis  

SciTech Connect

During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an R & D facility, with its primary goal to explore the necessary technology improvements required to make the binary cycle an efficient, cost effective and reliable conversion process. Magma Power's exploration activities, carried out in other parts of the Western United States after the initial discovery and development at The Geyser's, gave evidence that The Geyser's type of steam reservoir was unique and that the majority of geothermal resources would be of the hydrothermal, or pressurized hot water type. Initial flow tests throughout different locations where this type of resource was discovered indicated that well bore scaling occurred at the flash point in the wells. Initial evaluations indicated that if the well fluid could be maintained under pressure as it traversed the well bore, the potential for scaling would be mitigated. Tests carried out in the late 60's at Magma's Brady Hot Springs development in Nevada indicated that scaling was mitigated with the installation of a pump in the geothermal well. Subsequently, designs were developed of a binary process, utilizing heat exchangers for power generation. Magma was able to acquire process patents associated with this and had a patent issued (Magmamax Power Process). This incorporates the concept of pumping a geothermal well and transferring the heat in the geothermal fluid to a secondary power fluid in heat exchangers. Magma's desire to demonstrate this technology was one of the prime motivations associated with the installation of the East Mesa plant.

Hinrichs, T.C.; Dambly, B.W.

1980-12-01T23:59:59.000Z

102

Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada Corporation

2006-05-01T23:59:59.000Z

103

Density logging and density of rocks in Rainier Mesa Area, Nevada Test Site  

SciTech Connect

Density logs from all 35 vertical drill holes in the Rainier Mesa area in which logs were obtained were evaluated and the distribution of densities of units in the geologic section was derived. Densities were obtained in only 10 holes in which calibrated logging tools had been run. The logs from an additional 10 holes were calibrated with core. Densities vary from nearly 1 g/cc in tunnel bed 5 to over 2.8 g/cc in the dolomitic rocks. Log densities were found to agree well with core data in those subunits (chiefly within tunnel beds 3 and 4) where an adequate number of core measurements were available for comparison. Lithologic correlations based on density log signatures were found to extend for more than 8 km in several units and subunits in the area. Although the volcanic rocks in the Rainier Mesa area are comprised of a wider spectrum of minerals than the petroliferous rocks generally involved in most commercial logging applications, grain density may be estimated with good accuracy with only a knowledge of glass and zeolite content. The variability of the Z/A ratio of the matrix in these volcanic rocks is also negligible compared to the value of 0.5 generally assumed in density logging. However, due to the assumptions made concerning the Z/A of water in deriving the output of commercial density tools, one should be aware of the errors inherent in assuming that recorded log densities are true densities. These errors are normally small, being less than 3 percent for compensated limestone'' tools and 2 percent for tools which output electron density. 35 refs., 25 figs., 12 tabs.

Carroll, R.D.

1989-01-01T23:59:59.000Z

104

High resolution seismic imaging of Rainier Mesa using surface reflection and surface to tunnel tomography  

SciTech Connect

In the interpretation of seismic data to infer properties of an explosion source, it is necessary to account for wave propagation effects. In order to understand and remove these propagation effects, it is necessary to have a model. An open question concerning this matter is the detail and accuracy which must be present in the velocity model in order to produce reliable estimates in the estimated source properties. While it would appear that the reliability of the results would be directly related to the accuracy of the velocity and density models used in the interpretation, it may be that certain deficiencies in these models can be compensated by the and amount of seismic data which is used in the inversion. The NPE provided an opportunity to test questions of this sort. In August 1993, two high resolution seismic experiments were performed in N-Tunnel and on the surface of Rainier Mesa above it. The first involved a surface-to-tunnel imaging experiment with sources on the surface and receivers in tunnel U12n.23 about 88 meters west of the NPE. It was possible to estimate the apparent average velocity between the tunnel and the surface. In a separate experiment, a high resolution reflection experiment was performed in order to image the lithology in Rainier Mesa. Good quality, broad band, reflections were obtained from depths extending into the Paleozoic basement. A high velocity layer near the surface is underlain by a thick section of low velocity material, providing a nonuniform but low average velocity between the depth of the NPE and the surface.

Majer, E.L.; Johnson, L.R.; Karageorgi, E.K.; Peterson, J.E.

1994-06-01T23:59:59.000Z

105

Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

John McCord

2004-12-01T23:59:59.000Z

106

The spatial and temporal subsidence variability of the East Mesa Geothermal Field, California, USA, and its potential impact on the All American Canal System  

Science Conference Proceedings (OSTI)

The spatiotemporal variability of subsidence around the East Mesa Geothermal Field (EMGF) near the All American Canal (AAC) has been measured using 30 temporally averaged interferograms from 1992 to 2000. Deformation rate maps from two shorter time periods ...

Joo-Yup Han; R. R. Forster; D. E. Moser; A. L. J. Ford; J. Ramirez-Hernandez; K. F. Tiampo

2011-06-01T23:59:59.000Z

107

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

108

Completion Report for Well ER-12-4, Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain (includes Errata Sheet)  

Science Conference Proceedings (OSTI)

Well ER-12-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. This well was drilled in May 2005, as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit in the north-central portion of the Nevada Test Site. The well is located on Rainier/Aqueduct Mesa, northwest of Yucca Flat, within Area 12 of the Nevada Test Site. The well provided information regarding the radiological and physical environment near underground nuclear tests conducted in U12t Tunnel, information on the pre-Tertiary rocks in the area, and depth to the regional water table.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2006-05-01T23:59:59.000Z

109

Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona  

SciTech Connect

A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

1999-04-29T23:59:59.000Z

110

Completion Report for Well ER-EC-13 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Well ER-EC-13 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in October 2010 as part of the Pahute Mesa Phase II drilling program. A main objective was to provide detailed hydrogeologic information for the Fortymile Canyon composite unit hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. This well may also be used as a long-term monitoring well.

NSTec Environmental Management

2011-05-31T23:59:59.000Z

111

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

112

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

113

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

114

MESA MODELS OF CLASSICAL NOVA OUTBURSTS: THE MULTICYCLE EVOLUTION AND EFFECTS OF CONVECTIVE BOUNDARY MIXING  

SciTech Connect

Novae are cataclysmic variables driven by accretion of H-rich material onto a white dwarf (WD) star from its low-mass main-sequence binary companion. New time-domain observational capabilities, such as the Palomar Transient Factory and Pan-STARRS, have revealed a diversity of their behavior that should be theoretically addressed. Nova outbursts depend sensitively on nuclear physics data, and more readily available nova simulations are needed in order to effectively prioritize experimental effort in nuclear astrophysics. In this paper, we use the MESA stellar evolution code to construct multicycle nova evolution sequences with CO WD cores. We explore a range of WD masses and accretion rates as well as the effect of different cooling times before the onset of accretion. In addition, we study the dependence on the elemental abundance distribution of accreted material and convective boundary mixing at the core-envelope interface. Models with such convective boundary mixing display an enrichment of the accreted envelope with C and O from the underlying WD that is commensurate with observations. We compare our results with the previous work and investigate a new scenario for novae with the {sup 3}He-triggered convection.

Denissenkov, Pavel A.; Herwig, Falk [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada)] [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6 (Canada); Bildsten, Lars; Paxton, Bill, E-mail: pavelden@uvic.ca, E-mail: fherwig@uvic.ca, E-mail: bildsten@kitp.ucsb.edu, E-mail: paxton@kitp.ucsb.edu [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)] [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States)

2013-01-01T23:59:59.000Z

115

Internal Technical Report, Hydrothermal Injection Program - East Mesa 1983-84 Test Data  

DOE Green Energy (OSTI)

This report presents a test data index and a data plots for a series of 12 drawdown and tracer injection-withdrawal tests in porous-media aquifers at the East Mesa Geothermal Field located in the Imperial Valley near El Centro, California. Test and instrumentation summaries are also provided. The first 10 of these tests were completed during July and August 1983. The remaining 2 tests were completed in February 1984, after a 6-month quiescent period, in which tracers were left in the reservoir. The test wells used were 56-30 and 56-19, with 38-30 supplying water for the injection phase and 52-29 used as a disposal well during the backflowing of the test wells. Six other wells in the surrounding area were measured periodically for possible hydrologic effects during testing. It is not the intent of this report to supply analyzed data, but to list the uninterpreted computer stored data available for analysis. The data have been examined only to the extent to ensure that they are reasonable and internally consistent. This data is stored on permanent files at the Idaho National Engineering Laboratory (INEL) Cyber Computer Complex. The main processors for this complex are located at the Computer Science Center (CSC) in Idaho Falls, Idaho. The Hydrothermal Injection Test program, funded by the Department of Energy, was a joint effort between EG and G Idaho, Inc., the University of Utah Research Institute (UURI) and Republic Geothermal, Inc. (RGI) of Santa Fe Springs, California.

Freiburger, R.M.

1984-09-01T23:59:59.000Z

116

Temporary camps at drill hole U19aq on Pahute Mesa, Nye County, Nevada  

SciTech Connect

The US Department of Energy, Nevada Field Office, has proposed a nuclear test at drill hole U19aq (902100N/585000E, Nevada Coordinate System, Central Zone) on Pahute Mesa, Nevada Test Site, Nevada. In compliance with Section 106 of the National Historic Preservation Act, the DOE/NV had the Quatenary Sciences Center, Desert Research Institute, identify and evaluate the potential effects of this activity on cultural resources. To determine the nature of cultural resources in the area, DRI conducted a Class III intensive archaeological survey of an approximately 1-km{sup 2} area around the drill hole. That survey, conducted in June 1985, located and recorded 20 archaeological sites. Two of those sites, interpreted as temporary camps of ancient hunters and gatherers, covered an extensive portion of the area proposed for nuclear testing. Half the sites were small concentrations of artifacts or isolated artifacts and were collected at the time of their discovery and 10 sites were left in place. Those sites were in danger of being adversely affected by the land-disturbing activities proposed at the drill hole. In August and September 1985, DRI conducted limited test excavations (15 test units) at those sites to further evaluate their scientific significance and to provide information that could be used in designing a plan for data recovery.

Pippin, L.C.; Reno, R.L.; Henton, G.H.; Hemphill, M.; Lockett, C.L.

1992-12-31T23:59:59.000Z

117

Temporary camps at drill hole U19aq on Pahute Mesa, Nye County, Nevada  

SciTech Connect

The US Department of Energy, Nevada Field Office, has proposed a nuclear test at drill hole U19aq (902100N/585000E, Nevada Coordinate System, Central Zone) on Pahute Mesa, Nevada Test Site, Nevada. In compliance with Section 106 of the National Historic Preservation Act, the DOE/NV had the Quatenary Sciences Center, Desert Research Institute, identify and evaluate the potential effects of this activity on cultural resources. To determine the nature of cultural resources in the area, DRI conducted a Class III intensive archaeological survey of an approximately 1-km[sup 2] area around the drill hole. That survey, conducted in June 1985, located and recorded 20 archaeological sites. Two of those sites, interpreted as temporary camps of ancient hunters and gatherers, covered an extensive portion of the area proposed for nuclear testing. Half the sites were small concentrations of artifacts or isolated artifacts and were collected at the time of their discovery and 10 sites were left in place. Those sites were in danger of being adversely affected by the land-disturbing activities proposed at the drill hole. In August and September 1985, DRI conducted limited test excavations (15 test units) at those sites to further evaluate their scientific significance and to provide information that could be used in designing a plan for data recovery.

Pippin, L.C.; Reno, R.L.; Henton, G.H.; Hemphill, M.; Lockett, C.L.

1992-01-01T23:59:59.000Z

118

Survey of radon and radon daughter concentrations in selected Rainier Mesa tunnels  

SciTech Connect

A survey of radon and radon daughter concentrations (RDCs) in selected tunnels on Rainier Mesa at the Nevada Test Site (NTS) was conducted as a part of the underground testing program at NTS. Measurements were taken in three tunnels, N, T, and G. Results of preliminary measurements indicate that N and T Tunnels have low RDCs, i.e., 0.01 WL (working level) (3% of the EPA standard), with normal ventilation conditions. However, it was demonstrated that RDCs can rise to relatively high levels, i.e., 0.24 WL when ventilation rates are significantly lowered. The radon daughter concentrations measured in G Tunnel were an order of magnitude higher than those in N and T Tunnels. The average RDC in the rock mechanics drift (the ''worst-case'' location in G Tunnel) was 0.13 WL with a range from 0.07 WL to 0.23 WL. Elevated RDCs found in the rock mechanics drift of G Tunnel seemed to be attributable to a lower ventilation rate in conjunction with the more highly fractured nature of the ''welded tuff'' rock formation in which the incline drift was mined. By increasing the ventilation rate, a 60% reduction in RDCs from an average of 0.13 Wl to an average of 0.05 WL was achieved.

Fauver, D.N.

1987-01-01T23:59:59.000Z

119

Test results from the 500 kW direct contact pilot plant at East Mesa  

DOE Green Energy (OSTI)

A 500 kW power plant utilizing direct contact heat exchange (DCHX) between the geothermal brine and the isobutane (IC/sub 4/) working fluid is being operated at the East Mesa test facility. The power plant incorporates a 40-inch-diameter direct-contactor approximately 35 feet tall. The purpose of the pilot plant is to determine the feasibility of large-scale direct-contact heat exchange and power plant operation with the DCHX. The binary cycle offers higher conversion factors (heat energy transformed to electrical energy) than the flashed steam approach for geothermal brines in the 300 to 400/sup 0/F range and preliminary results indicate the DCHX system may have higher performance than the conventional tube-and-shell binary approach. This performance advantage results from the absence of any fouling and the very close pinch temperatures achieved in the DCHX itself. The baseline performance tests for the plant were completed in January 1980. The results of these tests and follow-on testing are covered.

Nichols, K.E.; Olander, R.G.; Lobach, J.L.

1980-09-01T23:59:59.000Z

120

Robotic dissolution station  

DOE Patents (OSTI)

This invention is comprised of a robotic station for dissolving active metals in acid in an automated fashion. A vessel with cap, containing the active metal is placed onto a shuttle which retracts to a point at which it is directly beneath a cap removing and retaining mechanism. After the cap is removed, a tube carrying an appropriate acid is inserted into the vessel, and the acid is introduced. The structure of the station forms an open hood which is swept of gases generated by the dissolution and the air removed to a remote location for scrubbing. After the reaction is complete, the shuttle extends and the vessel may be removed by a robot arm.

Beugelsdijk, T.J.; Hollen, R.M.; Temer, D.J.; Haggart, R.J.; Erkkila, T.H.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Quantitative Analysis of Station Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Station Analysis of Station Hydrogen * Role of ENAA (Engineering Advancement Association of Japan) - To manage the construction and operation of hydrogen stations in national project, JHFC Project - To act as secretariat of ISO/TC197 (Hydrogen technologies) committee of Japan Kazuo Koseki Chief Secretary of ISO/TC197 of Japan ENAA Yokohama Daikoku Station (Desulfurized Gasoline) Yokohama Asahi Station (Naphtha) Senju Station (LPG) Kawasaki Station (Methanol) Yokohama Asahi Station Naphtha PSA Compressor Storage Tanks Dispenser Reformer Buffer Tank 25 MPa 35 MPa 1073 K 0.8 MPa Inlet : 0.6 MPa Outlet : 40 MPa Vent Stack 40 MPa Result of Quantitative Analysis Concentration. vol.ppm Min.Detect Analysis Impurity Gasoline Naphtha LPG Methanol Conc. Method CO 0.05 0.06 0.02 0.06 0.01 GC-FID

122

International Space Station Again  

E-Print Network (OSTI)

For the fifth time in 2 1/2 years, the International Space Station (ISS) had to execute a collision avoidance maneuver in early April to ensure a safe miss distance for a piece of orbital debris. As solar activity increases during the next few years, the frequency of ISS collision avoidance might increase as many hundreds of resident space objects drift down through the ISS orbital regime. The subject of concern in late March 2011 was a fragment from Cosmos 2251, the Russian communications satellite which had accidentally collided with the U.S. Iridium 33 communications satellite in February 2009, producing more than

Iss Airlock Shields; A Note On Active; A Publication Of

2011-01-01T23:59:59.000Z

123

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4: On-sitereforming of natural gas at the station b. MeOH 100 (case 3)cost of natural gas at the station is much lower (roughly

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

124

Hydrogen refueling station costs in Shanghai  

E-Print Network (OSTI)

to the natural gas reformer station. Station 4. On-siteSMR 300) use natural gas at the station; Case 3 (MeOH 100)reforming of natural gas at the station. 100 (case 3) =

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2007-01-01T23:59:59.000Z

125

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

Science Conference Proceedings (OSTI)

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

2002-09-01T23:59:59.000Z

126

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

127

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

128

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

129

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume II. Procurement package  

DOE Green Energy (OSTI)

Procurement packages of technical specifications and construction drawings for eleven test facility additions to the ERDA East Mesa Geothermal Component Test Facility are presented. Each of the specifications includes all of the technical requirements needed for procurement and construction starting with Division 2. The information is presented under the following subject headings: injection pump system: 52-2 injection pipeline; control and instrumentation spools; calibration test bench; test pad modifications; test pad piping headers; production and injection wells; well 5-2 modifications; well 8-1 down-hole pump; well 6-1 down-hole pump; and well 8-1 booster pump. (JGB)

Pearson, R.O.

1976-10-15T23:59:59.000Z

130

Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada 2002-05.  

SciTech Connect

Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002/August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

Guy A. DeMeo; Alan L. Flint; Randell J. Laczniak; Walter E. Nylund

2006-12-28T23:59:59.000Z

131

Completion Report for Wells ER-20-8 and ER-20-8#2 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

SciTech Connect

Wells ER-20-8 and ER-20-8#2 were drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The holes were drilled in July and August 2009, as part of the Pahute Mesa Phase II drilling program. The primary purpose of these wells was to provide detailed hydrogeologic information in the Tertiary volcanic section that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. They may also be used as long-term monitoring wells.

NSTec Environmental Management

2011-02-28T23:59:59.000Z

132

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

133

Wachs Cutter Tooling Station (4495)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is similar to previously operated facility tooling and will utilize an existing hydraulic unit. The temporary station location will require electrical feed, ventilation,...

134

The Station Nightclub Fire 2003  

Science Conference Proceedings (OSTI)

... The final report, "Report of the Technical Investigation of The Station Nightclub Fire (NIST NCSTAR 2), Volume 1 and Volume 2 ," includes details of ...

2013-02-07T23:59:59.000Z

135

Completion Report for Well ER-16-1 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain  

Science Conference Proceedings (OSTI)

Well ER-16-1 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in June and July 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit, Number 99. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of the Shoshone Mountain area, especially in the older Tertiary and pre-Tertiary strata. The main 46.99-centimeter hole was drilled to a depth of 702.9 meters and cased with 33.97-centimeter casing to 663.7 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to total depth of 1,220.7 meters. A completion string set at the depth of 1,162.4 meters consisted of 13.97-centimeter stainless-steel casing, with one continuous slotted interval open to the lower carbonate aquifer. The fluid level in the borehole soon dropped, so the borehole was deepened in July 2006. To deepen the borehole, the slotted section was cemented and a 12.1-centimeter hole was drilled through the bottom of the completion string to the new total depth of 1,391.7 meters, which is 171.0 meters deeper than the original borehole. A string of 6.03-centimeter carbon-steel tubing with one continuous slotted interval at 1,361.8 to 1,381.4 meters, and open to the lower carbonate aquifer, was installed in the well with no gravel packing or cement, to serve as a monitoring string. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 37 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 646.8 meters of Tertiary volcanic rocks and 744.9 meters of Paleozoic dolomite, quartzite, shale, and limestone. Three weeks after the monitoring string was installed, the water level was tagged at the drill hole depth of 1,271.9 meters, which equates to an estimated elevation of 761.7 meters, accounting for the borehole angle.

NSTec Geology Services

2006-12-01T23:59:59.000Z

136

Completion Report for Well ER-EC-14, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-14 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (NNSS; formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2012, as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. The primary purpose of the well was to provide detailed hydrogeologic information for the Fortymile Canyon composite hydrostratigraphic unit in the Timber Mountain moat area, within the Timber Mountain caldera complex, that will help address uncertainties within the Pahute MesaOasis Valley hydrostratigraphic framework model. The main 55.9-centimeter (cm) hole was drilled to a total depth of 325.5 meters (m) and cased with 40.6-cm casing to 308.1 m. The hole diameter was then decreased to 37.5 cm, and drilling continued to a total depth of 724.8 m. The completion casing string, set to the depth of 690.9 m, consists of 16.8-cm stainless-steel casing hanging from 19.4-cm carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Rainier Mesa Tuff. Two piezometer strings were installed in Well ER-EC-14. Both piezometer strings, each with one slotted interval, consist of 6.0-cm carbon-steel tubing at the surface, then cross over to 7.3-cm stainless-steel tubing just above the water table. The shallow piezometer string was landed at 507.8 m, and the deep piezometer string was landed at 688.6 m. Both piezometer strings are set to monitor groundwater within moderately to densely welded Rainier Mesa Tuff. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, water quality (including tritium and other radionuclides) measurements, and water level measurements. The well penetrated 15.2 m of alluvium and 709.6 m of Tertiary volcanic rocks. The stratigraphy and general lithology were not as expected due to the position of Well ER-EC-14 relative to the buried caldera margins of the Timber Mountain caldera complex. The well is located inside the Rainier Mesa caldera, but outside the younger Ammonia Tanks caldera. On November 5, 2012, a preliminary fluid level in the shallow piezometer string was measured at the depth of 311.8 m. This water level depth was taken before installation of the bridge plug (to be placed within the main completion casing to separate the two slotted zones). Well development, hydrologic testing, and sampling, will be conducted at a later date. No tritium above levels detectable by field methods were encountered in this hole. All Fluid Management Plan (FMP) requirements for Well ER-EC-14 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-EC-14 met the FMP criteria for discharge to an unlined sump or designated infiltration area. All sanitary and hydrocarbon waste generated was properly handled and disposed of.

None

2013-03-05T23:59:59.000Z

137

Woodsdale Generating Station project management  

Science Conference Proceedings (OSTI)

This paper is written for those who are planning new generation construction, particularly combustion turbine units, which will, according to projections, constitute a significant portion of new generation construction during the 1990's. Our project management and schedule for the Woodsdale Generating Station is presented to aid others in the planning, organization, and scheduling for new combustion turbine stations.

Carey, R.P. (Cincinnati Gas and Electric Co., OH (United States))

1990-01-01T23:59:59.000Z

138

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

480 kg/day natural gas reformation station. The table belowReciprocating gas compressor Electrolyzer Station: Thisfor reformer-type stations (natural gas), however, is more

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

139

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

140

Microphysical Effects of Wintertime Cloud Seeding with Silver Iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado  

Science Conference Proceedings (OSTI)

During March 1986, several airborne and ground-based silver iodide (AgI) seeding experiments were conducted over the Grand Mesa, Colorado, during a three-day period of northerly flow and shallow orographic cloud. While little natural snowfall was ...

Arlin B. Super; Bruce A. Boe

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

142

Pilgrim Station | Open Energy Information  

Open Energy Info (EERE)

Station Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner ReunionPower/Exergy Developer Exergy Location Twin Falls County ID Coordinates 42.741336°, -114.865865° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.741336,"lon":-114.865865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Hydrogen at the Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

144

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA)

Nuclear Power Plant Data for Dresden Generating Station Author: DOE/EIA Keywords: Dresden Generating Station, Illinois, Nuclear, Plant, Reactor, Generation, Capacity

145

Chinese Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Chinese Station Biomass Facility Jump to: navigation, search Name Chinese Station Biomass Facility Facility...

146

Transit Infrastructure Finance Through Station Location Auctions  

E-Print Network (OSTI)

as the primary transit infrastructure finance method.Paper 2009-04 Transit Infrastructure Finance Through StationWP-2009-04 Transit Infrastructure Finance Through Station

Ian Carlton

2009-01-01T23:59:59.000Z

147

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

148

A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada  

Science Conference Proceedings (OSTI)

The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

NSTec Geotechnical Sciences Group

2007-03-01T23:59:59.000Z

149

Curecanti-Blue Mesa-Salida 115-kV transmission lines access roads rehabilitation, maintenance, and construction project. Environmental Assessment  

SciTech Connect

Western Area Power Administration (Western) is a power marketing agency of the US Department of Energy, with jurisdiction in 15 western states. The Salt Lake City Area (SLCA) of Western performs the agency`s mission in parts of Colorado, New Mexico, Texas, Utah, Arizona, Wyoming, and Nevada. As part of its mission, Western owns, operates, and maintains a system of transmission lines for transmitting bulk electrical energy from points of generation to and between delivery points. Part of that system in southwestern Colorado includes the Blue Mesa-Curecanti and Blue Mesa-Salida 115-kV transmission lines. Western proposes to conduct maintenance and improve its access roads for these two transmission lines. This paper discusses the impacts to the existing environment as well as the environmental consequences resulting from the maintenance and construction that is proposed.

Not Available

1993-07-01T23:59:59.000Z

150

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

151

Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47 47 Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico November 3, 2003 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Proposed DX Division Strategic Facility Plan at LANL DOE LASO November 3, 2003 iii Contents Acronyms and Terms................................................................................................................................vii Executive Summary ...................................................................................................................................xi 1.0 Purpose and Need

152

Daily Reporting Rainfall Station DON & PROSERPINE RIVERS Manual Heavy Rainfall Station  

E-Print Network (OSTI)

Daily Reporting Rainfall Station DON & PROSERPINE RIVERS Manual Heavy Rainfall Station Manual River Station Telemetry Rainfall Station Telemetry River Station Revised: Nov 2009 MAP 121.1 FLOOD WARNING Bowen Tide TM Bowen P/S AL GretaCk Peter Faust Dam Crystal Brook Andromache R GoorgangaCk Jocheims TM

Greenslade, Diana

153

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

This annual EPRI Technical Update is a compilation of several case histories of events and activities that occurred at member fossil generating stations in 2007. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and an opportunity provided to improve overall performance across the generation fleet.

2008-03-27T23:59:59.000Z

154

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

155

Barrow Meteoroloigcal Station (BMET) Handbook  

SciTech Connect

The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, and humidity. It also obtains barometric pressure, visibility, and precipitation data.

Ritsche, MT

2004-11-01T23:59:59.000Z

156

Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas  

Science Conference Proceedings (OSTI)

This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

Pippin, L.C.

1998-06-01T23:59:59.000Z

157

Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona  

SciTech Connect

The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

1999-04-27T23:59:59.000Z

158

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

the literature provides cost estimates of actual stations.Hydrogen Supply: Cost Estimate for Hydrogen Pathways -Appendix A: Summary of Cost Estimates for 10 Station Types

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

159

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

160

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fueled Vehicle Charging Station Credit (Connecticut...  

Open Energy Info (EERE)

or improvements to existing stations which allow that station to provide CNG, LNG, or LPG (propane); 2) equipment used to convert vehicles to run exclusively on one of these...

162

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2005, EPRI Operations and Management Program managers and contractors have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2006-03-30T23:59:59.000Z

163

Fossil Generating Station Case Histories  

Science Conference Proceedings (OSTI)

During 2006, EPRI Operations and Management Program managers have collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not discounting the...

2007-03-27T23:59:59.000Z

164

NGPL Louisiana station nears completion  

Science Conference Proceedings (OSTI)

Construction on a 3,600-hp compressor station on the Louisiana line of Natural Gas Pipeline Co. of America near Henry, La., was scheduled for completion later this month. The Louisiana line extends some 205 miles along the Gulf Coast between New Caney, Tex., and the Henry hub area. The new compressor station will be located about 44 miles west of the Henry hub. Work began on the $5.1 million expansion project in Cameron Parish, La., in May following Federal Energy Regulatory Commission (FERC) certification. By mid-September, the compressor building, service building, and meter house has been erected, final compressor inspections were under way, and gas piping tie-ins had been completed, according to NGPL. Powered by three 1,200-hp Solar Saturn gas-fired centrifugal engines, the station is designed to increase the capacity of the Louisiana line east of the Stingray pipeline system by up to 220 MMcfd. Current capacity for east bound flows is approximately 900 MMcfd.

Not Available

1990-10-22T23:59:59.000Z

165

Broadcast Outages for NIST Radio Station WWVB  

Science Conference Proceedings (OSTI)

... Numerous short outages while station was undergoing maintenance and testing during daylight hours. WWVB operated at reduced power during ...

166

The I{sub C}R{sub N} value in intrinsic Josephson tunnel junctions in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) mesas.  

Science Conference Proceedings (OSTI)

The c-axis current-voltage I(V) characteristics have been obtained on a set of mesas of varying height sculpted on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) crystals intercalated with HgB{sub 2}. The intercalation, along with the small number of junctions in the mesa, N = 6-30, minimizes the degree of self-heating, leading to a consistent Josephson critical current, I{sub C}, among junctions in the mesa. The Bi2212 crystals with a bulk T{sub C} = 74 K are overdoped and display negligible pseudogap effects allowing an accurate measure of the normal state resistance, R{sub N}. These properties make the mesas nearly ideal for the determination of the Josephson I{sub C}R{sub N} product. We find I{sub C}R{sub N} values consistently {approx}30% of the quasiparticle gap parameter, {Delta}/e, which was measured independently using a mechanical contact, break junction technique. The latter was necessitated by higher bias heating effects in the mesas which prevented direct measurements of the superconducting gap. These values are among the highest reported and may represent the maximum intrinsic value for I{sub C}R{sub N}. The results indicate that the c-axis transport is a mixture of coherent and incoherent tunneling.

Kurter, C.; Ozyuzer, L.; Zasadzinski, J. F.; Hinks, D. G.; Gray, K. E. (Materials Science Division); (Illinois Inst. of Tech.); (Izmir Inst. of Tech.); (Univ. of Maryland)

2010-11-01T23:59:59.000Z

167

*Activity Station Staffing Hunting Station Atlatl (Mr. Boston, Mr. Lilly), Flint knapping  

E-Print Network (OSTI)

*Activity Station Staffing Hunting Station ­ Atlatl (Mr. Boston, Mr. Lilly), Flint knapping (Ms arrive Letchworth-Love Mounds State Park 9:10- 9:45 Red Group Hunting station: atlatl throwing, flint, flint knapping demo, skinning demo*(See back page) Yellow Group Cordage station: wrist or ankle bracelet

Florida, University of

168

Facies, depositional environments, and reservoir properties of the Shattuck sandstone, Mesa Queen Field and surrounding areas, southeastern New Mexico  

E-Print Network (OSTI)

The Shattuck Sandstone Member of the Guadalupian age Queen Formation was deposited in back-reef environments on a carbonate platform of the Northwest Shelf (Permian Basin, New Mexico, USA) during a lowstand of sea level. At Mesa Queen Field, the Shattuck Sandstone is a sheet-like sand body that averages 30 ft (9.1 m) in thickness. The Shattuck Sandstone includes deposits of four major siliciclastic environments: (1) fluvial sandflats, (2) eolian sand sheets, (3) inland sabkhas, and (4) marine-reworked eolian sands. Fluvial sandflat deposits are further subdivided into sheetflood, wadi plain, and river-mouth deposits. Dolomites, evaporites, and siliciclastics that formed in adjacent coastal sabkha and lagoonal environments bound the Shattuck Sandstone from above and below. The Shattuck Sandstone is moderately- to well-sorted, very fine-grained subarkose, with a mean grain size of 98 ?m (3.55?). Eolian sand sheet, wadi plain, and marine-reworked eolian facies comprise the productive reservoir intervals. Reservoir quality reflects intragranular and intergranular secondary porosity formed by partial dissolution of labile feldspar grains, and pore-filling anhydrite and dolomite cements. Vertical successions and regional facies patterns support previous interpretations that these deposits formed during a sea-level lowstand and early stages of the subsequent transgression. Facies patterns across the shelf indicate fluvial sandflats prograded over coastal and continental sabkhas, and eolian sand deposition became more common during sea-level fall and lowstand. During subsequent transgression, eolian sediments in the upper portion of the Shattuck Sandstone were reworked as coastal and lagoon environments became reestablished on the inner carbonate platform.

Haight, Jared

2002-08-01T23:59:59.000Z

169

Completion Report for Well ER-EC-11 Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-EC-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September and October 2009 as part of the Pahute Mesa Phase II drilling program. A main objective was to investigate radionuclide migration down-gradient from Well Cluster ER-20-5 and Well ER-20-7 and across the northern Timber Mountain moat structural zone into the area referred to as the Bench, between Pahute Mesa and the Timber Mountain caldera complex. A secondary purpose of the well was to provide detailed hydrogeologic information for the shallow- to intermediate-depth Tertiary volcanic section in the Bench area. This well also provided detailed hydrogeologic information in the Tertiary volcanic section to reduce uncertainties within the Pahute Mesa-Oasis Valley hydrostratigraphic framework model (Bechtel Nevada, 2002). The main 52.1-centimeter hole was drilled to a depth of 507.5 meters and then opened to a diameter of 66.0 centimeters. It was cased with 50.8-centimeter casing to 504.9 meters. The hole diameter was then decreased to 47.0 centimeters, and drilling continued to a total depth of 979.3 meters. It was then cased with 34.0-centimeter casing set at 965.5 meters. The hole diameter was then decreased to 31.1 centimeters and the borehole was drilled to a total depth of 1,264.3 meters. The completion casing string, set to the depth of 1,262.5 meters, consists of 19.4-centimeter stainless-steel casing hanging from 19.4-centimeter carbon-steel casing. The stainless-steel casing has two slotted intervals open to the Tiva Canyon and Topopah Spring aquifers. Four piezometer strings were installed in Well ER-EC-11. A string of carbon-steel 6.0-centimeter tubing with one slotted interval was inserted outside the 50.8-centimeter casing, within the 66.0-centimeter borehole for access to the Timber Mountain aquifer, and landed at 475.3 meters. A second string of 6.0-centimeter tubing with one slotted interval was inserted outside the 34.0-centimeter casing, within the 47.0-centimeter borehole for access to the Benham aquifer, and landed at 911.7 meters. A third piezometer string consists of 7.3-centimeter stainless-steel tubing that hangs from 6.0-centimeter carbon-steel tubing via a crossover sub. This string was landed at 1,029.5 meters to monitor the Tiva Canyon aquifer. The deepest string of 7.3-centimeter tubing was landed at 1,247.8 meters to monitor the Topopah Spring aquifer. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 meters, 67 percussion gun and rotary sidewall core samples, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 1,264.3 meters of Tertiary volcanic rock, including three saturated welded-tuff aquifers and one saturated lava-flow aquifer. A water level was measured in the Timber Mountain aquifer at 449.6 meters, during open-hole geophysical logging on September 20, 2009. The fluid level measured after the total depth was reached and the upper aquifer was cased off was 450.0 meters when measured in the open borehole on October 17, 2009. Measurements on samples taken from the undeveloped well indicated that tritium levels averaging approximately 12,430 picocuries per liter (less than Safe Drinking Water Act levels) were encountered within the Benham aquifer. Tritium was below the minimum detectable activity concentration for samples collected from the Tiva Canyon aquifer and the Topopah Spring aquifer.

NSTec Environmental Management

2010-12-01T23:59:59.000Z

170

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

171

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

172

Neutron proton crystallography station (PCS)  

SciTech Connect

The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

173

Dubuque generation station, Dubuque, Iowa  

SciTech Connect

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

174

TRACER STABILITY AND CHEMICAL CHANGES IN AN INJECTED GEOTHERMAL FLUID DURING INJECTION-BACKFLOW TESTING AT THE EAST MESA GEOTHERMAL FIELD  

DOE Green Energy (OSTI)

The stabilities of several tracers were tested under geothermal conditions while injection-backflow tests were conducted at East Mesa. The tracers I and Br were injected continuously while SCN (thiocyanate), B, and disodium fluorescein were each injected as a point source (slug). The tracers were shown to be stable, except where the high concentrations used during slug injection induced adsorption of the slug tracers. However, adsorption of the slug tracers appeared to ''armor'' the formation against adsorption during subsequent tests. Precipitation behavior of calcite and silica as well as Na/K shifts during injection are also discussed.

Adams, M.C.

1985-01-22T23:59:59.000Z

175

Taipei terminal rail station : casting an urban gateway  

E-Print Network (OSTI)

Access is a key issue in the design of railway stations. The evolution of the train station typology, has resulted in many types of stations based on the development of the stations' access. Since rail travel on a larger ...

Tsai, May Deanna

1991-01-01T23:59:59.000Z

176

Shippingport Station Decommissioning Project: overview and justification  

SciTech Connect

The purpose of this booklet is to brief the reader on the Shippingport Station Decommissioning Project and to summarize the benefits of funding the project in FY 1984. Background information on the station and the decommissioning project is provided in this section of the booklet; the need for a reactor decommissining demonstration is discussed in the next section; and a summary of how the Shippingport Station Decommissioning Project (SSDP) provides the needed demonstration is provided in the final section.

Coffman, F.E.

1984-01-01T23:59:59.000Z

177

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

178

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

179

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

180

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

182

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

183

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

184

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

E. Hydrogen Supply: Cost Estimate for Hydrogen Pathways -costs are compared with cost estimates of similar stationsHydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping

Weinert, Jonathan X.; Shaojun, Liu; Ogden, J; Jianxin, Ma

2006-01-01T23:59:59.000Z

185

weather station data | OpenEI  

Open Energy Info (EERE)

Browse Upload data GDR Community Login | Sign Up Search Facebook icon Twitter icon weather station data Dataset Summary Description Weather resource data for the United...

186

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options Include private stations Include...

187

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Station...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Access Yes Yes Addition to Existing Station With Gasoline Yes With Compressed Natural Gas New Construction Standalone Yes Yes With Gasoline With Compressed Natural Gas...

188

Work Management Improvement at Louisa Generating Station  

Science Conference Proceedings (OSTI)

This report describes results of a Work Management Improvement project at the Louisa Generating Station, MidAmerican Energy Company, Muscatine, Iowa.

2001-11-19T23:59:59.000Z

189

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked us whether Department of Energy ("Department" or "DOE") appropriated funds may be used to...

190

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

Range (kg/day) 1. Steam methane reformer 2. Electrolyzer,Station Type 1. Steam methane reformer 2. Electrolyzer,Type Station Type 1. Steam methane reformer 2. Electrolyzer,

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

191

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

4: Energy Station Grid electricity Cogen Heat Exhaust (CO2)Recycled Reformate Grid electricity Cogen Heat Electricity

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

192

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

the literature provides cost estimates of actual stations.Hydrogen Supply: Cost Estimate for Hydrogen Pathways -COST ESTIMATES.

Lipman, T E; Weinert, Jonathan X.

2006-01-01T23:59:59.000Z

193

2012 MESA Application Summary  

Science Conference Proceedings (OSTI)

... v All employees are trained and audited ... of means, including training programs, team ... This systematic approach incorporates input from stakeholders ...

2013-04-04T23:59:59.000Z

194

MESA Products, Inc.  

Science Conference Proceedings (OSTI)

... This electrochemical form of corrosion control is applied to underground or submerged structures, such as pipelines and tanks. ...

2010-11-26T23:59:59.000Z

195

MESA Products, Inc., 2012  

Science Conference Proceedings (OSTI)

... of corrosion control and integrity solutions to the pipeline industry. ... including expansion into the asset integrity market for pipelines, has created ...

2012-11-14T23:59:59.000Z

196

MESA PRODUCTS, INC. PROFILE  

Science Conference Proceedings (OSTI)

... The entire oil and gas industry has benefited by the contributions of ... This process includes both a long-term and short-term outlook of the future. ...

2007-04-04T23:59:59.000Z

197

MESA PRODUCTS, INC. PROFILE  

Science Conference Proceedings (OSTI)

... services and products are energy related companies ... programs including the annual Appalachian Underground ... term and short-term outlook of the ...

2007-04-04T23:59:59.000Z

198

Solar radiation observation stations updated to 1979  

DOE Green Energy (OSTI)

The type of sensing and recording equipment for 420 stations in the US are listed alphabetically by states. The stations are divided according to whether or not they are in the basic National Weather Service, NOAA, network. Reports of summarized solar radiation data are listed in an appendix. (MHR)

Carter, E.A.; Cristina, J.R.; Williams, B.B.

1979-04-01T23:59:59.000Z

199

Cooperative proxy caching for wireless base stations  

Science Conference Proceedings (OSTI)

This paper proposes a mobile cache model to facilitate the cooperative proxy caching in wireless base stations. This mobile cache model uses a network cache line to record the caching state information about a web document for effective data search and ... Keywords: VPG, Wireless internet, base station, mobile cache model, network cache line, proxy caching

James Z. Wang; Zhidian Du; Pradip K. Srimani

2007-01-01T23:59:59.000Z

200

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect

This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

202

High speed imager test station  

DOE Patents (OSTI)

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

Yates, G.J.; Albright, K.L.; Turko, B.T.

1995-11-14T23:59:59.000Z

203

High speed imager test station  

DOE Patents (OSTI)

A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

Yates, George J. (Santa Fe, NM); Albright, Kevin L. (Los Alamos, NM); Turko, Bojan T. (Moraga, CA)

1995-01-01T23:59:59.000Z

204

EA-1383: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Finding of No Significant Impact 83: Finding of No Significant Impact EA-1383: Finding of No Significant Impact Amendment of Presidential Permit (PP-68) for San Diego Gas and Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230-kV Transmission Line, San Diego, California In order to connect Otay Mesa Generating Project (OMGP) to the existing international transmission facilities, SDG&E proposes to construct a 5-acre switchyard within the fenced boundary of the new powerplant and to construct approximantely 0.1 miles of new 230-kV transmission line extending from the new switchyard to interconnect with the previosuly permitted Miguel-Tijuana transmission line. From the point where OGMP woudl be connected to the existing international transmission line north to

205

Well Completion Report for Well ER-20-11, Corrective Action Units 101 and 102: Central and Western Pahute Mesa  

Science Conference Proceedings (OSTI)

Well ER-20-11 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Management Operations Underground Test Area (UGTA) Activity at the Nevada National Security Site (formerly Nevada Test Site), Nye County, Nevada. The well was drilled in September 2012 as part of the Central and Western Pahute Mesa Corrective Action Unit Phase II drilling program. Well ER-20-11 was constructed to further investigate the nature and extent of radionuclidecontaminated groundwater encountered in two nearby UGTA wells, to help define hydraulic and transport parameters for the contaminated Benham aquifer, and to provide data for the UGTA hydrostratigraphic framework model. The 44.5-centimeter (cm) surface hole was drilled to a depth of 520.0 meters (m) and cased with 34.0-cm casing to 511.5 m. The hole diameter was then decreased to 31.1 cm, and the borehole was drilled to a total depth of 915.6 m. The hole was completed to allow access for hydrologic testing and sampling in the target aquifer, which is a lava-flow aquifer known as the Benham aquifer. The completion casing string, set to the depth of 904.3 m, consists of a string of 6?-inch (in.) stainless-steel casing hanging from a string of 7?-in. carbon-steel casing. The stainless-steel casing has one slotted interval at 796.3 to 903.6 m. One piezometer string was installed, which consists of 2?-in. stainless-steel tubing that hangs from 2?-in. carbon-steel tubing via a crossover sub. This string was landed at 903.8 m and is slotted in the interval 795.3 to 903.1 m. Data collected during and shortly after hole construction include composite drill cuttings samples collected every 3.0 m, various geophysical logs, fluid samples (for groundwater chemistry analysis and tritium measurements), and water-level measurements. The well penetrated 915.6 m of Tertiary volcanic rock, including one saturated lava flow aquifer. Measurements on samples taken from the undeveloped well indicated elevated tritium levels within the Benham aquifer. The maximum tritium level measured with field equipment was 146,131 picocuries per liter from a sample obtained at the depth of 912.0 m. The fluid level was measured in the piezometer string at a depth of 504.5 m on September 26, 2012. All Fluid Management Plan (FMP) requirements for Well ER-20-11 were met. Analysis of monitoring samples and FMP confirmatory samples indicated that fluids generated during drilling at Well ER-20-11 met the FMP criteria for discharge to an unlined sump or designated infiltration area. Well development, hydrologic testing, and sampling will be conducted at a later date.

NSTec Environmental Management

2013-02-27T23:59:59.000Z

206

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

207

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

208

Analyzing auxiliary system in nuclear generating stations  

Science Conference Proceedings (OSTI)

The design for most nuclear generating stations took place before the widespread use of computerized engineering tools. The manual design basis calculations that were performed vary in quantity from only a few feet of shelf space for some of the first stations to bookcases full for stations that are now receiving their operating licenses. Some of the following issues may apply to the manual calculation files of any nuclear station: Errors and lack of detail in hand calculations; Calculations that may not document the required safety functions; Calculations that lag behind the as-built condition of the station; Documentation that does not add up to a coherent whole; and incomplete auditability and traceability of data. The increasing use of computerized tools in nuclear generating station analysis has helped address the hand-calculation problems. The use of a master system model to study various scenarios also ensures that uniform assumptions are being used for all related analyses. This article presents an overview of how computerized tools are being used for both ac and dc auxiliary system calculations. Problems that may be created by the use of these tools are discussed, along with a review of those issues specific to nuclear generating stations.

Jancauskas, J.R. (Gilber/Commonwealth (US))

1992-07-01T23:59:59.000Z

209

Modeling Approach/Strategy for Corrective Action Unit 99: Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1, with ROTC-1  

Science Conference Proceedings (OSTI)

This document describes an approach for preliminary (Phase I) flow and transport modeling for the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU). This modeling will take place before the planned Phase II round of data collection to better identify the remaining data gaps before the fieldwork begins. Because of the geologic complexity, limited number of borings, and large vertical gradients, there is considerable uncertainty in the conceptual model for flow; thus different conceptual models will be evaluated, in addition to different framework and recharge models. The transport simulations will not be used to formally calculate the Contaminant Boundary at this time. The modeling (Phase II) will occur only after the available data are considered sufficient in scope and quality.

Greg Ruskauff

2008-06-01T23:59:59.000Z

210

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

211

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

212

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network (OSTI)

only 18% of existing gas station number is needed to achievean intersection like 4-corner gas stations in real life, butis only 708 or 18% of gas stations in the study region. This

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

213

Schiller Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Station Biomass Facility Station Biomass Facility Jump to: navigation, search Name Schiller Station Biomass Facility Facility Schiller Station Sector Biomass Owner PSNH Location Portsmouth, New Hampshire Coordinates 43.0717552°, -70.7625532° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0717552,"lon":-70.7625532,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA)

snpt3wa371 1,097 9,241 96.2 BWR Columbia Generating Station Unit Type Data for 2010 BWR = Boiling Water Reactor. Note: Totals may not equal sum of components due to ...

215

Precipitation at Ocean Weather Station P"  

Science Conference Proceedings (OSTI)

This paper examines the 27-yr record of precipitation measurements at Ocean Weather Station P (50N, 145W). The credibility of the rainfall observations is assessed, and the testing of certain extraordinary features of the fall and winter ...

M. A. Jenkins; W. C. Wong; K. Higuchi; J. L. Knox

1994-05-01T23:59:59.000Z

216

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

217

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA)

snpt3ks210 1,160 9,556 94.0 PWR Wolf Creek Generating Station Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not ...

218

The FLOWS Automatic Weather Station Network  

Science Conference Proceedings (OSTI)

This report describes in detail the FLOWS (FAA-Lincoln Laboratory Operational Weather Studies) automatic weather station network which is being used in the Terminal Doppler Weather Radar program to assess the radar detectability of wind shear and ...

Marilyn M. Wolfson

1989-04-01T23:59:59.000Z

219

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

220

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

November 10, 2004: First hydrogen refueling station opens in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen...

222

Historical Carbon Dioxide Record from the Siple Station Ice Core  

NLE Websites -- All DOE Office Websites (Extended Search)

Siple Station Ice Core Historical Carbon Dioxide Record from the Siple Station Ice Core graphics Graphics data Data Investigators A. Neftel, H. Friedli, E. Moor, H. Ltscher, H....

223

Access to alternative transportation fuel stations varies across ...  

U.S. Energy Information Administration (EIA)

LNG is typically only used in heavy-duty vehicles. Compared to the number of existing LNG fuel stations, there is a large network of stations planned along ...

224

Energy Department Excepted Personnel, by duty station | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Excepted Personnel, by duty station In the event of a lapse of appropriations, the Energy Department excepted personnel by duty station as of December 14, 2011....

225

Fire and Ice: Failure at a Gas Compressor Station  

Science Conference Proceedings (OSTI)

Abstract Scope, There are more than 1,200 natural gas compressor stations in the United States. Compressor stations are an integral part of gas pipelines since ...

226

Alternative Fueling Station Locator App Provides Info at Your...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find...

227

Trona Injection Tests: Mirant Potomac River Station, Unit 1,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November...

228

Check Out the New Alternative Fuel Station Locator | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

alternative fuel vehicle is now easier than ever. This number includes 4,600 electric vehicle charging stations installed by ChargePoint, Ecotality and other charging station...

229

"1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC...  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" "1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370 "2. PSEG Linden Generating Station","Gas","PSEG Fossil LLC",1587 "3. Bergen Generating...

230

GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC VEHICLE RECHARGING STATIONS GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked whether appropriated funds may be used...

231

EIS-0435: Modification of the Groton Generation Station Interconnectio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota EIS-0435: Modification of the Groton Generation Station Interconnection...

232

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

233

Coal dust exposure among power station workers during normal operations at Hatfield's Ferry Power Station.  

E-Print Network (OSTI)

??Changes in coal composition could produce higher levels of coal dust exposure thanthose found in the past at Hatfield's Ferry Power Station. Air sampling was (more)

Lewis, Christian S.

2008-01-01T23:59:59.000Z

234

Alternative Fuels Data Center: Biodiesel Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Station Locations to someone by E-mail Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Station Locations Find biodiesel (B20 and above) fueling stations near an address or ZIP code

235

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

236

Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1  

Science Conference Proceedings (OSTI)

As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

Greg Ruskauff

2009-02-01T23:59:59.000Z

237

Hydrogen fuel dispensing station for transportation vehicles  

DOE Green Energy (OSTI)

A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1995-07-01T23:59:59.000Z

238

Optimizing Fire Station Locations for the Istanbul Metropolitan Municipality  

Science Conference Proceedings (OSTI)

The Istanbul Metropolitan Municipality IMM seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire stations ... Keywords: fire station location, geographic information system, maximal-covering problem, set-covering problem

Emel Akta?; zay zayd?n; Burin Bozkaya; Fsun lengin; ?ule nsel

2013-05-01T23:59:59.000Z

239

Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)  

DOE Green Energy (OSTI)

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

Not Available

2009-04-01T23:59:59.000Z

240

Hydrogen Fueling - Coming Soon to a Station Near You  

SciTech Connect

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

From Hydrogen Fuel Stations to Bean Counters, NIST Weights ...  

Science Conference Proceedings (OSTI)

From Hydrogen Fuel Stations to Bean Counters, NIST Weights and Measures Works to Meet Market Needs. ...

2010-08-23T23:59:59.000Z

242

Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model  

SciTech Connect

Traveltimes for contaminant transport by water from a point in the unsaturated zone to the saturated zone are a concern at Rainier Mesa and Shoshone Mountain in the Nevada Test Site, Nevada. Where nuclear tests were conducted in the unsaturated zone, contaminants must traverse hundreds of meters of variably saturated rock before they enter the saturated zone in the carbonate rock, where the regional groundwater system has the potential to carry them substantial distances to a location of concern. The unsaturated-zone portion of the contaminant transport path may cause a significant delay, in addition to the time required to travel within the saturated zone, and thus may be important in the overall evaluation of the potential hazard from contamination. Downward contaminant transport through the unsaturated zone occurs through various processes and pathways; this can lead to a broad distribution of contaminant traveltimes, including exceedingly slow and unexpectedly fast extremes. Though the bulk of mobile contaminant arrives between the time-scale end members, the fastest contaminant transport speed, in other words the speed determined by the combination of possible processes and pathways that would bring a measureable quantity of contaminant to the aquifer in the shortest time, carries particular regulatory significance because of its relevance in formulating the most conservative hazard-prevention scenarios. Unsaturated-zone flow is usually modeled as a diffusive process responding to gravity and pressure gradients as mediated by the unsaturated hydraulic properties of the materials traversed. The mathematical formulation of the diffuse-flow concept is known as Richards' equation, which when coupled to a solute transport equation, such as the advection-dispersion equation, provides a framework to simulate contaminant migration in the unsaturated zone. In recent decades awareness has increased that much fluid flow and contaminant transport within the unsaturated zone takes place as preferential flow, faster than would be predicted by the coupled Richards' and advection-dispersion equations with hydraulic properties estimated by traditional means. At present the hydrologic community has not achieved consensus as to whether a modification of Richards' equation, or a fundamentally different formulation, would best quantify preferential flow. Where the fastest contaminant transport speed is what needs to be estimated, there is the possibility of simplification of the evaluation process. One way of doing so is by a two-step process in which the first step is to evaluate whether significant preferential flow and solute transport is possible for the media and conditions of concern. The second step is to carry out (a) a basic Richards' and advection-dispersion equation analysis if it is concluded that preferential flow is not possible or (b) an analysis that considers only the fastest possible preferential-flow processes, if preferential flow is possible. For the preferential-flow situation, a recently published model describable as a Source-Responsive Preferential-Flow (SRPF) model is an easily applied option. This report documents the application of this two-step process to flow through the thick unsaturated zones of Rainier Mesa and Shoshone Mountain in the Nevada Test Site. Application of the SRPF model involves distinguishing between continuous and intermittent water supply to preferential flow paths. At Rainier Mesa and Shoshone Mountain this issue is complicated by the fact that contaminant travel begins at a location deep in the subsurface, where there may be perched water that may or may not act like a continuous supply, depending on such features as the connectedness of fractures and the nature of impeding layers. We have treated this situation by hypothesizing both continuous and intermittent scenarios for contaminant transport to the carbonate aquifer and reporting estimation of the fastest speed for both of these end members.

Brian A. Ebel; John R. Nimmo

2009-09-11T23:59:59.000Z

243

Fire on the mesa: Archaeological investigations at the U19an borrow pit on the Nevada Test Site  

SciTech Connect

In 1984, the Desert Research Institute conducted an archaeological reconnaissance of a proposed borrow pit area known as U19an(bp) on the Nevada Test Site for the Department of Energy, Nevada Field Office. During this reconnaissance, four National Register quality archaeological sites were discovered and recorded as lithic scatter sites 26NY4201-4204. The DRI proposed that these sites should be avoided, or investigated if avoidance was not feasible. Analysis of the surface assemblages from U19an(bp) indicates that this area was used repeatedly over the past several thousand years for domestic activities, resource processing, and hunting. Dispersed lithic reduction stations are also scattered across the area. This report presents findings relevant to several issues that have not been considered in detail in previous archaeological studies of the NTS. Notably, a detailed discussion of the lithic reduction system utilized in the production of chalcedony bifaces is presented. In addition, the role of thermal alteration in local lithic technology is considered and the evidence for thermally fractured artifacts is investigated. The data recovered from U19an(bp) indicate that fire may have played a significant role in local site formation.

Amick, D.S.

1992-12-01T23:59:59.000Z

244

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

245

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

246

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

247

Alternative Fuels Data Center: About the Alternative Fueling Station Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Delicious Rank Alternative Fuels Data Center: About the Alternative Fueling Station Data on Digg Find More places to share Alternative Fuels Data Center: About the Alternative Fueling Station Data on AddThis.com... About the Alternative Fueling Station Data

248

Alternative Fuels Data Center: Alternative Fueling Station Counts by State  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on AddThis.com... Alternative Fueling Station Counts by State

249

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

250

Development of a Renewable Hydrogen Energy Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

251

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

252

Reply to 'Comment by V. M. Krasnov on 'Connterintuitve consequence of heating in strongly-driven intrinsic junctions of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} Mesas.' '  

Science Conference Proceedings (OSTI)

The main criticism raised in the preceding Comment concerns our suggestion that sharp conduction peaks in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} mesas, along with absent dip-hump features, may, in general, be a result of self-heating. The author points to the variety of experimental configurations, matrix-element effects, and doping dependencies that might allow a diversity of conductance spectra. We argue that numerous mesa studies (with fixed matrix elements) firmly establish the systematic development of sharp conductance peaks with increased self-heating, and thus, the issue of nonuniversality of tunneling characteristics is not relevant. The author mentions a number of studies that show that the mesa is superconducting near the conductance peak voltage. This is not in dispute and indicates a misinterpretation of our analysis that is clarified here. To address further comments on the technical details of our heating model, we reiterate that our conclusions are independent of our model but rather are based solely on experimental data that are not in dispute.

Kurter, C.; Ozyuzer, L.; Prolier, T.; Zasadzinski, J. F.; Hinks, D. G.; Gray, K. E. (Materials Science Division); (Illinois Inst. of Tech.); (Izmir Inst. of Tech.)

2011-01-01T23:59:59.000Z

253

Refueling stations for natural gas vehicles  

DOE Green Energy (OSTI)

The unavailability of natural gas vehicle (NGV) refueling stations constitutes one of the major barriers to the wide spread utilization of natural gas in the transportation market. The purpose of this paper is to review and evaluate the current technical and economic status of compressed natural gas vehicle refueling stations and to identify the components or design features that offer the greatest potential for performance improvements and/or cost reductions. Both fast-fill- and slow-fill-type refueling systems will be discussed. 4 refs., 10 figs., 6 tabs.

Blazek, C.F.; Kinast, J.A.; Biederman, R.T.; Jasionowski, W.

1991-01-01T23:59:59.000Z

254

Design of a photovoltaic central power station  

DOE Green Energy (OSTI)

Photovoltaic central power station designs have been developed for both high-efficiency flat-panel arrays and two-axis tracking concentrator arrays. Both designs are based on a site adjacent to the Saguaro Power Station of Arizona Public Service. The plants are 100 MW each, made of 5 MW subfields. The site specific designs allow detailed cost estimate for site preparation, installation, and engineering. These designs are summarized and cost estimates analyzed. Provided also are recommendations for future work to reduce system cost for each plant design.

Not Available

1984-02-01T23:59:59.000Z

255

Report on the reconnaissance resistivity survey in the East Mesa area, Imperial County, California for U. S. Department of the Interior, Bureau of Reclamation  

DOE Green Energy (OSTI)

A section of notes on geothermal exploration using the resistivity method precedes the main body of the paper. Field data from the Broadlands Area of New Zealand, Java, and the Imperial Valley, California are included. The reconnaissance resistivity survey recently completed in the East Mesa Area confirmed that a broad zone of low resistivities at depth extends through the area in a NNW direction. The interpretation of the resistivity data and the location of the resistivity lows at depth is much less definite in the Imperial Valley than it is in other areas of geothermal exploration. This is due to the extremely low background level of resistivities. The low resistivities in the Imperial Valley are due to the high porosity of the sediments and the high salinity of the solutions contained within the rock. The expected decrease in resistivity due to elevated temperature is much more difficult to detect in this environment. Edges of the zones of low resistivities have been delineated in almost all directions. (JGB)

Bell, B.S.; Hallof, P.G.

1974-01-21T23:59:59.000Z

256

ARM's Broadband Radiometer Station (BRS) Data  

DOE Data Explorer (OSTI)

ARM's BRS data contains measurements of broadband shortwave and longwave, downwelling, upwelling, and normal radiation. The Broadband Radiometer Station (BRS) has collected data since 2001. Data Plots can be viewed for the BRS datastream through ARM's Thumbnail Browser. The primary site for BRS data collection is the Southern Great Plains (SGP).

257

The Village Base Station Kurtis Heimerl  

E-Print Network (OSTI)

deployment due to low power requirements that enable local generation via solar or wind; · explicit support. At around 20W, its power consumption is low enough to avoid diesel genera- tors and the corresponding damaging equipment [2]. We propose operating the entire base station on solely wind or solar power, which

California at Berkeley, University of

258

Repowering of the Midland Nuclear Station  

E-Print Network (OSTI)

The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The existing nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create the largest cogeneration facility in the United States. The paper describes the project and the converted facility.

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

1988-09-01T23:59:59.000Z

259

Emergency Management Guideline for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

This EPRI guideline builds on industry experience, including lessons learned during the severe U.S. hurricane seasons of 2004 and 2005, to present a framework for the development of an emergency management program at a generating station. The guideline is specifically intended for fossil plants, although much of the information is relevant to other types of facilities.

2008-03-20T23:59:59.000Z

260

Tritium Time Series from Ocean Station P  

Science Conference Proceedings (OSTI)

We present time series of tritium (3H) concentrations at varying depths in the water column at Ocean Station P(50N, 145W) in the northeast Pacific. Measurements started in the fall of 1974, at the time of the GEOSECS mapping of the North ...

A. E. Gargett; G. Ostlund; C. S. Wong

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

262

Alternative Fuels Data Center: Alternative Fueling Station Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Grant Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Station Grant Program The Alternative Fueling Station Grant Program provides grants of up to

263

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

264

Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Station Air Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fueling Station Air Quality Permit Exemption

265

An Assessment of the Near-Term Costs of Hydrogen Refueling Stations and Station Components  

E-Print Network (OSTI)

evaluating hydrogen production costs and sales prices. ManyTable 3-6: Electricity Production/Control Cost Summary from7: Electricity Production/Control Cost Summary from Stations

Weinert, Jonathan X.; Lipman, Timothy

2006-01-01T23:59:59.000Z

266

Central Station DHC Phase 1 feasibility  

SciTech Connect

This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

Henderson, H.L.

1992-03-01T23:59:59.000Z

267

BIOMASS COGASIFICATION AT POLK POWER STATION  

SciTech Connect

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

268

BIOMASS COGASIFICATION AT POLK POWER STATION  

DOE Green Energy (OSTI)

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

269

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

270

Alternative Fuels Data Center: Access to State Alternative Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to State Access to State Alternative Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Google Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Delicious Rank Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Access to State Alternative Fueling Stations

271

VELO[city] : rethinking the multi-modal urban station  

E-Print Network (OSTI)

Train travel was once integral to the urban condition. Railway stations and rural depots were designed as machines for efficiency and it was within the station that one could escape the chaos of the city to become a part ...

Dickson, Amanda, 1974-

2003-01-01T23:59:59.000Z

272

Definition: Vehicle to Grid Charging Station | Open Energy Information  

Open Energy Info (EERE)

charging station that can also deliver AC power to the utility power system from the DC electricity stored in the plug-in electric vehicle batteries. Such a charging station...

273

Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting  

DOE Green Energy (OSTI)

Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

Melendez, M.; Milbrandt, A.

2008-04-01T23:59:59.000Z

274

Geothermal system saving money at fire station | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

275

Re: Potomac River Generating Station Department of Energy Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Notification of Planned 230kV Outage at Potomac River Generating Station...

276

Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fueling Hydrogen Fueling Station Evaluation to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of

277

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Green Energy (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

2007-06-20T23:59:59.000Z

278

Fossil Generating Station Case Histories 2010  

Science Conference Proceedings (OSTI)

During 2010, EPRI Operations and Management Program managers and contractors collected information on events that have occurred in fossil generating stations. These events represent only a small sample of those being experienced by the power generation industry, but they provide a basis for understanding where actions to improve operations are necessary. Sufficient details have been included for analyzing the events without divulging sources. Recognizing that these reports represent actual events and not...

2010-12-23T23:59:59.000Z

279

Fossil Generating Station Case Histories 2009  

Science Conference Proceedings (OSTI)

In this report, the Electric Power Research Institute (EPRI) has compiled the events and activities that occurred at member fossil generating stations in 2009. The purpose of this report is to share this operating experience with other member utilities so that lessons can be learned and applied to improve overall performance across the generation fleet. The report also includes a summary of findings from plant operations and maintenance assessments that were conducted in 20082009. The focus of these ass...

2009-12-21T23:59:59.000Z

280

Work Management Improvement at Burlington Generating Station  

Science Conference Proceedings (OSTI)

The Work Coordination Process (WCP), developed in an EPRI tailored collaboration effort to upgrade the maintenance program at Burlington Generating Station, is an organized methodology to prepare for and perform preventative and corrective maintenance during both outages and running periods. The coordinating process supports both the need of operational personnel for maximum equipment availability and the need of maintenance personnel for access to plant equipment to ensure maximum reliability.

2001-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Xcel Energy Comanche Station: Pueblo, Colorado (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

282

Environmental impact of HTGR power stations  

SciTech Connect

From ANS topical meeting on gas-cooled reactors: HTGR and GCFBR; Gatlinburg, Tennessee, USA (8 May 1974). The high-temperature gas-cooled reactor power station has all of the potential environmental impacts associated with any large nuclear station. Construction impacts can be minimized by proper planning and are usually of limited duration. The potentially most significant impacts of station operation result from the operation of the heat dissipation system. The use of cooling towers is assumed. The effects of salt deposition, fogging, and icing are expected to be minor. The magnitude of the adverse effects caused by intake and discharge such as entrainment of eggs, larvae, and fish and chemical impacts from blowdown can only be assessed for a specific site but may be signlficant. The impact of radionuclide releases, constrained by the as-low-as- is-practicable criteria, is small. The only potential environmental advantage over other reactor types is lower consumptive water use for the same net electric power production. (auth)

Kelly, M.J.; Kirslis, S.S.; West, R.G.

1974-04-30T23:59:59.000Z

283

Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer typesvolcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in water-level altitudes within any single continuous aquifer range from a few hundred feet in a lower carbonate aquifer to just more than 1,100 feet in a volcanic aquifer. Flow directions throughout the study area are dominantly southward with minor eastward or westward deviations. Primary exceptions are westward flow in the northern part of the volcanic aquifer and eastward flow in the eastern part of the lower carbonate aquifer. Northward flow in the upper and lower carbonate aquifers in the northern part of the study area is possible but cannot be substantiated because data are lacking. Interflow between continuous aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form the regional ground-water flow system. The implications of these tributary flow paths in controlling transport away from the underground test areas at Rainier Mesa and Shoshone Mountain are discussed. The obvious data gaps contributing to uncertainties in the delineation of aquifers and development of water-level contours are identified and evaluated.

Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

2008-06-24T23:59:59.000Z

284

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

285

Distributed optimal dynamic base station positioning in wireless sensor networks  

Science Conference Proceedings (OSTI)

Base station (BS) positioning is an effective method for improving the performance of wireless sensor networks (WSNs). A metric-aware optimal BS positioning and relocation mechanism for WSNs is proposed. This technique locates the BS with respect to ... Keywords: Base station placement, Base station relocation, Least-squares optimization, Wireless sensor networks

P. D. Hossein Zadeh; C. Schlegel; M. H. MacGregor

2012-01-01T23:59:59.000Z

286

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

287

On construction sequence optimization of cascaded hydroelectric stations  

Science Conference Proceedings (OSTI)

In basin planning, many hydroelectric stations are to be constructed in a river in order to develop the water energy cascadedly. If there were no constraints on financial resources, material resources, and manpower, all the stations would be constructed ... Keywords: algorithm, hydroelectric station, optimization, profits

Xingming Sun; Huowang Chen; Jianping Yin; Xinhai Jin; Aiming Yang; Changyun Li

2002-01-01T23:59:59.000Z

288

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)  

DOE Green Energy (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

Not Available

2012-04-01T23:59:59.000Z

289

Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution  

E-Print Network (OSTI)

Gasoline Stations Gas Station Density (/km 2 ) Trucks Figurepopulation density or gas station density) to grid spacingstations). Distance (this is particularly important for compressed gas

Yang, Christopher; Nicholas, Michael A; Ogden, Joan M

2006-01-01T23:59:59.000Z

290

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

Refueling Stations Incentives Refueling Stations Incentives Jump to: navigation, search The following contains the list of 6 Refueling Stations Incentives. CSV (rows 1 - 6) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle and Refueling - Corporate Tax Credit (Colorado) Corporate Tax Credit Colorado Commercial Renewable Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels

291

Procedural guide for the design of transit stations and terminals  

DOE Green Energy (OSTI)

State-of-the-art concepts regarding the planning, design, and evaluation of passenger transportation stations are discussed. The material directs transportation planning teams to search for efficient station designs. The important stages and considerations in a comprehensive terminal analysis methodology are described. The transit station design process requires contributions from many disciplines and skills. The report given will help coordinate station development programs in accommodating inputs from the disciplines, and it highlights the elements of different stations to assure valid comparisons relative to performance and cost criteria.

Demetsky, M.J.; Hoel, L.A.; Virkler, M.R.

1977-06-01T23:59:59.000Z

292

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Alternative Fueling Station Locator App Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

293

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

294

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

295

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

296

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

297

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicle Recharging Stations Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs. In addition, lab contractors may install electric vehicle recharging

298

DOE Hydrogen Analysis Repository: Hydrogen Fueling Station Economics Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Fueling Station Economics Model Fueling Station Economics Model Project Summary Full Title: Hydrogen Fueling Station Economics Model Project ID: 193 Principal Investigator: Bill Liss Brief Description: The Gas Technology Institute developed a hydrogen fueling station economics model as part of their project to develop a natural gas to hydrogen fuel station. Keywords: Compressed gas; vehicle; refueling station; cost; natural gas Purpose Calculate hydrogen fueling station costs, including capital, operating, and maintenance costs. Performer Principal Investigator: Bill Liss Organization: Gas Technology Institute Address: 1700 South Mount Prospect Road Des Plains, IL 60018-1804 Telephone: 847-768-0530 Email: william.liss@gastechnology.org Project Description Type of Project: Model Category: Hydrogen Fuel Pathways

299

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

300

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

302

DOE Issues Guidance on Electric Vehicle Recharging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations DOE Issues Guidance on Electric Vehicle Recharging Stations September 6, 2011 - 4:28pm Addthis The U.S. Department of Energy recently issued guidance to its national laboratory management and operating (M&O) contractors on the installation and operation of electric vehicle recharging stations at lab facilities. The guidance explains that lab contractors wishing to install electric vehicle recharging stations or make such stations available to employees and visitors have several options. Lab contractors may install such stations and seek reimbursement from the Department for their use to the extent such installation or use is reasonably required to meet fleet vehicle or demonstration project needs.

303

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations

304

Southeast regional experiment station. Final report  

DOE Green Energy (OSTI)

This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

Not Available

1994-08-05T23:59:59.000Z

305

Final MTI Data Report: Pilgrim Nuclear Station  

Science Conference Proceedings (OSTI)

During the period from May 2000 to September 2001, ocean surface water temperature data was collected at the Pilgrim Nuclear Power Station near Plymouth, MA. This effort was led by the Savannah River Technology Center (SRTC) with the assistance of a local sub-contractor, Marine BioControl Corporation of Sandwich, MA. Permission for setting up the monitoring system was granted by Energy Corporation, which owns the plant site. This work was done in support of SRTC's ground truth mission for the U.S. Department of Energy's Multispectral Thermal Imager (MTI) satellite.

Parker, M.J.

2003-03-17T23:59:59.000Z

306

Case Study: Darlington Nuclear Generating Station  

Science Conference Proceedings (OSTI)

Darlington is a four-reactor nuclear plant east of Toronto. It is operated by Ontario Hydro. Each reactor has two independent shutdown systems: SDS1 drops neutron-absorbing rods into the core, while SDS2 injects liquid poison into the moderator. Both ... Keywords: Atomic Energy Control Board of Canada, Canada, Darlington nuclear generating station, Ontario Hydro, case study, certification, code quality, decision-making logic, documentation, fission reactor core control and monitoring, fission reactor safety, formal methods, formal model-based inspection, formal specification, licensing, liquid poison injection, neutron-absorbing rods, nuclear engineering computing, nuclear plant, safety, safety-critical systems, software driven shutdown systems, software reliability, specifications

Dan Craigen; Susan Gerhart; Ted Ralston

1994-01-01T23:59:59.000Z

307

Visible/infrared radiometric calibration station  

Science Conference Proceedings (OSTI)

We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W. [Los Alamos National Lab., NM (United States); O`Brian, T.R. [National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Radiometric Physics Div.

1994-07-01T23:59:59.000Z

308

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

Waste heat rejection systems for geothermal power stations have a significantly greater influence on plant operating performances and costs than do corresponding systems in fossil- and nuclear-fueled stations. With thermal efficiencies of only about 10%, geothermal power cycles can reject four times as much heat per kilowatt of output. Geothermal sites in the United States tend to be in water-short areas that could require use of more expensive wet/dry or dry-type cooling towers. With relatively low-temperature heat sources, the cycle economics are more sensitive to diurnal and seasonal variations in sink temperatures. Factors such as the necessity for hydrogen sulfide scrubbers in off-gas systems or the need to treat cooling tower blowdown before reinjection can add to the cost and complexity of goethermal waste heat rejection systems. Working fluids most commonly considered for geothermal cycles are water, ammonia, Freon-22, isobutane, and isopentane. Both low-level and barometric-leg direct-contact condensers are used, and reinforced concrete has been proposed for condenser vessels. Multipass surface condensers also have wide application. Corrosion problems at some locations have led to increased interest in titanium tubing. Studies at ORNL indicate that fluted vertical tubes can enhance condensing film coefficients by factors of 4 to 7.

Robertson, R C

1979-01-01T23:59:59.000Z

309

Physics Research on the International Space Station  

E-Print Network (OSTI)

The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESAs (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

CERN. Geneva

2012-01-01T23:59:59.000Z

310

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

311

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

Robertson, R.C.

1978-12-01T23:59:59.000Z

312

Definition: Electric Vehicle Charging Station | Open Energy Information  

Open Energy Info (EERE)

Vehicle Charging Station Vehicle Charging Station Jump to: navigation, search Dictionary.png Electric Vehicle Charging Station An electric vehicle charging station that uses communications technology to enable it to intelligently integrate two-way power flow enabling electric vehicle batteries to become a useful utility asset.[1] View on Wikipedia Wikipedia Definition An electric vehicle charging station, also called EV charging station, electric recharging point, charging point and EVSE (Electric Vehicle Supply Equipment), is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles, including all-electric cars, neighborhood electric vehicles and plug-in hybrids. As plug-in hybrid electric vehicles and battery electric vehicle ownership is

313

Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Google Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Delicious Rank Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Digg

314

Resilient design of recharging station networks for electric transportation vehicles  

DOE Green Energy (OSTI)

As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

2011-08-01T23:59:59.000Z

315

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

316

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

317

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

318

Unique portable signal acquisition/processing station  

SciTech Connect

At Lawrence Livermore National Laboratory, there are experimental applications requiring digital signal acquisition as well as data reduction and analysis. A prototype Signal Acquisition/Processing Station (SAPS) has been constructed and is currently undergoing tests. The system employs an LSI-11/23 computer with Data Translation analog-to-digital hardware. SAPS is housed in a roll-around cart which has been designed to withstand most subtle EMI/RFI environments. A user-friendly menu allows a user to access powerful data acquisition packages with a minimum of training. The software architecture of SAPS involves two operating systems, each being transparent to the user. Since this is a general purpose workstation with several units being utilized, an emphasis on low cost, reliability, and maintenance was stressed during conception and design. The system is targeted for mid-range frequency data acquisition; between a data logger and a transient digitizer.

Garron, R.D.; Azevedo, S.G.

1983-05-16T23:59:59.000Z

319

Oconee Nuclear Station Enclosures (see next page)  

E-Print Network (OSTI)

Energy Carolinas, LLC, (Duke) hereby submits an application for renewal of the Oconee Nuclear Station (ONS), Site-Specific Independent Spent Fuel Storage Installation (ISFSI) license. The current license expires on January 31, 2010. Based on the expected duration of the ONS 'plant licenses and the estimated time needed to remove the storage casks from the site, Duke is requesting a license renewal period of 40 years. An exemption request to support the license renewal period is provided as Enclosure 2. The application for renewal of the Site-Specific ISFSI license, Enclosure 3, was prepared in accordance with applicable provisions of 10 CFR 72, Subpart B, and the Preliminary NRC Staff Guidance for 10 CFR 72 License Renewal. A list of the regulatory commitments associated with this submittal is provided as Enclosure 4. The

Dave Baxter; Duke Energy Corporation; Pursuant To Cfr; Duke Power; Company Llc Duke

2008-01-01T23:59:59.000Z

320

Illinois Nuclear Profile - LaSalle Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

322

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

323

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

324

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

325

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

326

Quantifying Consumer Sensitivity to Hydrogen Refueling Station Coverage (Presentation)  

DOE Green Energy (OSTI)

This presentation by Cory Welch at the 2007 DOE Hydrogen Program Annual Merit Review Meeting focuses on consumer sensitivity to hydrogen refueling station coverage.

Welch, C.

2007-05-17T23:59:59.000Z

327

Microgrid V2G Charging Station Interconnection Testing (Presentation)  

Science Conference Proceedings (OSTI)

This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

Simpson, M.

2013-07-01T23:59:59.000Z

328

NATURAL HERITAGE MESA COUNTY, COLORADO  

E-Print Network (OSTI)

of Biological Sciences, the American Association for the Advancement of Science, the British Ecological Society- struction of the Trans-Alaska Pipeline for the Alaskan Resource Sciences Corporation from 1975 to 1977. From at Columbia University in 1972, engaged in postdoctoral research in 1973, and was a guest scientist

329

Uncompahgre Mesas Forest Restoration Project  

E-Print Network (OSTI)

't a wham-bam thing." The slow pace of collaboration, and its cycling back over time is challenging for some

330

Final environmental assessment for vegetation control at VHF stations, microwave stations, electrical substations, and pole yards  

Science Conference Proceedings (OSTI)

Southwestern Power Adm. operates very high frequency (VHF) and microwave radio stations, electrical substations, and pole yards for electric power transmission throughout AR, MO, and OK. Vegetation growth at the stations must be suppressed for safety of operation and personnel. Southwestern has been using a combination of mechanical/manual and herbicide control for this purpose; Federally- mandated reductions in staff and budgetary resources require Southwestern to evaluate all potentially efficient methods for vegetation control. Three alternatives were examined: no action, mechanical/manual control, and (proposed) a combination of mechanical/manual and herbicide control. Environmental impacts on air and water quality, wetlands, wildlife, endangered species, archaeological and other resources, farmland, human health, transportation, etc. were evaluated.

NONE

1995-10-13T23:59:59.000Z

331

Project X Energy Station Workshop Report. Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop  

SciTech Connect

Project X Energy Station Workshop Report Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

Asner, David M.; Hurh, Patrick; Brady Raap, Michaele C.; Gohar, Yoursy; Peterson, Mary E.; Pithcer, Eric; Riemer, Bernie; Senor, David J.; Wootan, David W.

2013-06-14T23:59:59.000Z

332

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

333

Research on Site Selection for Urban Compressed Natural Gas Station  

Science Conference Proceedings (OSTI)

By using basic principle of Quality Function Deployment (QFD) methodology, this article tries to make the site selection for urban CNG station as a design of new product, firstly Considers the requirements of different participants systematically, secondly ... Keywords: CNG station, location planning, Quality Function Deployment (QFD), House of Quality (HOQ)

Liang Tao; Li Qingsong; Zhang Xuejin

2010-05-01T23:59:59.000Z

334

Radio Interference From HVDC Converter Stations, Modeling and Characterization  

Science Conference Proceedings (OSTI)

High-voltage direct-current converter stations generate electromagnetic interference (EMI) that can affect the performance of nearby electronic equipment. A prototype computer program that calculates EMI characteristics in the 5-500-kHz range will enable utility engineers to determine the extent of such interference during the design stage of a converter station.

1986-12-16T23:59:59.000Z

335

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

336

EIS-0435: Modification of the Groton Generation Station Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Modification of the Groton Generation Station 5: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota Summary This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 3, 2011 EIS-0435: Final Environmental Impact Statement

337

College Station Utilities - Residential Energy Back II Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

College Station Utilities - Residential Energy Back II Rebate College Station Utilities - Residential Energy Back II Rebate Program College Station Utilities - Residential Energy Back II Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central A/C, Heat Pumps: $200 - $600, varies by efficiency rating Provider College Station Utilities College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. To qualify for the rebate, the A/C system must be a minimum of 14 SEER or higher. Both the evaporator coil (inside unit) and the condensing unit (outside unit) must be replaced as a matching system as rated in the

338

Washington DC's First Electric Vehicle Charging Station | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station Washington DC's First Electric Vehicle Charging Station November 17, 2010 - 11:28am Addthis Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Street signage for Washington, DC's first electric vehicle charging station located on the northwest corner of the intersection of U and 14th streets. | Department of Energy Photo | Shannon Brescher Shea Communications Manager, Clean Cities Program It's always exciting to attend a grand opening, especially when it represents a "first" for an entire region. Yesterday, the U.S. Department of Energy and the city of Washington, DC joined together to

339

EV Charging Stations Take Off Across America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America EV Charging Stations Take Off Across America November 19, 2012 - 12:14pm Addthis This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager ChargePoint America Program deployed chargers in: Boston, MA Bellevue and Redmond, WA Sacramento, CA San Jose and San Francisco Bay Area

340

Orlando Plugs into Electric Vehicle Charging Stations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations Orlando Plugs into Electric Vehicle Charging Stations September 8, 2010 - 2:00pm Addthis Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Nearly 300 electric vehicle charging stations are scheduled to be available throughout the Orlando area next year. File photo Lindsay Gsell What are the key facts? Coulomb highlighted in the Vice President's report on 100 Recovery Act Projects That Are Changing America Orlando will receive nearly 300 electric vehicle charging systems. 1 of 9 cities receiving charging systems from Coulomb-$15 million in Recovery Act funding. This scene is closer to reality as Orlando, Fla., prepares to get nearly

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A computer program for HVDC converter station RF noise calculations  

SciTech Connect

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

342

Compression station key to Texas pipeline project  

SciTech Connect

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

343

Irradiation Environment of the Materials Test Station  

SciTech Connect

Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

Pitcher, Eric John [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

344

Solar-Assisted Electric Vehicle Charging Station Interim Report  

DOE Green Energy (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

345

OPTIMIZING PERFORMANCE OF THE HESKETT STATION  

SciTech Connect

The overall conclusion from this work is that a switch from river sand bed material to limestone at the R.M. Heskett Station would provide substantial benefits to MDU. A switch to limestone would increase the fuel flexibility of the unit, allowing fuels higher in both sodium and sulfur to be burned. The limestone bed can tolerate a much higher buildup of sodium in the bed without agglomeration, allowing either the bed turnover rate to be reduced to half the current sand feed rate for a fuel with equivalent sodium or allow a higher sodium fuel to be burned with limestone feed rates equivalent to the current sand feed rate. Both stack and ambient SO{sub 2} emissions can be controlled. A small improvement in boiler efficiency should be achievable by operating at lower excess oxygen levels at low load. This reduction in oxygen will also lower NO{sub x} emissions, providing a margin of safety for meeting emission standards. No detrimental effects of using limestone at the Heskett Station were uncovered as a result of the test burn. Some specific conclusions from this work include the following: The bed material feed rate can be reduced from the current rate of 5.4% of the coal feed rate (57.4 tons of sand/day) to 2.5% of the coal feed rate (27 tons of limestone/day). This will result in an annual savings of approximately $200,000. (1) SO{sub 2} emissions at the recommended feed rate would be approximately 250 ppm (0.82 lb/MMBtu) using a similar lignite. Based on the cost of the limestones, SO{sub 2} allowances could be generated at a cost of $60/ton SO{sub 2} , leaving a large profit margin for the sale of allowances. The addition of limestone at the same rate currently used for sand feed could generate $455,000 net income if allowances are sold at $200/ton SO2 . (2) At full-load operation, unburned carbon losses increase significantly at excess oxygen levels below 2.8%. No efficiency gains are expected at high-load operation by switching from sand to limestone. By reducing the oxygen level at low load to 8.5%, an efficiency gain of approximately 1.2% could be realized, equating to $25,000 to $30,000 in annual savings. (3) A reduction of 25 tons/day total ash (bed material plus fly ash) will be realized by using limestone at the recommended feed rate compared to the current sand feed rate. No measurable change in volume would be realized because of the lower bulk density of the limestone-derived material.

Michael D. Mann; Ann K. Henderson

1999-03-01T23:59:59.000Z

346

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

347

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

348

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

349

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

350

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

351

U.S. Liquefied Natural Gas Exports to Spain  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

352

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

353

U.S. Natural Gas Exports to Chile  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

354

U.S. Liquefied Natural Gas Exports To Brazil  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

355

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

356

Southwest Region Experiment Station 1988 report  

DOE Green Energy (OSTI)

The highlights of tasks performed during 1988 by staff members at the Southwest Region Experiment Station (SWRES) are summarized in this report. During 1988, our staff tested and evaluated photovoltaic systems, designed hardware for data acquisition systems, developed software for data analysis, and demonstrated the uses of Photovoltaics (PVs) to the public. Field evaluations of stand-alone and grid-connected systems were a major project for the SWRES in 1988. The goal was to determine the reliability of PV systems, to identify degradation trends, and to recommend solutions to problems. In 1988, the SWRES staff visited 7 sites and tested and evaluated 11 PV systems. Four of the seven tests were paid for under the DOE contract, the balance paid for by private companies or agencies. They were about 7200 crystalline and 2200 amorphous silicon (a-Si) modules tested in 1988. Forty-eight crystalline modules were nonproducing; thirty-nine of them in the Georgetown array. Some problems with the a-Si modules were found. However, the significance of these various failures is hard to determine. The failures are hard to categorize because of the differences in this newer technology. The system ratings determined by the SWRES continue to be lower than the commonly referenced number. Georgetown is the worst example--being rated at 210 kW compared to the 300kW value used to describe the system. Testing results from other systems show system rating 5 to 15 percent below nameplate. The system testing performed by the SWRES show that module failures rates for crystalline modules is lower than 2/10,000 per year including the high number of failures at Georgetown. For systems that have been operating over seven years, it is still difficult to pinpoint any degradation trend in year to year performance. 23 figs., 2 tabs.

Not Available

1989-05-01T23:59:59.000Z

357

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

358

Mount Kenya Global Atmosphere Watch Station (MKN): Installation and Meteorological Characterization  

Science Conference Proceedings (OSTI)

The meteorological conditions at the Mount Kenya (station identifier MKN) tropical Global Atmosphere Watch Programme station are described. Like other stations in mountainous terrain, the site experiences thermally induced wind systems that ...

Stephan Henne; Wolfgang Junkermann; Josiah M. Kariuki; John Aseyo; Jrg Klausen

2008-11-01T23:59:59.000Z

359

Environmental Assessments (EA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2002 1, 2002 EA-1402: Final Environmental Assessment Methane Energy and Agricultural Development Port of Tillamook Bay Dairy Digester Project, Tillamook County, Oregon December 12, 2001 EA-1321: Final Environmental Assessment Proposed Upgrade and Improvement of The National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York December 5, 2001 EA-1391: Final Environmental Assessment Environmental Assessment for Presidential Permit Applications for Baja California, Inc. and Sempra Energy Resources September 30, 2001 EA-1383: Final Environmental Assessment Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California

360

Technical evaluation of the adequacy of station electric distribution system voltages for the Yankee Rowe Nuclear Power Station  

SciTech Connect

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Yankee Rowe Nuclear Power Station. The evaluation is to determine if the onsite distribution system, in conjunction with the offsite power sources, has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analysis shows that the station electric distribution system has the capacity and capability to supply voltage to the Class 1E equipment with their design ratings for the worst case loading condition.

Selan, J.C.

1981-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

362

Genesee Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Station Biomass Facility Power Station Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMS/Fortistar Location Flint, Michigan Coordinates 43.0125274°, -83.6874562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0125274,"lon":-83.6874562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Richmond Field Station Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Richmond Field Station Tow Tank Richmond Field Station Tow Tank Jump to: navigation, search Basic Specifications Facility Name Richmond Field Station Tow Tank Overseeing Organization University of California, Berkeley Hydrodynamic Testing Facility Type Tow Tank Length(m) 67.0 Beam(m) 2.4 Depth(m) 1.7 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Glass observation station, suitable for optical access Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 5 Length of Effective Tow(m) 50.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Length(m) 2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Waveform can be programmed Wave Direction Both

364

Boralex Chateaugay Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Boralex Chateaugay Power Station Biomass Facility Boralex Chateaugay Power Station Biomass Facility Jump to: navigation, search Name Boralex Chateaugay Power Station Biomass Facility Facility Boralex Chateaugay Power Station Sector Biomass Location Franklin County, New York Coordinates 44.5926135°, -74.3387798° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5926135,"lon":-74.3387798,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Ottawa Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Generating Station Biomass Facility Generating Station Biomass Facility Jump to: navigation, search Name Ottawa Generating Station Biomass Facility Facility Ottawa Generating Station Sector Biomass Facility Type Landfill Gas Location Ottawa County, Michigan Coordinates 42.953023°, -86.0937312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.953023,"lon":-86.0937312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Find Alternative Fueling Stations and Learn Something, Too | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too July 20, 2009 - 7:00pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory A couple of weeks ago it was hybrid electric vehicle week and, always one to be fashionably late, I thought I'd jump in and talk about some of our fun vehicle-related tools. It's probably pretty obvious from the sorts of posts I've done in the past, but I love interactive tools and applications on the Web. EERE has a number of interesting applications and gadgets, and today I thought I'd talk about a few hiding in the Alternative Fuels and Advanced Vehicles Data Center (hereafter referred to as the AFDC.) First off: the Alternative Fueling Station Locator (also available for

369

NREL: News - NREL Developed Mobile App for Alternative Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. The Alternative Fueling Station Locator App, now available through Apple's App Store, allows iPhone users to select an alternative fuel and

370

Elk City Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Elk City Station Biomass Facility Elk City Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas County, Nebraska Coordinates 41.3148116°, -96.195132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3148116,"lon":-96.195132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

372

Genesee Power Station LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Genesee Power Station LP Biomass Facility Genesee Power Station LP Biomass Facility Jump to: navigation, search Name Genesee Power Station LP Biomass Facility Facility Genesee Power Station LP Sector Biomass Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Brent Run Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brent Run Generating Station Biomass Facility Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Penrose Power Station Biomass Facility Penrose Power Station Biomass Facility Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

377

Archbald Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Archbald Power Station Biomass Facility Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type Landfill Gas Location Lackawanna County, Pennsylvania Coordinates 41.4421199°, -75.5742467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4421199,"lon":-75.5742467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Peoples Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Peoples Generating Station Biomass Facility Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Extended Edited Synoptic Cloud Reports from Ships and Land Stations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-2009 (NDP-026C) Data graphic Data Files PDF graphic Original NDP-026C Documentation PDF...

380

Cloud Climatology for Land Stations Worldwide, 1971-1996 (NDP...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud Climatology for Land Stations Worldwide, 1971-2009 (NDP-026D) PDF Original Documentation File (2003) PDF Documentation Update (2012) data Data (NDP-026D) (Original date of...

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Re: Potomac River Generating Station Department of Energy, Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for...

382

Real-Time Precipitation Estimation Based on Index Station Percentiles  

Science Conference Proceedings (OSTI)

Operational hydrologic models are typically calibrated using meteorological inputs derived from retrospective station data that are commonly not available in real time. Inconsistencies between the calibration and (generally sparser) real-time ...

Qiuhong Tang; Andrew W. Wood; Dennis P. Lettenmaier

2009-02-01T23:59:59.000Z

383

Re: Potomac River Generating Station Department of Energy Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No....

384

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Range (kg/day) 1. Steam methane reformer 2. Electrolyzer,Methane Reformer, 100 2. Steam Methane Reformer, 1000 3.100 # of stations 1. Steam Methane Reformer 2. Steam Methane

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

385

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Range (kg/day) 1. Steam methane reformer 2. Electrolyzer,Methane Reformer, 100 2. Steam Methane Reformer, 1000 3.100 # of stations 1. Steam Methane Reformer 2. Steam Methane

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

386

Waiting for TOD : developing in the Millbrae BART Station Area  

E-Print Network (OSTI)

The suburban terminus station dedicates large amounts of land for parking in order to cater to its driving riders, and causes a trade-off tension between attracting ridership through providing park-and-rides and building ...

Shih, Janet Wei

2012-01-01T23:59:59.000Z

387

DOE - Office of Legacy Management -- Grants AEC Ore Buying Station...  

Office of Legacy Management (LM)

Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and...

388

DOE - Office of Legacy Management -- Moab AEC Ore Buying Station...  

Office of Legacy Management (LM)

Survey(s): Site Status: The history of domestic uranium procurement under U.S. Atomic Energy Commission (AEC) contracts identifies a number of ore buying stations (sampling and...

389

Monitoring Free-Water Evaporation at Automated Weather Stations  

Science Conference Proceedings (OSTI)

The automation of weather stations necessitates an alternative approach to the traditional manual measure of free-water evaporation made using a class A pan. This study compared commercially available water-level sensing transducers mounted on ...

S. M. McGinn; H. D. J. McLean

1995-12-01T23:59:59.000Z

390

Determination of Radiosonde Station Elevation from Observational Data  

Science Conference Proceedings (OSTI)

Correct radiosonde station elevation (balloon release height) is important in quality control of radiosonde soundings. Incorrect heights introduce errors in calculated temperature trends and numerical forecasts. Radiosonde metadata frequently ...

Oleg A. Alduchov; Robert E. Eskridge

2002-04-01T23:59:59.000Z

391

Climatic Variability at Ten Stations Across the United States  

Science Conference Proceedings (OSTI)

Ten stations are chosen for a study of climatic variability in the continental United States, using as the main criteria good geographical distribution, long-period records (since before 1900), and available daily, monthly and annual values of ...

Kevin C. Vining; John F. Griffiths

1985-04-01T23:59:59.000Z

392

A voice enabled procedure browser for the International Space Station  

Science Conference Proceedings (OSTI)

Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and ...

Manny Rayner; Beth Ann Hockey; Nikos Chatzichrisafis; Kim Farrell; Jean-Michel Renders

2005-06-01T23:59:59.000Z

393

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

394

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

395

Development of a Turnkey Hydrogen Fueling Station Final Report  

Science Conference Proceedings (OSTI)

The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

2010-07-29T23:59:59.000Z

396

Property:NumberOfMeasuringStations | Open Energy Information  

Open Energy Info (EERE)

Property Edit with form History Facebook icon Twitter icon Property:NumberOfMeasuringStations Jump to: navigation, search This is a property of type Number. Pages using the...

397

Fuel Station of the Future- Innovative Approach to Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same...

398

Police Station Triples Solar Power - and Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city’s electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Stephen Graff Former Writer & editor for Energy Empowers, EERE The Henderson, Nev., police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy

399

Toyon Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Toyon Power Station Biomass Facility Toyon Power Station Biomass Facility Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Discontinuities due to Joining Precipitation Station Observations in Canada  

Science Conference Proceedings (OSTI)

When a climatological station is relocated or is closing, it is often possible to join the climate observations of a nearby site to create a longer time series. However, joining climate observations can sometimes introduce artificial ...

Lucie A. Vincent; Eva Mekis

2009-01-01T23:59:59.000Z

402

Department of Energy Helping Americans Find Alternative Fuel Stations |  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Helping Americans Find Alternative Fuel Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information available online in a variety of formats, including web applications, mobile applications, widgets, APIs, and raw data files on the Alternative Fuels Data Center (AFDC) site. These tools enable users to leverage the data to find fuel stations, post custom fueling location maps on their own websites, or access data for web

403

Shift Turnover and Log Keeping for Fossil Generating Stations  

Science Conference Proceedings (OSTI)

Decreases in staff productivity, lost generation, and adverse events are occurring in the industry as a result of less-than-effective communication during shift turnovers and log-keeping practices that do not provide sufficient information on plant and equipment status. The shift turnover and log-keeping practices observed at numerous fossil generating stations vary between best in the industry to ineffective, and most stations have had equipment failures and lost efficiencies as a result of less-than-ef...

2010-12-19T23:59:59.000Z

404

Large Optic Drying Station: Summary of Dryer Certification Tests  

SciTech Connect

The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

Barbee, T W; Ayers, S L; Ayers, M J

2009-08-28T23:59:59.000Z

405

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

of first-generation electric cars. Although shared use isfor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

406

Offshore Wind Plant Balance-of-Station Cost Drivers and Sensitivities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivities OFFSHORE WIND PLANT BALANCE-OF-STATION COST DRIVERS AND SENSITIVITIES OFFSHORE WIND PLANT BALANCE-OF-STATION COST DRIVERS AND SENSITIVITIES G. Saur, B. Maples, B....

407

The Half-Mile Circle: Does It Best Represent Transit Station Catchments?  

E-Print Network (OSTI)

from Light-Rail Transit Stations. In Transportation Researchof rail transit accessibility. In Transportation Researchrail station boardings in the United States. In Transportation Research

Guerra, Erick; Cervero, Robert; Tischler, Daniel

2011-01-01T23:59:59.000Z

408

The Half-Mile Circle: Does It Represent Transit Station Catchments?  

E-Print Network (OSTI)

from Light-Rail Transit Stations. In Transportation Researchof rail transit accessibility. In Transportation Researchrail station boardings in the United States. In Transportation Research

Guerra, Erick; Cervero, Robert; Tischler, Daniel

2011-01-01T23:59:59.000Z

409

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

of first- generation electric cars. While shared use is thefor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

410

U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth  

E-Print Network (OSTI)

3. Shaheen, S. A . Pooled Cars. Access Magazine. UniversityCarsharing, Station Cars, and Combined Approaches. InMandate: Linking Clean-Fuel Cars, Carsharing, and Station

Shaheen, Susan

2004-01-01T23:59:59.000Z

411

U.S. Carsharing & Station Car Policy Considerations: Monitoring Growth, Trends & Overall Impacts  

E-Print Network (OSTI)

Carsharing, Station Cars, and Combined Approaches. InYear Travel Demand and Car Ownership Impacts. Submitted tofor Carsharing and Station Car Growth. Paper No. 03-4469. In

Shaheen, Susan

2004-01-01T23:59:59.000Z

412

Microclimate Exposures of Surface-Based Weather Stations: Implications For The Assessment of Long-Term Temperature Trends  

Science Conference Proceedings (OSTI)

The U.S. Historical Climate Network is a subset of surface weather observation stations selected from the National Weather Service cooperative station network. The criteria used to select these stations do not sufficiently address station ...

Christopher A. Davey; Roger A. Pielke Sr.

2005-04-01T23:59:59.000Z

413

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

414

Audio-magnetotelluric station location map Breitenbush Known Geothermal Resource Area, Oregon  

DOE Green Energy (OSTI)

Telluric profiles and audio-magnetotelluric data logs are presented for various frequencies and stations. (MHR)

Senterfit, R.M.; Long, C.L.

1976-01-01T23:59:59.000Z

415

ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction  

DOE Data Explorer (OSTI)

Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

Tom Stoffel; Bev Kay; Aron Habte; Mary Anderberg; Mark Kutchenreiter

416

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings  

E-Print Network (OSTI)

Control system for the turbomolecular pumping stations and sector valves of the CERN Intersecting Storage Rings

Grbner, Oswald

1971-01-01T23:59:59.000Z

417

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings  

E-Print Network (OSTI)

Adjudication Concerning the Turbomolecular Pumping Stations for the Vacuum System of the Intersecting Storage Rings

1968-01-01T23:59:59.000Z

418

First Report of Nectria galligena Causing European Canker of Apple Trees in Ontario. A. R. Biggs, Agriculture Canada Research Station, Vineland Station, Ontario LOR 2EO. Plant  

E-Print Network (OSTI)

First Report of Nectria galligena Causing European Canker of Apple Trees in Ontario. A. R. Biggs, Agriculture Canada Research Station, Vineland Station, Ontario LOR 2EO. Plant Disease 69:1007, 1985. Accepted

Biggs, Alan R.

419

Energy Office Grant Helps the Virgin Islands Environmental Resource Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Grant Helps the Virgin Islands Environmental Resource Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station, the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. 54376.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future

420

Geothermal system saving money at fire station | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal heating and cooling system has enabled the substation to save taxpayers $15,000 annually when compared to a traditional system. The high temperature of the treatment building's water helps reduce the amount of energy needed to heat water in the substation. An environmentally friendly geothermal heating and cooling system in Pennsylvania will save taxpayers $15,000 a year as part of a new fire substation that will decrease emergency response times. The Alpha Fire Co. celebrated the opening of substation on the ground floor of the College Township municipal building earlier this year in State

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE - Office of Legacy Management -- Norfolk Naval Station - VA 05  

NLE Websites -- All DOE Office Websites (Extended Search)

Norfolk Naval Station - VA 05 Norfolk Naval Station - VA 05 FUSRAP Considered Sites Site: NORFOLK NAVAL STATION (VA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Norfolk , Virginia VA.05-1 Evaluation Year: 1993 VA.05-1 Site Operations: Demonstration of extinguishing a uranium fire at the Fire Fighters School for AEC contractors. VA.05-3 VA.05-2 Site Disposition: Eliminated - Potential for contamination considered remote based on the limited quantity of materials handled VA.05-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium VA.05-2 Radiological Survey(s): Yes - Health and Safety Monitoring during operations only VA.05-2 Site Status: Eliminated from consideration under FUSRAP

422

NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of Homeland Security's (DHS) National Protection and Programs Directorate contacted the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the locations of federally owned fueling infrastructure in

423

EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Antelope Valley Station to Neset Transmission Project, 8: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billngs, Williams, McKenzie, and Mountrail Counties, ND SUMMARY USDA Rural Utilities Service is preparing this EIS to evaluate the environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE's Western Area Power Administration (WAPA), a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western's transmission system. PUBLIC COMMENT OPPORTUNITIES No Public Comment Opportunities at this time

424

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

425

Microsoft Word - CX_MerrittRadioStationUpgrade_2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2013 8, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Merritt Radio Station Upgrade Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Winton, Chelan County, WA Township 26N, Range 16E, and Section 2 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade its Merritt Radio Station in the Wenatchee River Ranger District of the Okanogan-Wenatchee National Forest (USFS). The proposed radio station upgrade would replace the existing communication building, electrical service, and propane tank with a new building and propane tank in adjacent locations on the

426

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

427

Locating PHEV Exchange Stations in V2G  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

Pan, Feng; Berscheid, Alan; Izraelevitz, David

2010-01-01T23:59:59.000Z

428

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July 18, 2012 - 3:36pm Addthis As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy

429

"1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "1. Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 "2. Byron Generating Station","Nuclear","Exelon Nuclear",2300 "3. LaSalle Generating Station","Nuclear","Exelon Nuclear",2238 "4. Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1785 "5. Quad Cities Generating Station","Nuclear","Exelon Nuclear",1774 "6. Dresden Generating Station","Nuclear","Exelon Nuclear",1734 "7. Powerton","Coal","Midwest Generations EME LLC",1538 "8. Elwood Energy LLC","Gas","Dominion Elwood Services Co",1350

430

FNS Presentation - Hydrogen Station & Hydrogen ICE Vehicles Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Station & Hydrogen ICE Hydrogen Station & Hydrogen ICE Vehicle Operations Federal Network for Sustainability Idaho Falls, Idaho - July 2006 Jim Francfort INL/CON-06-11569 Presentation Outline * Background & Goal * Arizona Public Service (APS) Alternative Fuel (Hydrogen) Pilot Plant - design & operations * Fuel Dispensing * Hydrogen & HCNG Internal Combustion Engine (ICE) Vehicle Testing Activities * Briefly, other AVTA Activities * WWW Information 2 AVTA Background & Goal * Advanced Vehicle Testing Activity (AVTA) is part of the U.S. Department of Energy's (DOE) FreedomCAR and Vehicle Technologies Program * These activities are conducted by the Idaho National Laboratory (INL) & the AVTA testing partner Electric Transportation Applications (ETA) * AVTA Goal - Provide benchmark data for technology

431

Station Living Program, RCM, and the maintenance rule  

Science Conference Proceedings (OSTI)

A project is being conducted at Boston Edison's Pilgrim nuclear power station (PNPS) to develop, implement, and demonstrate the effectiveness of a Station Living Program and the US Nuclear Regulatory Commission (NRC) maintenance rule. This project is a collaborative effort by PNPS, the Electric Power Corp, and Quadrex Energy Series Corporation. In parallel, a preventive maintenance optimization project utilizing reliability-centered maintenance (RCM) is being performed on [approximately]90% of the plant's systems. These two projects are being combined as a major cornerstone at PNPS in the implementation of the NRC maintenance rule.

Kleam, J. (Boston Edison Co., Plymouth, MA (United States)); Anderson, J. (Quadrex Energy Services Corp., Campbell, CA (United States))

1993-01-01T23:59:59.000Z

432

Combustion Optimization at Allegheny Energy's Armstrong Power Station  

Science Conference Proceedings (OSTI)

Individual air and coal flow measurement instruments have been installed on Allegheny Energy's Armstrong Station with a goal to balance the individual burner air to fuel ratios to minimize NOx, reduce the LOI level in the ash and improve heat rate. These signals are also being incorporated into the NOx optimization package, ULTRAMAX (R). Armstrong Station is a 180 MW front wall boiler burning a low sulfur eastern bituminous coal. Twelve Foster Wheeler IFS low NOx burners are fed by two ball mills, three ...

2000-06-21T23:59:59.000Z

433

Dual-hop LANs using station wavelength routing  

Science Conference Proceedings (OSTI)

Abstract: In future WDM local area networks, the number of available wavelengths may initially be fairly modest. As a result, spatial reuse is required in order to obtain designs which will support a reasonable number of stations. A dual-hop architecture ... Keywords: ATM buffer/switch components, WDM local area networks, all-optical approaches, buffering stage, control strategies, dual-hop LAN, dual-hop architecture, electronic implementations, hybrid electro-optic designs, local optical network, multiple wavelength sharing, optical fibre LAN, spatial reuse, station wavelength routing, system performance, traffic models, wavelength agility

1995-09-01T23:59:59.000Z

434

Didcot B: A power station for the 21st century  

Science Conference Proceedings (OSTI)

Didcot B, one of the new generation combined-cycle gas turbine (CCGT) power stations being built on the Didcot site just south of Oxford, England, will eventually be feeding an additional 1370 MW of electrical power into the national grid. It will be more environmentally friendly, considerably more efficient and a great deal less obtrusive than its coal-fired predecessor. The first module of the US$600 million Didcot B project is now almost ready to be handed over to operator, National Power. This will be the first generating station to use Siemen`s latest and most advanced 230 MW V94.3A gas turbine. 3 figs.

Mullins, P.

1996-12-01T23:59:59.000Z

435

Replacing Hazelwood Power Station Critique of Environment Victoria report  

E-Print Network (OSTI)

Hazelwood Power Station is Australias most CO2 emission intensive power station. Replacing it with cleaner technology could reduce Australias CO2 emissions by 12 to 16 Mt/a. Energy Victoria recently commissioned a report by Green Energy Markets Pty Ltd to consider options. But the report has a pro-renewables bias, avoids the best option (gas only), and contains many inconsistencies. Comparing the renewables and gas option against the gas only option shows Emissions saved per year: 12.2 Mt/a versus 11.8 Mt/a; Capital cost: $6-$7 billion versus $2 billion;

Peter Lang

2010-01-01T23:59:59.000Z

436

Design of photovoltaic central power station concentrator array  

Science Conference Proceedings (OSTI)

A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

437

Technical evaluation of the adequacy of station electric-distribution-system voltages for the Pilgrim Nuclear Power Station, Unit 1  

Science Conference Proceedings (OSTI)

This report documents the technical evaluation of the adequacy of the station electric distribution system voltages for the Pilgrim Nuclear Power Station, Unit 1. The evaluation is to determine if the onsite distribution system in conjunction with the offsite power sources has sufficient capacity to automatically start and operate all Class 1E loads within the equipment voltage ratings under certain conditions established by the Nuclear Regulatory Commission. The analyses demonstrated that for the worst case conditions established, the Class 1E equipment will automatically start and continue to operate within the equiment design voltage rating.

Selan, J.C.

1981-12-28T23:59:59.000Z

438

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

439

Combustion Effects Investigation at the Martin Lake Station  

Science Conference Proceedings (OSTI)

One key to improving the availability of coal-fired plants is an improved understanding of the impact of combustion conditions on deposit formation on furnace walls. This report builds on a previously developed model of a unit at the Martin Lake Generating Station to investigate the conditions contributing to excessive slagging at the plant.

2009-11-25T23:59:59.000Z

440

A summary of North American HVDC converter station reliability specifications  

SciTech Connect

This paper summarizes Reliability, Availability, and Maintainability (RAM) specifications that were issued for thyristor based HVDC converter stations in service in North America. A total of twenty project specifications are summarized. A detailed summary by project is shown with specific quantitative requirements categorized. Definitions of terms, representative design principles, and formulas used in calculating RAM parameters contained in existing reliability specifications are presented.

Vancers, I. (ABB Power Systems Inc., Los Angeles, CA (United States)); Hormozi, F.J. (Los Angeles Dept. of Water and Power, CA (United States))

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

OFFICE OF THE PRESIDENT College Station, Texas 77843-1246  

E-Print Network (OSTI)

OFFICE OF THE PRESIDENT 1246 TAMU College Station, Texas 77843-1246 October 22, 2012 MEMORANDUM TO: Faculty, Staff and Students Texas A&M University and Texas A&M Health Science Center FROM: Dr. R. Bowen Loftin President, Texas A&M University SUBJECT: Health Science Center Realignment Update I would like

Boas, Harold P.

442

Early Site Permit Demonstration Program: Station design alternatives report  

SciTech Connect

This report provides the results of investigating the basis for including Station Design Alternatives (SDAs) in the regulatory guidance given for nuclear plant environmental reports (ERs), explains approaches or processes for evaluating SDAs at the early site permit (ESP) stage, and applies one of the processes to each of the ten systems or subsystems considered as SDAS. The key objective o this report s to demonstrate an adequate examination of alternatives can be performed without the extensive development f design data. The report discusses the Composite Suitability Approach and the Established Cutoff Approach in evaluating station design alternatives and selects one of these approaches to evaluate alternatives for each of the plant or station that were considered. Four types of ALWRs have been considered due to the availability of extensive plant data: System 80+, AP600, Advanced Boiling Reactor (ABWR), and Simplified Boiling Water Reactor (SBWR). This report demonstrates the feasibility of evaluating station design alternatives when reactor design detail has not been determined, quantitatively compares the potential ental impacts of alternatives, and focuses the ultimate selection of a alternative on cost and applicant-specific factors. The range of alternatives system is deliberately limited to a reasonable number to demonstrate the or to the three most commonly used at operating plants.

Not Available

1993-03-01T23:59:59.000Z

443

The International Station Meteorological Climate Summary CD-ROM  

Science Conference Proceedings (OSTI)

The International Station Meteorological Climate Summary (ISMCS)is a Compact Disc-Read Only Memory(CD-ROM)containing climatic records for 640 primary weather-observation sites and over 5800 secondary sites around the world. When used with a ...

Terry Jarrett

1992-10-01T23:59:59.000Z

444

Rancho Seco Nuclear Generating Station Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

Several U.S. nuclear power plants entered decommissioning in the 1990s. Based on current information, the next group of plants whose license will expire will not begin decommissioning for nearly a decade. This report provides detailed information on the decommissioning of one plant, the Rancho Seco Nuclear Generating Station, in order to capture its experience for future plants.

2007-12-19T23:59:59.000Z

445

Analysis of Voltage Notching Concerns at a Petroleum Pumping Station  

Science Conference Proceedings (OSTI)

This report presents the results of a voltage notching investigation at a petroleum pumping station. The analysis in this paper focuses on a particular example system where the voltage notching caused significant oscillations at the distribution system level, resulting in equipment problems at another customer supplied from the same system.

2003-12-31T23:59:59.000Z

446

IQ-Station: a low cost portable immersive environment  

Science Conference Proceedings (OSTI)

The emergence of inexpensive 3D-TVs, affordable input and rendering hardware and open-source software has created a yeasty atmosphere for the development of low-cost immersive systems. A low cost system (here dubbed an IQ-station), fashioned from commercial ...

William R. Sherman; Patrick O'Leary; Eric T. Whiting; Shane Grover; Eric A. Wernert

2010-11-01T23:59:59.000Z

447

Trace element speciation under coal fired power station conditions  

Science Conference Proceedings (OSTI)

Coal combustion from power stations is one of the largest contributors of potentially toxic trace elements to the environment. Some trace elements may be released in range of valencies, often with varying toxicity and bioavailability. Hence, determination ... Keywords: arsenic, chromium, coal combustion, mercury, selenium, speciation, trace elements

Pushan Shah; Vladimir Strezov; Peter F. Nelson

2007-05-01T23:59:59.000Z

448

Generation Risk Assessment (GRA) at Cooper Nuclear Station  

Science Conference Proceedings (OSTI)

A previous EPRI guide described how generating plants can implement various forms of component and system models for generation risk assessment (GRA). This report describes a trial application of GRA modeling at the Cooper Nuclear Station and evaluates the usefulness and accuracy of the EPRI GRA guide.

2005-12-06T23:59:59.000Z

449

San Onofre Nuclear Generating Station - Unit 1 Decommissioning Experience Report  

Science Conference Proceedings (OSTI)

This report provides detailed information on the successful decommissioning activities of San Onofre Nuclear Generating Station, Unit 1 (SONGS 1). The report describes their experiences and lessons learned for managers of US and international plants beginning or currently engaged in decommissioning.

2008-12-04T23:59:59.000Z

450

IGCC demonstration plant at Nakoso Power Station, Japan  

Science Conference Proceedings (OSTI)

The 250 MW IGCC demonstration plant at Nakoso Power Station is based on technology form Mitsubishi Heavy Industries (MHI) Ltd that uses a pressurized, air blown, two-stage, entrained-bed coal gasifier with a dry coal feed system. 5 figs., 1 tab.

Peltier, R.

2007-10-15T23:59:59.000Z

451

BOILING NUCLEAR SUPERHEATER (BONUS) POWER STATION. Final Summary Design Report  

SciTech Connect

The design and construction of the Boiling Nuclear Superheater (BONUS) Power Station at Punta Higuera on the seacoast at the westernmost tip of Puerto Rico are described. The reactor has an output of 17.5 Mw(e). This report will serve as a source of information for personnel engaged in management, evaluation, and training. (N.W.R.)

1962-05-01T23:59:59.000Z

452

Planning solar array operations on the international space station  

Science Conference Proceedings (OSTI)

Flight controllers manage the orientation and modes of eight large solar arrays that power the International Space Station (ISS). The task requires generating plans that balance complex constraints and preferences. These considerations include context-dependent ... Keywords: Planning, constraint satisfaction, optimization, scheduling, space mission operations

Sudhakar Y. Reddy; Jeremy D. Frank; Michael J. Iatauro; Matthew E. Boyce; Elif Krkl; Mitchell Ai-Chang; Ari K. Jnsson

2011-07-01T23:59:59.000Z

453

Temporary Grounding and Bonding Practices in Nuclear Electric Generating Stations  

Science Conference Proceedings (OSTI)

Correct written temporary grounding practices inside generating stations are an important industrial safety issue, as well as an important plant status control issue. An extraordinary amount of regulations, standards, and information is available for temporary grounding practices in transmission and delivery (T&D), but very little is written about inside plant practices.

2008-12-22T23:59:59.000Z

454

Radio resources allocation for decentrally controlled relay stations  

Science Conference Proceedings (OSTI)

To enhance throughput and to extend coverage of wireless networks based on IEEE 802.16 standards, relay stations can be implemented. The crucial point influencing the overall system performance is allocation of appropriate amount of resources to individual ... Keywords: Decentrally controlled relay, Packet delays, Signaling overhead, WiMAX

Pavel Mach; Robert Bestak

2011-01-01T23:59:59.000Z

455

Tuning three-term controllers for power station processes  

Science Conference Proceedings (OSTI)

This paper presents a new approach for tuning three-term control loops encountered in power station processes. The proposed approach is based on the Pseudo-Derivative Feedback (PDF) control configuration. Simple methods are presented for tuning the PDF ... Keywords: controller tuning, dead-time processes, power plant control, process control

K. G. Arvanitis; G. D. Pasgianos; A. K. Boglou

2006-07-01T23:59:59.000Z

456

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

457

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

458

U.S. Natural Gas Exports to Portugal  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

459

U.S. Natural Gas Exports to Mexico  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

460

U.S. Liquefied Natural Gas Exports to Japan  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

Note: This page contains sample records for the topic "otay mesa station" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

462

U.S. Natural Gas Exports to China  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

463

U.S. Liquefied Natural Gas Exports to India  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

464

U.S. Natural Gas Exports to Russia  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

465

Potential long-term chemical effects of diesel fuel emissions on a mining environment: A preliminary assessment based on data from a deep subsurface tunnel at Rainer Mesa, Nevada test site  

SciTech Connect

The general purpose of the Yucca Mountain Site Characterization Project (YMSCP) Introduced Materials Task is to understand and predict potential long-term modifications of natural water chemistry related to the construction and operation of a radioactive waste repository that may significantly affect performance of the waste packages. The present study focuses on diesel exhaust. Although chemical information on diesel exhaust exists in the literature, it is either not explicit or incomplete, and none of it establishes mechanisms that might be used to predict long-term behavior. In addition, the data regarding microbially mediated chemical reactions are not well correlated with the abiotic chemical data. To obtain some of the required long-term information, we chose a historical analog: the U12n tunnel at Rainier Mesa, Nevada Test Site. This choice was based on the tunnel`s extended (30-year) history of diesel usage, its geological similarity to Yucca Mountain, and its availability. The sample site within the tunnel was chosen based on visual inspection and on information gathered from miners who were present during tunnel operations. The thick layer of dark deposit at that site was assumed to consist primarily of rock powder and diesel exhaust. Surface samples and core samples were collected with an intent to analyze the deposit and to measure potential migration of chemical components into the rock. X-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, secondary-ion mass spectrometry (SIMS), and Fourier transform infrared (FTIR) analysis were used to measure both spatial distribution and concentration for the wide variety of chemical components that were expected based on our literature survey.

Meike, A.; Bourcier, W.L.; Alai, M. [and others

1995-09-01T23:59:59.000Z

466

White House Station, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

House Station, New Jersey: Energy Resources House Station, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.62093°, -74.76123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.62093,"lon":-74.76123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

City of College Station, Texas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

College Station College Station Place Texas Utility Id 3940 Utility Location Yes Ownership M NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Rider - HED (Higher Education Discount) Commercial Industrial Industrial Industrial - Primary Service Industrial Industrial - Time of use Industrial Large Commercial - Schedule LP -2 - On-Peak/Off-Peak rider Commercial Large Commercial - Schedule LP -2 - Primary Service Commercial

468

Microsoft Word - LakesideRadioStation_PropertyTransfer_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joan Kendall Joan Kendall Project Manager, TERR-3 Proposed Action: Sale of Lakeside Radio Station Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.24 - Property Transfers Location: Lakeside (Coos County), Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to sell a communications facility known as the Lakeside Radio Station to the Central Lincoln People's Utility District (Central Lincoln). Components of this facility include a building with air conditioning, a nitrogen tank, a communications tower, and easement rights for the building, three beam paths, and an access road. In 2008, BPA and Central Lincoln reached an agreement to transfer ownership of some of the

469

Bendersville Station-Aspers, Pennsylvania: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bendersville Station-Aspers, Pennsylvania: Energy Resources Bendersville Station-Aspers, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9770375°, -77.2230383° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9770375,"lon":-77.2230383,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

471

Huntington Station, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Station, New York: Energy Resources Station, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.8534318°, -73.4115091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8534318,"lon":-73.4115091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Kaneohe Station, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kaneohe Station, Hawaii: Energy Resources Kaneohe Station, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.44882°, -157.760696° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.44882,"lon":-157.760696,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Microsoft Word - CX_TunkRadioStationUpgrade_2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 30, 2012 May 30, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Tunk Mountain Radio Station Upgrade Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19- Siting/construction/operation of microwave/radio communication towers Location: Synarep, Okanogan County, WA Township 35N, Range 29E, and Section 8 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA plans to upgrade its Tunk Mountain Radio Station in the Tonasket Ranger District of the Okanogan-Wenatchee National Forest. BPA is coordinating with the U.S. Forest Service (USFS) to ensure the existing land use permit is

474

Port Jefferson Station, New York: Energy Resources | Open Energy  

Open Energy Info (EERE)

Station, New York: Energy Resources Station, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.9253764°, -73.0473284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9253764,"lon":-73.0473284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Microsoft Word - CX_MetalineRadioStationUpgrade_2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 11, 2012 July 11, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager - TEP-CSB-1 Proposed Action: Metaline Radio Station Upgrade Project Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19- Siting/construction/operation of microwave/radio communication towers Location: Metaline Falls, Pend Orielle County, WA Township 40N, Range 43E, Section 31 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade its Metaline Radio Station in the Sullivan Lake Ranger District of the Colville National Forest. BPA is coordinating with the US Forest Service (USFS) to ensure the existing land use agreement is modified to adequately address

476

Microsoft Word - Noxon Radio Station Upgrade CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum David Tripp - TEP-CSB-1 Proposed Action: Noxon Radio Station Upgrade Project Budget Information: Work Order # 00254987 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7 "Acquisition, installation, operation, and removal of communication systems..." Location: Sanders County, Montana - Section 33, Township 26 North, Range 32 West of the Noxon Rapids Dam Quadrangle Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to replace the existing building at Noxon Radio Station with a new 650 square foot building. The existing building, especially the floor, is deteriorating

477

Performance test plan for a space station toluene heater tube  

DOE Green Energy (OSTI)

Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a toluene heater tube integral to a heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. This heat pipe is a subassembly of the heat receiver. The heat receiver, the heat absorption component of the ORC solar dynamic power system, consists of forty liquid metal heat pipes located circumferentially around the heat receiver`s outside diameter. Each heat pipe contains a toluene heater, two thermal energy storage (TES) canisters and potassium. The function of the heater tube is to heat the supercritical toluene to the required turbine inlet temperature. During the orbit of the space station, the heat receiver and thereby the heat pipe and heater tube will be subjected to variable heat input. The design of the heater must be such that it can accommodate the thermal and hydraulic variations that will be imposed upon it.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-10-01T23:59:59.000Z

478

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

Science Conference Proceedings (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

479

Yankee Nuclear Power Station - analysis of decommissioning costs  

SciTech Connect

The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

Lessard, L.P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

480

Development of By-Pass Blending Station System  

E-Print Network (OSTI)

A new building blending station system named by-pass blending station (BBS) has been developed to reduce building pump energy consumption in both district heating and cooling systems. Theoretical investigation demonstrated that the BBS can significantly reduce building pump power for a typical cooling system when constant water flow is maintained in the building side. When differential pressure reset is applied in the building side, more pump energy can be saved. The BBS also reduces the pump size and therefore results in lower initial system cost. A case study was also performed and demonstrated 42% of annual chilled water pump energy savings for constant building water flow, and 82% of annual chilled water pump savings for differential pressure resetting at Omaha, Nebraska.

Liu, M.; Barnes, D.; Bunz, K.; Rosenberry, N.

2003-01-01T23:59:59.000Z