Powered by Deep Web Technologies
Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS  

Broader source: Energy.gov (indexed) [DOE]

5 14:37 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/04 5 14:37 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE CONTRACT NO. DE-FC26-05NT42341, SUBCONTRACT QZ001; W(A)-05-017, CH-1280 The Petitioner, OSRAM Opto Semiconductor (Osram) was awarded a subcontract under this cooperative agreement for the performance of work entitled, "Scaling Up KiloLumen Solid- State Lighting Exceeding 100 LPW via Remote Phosphor." The cooperative agreement was awarded to Light Prescriptions Innovators, LLC (LPI). The purpose of the cooperative agreement is to develop a new white light emitting diode (LED) light source that emits 1000 lumens with an efficacy exceeding 100 lumens per watt (LPW). The new white LED light source will use multiple

2

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS, INC. FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

OSRAM OPTO SEMICONDUCTORS, INC. FOR AN ADVANCE WAIVER OSRAM OPTO SEMICONDUCTORS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-04NT41947; W(A)-04-021, CH-1190 The Petitioner, Osram Opto Semiconductors (Osram), was awarded this cooperative agreement for the performance of work entitled, "Polymer OLED White Light Development Program." In this program, Osram will develop, fabricate, and fully characterize a 12-inch square OLED (Organic Light Emitting Diode) white light prototype. The prototype will be based on use of multiple discrete 3-inch square white light devices fabricated on glass substrates. A broadband light-emitting co-polymer for the generation of white light, from either a single large area emitting film, or from a relatively small number of segmented emitting films will be used. An alternate

3

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS  

Broader source: Energy.gov (indexed) [DOE]

resulting from Osram OS inventions will be assigned to Osram OS GmbH in Regenseburg, Germany The total estimated cost of the contract is 1,448,473 with the DOE share being...

4

Osram Sylvania | Open Energy Information  

Open Energy Info (EERE)

Osram Sylvania Osram Sylvania Jump to: navigation, search Name Osram Sylvania Address 100 Endicott Street Place Danvers, Massachusetts Zip 01923 Sector Efficiency Product Lighting and LED innovations Website http://www.sylvania.com/ Coordinates 42.547537°, -70.931449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.547537,"lon":-70.931449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA DEVELOPMENT, INC. FOR AN ADVANCE WAIVER  

Broader source: Energy.gov (indexed) [DOE]

1 2004 10:32 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 1 2004 10:32 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA DEVELOPMENT, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-04NT42274; SUBCONTRACT NO. QZ001; W(A)-04-073; CH-1251 The Petitioner, Osram Sylvania Development, Inc. (Osram), was awarded subcontract for the performance of work entitled, "Development of White-Light Emitting Active Layers in Nitride Based Heterostructures for Phosphorless Solid State Lighting." In this program, Osram will explore the feasibility of new LED architecture for white light emission using thin films of nitride- based luminescent semiconductor alloys of GaN, Al N, and InN doped with suitably chosen

6

Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OSRAM SYLVANIA to someone by E-mail OSRAM SYLVANIA to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: OSRAM SYLVANIA on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources

7

OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement  

Broader source: Energy.gov [DOE]

With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

8

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Broader source: Energy.gov (indexed) [DOE]

OSRAM SYLVANIA FOR AN ADVANCE WAIVER OF DOMESTIC AND OSRAM SYLVANIA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE CONTRACT NO. DE-EE0000611; W(A)-09- 067, CH-1538 The Petitioner, Osram Sylvania (Osram) was awarded this cooperative agreement for the performance of work entitled, "Highly Efficient Small Form Factor LED Retrofit Lamp." According to its response to question 2, the work under this agreement will develop Osram's laboratory-proven high optical efficiency white light engine into a complete MR 16 retrofit prototype suitable for commercial production. The high system efficiency is mostly due to the remote phosphor configuration and the ceramic phosphor substrate material's unique physical properties. The ceramic provides low optical loss, high thermal conductivity, and acts as a diffuser that obscures

9

OSRAM SYLVANIA Demonstrates 1,439-Lumen Downlight with Efficacy of 82 lm/W  

Broader source: Energy.gov [DOE]

OSRAM SYLVANIA researchers have demonstrated a downlight luminaire that achieves 1,439 lumens at an efficacy of 82 lm/W in steady-state operation. These results exceed the project goals of achieving 1,300 lumens and 70 lm/W at a CCT of 3500K and CRI of 80. Improvements in LED chips, phosphors, optics, electronics, and thermal management at OSRAM all contributed to the higher-than-projected luminaire performance.

10

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA PRODUCTS, INC. FOR AN ADVANCE  

Broader source: Energy.gov (indexed) [DOE]

OSRAM SYLVANIA PRODUCTS, INC. FOR AN ADVANCE OSRAM SYLVANIA PRODUCTS, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE GRANT NO. DE-FG36-05GO85042 ENTITLED "TUNGSTEN CATHODE FUEL CELL CATALYST PROJECT"; W(A)-05-031; CH-1300 As set out in the attached waiver petitioner, the Petitioner, OSRAM SYLVANIA Products, Inc., has requested an advance waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above-identified award. Referring to item 2 of the waiver petition, the purpose of this award relates generally to fuel cells and specifically to the design, fabrication and evaluation of the cathodic, catalytic activity of a tungsten-based (platinum-free) material in a prototype membrane electrode assembly at 1 / 1 5 t h the output of a comparable platinum containing unit to

11

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Broader source: Energy.gov (indexed) [DOE]

3241; W(A)- 3241; W(A)- 2010-029, CH-1564 The Petitioner, Osram Sylvania (Osram) was awarded this cooperative agreement for the performance of work entitled, "Recovery Act - High Flux Commercial Illumination Solution with Intelligent Controls." According to its response to question 2, the work under this agreement will develop three separate sub-systems: a white light engine, a power supply, and a control system, and integrate them into a complete linear fluorescent retrofit prototype suitable for commercial production. The work will be divided into two halves by project years. The first year work will focus on system design and optimization while the second year will focus on product development and qualification. The total estimated cost of the contract is $1,731,455 with Osram providing a 20% cost-

12

New Efficiency Record Achieved for White OLED Device  

Broader source: Energy.gov [DOE]

Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

13

Opto-mechano-fluidic viscometer  

SciTech Connect (OSTI)

The recent development of opto-mechano-fluidic resonators has providedby harnessing photon radiation pressurea microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.

Han, Kewen, E-mail: khan56@illinois.edu; Zhu, Kaiyuan; Bahl, Gaurav, E-mail: bahl@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, Illinois 61801 (United States)

2014-07-07T23:59:59.000Z

14

June 26, 2009 Opto-Link R&D Status  

E-Print Network [OSTI]

opto-board: two BeO opto-packs with AOC VCSEL array one PCB opto-pack with Taiwan PIN array/transmitted through small wires IBL Meeting #12;IBL Meeting VCSEL Arrays propose to use AOC 10 Gb/s VCSEL dose ULM Optowell AOC #12;IBL Meeting Redundancy??? Heated debate at last IBL meeting on the need

Gan, K. K.

15

Opto Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Opto Technology Inc Opto Technology Inc Jump to: navigation, search Name Opto Technology Inc Place Wheeling, Illinois Zip 60900 Product US-based subsidiary of PerkinElmer which designs and develops LED based light sources. Coordinates 40.063965°, -80.721424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.063965,"lon":-80.721424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from  

E-Print Network [OSTI]

Joint ATLAS/CMS SLHC Opto WG 1 K.K. Gan Lesson Learned from ATLAS Pixel Optical Link #12;Joint ATLAS/CMS SLHC Opto WG 2 Outline Introduction VCSEL/PIN monitoring Analysis of opto-board/VCSEL/PIN failures Summary K.K. Gan #12;K.K. Gan Joint ATLAS/CMS SLHC Opto WG 3 Introduction Architecture

Gan, K. K.

17

Joint ATLAS/CMS SLHC Opto WG 1 March 5, 2010  

E-Print Network [OSTI]

Joint ATLAS/CMS SLHC Opto WG 1 March 5, 2010 K.K. Gan Status of the Development of On ATLAS/CMS SLHC Opto WG 2 Outline Introduction Current work with IBL Schedule K.K. Gan #12;K.K. Gan Joint ATLAS/CMS SLHC Opto WG 3 Introduction A proposal to develop on-detector array-based opto

Gan, K. K.

18

Opto-Electrical Cooling of Polar Molecules  

E-Print Network [OSTI]

We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dissipation is provided by spontaneous vibrational decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme.

M. Zeppenfeld; M. Motsch; P. W. H. Pinkse; G. Rempe

2009-10-07T23:59:59.000Z

19

Multivariable isoperformance methodology for precision opto-mechanical systems  

E-Print Network [OSTI]

Precision opto-mechanical systems, such as space telescopes, combine structures, optics and controls in order to meet stringent pointing and phasing requirements. In this context a novel approach to the design of complex, ...

De Weck, Olivier Ladislas, 1968-

2001-01-01T23:59:59.000Z

20

Technology Roadmap for the Japanese Opto-Electronics Industry  

Science Journals Connector (OSTI)

A technology roadmap for the opto-electronics industry for the ... estimation, we present a system and element technology roadmap for public and business optical-communications network technology Finally, it is e...

Michiharu Nakamura

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Density Concurrent Access Opto-Electronic VLSI Memory  

Science Journals Connector (OSTI)

In this paper we show how opto-electronic VLSI smart pixels (OE-VLSI) and free space interconnections can be used to implement a parallel access optical memory device that combines...

Lukowicz, Paul

22

K.K. Gan Joint SLHC Opto Working Group 1 Results of Opto-Link R&D  

E-Print Network [OSTI]

Joint SLHC Opto Working Group 11 K.K. Gan 11 VCSEL Power vs Dosage AOC (5 & 10 Gb/s) survive to SLHC instead of 5,000 fb-1 PIN: Si: TrueLight, Hamamatsu GaAs: AOC, ULM, Optowell VCSEL: AOC, Optowell, ULM? August 08 with 24 GeV/c p (CERN) #12;K.K. Gan Joint SLHC Opto Working Group

Gan, K. K.

23

Microsoft Word - FOR WEB - Excellence Opto 49002 NPCP.docx  

Broader source: Energy.gov (indexed) [DOE]

Excellence Opto, Inc. Excellence Opto, Inc. (traffic signal modules and pedestrian modules) ) ) ) ) ) Case Number: 2013-CE-49002 NOTICE OF PROPOSED CIVIL PENALTY Date issued: August 5, 2013 Number of alleged violations: 2,555 (7 basic models; 365 days) Maximum possible assessment: $511,000 Proposed civil penalty: $51,100 The U.S. Department of Energy ("DOE") Office of the General Counsel, Office of Enforcement, alleges that Excellence Opto, Inc. ("EOI") has violated certain provisions of the Energy Policy and Conservation Act, 42 U.S.C. § 6291 et seq. ("the Act"), and 10 C.F.R. §§ 429.12 and 429.49. Specifically, DOE alleges: 1. EOI has manufactured 1 a variety of traffic signal modules including basic models TRV-R08E4-J2, TRV-R12EG-A, TRV-G12EG-B2, TRV-R08EG-J, and

24

Microsoft Word - FOR WEB - Excellence Opto 49002 CA.docx  

Broader source: Energy.gov (indexed) [DOE]

Excellence Opto, Inc., Excellence Opto, Inc., Respondent ) ) ) ) ) ) Case Number: 2013-CE-49002 ORDER By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Excellence Opto, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated to pursue a civil penalty for violations of the compliance certification requirements located at 10 C.F.R. Part 429. 2. DOE and Respondent have negotiated the terms of the Compromise Agreement that resolves this matter. A copy of the Compromise Agreement is attached hereto and incorporated by reference. 3. After reviewing the terms of the Compromise Agreement and evaluating the facts before me,

25

Spatially resolved imaging of opto-electrical property variations  

DOE Patents [OSTI]

Systems and methods for opto electric properties are provided. A light source illuminates a sample. A reference detector senses light from the light source. A sample detector receives light from the sample. A positioning fixture allows for relative positioning of the sample or the light source with respect to each other. An electrical signal device measures the electrical properties of the sample. The reference detector, sample detector and electrical signal device provide information that may be processed to determine opto-electric properties of the same.

Nikiforov, Maxim; Darling, Seth B; Suzer, Ozgun; Guest, Jeffrey; Roelofs, Andreas

2014-09-16T23:59:59.000Z

26

Opto-Electronics in Large Array Gas Detector Systems  

E-Print Network [OSTI]

Large array gas detector systems are used in particle and nuclear physics experiments involving high-energy nucleon-nucleon and heavy-ion collisions. We have observed that in large array gas detector systems the momentary discharges inside the detector cells result in slowdown of High Voltage conditioning and possible hindrances in signal processing. We have explored the opto-electronic devices like the opto-coupler, optical fibre and signal processing circuit, which provide successful monitoring procedures and preventive measures to overcome the challenges produced in such complex detector systems.

Majumdar, M R D; Nayak, T K; Das, Debasish; Nayak, Tapan K.

2005-01-01T23:59:59.000Z

27

February 25, 2009 Opto-Board Prototyping Plan  

E-Print Network [OSTI]

-packs with AOC 5 Gb/s VCSEL array !one PCB opto-pack with Taiwan PIN array will operate DORIC as it is (40 to use AOC 5 Gb/s VCSEL/Optowell PIN arrays arrays are fabricated in 4 and 12 channels !S

Gan, K. K.

28

K.K. Gan ATLAS Pixel Week 1 New Results on Opto-Electronics  

E-Print Network [OSTI]

with lower thresholds with BPM/DRX ] opto-board design is compatible with BPM/DRX PIN Current Thresholds with BPM/DRX 0 5 10 15 20 25 30 35 link#1 link#2 link#3 link#4 link#5 link#6 link#7 Ipin(mA) Opto-Board on Test Board Opto-Board on Test Board with BPM/DRX #12;K.K. Gan ATLAS Pixel Week 8 l one irradiated VCSEL

Gan, K. K.

29

New Results on ATLAS Pixel Opto-Link  

E-Print Network [OSTI]

We present new results on the optical link for the pixel detector of the ATLAS experiment. An optical package of novel design has been developed for the opto-link. The design is based on a simple connector-type concept and is made of radiation-hard material. The receiver (DORIC) and transmitter (VDC) chips have been designed. The prototype results using the 0.8 and 0.25 um technologies are presented.

Gan, K K

2001-01-01T23:59:59.000Z

30

Joint ATLAS/CMS SLHC Opto WG 1 March 4, 2010  

E-Print Network [OSTI]

arrays are identified as most promising: 10 Gb/s AOC VCSEL array irradiate 6 AOC arrays in 2009 ATLAS/CMS SLHC Opto WG 4 AOC 10 Gb/s VCSEL w/o long twisted/ coiled fiber Reasonable optical power (ULM) for irradiation in summer 2010 #12;Joint ATLAS/CMS SLHC Opto WG 15 Summary AOC VCSEL arrays

Gan, K. K.

31

Hybrid modeling of opto-electrical interfaces using DEVS and modelica  

Science Journals Connector (OSTI)

We discuss two implementations of opto-electrical interfaces, their characteristics and functionalities using a hybrid M&S approach. These interfaces consist in a transmitter and a receiver, composed by electrical and optical parts, that translate electrical ... Keywords: CD++, DEVS, modelica, opto-electrical systems

Victorino Sanz; Shafagh Jafer; Gabriel Wainer; Gabriela Nicolescu; Alfonso Urquia; Sebastian Dormido

2009-03-01T23:59:59.000Z

32

Parametric self pulsing in a quantum opto-mechanical system  

E-Print Network [OSTI]

We describe an opto-mechanical system in which the coupling between optical and mechanical degrees of freedom takes the form of a fully quantised third-order parametric interaction. Two physical realisations are proposed: a harmonically trapped atom in a standing wave and the `membrane in the middle' model. The dominant resonant interaction corresponds to a stimulated Raman process in which two phonons are converted into a single cavity photon. We show that this system can exhibit a stable limit cycle in which energy is periodically exchanged between optical and mechanical degrees of freedom. This is equivalently described as a parametric self-pulsing.

Holmes, C A

2009-01-01T23:59:59.000Z

33

Broadband chaos generated by an opto-electronic oscillator  

E-Print Network [OSTI]

We study an opto-electronic time-delay oscillator that displays high-speed chaotic behavior with a flat, broad power spectrum. The chaotic state coexists with a linearly-stable fixed point, which, when subjected to a finite-amplitude perturbation, loses stability initially via a periodic train of ultrafast pulses. We derive an approximate map that does an excellent job of capturing the observed instability. The oscillator provides a simple device for fundamental studies of time-delay dynamical systems and can be used as a building block for ultra-wide-band sensor networks.

Kristine E. Callan; Lucas Illing; Zheng Gao; Daniel J. Gauthier; Eckehard Schll

2009-01-26T23:59:59.000Z

34

Post assembly process development for Monolithic OptoPill integration on silicon CMOS  

E-Print Network [OSTI]

Monolithic OptoPill integration by means of recess mounting is a heterogeneous technique employed to integrate III-V photonic devices on silicon CMOS circuits. The goal is to create an effective fabrication process that ...

Lei, Yi-Shu Vivian, 1979-

2004-01-01T23:59:59.000Z

35

ADVERTISEMENT SEMICONDUCTORS  

E-Print Network [OSTI]

ADVERTISEMENT SEMICONDUCTORS: 07.14.2010 Nano-enabled Coating Makes Aircraft Invisible Humble paint... The oil-separating centrifuges will work, but they... MORE FROM IEEE SPECTRUM ROBOTICS: 06.16.2010 Robo.01.2006 Look Out, Beckham: Here Come the Robots At the "World Cup" for robots, the talk is that one day

Stryk, Oskar von

36

Silicon microbench heater elements for packaging opto-electronic devices  

SciTech Connect (OSTI)

Examples are presented of the application of Lawrence Livermore National Laboratory`s expertise in photonics packaging. Several examples of packaged devices will be described. Particular attention is given to silicon microbenches incorporating heaters and their use in semiconductor optical amplifier fiber pigtailing and packaging.

Combs, R.; Keiser, P.; Kleint, K.; Pocha, M.; Patterson, F.; Strand, O.T.

1995-09-01T23:59:59.000Z

37

Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing  

E-Print Network [OSTI]

, provides a unique platform for chemical detection. KEYWORDS: Midinfrared, opto-nanofluidics, onMid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Avenue, Cambridge, Massachusetts 02139, United States Department of Chemistry and Chemical Biology

Heller, Eric

38

A picogram and nanometer scale photonic crystal opto-mechanical cavity  

E-Print Network [OSTI]

We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.

Eichenfield, M; Chan, J; Vahala, K J; Painter, O

2008-01-01T23:59:59.000Z

39

An Opto-electric Smart Material Detector with Wavelength-Dependent Bob Zheng,1  

E-Print Network [OSTI]

GP-B-19 An Opto-electric Smart Material Detector with Wavelength-Dependent Logic Bob and Computer Engineering, Rice University, Houston, Texas, U.S.A. Smart materials are artificial materials, or the coherent, collective oscillations of conduction-band electrons, are ideal sensors for smart materials due

40

Release strategies for making transferable semiconductor structures, devices and device components  

DOE Patents [OSTI]

Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

2014-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ZnO Thick Film Based Opto-electronic Humidity Sensor for a Wide Range of Humidity  

Science Journals Connector (OSTI)

Sensitivity of zinc oxide film to humidity is studied using prism based opto-electronic sensor configuration. Film is deposited on the base of the prism by screen printing. The film is crystalline in nature an...

Shobhna Dixit; Anchal Srivastava; R. K. Shukla; Atul Srivastava

42

Electrostatic screening by semiconductors  

E-Print Network [OSTI]

Electrostatic screening by semiconductors is studied, hics. applying the Thomas-Fermi theory. The semiconductor is treated as a medium with dielectric constant e due to vocalizable atoms, with force charge due to electrons. Two models...

Krcmar, Maja

2012-06-07T23:59:59.000Z

43

K.K. Gan ATLAS Pixel Week 1 New Results on Opto-Electronics  

E-Print Network [OSTI]

University #12;K.K. Gan ATLAS Pixel Week 2 Outline l VDC-I5 l VDC/DORIC-I5e l QA l BeO Opto-board l Summary reset from active high to low for ease of implementation by DCS ] slightly better performance at ±3s: Engineering Run #12;K.K. Gan ATLAS Pixel Week 9 l circuit boards: designed/built/tested l LabView programs

Gan, K. K.

44

Spire Semiconductor formerly Bandwidth Semiconductor LLC | Open Energy  

Open Energy Info (EERE)

Semiconductor formerly Bandwidth Semiconductor LLC Semiconductor formerly Bandwidth Semiconductor LLC Jump to: navigation, search Name Spire Semiconductor (formerly Bandwidth Semiconductor LLC) Place Hudson, New Hampshire Zip 3051 Product Spire-owned US-based manufacturer of gallium-arsenide (GaAs) cells; offers design and manufacturing capabilities of concentrator cells. References Spire Semiconductor (formerly Bandwidth Semiconductor LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spire Semiconductor (formerly Bandwidth Semiconductor LLC) is a company located in Hudson, New Hampshire . References ↑ "Spire Semiconductor (formerly Bandwidth Semiconductor LLC)" Retrieved from "http://en.openei.org/w/index.php?title=Spire_Semiconductor_formerly_Bandwidth_Semiconductor_LLC&oldid=351621"

45

Life-cycle Assessment of Semiconductors  

E-Print Network [OSTI]

The international technology roadmap for semiconductors,The international technology roadmap for semiconductors:The international technology roadmap for semiconductors,

Boyd, Sarah B.

2009-01-01T23:59:59.000Z

46

Semiconductor bridge (SCB) detonator  

DOE Patents [OSTI]

The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

47

Charge separation dynamics and opto-electronic properties of a diaminoterephthalate- C 60 diad  

E-Print Network [OSTI]

A novel diad composed of a diaminoterephthalate scaffold, covalently linked to a Fullerene derivative, is explored as a nanosized charge separation unit powered by solar energy. Its opto-electronic properties are studied and the charge separation rate is determined. Simulations of the coupled electronic and nuclear dynamics in the Ehrenfest approximation are carried out ona sub 100 fs time scale after photoexcitation in order to gain insights about the mechanisms driving the the charge separation. In particular, the role of vibronic coupling and of the detailed morphology are highlighted.

Pittalis, Stefano; Robin, Jrg; Freimuth, Lena; Christoffers, Jens; Rozzi, Christoph Lienaua nd Carlo Andrea

2014-01-01T23:59:59.000Z

48

Two examples of organic opto-electronic devices: Light emitting diodes and solar cells  

Science Journals Connector (OSTI)

Organic and polymeric (plastic) opto-electronic devices have been developed over the past decade and some of them have made the leap from the research laboratory to commercial use. We present a simple and inexpensive method of fabricating organic light emitting diodes and organic photovoltaic cells. The devices are fabricated by the deposition of solid films based on the fluorescent polymer MEH:PPV using the spin-coating technique. The films were sandwiched between electrodes one of which was made of Bi-Pb-Cd-Sn alloy. An overview of these two devices is also provided.

J. L. Maldonado; G. Ramos-Ortz; M. L. Miranda; S. Vzquez-Crdova; M. A. Meneses-Nava; O. Barbosa-Garca; M. Ortz-Gutirrez

2008-01-01T23:59:59.000Z

49

A compact opto-fluidic platform for chemical sensing with photonic crystal fibers  

Science Journals Connector (OSTI)

We report a compact opto-fluidic platform capable of continuous analyte loading and unloading with a 3dB optical insertion loss. The customized opto-fluidic manipulator enabled infiltration of photonic crystal fibers (PCFs) at ten times the rate achievable by capillary action. Additionally, it is to our knowledge, the first demonstration of complete and rapid evacuation performed with a syringe pump for extended lengths (>100mm) of PCF. These properties render the device highly promising for continuous real-time sensing applications. Study was conducted on a PCF under macro-bending, taking advantage of its wavelength-dependent bending losses that red-shifted with the increasing refractive indices of the infiltrated analytes. The flexibility of the platform also facilitated the selection of an optimal bending radius (12.5mm) for the analysis, based on sensitivity (??/?n) and signal to noise ratio (Q-factor). The subsequent comparison of experiment with simulation results was noted to show good coherence. Moreover, experimental results showed repeatability throughout the multiple cycles of infiltration and evacuation executed. The further employment of the device in the chemical sensing of ethanol solutions exhibited good consistency with calibrated data for concentrations up to 50% by weight.

Derrick Yong; Wei Long Ng; Xia Yu; Chi Chiu Chan

2013-01-01T23:59:59.000Z

50

A Multiview, Multimodal Fusion Framework for Classifying Small Marine Animals with an Opto-Acoustic Imaging System  

E-Print Network [OSTI]

dominant types of crus- tacean zooplankton: copepods and mysids. A fusion algo- rithm A Multiview, Multimodal Fusion Framework for Classifying Small Marine Animals with an Opto-0434 mtrivedi@ucsd.edu Abstract A multiview, multimodal fusion algorithm for classify- ing marine plankton

Jaffe, Jules

51

Invited paper History of Semiconductors  

E-Print Network [OSTI]

AbstractThe history of semiconductors is presented beginning with the first documented observation of a semiconductor effect (Faraday), through the development of the first devices (point-contact rectifiers and transistors, early field-effect transistors) and the theory of semiconductors up to the contemporary devices (SOI and multigate devices). Keywordsband theory, laser, Moores law, semiconductor, transistor.

Lidia ?ukasiak; Andrzej Jakubowski

52

Ferromagnetism in Oxide Semiconductors  

SciTech Connect (OSTI)

In order to become a practical technology, semiconductor spintronics requires the discovery and utilization of ferromagnetic semiconductors which exhibit spin polarization in the majority carrier band at and above room temperature. Intrinsic remanent magnetization would allow spin polarized currents to be propagated in such materials without the need for a continuous magnetic field. However, the discovery and understanding of such materials is proving to be a grand challenge in solid-state science. Indeed, one of the 125 critical unanswered scientific questions recently posed in Science magazine asks, Is it possible to create magnetic semiconductors that work at room temperature?

Chambers, Scott A.; Droubay, Timothy C.; Wang, Chong M.; Rosso, Kevin M.; Heald, Steve M.; Schwartz, S. A.; Kittilstved, Kevin R.; Gamelin, Daniel R.

2006-11-01T23:59:59.000Z

53

Mixed Semiconductor Nanocrystal Compositions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixed Semiconductor Nanocrystal Compositions Mixed Semiconductor Nanocrystal Compositions Mixed Semiconductor Nanocrystal Compositions Composition comprising one or more energy donors and one or more energy acceptors. Available for thumbnail of Feynman Center (505) 665-9090 Email Mixed Semiconductor Nanocrystal Compositions Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and

54

INFOGRAPHIC: Wide Bandgap Semiconductors  

Office of Energy Efficiency and Renewable Energy (EERE)

Breakthrough material technology called wide bandgap (WBG) semiconductors can help reduce the amount of wasted heat, boost energy efficiency, improve reliability, reduce cost, and decrease system size in existing and future power electronics.

55

Opto-thermal analysis of a lightweighted mirror for solar telescope  

E-Print Network [OSTI]

In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

Banyal, Ravinder K; Chatterjee, S

2013-01-01T23:59:59.000Z

56

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network [OSTI]

semiconductors and ceramics with desired thermalthermal conductivity of several polycrystalline semiconductors and ceramics,Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

Wang, Zhaojie

2012-01-01T23:59:59.000Z

57

Nitride semiconductor Surface and interface characterization and device design  

E-Print Network [OSTI]

barrier, q is the fundamental electronic charge, m e is theof the fundamental building blocks for electronic devices.the fundamental physics and the opto-electronic operations

Zhang, Hongtao

2006-01-01T23:59:59.000Z

58

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

59

Definition: Semiconductor | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Semiconductor Jump to: navigation, search Dictionary.png Semiconductor Any material that has a limited capacity for conducting an electric current. Certain semiconductors, including silicon, gallium arsenide, copper indium diselenide, and cadmium telluride, are uniquely suited to the photovoltaic conversion process.[1] View on Wikipedia Wikipedia Definition A semiconductor is a material which has electrical conductivity to a degree between that of a metal (such as copper) and that of an insulator (such as glass). Semiconductors are the foundation of modern solid state electronics, including transistors, solar cells, light-emitting diodes (LEDs), quantum dots and digital and analog integrated circuits. A semiconductor may have a number of unique properties, one of which is the

60

Optimized deposition and characterization of nanocrystalline magnesium indium oxide thin films for opto-electronic applications  

Science Journals Connector (OSTI)

Transparent conducting magnesium indium oxide films (MgIn2O4) were deposited on to quartz substrates without a buffer layer at an optimized deposition temperature of 450C to achieve high transmittance in the visible spectral range and electrical conductivity in the low temperature region. Magnesium ions are distributed over the tetrahedral and octahedral sites of the inverted spinel structure with preferential orientation along (311) Miller plane. The possible mechanism that promotes conductivity in this system is the charge transfer between the resident divalent (Mg2+) and trivalent (In3+) cations in addition to the available oxygen vacancies in the lattice. A room temperature electrical conductivity of 1.5נ10?5Scm?1 and an average transmittance >75% have been achieved. Hall measurements showed n-type conductivity with electron mobility value 0.95נ10?2cm2V?1s?1 and carrier concentration 2.7נ1019cm?3. Smoothness of the film surface observed through atomic force microscope measurements favors this material for gas sensing and opto-electronic device development.

A. Moses Ezhil Raj; C. Ravidhas; R. Ravishankar; A. Rathish Kumar; G. Selvan; M. Jayachandran; C. Sanjeeviraja

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21 - 530 of 26,777 results. 21 - 530 of 26,777 results. Download WA_01_028_GENERAL_ELECTRIC_CORP_R_and_D_Waiver_of_Domestic_and_F.pdf http://energy.gov/gc/downloads/wa01028generalelectriccorpranddwaiverofdomesticandfpdf Download WA_05_059_SHELL_SOLAR_INDUSTRIES_LP_Waiver_of_Domestic_and_F.pdf http://energy.gov/gc/downloads/wa05059shellsolarindustrieslpwaiverofdomesticandfpdf Download WA_01_014_VOITH_FABRICS_APPLETON_Waiver_of_Domestic_and_Fore.pdf http://energy.gov/gc/downloads/wa01014voithfabricsappletonwaiverofdomesticandforepdf Download WA_1993_003_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign.pdf http://energy.gov/gc/downloads/wa1993003eatoncorporationwaiverofdomesticandforeignpdf Download WA_05_017_OSRAM_OPTO_SEMICONDUCTORS_Waiver_of_Domestic_and_F.pdf http://energy.gov/gc/downloads/wa05017osramoptosemiconductorswaiverofdomesticandfpdf

62

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 20 of 31,917 results. 11 - 20 of 31,917 results. Download WA_1994_027_FORD_MOTOR_COMPANY_Waiver_of_Domestic_and_Foreig.pdf http://energy.gov/gc/downloads/wa1994027fordmotorcompanywaiverofdomesticandforeigpdf Download WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf http://energy.gov/gc/downloads/wa1993033goldenphotonincwaiverofdomesticandforeignpdf Download WA_05_017_OSRAM_OPTO_SEMICONDUCTORS_Waiver_of_Domestic_and_F.pdf http://energy.gov/gc/downloads/wa05017osramoptosemiconductorswaiverofdomesticandfpdf Download WA_03_017_HYBRID_POWER_GENERATION_SYSTEMS_Waiver_of_Domestic.pdf http://energy.gov/gc/downloads/wa03017hybridpowergenerationsystemswaiverofdomesticpdf Download WA_00_017_GENERAL_ATOMICS_Waiver_of_the_Government_Domestic_.pdf http://energy.gov/gc/downloads/wa00017generalatomicswaiverofthegovernmentdomesticpdf

63

Semiconductor radiation detector  

DOE Patents [OSTI]

A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

2002-01-01T23:59:59.000Z

64

K.K. Gan US ATLAS Pixel Upgrade Workshop 1 Results of LHC & SLHC Opto-Link R&D  

E-Print Network [OSTI]

-Hardness of GaAs PIN AOC ULM irradiate PIN with 24 GeV protons at CERN SLHC dosage: 2.6 x 1015 p/cm2 (8.2 x study? Gb/s Responsivity (A/W) GaAs Pre Post ULM 4.25 0.50 0.13 AOC 2.5 0.60 0.19 Optowell 3.125 0.60 0 dosage: AOC(5 & 10 G) have good power #12;K.K. Gan US ATLAS Pixel Upgrade Workshop 8 Opto-Chips 1

Gan, K. K.

65

Method of passivating semiconductor surfaces  

DOE Patents [OSTI]

A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

Wanlass, Mark W. (Golden, CO)

1990-01-01T23:59:59.000Z

66

Semiconductor devices incorporating multilayer interference regions  

DOE Patents [OSTI]

A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

1987-08-31T23:59:59.000Z

67

Avalanche semiconductor radiation detectors  

SciTech Connect (OSTI)

Operation of novel avalanche semiconductor detector, produced on the basis of heterojunctions Si-SiC and Si-Si{sub x}O{sub y} is described. A uniform avalanche process with gain from 10{sup 3} to 10{sup 5} can be reached depending on the conductivity of SiC and Si{sub x}O{sub y} layers. Two types of avalanche photodetectors designed for applications in wavelength range 500--10,00 nm with quantum efficiency 60 {+-} 10% (650 nm) and 200--700 nm with quantum efficiency 60 {+-} 15% (450 nm) are presented.

Sadygov, Z.Y. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)] [Joint Inst. for Nuclear Research, Dubna (Russian Federation); [Azerbaijan Academy of Sciences, Baku (Azerbaijan). Physics Inst.; Zheleznykh, I.M.; Kirillova, T.A. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research] [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Malakhov, N.A.; Jejer, V.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)] [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

1996-06-01T23:59:59.000Z

68

Method Of Transferring Strained Semiconductor Structures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Transferring Strained Semiconductor Structures Of Transferring Strained Semiconductor Structures Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. June 25, 2013 Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. Available for thumbnail of Feynman Center (505) 665-9090 Email Method Of Transferring Strained Semiconductor Structures The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having

69

Semiconductor Physics at the Optical Sciences Center  

Science Journals Connector (OSTI)

This talk reviews semiconductor physics experiments and theory at the Optical Sciences Center including optical bistability, femtosecond dynamics, as well as semiconductor laser...

Koch, Stephan W

70

Opportunities for Wide Bandgap Semiconductor Power Electronics...  

Energy Savers [EERE]

Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen...

71

Process for producing chalcogenide semiconductors  

DOE Patents [OSTI]

A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

Noufi, R.; Chen, Y.W.

1985-04-30T23:59:59.000Z

72

Variable temperature semiconductor film deposition  

DOE Patents [OSTI]

A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

Li, X.; Sheldon, P.

1998-01-27T23:59:59.000Z

73

Semiconductor Nanoclusters as Potential Photocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Cantilever Epitaxy to Produce High Quality GaN with Reduced Development of Cantilever Epitaxy to Produce High Quality GaN with Reduced Threading Dislocation Densities by C. C. Mitchell, A. A. Allerman, C. I. H. Ashby, R. D. Briggs, D. M. Follstadt, S. L. Lee, D. D. Koleske Motivation-GaN grown on any currently available substrates has an inherent problem of having to overcome a large lattice mismatch with the substrate. As a result typical planar GaN includes anywhere from 10 8 - 10 10 threading dislocations per square centimeter. Cantilever epitaxy (CE) is a technique developed to produce areas of GaN with a reduced number of vertical threading dislocations (VTDs) over large areas. Low defect materials are required to reduce leakage and breakdown of both electronic and opto- electronic devices. Accomplishment-This

74

Photocatalysis Using Semiconductor Nanoclusters  

SciTech Connect (OSTI)

We report on experiments using nanosize MoS{sub 2} to photo-oxidize organic pollutants in water using visible light as the energy source. We have demonstrated that we can vary the redox potentials and absorbance characteristics of these small semiconductors by adjusting their size, and our studies of the photooxidation of organic molecules have revealed that the rate of oxidation increases with increasing bandgap (i.e. more positive valence band and more negative conduction band potentials). Because these photocatalysis reactions can be performed with the nanoclusters fully dispersed and stable in solution, liquid chromatography can be used to determine both the intermediate reaction products and the state of the nanoclusters during the reaction. We have demonstrated that the MoS{sub 2} nanoclusters remain unchanged during the photooxidation process by this technique. We also report on studies of MoS{sub 2} nanoclusters deposited on TiO{sub 2} powder.

Thurston, T.R.; Wilcoxon,J.P.

1999-01-21T23:59:59.000Z

75

Semiconductor radiation detector  

DOE Patents [OSTI]

A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

Bell, Zane W. (Oak Ridge, TN); Burger, Arnold (Knoxville, TN)

2010-03-30T23:59:59.000Z

76

Web Growth of Semiconductors  

Science Journals Connector (OSTI)

A novel process for growth of diamond?lattice semiconductors is described and a model is proposed for the growth mechanism. For germanium the process yields extended thin flat sheets typically 1 cm wide and 0.1 mm thick of good crystalline quality and relatively flat {111} surfaces. The sheet or web freezes from a liquid film drawn up by surface tension between two coplanar dendrites which originate from a single seed and are grown from the melt simultaneously with the sheet. Resistivity throughout the sheet is quite uniform. Etching of germanium webs shows them to be essentially dislocation?free and does not reveal any microsegregation of impurities. Silicon and indium antimonide have also been grown in this manner.

S. O'Hara; A. I. Bennett

1964-01-01T23:59:59.000Z

77

Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material  

DOE Patents [OSTI]

Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

Sopori, Bhushan; Rangappan, Anikara

2014-11-25T23:59:59.000Z

78

Mathematical Modeling of Semiconductor Devices  

E-Print Network [OSTI]

fibers. · Optoelectronic emitters convert an electronic signal into light. Examples are light-emitting diodes (LED) used in displays and indication lambs and semiconductor lasers used in compact disk systems

Jüngel, Ansgar

79

Seebeck coefficient in organic semiconductors  

E-Print Network [OSTI]

Seebeck coefficient in organic semiconductors A dissertation submitted for the degree of Doctor of Philosophy Deepak Venkateshvaran Fitzwilliam College & Optoelectronics Group, Cavendish Laboratory University of Cambridge February 2014 The end...

Venkateshvaran, Deepak

2014-07-01T23:59:59.000Z

80

Opto-electronic device for frequency standard generation and terahertz-range optical demodulation based on quantum interference  

DOE Patents [OSTI]

An opto-electronic system and technique for comparing laser frequencies with large frequency separations, establishing new frequency standards, and achieving phase-sensitive detection at ultra high frequencies are disclosed. Light responsive materials with multiple energy levels suitable for multi-photon excitation are preferably used for nonlinear mixing via quantum interference of different excitation paths affecting a common energy level. Demodulation of a carrier with a demodulation frequency up to 100`s THZ can be achieved for frequency comparison and phase-sensitive detection. A large number of materials can be used to cover a wide spectral range including the ultra violet, visible and near infrared regions. In particular, absolute frequency measurement in a spectrum from 1.25 {micro}m to 1.66 {micro}m for fiber optics can be accomplished with a nearly continuous frequency coverage. 7 figs.

Georgiades, N.P.; Polzik, E.S.; Kimble, H.J.

1999-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA PRODUCTS...  

Broader source: Energy.gov (indexed) [DOE]

the waived invention is suspended until approved in writing by the DOE. WAIVER ACTION - ABSTRACT W(A)-05-031 (CH-1300) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

82

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM SYLVANIA DEVELOPMENT...  

Broader source: Energy.gov (indexed) [DOE]

is suspended until approved in writing by the DOE. 3 :+41 TUTAL PAGE.04 0 WAIVER ACTION - ABSTRACT W(A)-04-073 (CH-1251) REQUESTOR CONTRACT SCOPE OF WORK RATIONALE FOR DECISION...

83

Non-equilibrium synthesis, structure, and opto-electronic properties of Cu2?2x Zn x O alloys  

Science Journals Connector (OSTI)

Alloying in traditional semiconductors is a well-established method to tune the electronic structure and the materials properties, but this technique is less common for oxides. Here, we present results on the ...

Archana Subramaniyan; John D. Perkins; Ryan P. OHayre

2014-11-01T23:59:59.000Z

84

Wide-Bandgap Semiconductors  

SciTech Connect (OSTI)

With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters. With the advent of the use of SiC devices it is imperative that models of these be made available in commercial simulators. This enables power electronic designers to simulate their designs for various test conditions prior to fabrication. To build an accurate transistor-level model of a power electronic system such as an inverter, the first step is to characterize the semiconductor devices that are present in the system. Suitable test beds need to be built for each device to precisely test the devices and obtain relevant data that can be used for modeling. This includes careful characterization of the parasitic elements so as to emulate the test setup as closely as possible in simulations. This report is arranged as follows: Chapter 2--The testing and characterization of several diodes and power switches is presented. Chapter 3--A 55-kW hybrid inverter (Si insulated gate bipolar transistor--SiC Schottky diodes) device models and test results are presented. A detailed description of the various test setups followed by the parameter extraction, modeling, and simulation study of the inverter performance is presented. Chapter 4--A 7.5-kW all-SiC inverter (SiC junction field effect transistors (JFET)--SiC Schottky diodes) was built and tested. The models built in Saber were validated using the test data and the models were used in system applications in the Saber simulator. The simulation results and a comparison of the data from the prototype tests are discussed in this chapter. Chapter 5--The duration test results of devices utilized in buck converters undergoing reliability testing are presented.

Chinthavali, M.S.

2005-11-22T23:59:59.000Z

85

Optical Properties and Potential Applications of Doped Semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles. Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles. Abstract:...

86

Waste minimization in semiconductor processing  

SciTech Connect (OSTI)

The US semiconductor industry uses 5--7 thousand pounds of arsine annually. Fifty to eighty percent of the arsine used becomes a waste product, which requires abatement. Traditional methods of abatement are reviewed with an emphasis on dry chemical scrubbing. A variety of dry chemical scrubbing materials were evaluated for arsine capacity, using activated carbon as the baseline for comparison. Of the available technologies, dry chemical scrubbing is the most effective means of minimizing arsenic containing waste generated from semiconductor effluents. A copper oxide based media has been identified which has high capacity, high efficiency and treats the spectrum of gases used in MOCVD processes. Reclaim and recovery of spent scrubber media has the potential to drastically reduce arsenic waste from semiconductor manufacturing.

Hardwick, S.J.; Mailloux, J.C. [Novapure Corp., Danbury, CT (United States)

1994-12-31T23:59:59.000Z

87

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect (OSTI)

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

88

Semiconductor nanocrystal-based phagokinetic tracking  

DOE Patents [OSTI]

Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

2014-11-18T23:59:59.000Z

89

Semiconductor electrode with improved photostability characteristics  

DOE Patents [OSTI]

An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

Frank, A.J.

1985-02-19T23:59:59.000Z

90

Semiconductor assisted metal deposition for nanolithography applications  

DOE Patents [OSTI]

An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

2001-01-01T23:59:59.000Z

91

Semiconductor assisted metal deposition for nanolithography applications  

DOE Patents [OSTI]

An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

Rajh, Tijana (Naperville, IL); Meshkov, Natalia (Downers Grove, IL); Nedelijkovic, Jovan M. (Belgrade, YU); Skubal, Laura R. (West Brooklyn, IL); Tiede, David M. (Elmhurst, IL); Thurnauer, Marion (Downers Grove, IL)

2002-01-01T23:59:59.000Z

92

Semiconductor-based optical refrigerator  

DOE Patents [OSTI]

Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

Epstein, Richard I. (Santa Fe, NM); Edwards, Bradley C. (Nekoosa, WI); Sheik-Bahae, Mansoor (Albuquerque, NM)

2002-01-01T23:59:59.000Z

93

Mechanical scriber for semiconductor devices  

DOE Patents [OSTI]

A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

Lin, P.T.

1985-03-05T23:59:59.000Z

94

Stretchable semiconductor elements and stretchable electrical circuits  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

2009-07-07T23:59:59.000Z

95

Optical devices featuring textured semiconductor layers  

DOE Patents [OSTI]

A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

2012-08-07T23:59:59.000Z

96

Optical devices featuring textured semiconductor layers  

DOE Patents [OSTI]

A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

2011-10-11T23:59:59.000Z

97

Photon Statistics of Semiconductor Light Sources.  

E-Print Network [OSTI]

??In recent years, semiconductor light sources have become more and more interesting in terms of applications due to their high efficiency and low cost. Advanced (more)

Amann, Marc

2010-01-01T23:59:59.000Z

98

Earth-abundant semiconductors for photovoltaic applications ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

99

Sandia National Labs: PCNSC: Research: Compound Semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and chemistry foundations to advance the state-of-the-art compound semiconductor optoelectronic materials and devices. Our approach is based on a focused effort including...

100

Wide Bandgap Semiconductors for Clean Energy Workshop  

Broader source: Energy.gov [DOE]

A workshop on Wide Bandgap (WBG) Semiconductors for Clean Energy (held July 25, 2012, in Chicago, Illinois) brought together stakeholders from industry and academia to discuss the technical status of WBG semiconductors. The workshop also explored emerging WBG market applications in clean energy and barriers to the development and widespread commercial use of WBG semiconductors. Improving the quality and reliability of WBG semiconductorsand reducing their manufacturing costscould accelerate their use in automotive, power electronics, solid-state lighting, and other clean energy applications.

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

102

Climate VISION: Private Sector Initiatives: Semiconductors: Work...  

Office of Scientific and Technical Information (OSTI)

Plans The Semiconductor Industry Association has finalized its work plan with the collaboration of EPA. The plan describes actions the industry intends to take to achieve its...

103

CCEC Seminar Wireless Sensors for SemiconductorWireless Sensors for Semiconductor  

E-Print Network [OSTI]

CCEC Seminar Wireless Sensors for SemiconductorWireless Sensors for Semiconductor Manufacturing perhaps. In this talk, we describe our efforts in developing a new class of wireless sensors for use in semiconductor manufacturing. These sensors are fully self-contained with on board power, communications

Akhmedov, Azer

104

Acoustoelectric Interactions in Piezoelectric Semiconductors  

Science Journals Connector (OSTI)

Piezoelectric semiconductors such as cadmium sulfide exhibit a strong coupling between conduction electrons that are present in the substance and acoustic waves that are propagated along certain directions in the material. This energy exchange mechanism is highly nonlinear, and thus the simultaneous introduction of several collinear acoustic waves into the substance generates new signals at the conbination (sum and difference) frequencies. A theoretical explanation of this interaction mechanism, based on consideration of the nonlinear cross term present in the current-density equation, has been developed, and the validity of this method of analysis has been tested and qualitatively confirmed through experimentation.

R. Mauro and W. C. Wang

1970-01-15T23:59:59.000Z

105

Optic probe for semiconductor characterization  

DOE Patents [OSTI]

Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

2008-09-02T23:59:59.000Z

106

Charge-carrier transport in amorphous organic semiconductors  

E-Print Network [OSTI]

Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have ...

Limketkai, Benjie, 1982-

2008-01-01T23:59:59.000Z

107

Comments on the National Technology Roadmap for Semiconductors  

Science Journals Connector (OSTI)

The SIA National Technology Roadmap for Semiconductors (NTRS) [1] represents ... in defining a unified description of the semiconductor technology requirements for ensuring advancements in the performance ... an ...

James F. Freedman

1996-01-01T23:59:59.000Z

108

Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition...

109

Engineering Density of States of Earth Abundant Semiconductors...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced...

110

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00...

111

Wide Bandgap Semiconductors for Clean Energy Workshop Agenda  

Energy Savers [EERE]

Wide Bandgap Semiconductors for Clean Energy Workshop Wednesday, July 25, 2012 Hilton Rosemont O'Hare, Chicago, IL Introduction Wide bandgap (WBG) semiconductors operate at...

112

Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for...

113

Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...  

Broader source: Energy.gov (indexed) [DOE]

Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power...

114

Preparation of a semiconductor thin film  

DOE Patents [OSTI]

A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

1998-01-01T23:59:59.000Z

115

Preparation of a semiconductor thin film  

DOE Patents [OSTI]

A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

1998-01-27T23:59:59.000Z

116

e! Science News Semiconductor manufacturing technique holds  

E-Print Network [OSTI]

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

117

Semiconductor heterojunction band offsets and charge neutrality  

E-Print Network [OSTI]

on semi- conductors A and B like Figure 3. 1, and commutativity of semiconductors A and B, i. e. , DEs(A ? B) = DE?(B ? A). (3. 33) We predict the charge neutrality levels &b, 4is and 4i, might align in semiconductors A, B and C as shown in Figure 3...

Lee, Chomsik

2012-06-07T23:59:59.000Z

118

Novel room temperature ferromagnetic semiconductors  

SciTech Connect (OSTI)

Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Gupta, Amita

2004-11-01T23:59:59.000Z

119

RADIATION-HARD OPTO-LINK FOR THE ATLAS PIXEL DETECTOR K.K. GAN, K.E. ARMS, M. JOHNSON, H. KAGAN, R. KASS, C. RUSH, S. SMITH,  

E-Print Network [OSTI]

the ROD, bi-phase mark (BPM) encoded with the data (command) signal to control the pixel detector, is transmitted via a fiber to a PIN diode. This BPM encoded signal is decoded using a Digital Opto The DORIC decodes BPM encoded clock and data signals received by a PIN diode. The BPM signal is derived from

Gan, K. K.

120

Semiconductor Nanoclusters as Potential Photocatalysts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Electronics Based on the 2-Dimensional Electron Gas in GaN High Power Electronics Based on the 2-Dimensional Electron Gas in GaN Heterostructures by S. R. Kurtz, A. A. Allerman, and D. Koleski Motivation-GaN-based electronics offer miniaturization potential of radical proportions for microwave power amplifiers. GaN's large bandgap, high breakdown field, high electron velocity, and excellent thermal properties have led to high electron mobility transistors (HEMT) with up to 10x the power density of GaAs and other traditional semiconductors at frequencies up to 20 GHz. Further contributing to the outstanding performance of GaN-based amplifiers is the highly conducting, 2-dimensional electron gas (2DEG) used for the HEMT channel. Intrinsic polarization and piezoelectric properties of GaN materials can produce a 2DEG at an

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Management in Semiconductor Cleanrooms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Energy Management in Semiconductor Cleanrooms Cleanrooms are used extensively in the manufacturing of integrated circuits and in the biological and pharmaceutical industries. For particle concentrations to remain low, for example, less than 100 particles/ft3 at >0.5 micrometers (Class 100), the air in the cleanroom must be filtered. Typically, the air is circulated through high-efficiency particulate air (HEPA) filters at a very high rate, such as 400 to 600 room air volumes per hour, to maintain low particle concentrations. The combined effect of high recirculation and a high pressure drop through HEPA filters is higher power costs per unit floor area to operate the cleanroom than to ventilate a commercial building. Cleanrooms are usually ventilated constantly and

122

Boron doping a semiconductor particle  

DOE Patents [OSTI]

A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

Stevens, Gary Don (18912 Ravenglen Ct., Dallas, TX 75287); Reynolds, Jeffrey Scott (703 Horizon, Murphy, TX 75094); Brown, Louanne Kay (2530 Poplar Tr., Garland, TX 75042)

1998-06-09T23:59:59.000Z

123

Heating device for semiconductor wafers  

DOE Patents [OSTI]

An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

Vosen, Steven R. (Berkeley, CA)

1999-01-01T23:59:59.000Z

124

Heating device for semiconductor wafers  

DOE Patents [OSTI]

An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

Vosen, S.R.

1999-07-27T23:59:59.000Z

125

AgBiS2 Semiconductor-Sensitized Solar Cells  

Science Journals Connector (OSTI)

AgBiS2 Semiconductor-Sensitized Solar Cells ... We present a new ternary semiconductor sensitizer-AgBiS2 for solar cells. ... Liquid-junction semiconductor-sensitized solar cells were fabricated from the synthesized AgBiS2 semiconductor. ...

Pen-Chi Huang; Wei-Chih Yang; Ming-Way Lee

2013-08-16T23:59:59.000Z

126

Transport Equations for Semiconductors Prof. Dr. Ansgar Jungel  

E-Print Network [OSTI]

- cations have been invented; for instance, semiconductor lasers, solar cells, light-emitting diodes (LED

Jüngel, Ansgar

127

ECE 344--Semiconductor Devices & Materials ECE Department, UMass Amherst  

E-Print Network [OSTI]

Topics: Fundamentals of Semiconductors; Theory of Electrical Conduction; Device Operations (See "Class

Massachusetts at Amherst, University of

128

Diluted magnetic semiconductor nanowires exhibiting magnetoresistance  

DOE Patents [OSTI]

A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

Yang, Peidong (El Cerrito, CA); Choi, Heonjin (Seoul, KR); Lee, Sangkwon (Daejeon, KR); He, Rongrui (Albany, CA); Zhang, Yanfeng (El Cerrito, CA); Kuykendal, Tevye (Berkeley, CA); Pauzauskie, Peter (Berkeley, CA)

2011-08-23T23:59:59.000Z

129

Femtosecond Opto-Magnetism  

Science Journals Connector (OSTI)

We demonstrate that circularly polarized laser pulses may selectively excite different modes of magnetic resonance, realize quantum control of magnons, trigger magnetic phase...

Kimel, Alexey; Kirilyuk, A; Rasing, Th

130

Mospec Semiconductor Corp | Open Energy Information  

Open Energy Info (EERE)

Mospec Semiconductor Corp Mospec Semiconductor Corp Jump to: navigation, search Name Mospec Semiconductor Corp Place Tainan, Taiwan Sector Solar Product Taiwanese semiconductor products producer; offers monocrystalline silicon wafers and as of April 2008, ingots for the solar industry. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Hemlock Semiconductor Corp HSC | Open Energy Information  

Open Energy Info (EERE)

Hemlock Semiconductor Corp HSC Hemlock Semiconductor Corp HSC Jump to: navigation, search Name Hemlock Semiconductor Corp (HSC) Place Hemlock, Michigan Zip 48626 Sector Solar Product US-based manufacturer polycrystalline silicon for semiconductor and solar industries. Coordinates 39.589497°, -82.153275° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.589497,"lon":-82.153275,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Climate VISION: Private Sector Initiatives: Semiconductors  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements The U.S. semiconductor industry, represented by the members of the Environmental Protection Agency's PFC Reduction/Climate Partnership for the Semiconductor Industry, has committed to reduce absolute perfluorocompound (PFC) emissions by 10% below the 1995 baseline level by the year 2010. Perfluorocompounds include the most potent and long-lived greenhouse gases such as perfluorocarbons (e.g., CF4, C2F6, C3F8), trifluoromethane (CHF3), nitrogen trifluoride (NF3), and sulfur hexafluoride (SF6). The Environmental Protection Agency's (EPA) voluntary semiconductor industry partnership was developed collaboratively with the Semiconductor Industry Association (SIA). EPA, SIA, and the Partner companies (listed below) are working to reduce industry greenhouse gas (GHG) emissions. EPA's

133

Narrow band gap amorphous silicon semiconductors  

DOE Patents [OSTI]

Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

Madan, A.; Mahan, A.H.

1985-01-10T23:59:59.000Z

134

Sandia National Laboratories: wide-bandgap semiconductor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

135

ITRS: The International Technology Roadmap for Semiconductors  

Science Journals Connector (OSTI)

In a move singular for the worlds industry, the semiconductor industry established a quantitative strategy for its progress with the establishment of the ITRS. In its 17th year, it has been extended in 2009 t...

Bernd Hoefflinger

2012-01-01T23:59:59.000Z

136

Wide Bandgap Semiconductors: Pursuing the Promise  

Broader source: Energy.gov [DOE]

Wide bandgap semiconductor materials are more efficient than their silicon-based counterparts; making it possible to reduce weight, volume, and life-cycle costs in a wide range of power applications.

137

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents [OSTI]

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

138

Gaining creative control over semiconductor nanowires  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Using a microfluidic reactor, Los Alamos researchers transformed the SLS process into a flow-based technique. September 26, 2013 Growth of nanowire precursors in a flowing carrier solvent Growth of nanowire precursors in a flowing carrier solvent The new "flow" solution-liquid-solid method allows scientists to slow down growth and thereby capture mechanistic details as the nanowires grow in solution. A Los Alamos research team has transformed the synthesis process of semiconductor nanowires for use in solar cells, batteries, electronics, sensors and photonics using a solution-liquid-solid (SLS) batch approach to achieve unprecedented control over growth rates, nanowire size and internal

139

Optical temperature indicator using thermochromic semiconductors  

DOE Patents [OSTI]

A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

Kronberg, J.W.

1995-01-01T23:59:59.000Z

140

All-optical logic gates based on vertical cavity semiconductor optical amplifiers  

E-Print Network [OSTI]

in International Technology Roadmap for Semiconductors 2007in International Technology Roadmap for Semiconductors 2007The 2007 International Technology Roadmap for Semiconductors

Gauss, Veronica Andrea

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

E-Print Network 3.0 - area semiconductor laser Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

areas of semiconductor... for conducting research on wide bandgap semiconductor optoelectronics in my research group, within the Center... bandgap III-Nitride semiconductor...

142

Sandia National Labs: PCNSC: Departments: Semiconductor and Optical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Semiconductor & Optical Sciences Semiconductor & Optical Sciences > Semiconductor Material & Device Sciences > Advanced Materials Sciences > Lasers, Optics & Remote Sensing Energy Sciences Small Science Cluster Business Office News Partnering Research Jeff Nelson Jerry A. Simmons Sr. Manager Idabelle Idabelle Courtney Admin. Asst. Departments Semiconductor and Optical Sciences The Semiconductor and Optical Sciences Department oversees the operations of the following departments providing new scientific knowledge that can lead to technology solutions in the areas of: Compound semiconductor optoelectronic materials and devices Chemical science to materials technologies, emphasizing the science and engineering of Metal Organic Chemical Vapor Deposition (MOCVD) Remote sensing and detection of WMD proliferation activities

143

Extracting hot carriers from photoexcited semiconductor nanocrystals  

SciTech Connect (OSTI)

This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called Shockley-Queisser limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates hot charge carriers that quickly cool to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a phonon bottleneck wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

Zhu, Xiaoyang

2014-12-10T23:59:59.000Z

144

Light sources based on semiconductor current filaments  

DOE Patents [OSTI]

The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

2003-01-01T23:59:59.000Z

145

Zecon Solar Semiconductor Inc | Open Energy Information  

Open Energy Info (EERE)

Zecon Solar Semiconductor Inc Zecon Solar Semiconductor Inc Jump to: navigation, search Name Zecon Solar & Semiconductor Inc Place Cupertino, California Zip 95014 Sector Solar Product Focused on large-scale solar building integrated PV systems. Coordinates 37.31884°, -122.029244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.31884,"lon":-122.029244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Two-Photon Emission from Semiconductors  

E-Print Network [OSTI]

We report the first experimental observations of two-photon emission from semiconductors, to the best of our knowledge, and develop a corresponding theory for the room-temperature process. Spontaneous two-photon emission is demonstrated in optically-pumped bulk GaAs and in electrically-driven GaInP/AlGaInP quantum wells. Singly-stimulated two-photon emission measurements demonstrate the theoretically predicted two-photon optical gain in semiconductors - a necessary ingredient for any realizations of future two-photon semiconductor lasers. Photon-coincidence experiment validates the simultaneity of the electrically-driven GaInP/AlGaInP two-photon emission, limited only by detector's temporal resolution.

Alex Hayat; Pavel Ginzburg; Meir Orenstein

2007-10-25T23:59:59.000Z

147

Substrate solder barriers for semiconductor epilayer growth  

DOE Patents [OSTI]

During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

1989-05-09T23:59:59.000Z

148

Substrate solder barriers for semiconductor epilayer growth  

DOE Patents [OSTI]

During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

1987-10-23T23:59:59.000Z

149

Emissivity Correcting Pyrometry of Semiconductor Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissivity Correcting Pyrometry of Semiconductor Growth Emissivity Correcting Pyrometry of Semiconductor Growth by W. G. Breiland, L. A. Bruskas, A. A. Allerman, and T. W. Hargett Motivation-Temperature is a critical factor in the growth of thin films by either chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is particularly important in compound semiconductor growth because one is often challenged to grow materials with specific chemical compositions in order to maintain stringent lattice-matching conditions or to achieve specified bandgap values. Optical pyrometry can be used to measure surface temperatures, but the thin film growth causes significant changes in the emissivity of the surface, leading to severe errors in the pyrometer measurement. To avoid these errors, emissivity changes must be measured and

150

Semiconductor Equipment and Materials International SEMI | Open Energy  

Open Energy Info (EERE)

Semiconductor Equipment and Materials International SEMI Semiconductor Equipment and Materials International SEMI Jump to: navigation, search Name Semiconductor Equipment and Materials International (SEMI) Place San Jose, California Zip 95134 2127 Product Global trade association, publisher and conference organiser representing the semiconductor and flat panel display equipment manufacturers. References Semiconductor Equipment and Materials International (SEMI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Semiconductor Equipment and Materials International (SEMI) is a company located in San Jose, California . References ↑ "Semiconductor Equipment and Materials International (SEMI)" Retrieved from "http://en.openei.org/w/index.php?title=Semiconductor_Equipment_and_Materials_International_SEMI&oldid=350739

151

A New Cleanroom for a Next-Generation Semiconductor Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Cleanroom for a Next-Generation Semiconductor Research Tool A New Cleanroom for a Next-Generation Semiconductor Research Tool Print The new Sector 12 cleanroom under...

152

Lattice mismatched compound semiconductors and devices on silicon  

E-Print Network [OSTI]

III-V compound semiconductors, due to their superior electron mobility, are promising candidates for n-type metal-oxide-semiconductor field effect transistors (MOSFETs). However, the limited size of III-V substrates and ...

Yang, Li, Ph. D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

153

Silicon Carbide Power Semiconductor Devices in the Cleanroom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Silicon Carbide Power Semiconductor Devices in the Cleanroom Silicon Carbide Power Semiconductor Devices in the Cleanroom Ron Olson 2012.10.04 I would like to introduce Zach Stum,...

154

DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION  

E-Print Network [OSTI]

1 DECENTRALIZING SEMICONDUCTOR CAPACITY PLANNING VIA INTERNAL MARKET COORDINATION SULEYMAN KARABUK semiconductor manufacturer: marketing managers reserve capacity from manufacturing based on product demands, while attempting to maximize profit; manufacturing managers allocate capacity to competing marketing

Wu, David

155

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic  

E-Print Network [OSTI]

APPLIED PHYSICS REVIEWS Semi-insulating semiconductor heterostructures: Optoelectronic properties of optoelectronic properties of and uses for semi-insulating semiconductor heterostructures and thin films. The principal optical and optoelectronic properties of semi-insulating epilayers and heterostructures

Nolte, David D.

156

Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy Information  

Open Energy Info (EERE)

Semiconductor Manufacturing Co Ltd TSMC Semiconductor Manufacturing Co Ltd TSMC Jump to: navigation, search Name Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place Hsinchu, Taiwan Zip 300 Sector Solar Product Taiwan-based semiconductor company. The firm is also venturing into solar and LED production. References Taiwan Semiconductor Manufacturing Co Ltd (TSMC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taiwan Semiconductor Manufacturing Co Ltd (TSMC) is a company located in Hsinchu, Taiwan . References ↑ "Taiwan Semiconductor Manufacturing Co Ltd (TSMC)" Retrieved from "http://en.openei.org/w/index.php?title=Taiwan_Semiconductor_Manufacturing_Co_Ltd_TSMC&oldid=352012"

157

Method Of Transferring A Thin Crystalline Semiconductor Layer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Method Of Transferring A Thin Crystalline Semiconductor Layer Method Of Transferring A Thin Crystalline Semiconductor Layer Method Of Transferring A Thin Crystalline Semiconductor Layer A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. Available for thumbnail of Feynman Center (505) 665-9090 Email Method Of Transferring A Thin Crystalline Semiconductor Layer A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure

158

Semiconductor nanowires DOI: 10.1002/smll.200500094  

E-Print Network [OSTI]

of a semiconductor Si nanowire, synthesized via the VLS pro- cess, into metallic nickel silicide through parameters. Anisotropic growth of a metal onto a semiconductor nanowire (or a semicon- ductor on a metal approach to prepare metal/semiconductor nano- wire heterostructures by transforming specific sections

Rogers, John A.

159

Method of physical vapor deposition of metal oxides on semiconductors  

DOE Patents [OSTI]

A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

Norton, David P. (Knoxville, TN)

2001-01-01T23:59:59.000Z

160

High-Frequency Conductivity of Degenerate Semiconductors  

Science Journals Connector (OSTI)

The problem of high-frequency conductivity of a degenerate semiconductor is investigated by a kinetic description. The finite duration of encounters is taken into account in a self-consistent fashion which properly includes collective effects. This treatment is an extension for quantum plasmas of the Dawson-Oberman method given for classical plasmas.

Amiram Ron and Narkis Tzoar

1963-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Semiconductor Nanowire Optical Antenna Solar Absorbers  

E-Print Network [OSTI]

technology. KEYWORDS Solar cell, semiconductor nanowires, optical antennas, photon management, light trapping a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach to exhibit a strongly angle-dependent optical response and the resulting solar cells require bulky solar

Fan, Shanhui

162

Semiconductor detectors with proximity signal readout  

SciTech Connect (OSTI)

Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)

2014-01-30T23:59:59.000Z

163

Organic conductive films for semiconductor electrodes  

DOE Patents [OSTI]

According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

Frank, A.J.

1984-01-01T23:59:59.000Z

164

Defect Tolerant Semiconductors for Solar Energy Conversion  

Science Journals Connector (OSTI)

Defect Tolerant Semiconductors for Solar Energy Conversion ... He obtained his Ph.D. in Physics at Paris-Sud University where he modeled Hot Carrier Solar Cells by means of Ensemble Monte Carlo methods. ... These surface energies are significantly lower compared to 96 and 102 meV/2 for (1010) and (1120) low energy nonpolar GaN surfaces respectively. ...

Andriy Zakutayev; Christopher M. Caskey; Angela N. Fioretti; David S. Ginley; Julien Vidal; Vladan Stevanovic; Eric Tea; Stephan Lany

2014-03-13T23:59:59.000Z

165

HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS  

E-Print Network [OSTI]

HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS M.D. MCCLUSKEY* University) spectroscopy of hydrogen and deuterium in GaP, AlSb, ZnSe, and GaN has provided important information about the structures of dopant- hydrogen complexes and their interaction with the host lattice. In GaN:Mg, for example

McCluskey, Matthew

166

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

167

High resolution scintillation detector with semiconductor readout  

DOE Patents [OSTI]

A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

2000-01-01T23:59:59.000Z

168

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

169

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

170

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

171

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

172

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

173

A Spintronic Semiconductor with Selectable Charge Carriers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Spintronic Semiconductor with Selectable Charge Carriers Print A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics, processing is done using semiconductor materials like silicon and germanium that have the requisite properties to perform logical operations with both electrons (negative n-type charge carriers) and holes (positive p-type charge carriers). Thus, a spintronically desirable semiconductor would simultaneously have discrete spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or on alloying, both of which have drawbacks such as chemical instability or reduced mobility. In BiTeI, however, electron and hole conduction is achieved without modifying the ideal crystal structure. One of the things discovered by Crepaldi et al. was that the electronic band structure of BiTeI bends in different ways near the surface depending on which layer is on top. That, in turn, means that the Fermi level (which determines a material's conductivity) can be located in either the valence band (for positive charge carriers) or the conduction band (for negative charge carriers). With techniques such as molecular-beam epitaxy and chemical vapor deposition, it is realistic to consider that regions with opposite band bending could be patterned on a substrate, opening new possibilities for the manipulation of spin-polarized states.

174

Semiconductor P-I-N detector  

DOE Patents [OSTI]

A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

Sudharsanan, Rengarajan (53 Timber Line Dr., Nashua, NH 03062); Karam, Nasser H. (577 Lowell St., Lexington, MA 02173)

2001-01-01T23:59:59.000Z

175

Method of transferring strained semiconductor structure  

DOE Patents [OSTI]

The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

Nastasi, Michael A. (Santa Fe, NM); Shao, Lin (College Station, TX)

2009-12-29T23:59:59.000Z

176

"Magnetically dead" surface layers on ferromagnetic semiconductors  

Science Journals Connector (OSTI)

We perform an exact model calculation for the conduction-band spin structure of ferromagnetic semiconductors. The purpose of this illustrative quasiatomic theory (which is an abstraction of our earlier general theory) is to demonstrate that the case T=0 (i.e., ferromagnetic saturation) exhibits vanishingly small spectral weights of certain quasiparticle or scattering states which, however, become manifest for T>0, and determine the electron-spin polarization. Hence T=0 results cannot be generalized to nonzero temperatures and should not be used to prove or disprove the existence of "magnetically dead" surface layers on ferromagnetic semiconductors. The existence of such dead layers has frequently been postulated to explain the electron-spin polarization in photoemission and field-emission experiments.

W. Nolting and B. Reihl

1983-10-01T23:59:59.000Z

177

Optical cavity furnace for semiconductor wafer processing  

DOE Patents [OSTI]

An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

Sopori, Bhushan L.

2014-08-05T23:59:59.000Z

178

Semiconductor Manufacturing International Corp SMIC | Open Energy  

Open Energy Info (EERE)

Manufacturing International Corp SMIC Manufacturing International Corp SMIC Jump to: navigation, search Name Semiconductor Manufacturing International Corp (SMIC) Place Shanghai, Shanghai Municipality, China Zip 201203 Sector Solar Product Semiconductor group launching solar cell production from its recycled silicon wafers. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

A Markovian analysis of semiconductor manufacturing processes  

E-Print Network [OSTI]

) Karan L. Watson (Member) Martin A. Wortman (Member) ep Sastri (Member) o W. Howze (Head of Department) December 1991 ABSTRACT A Markovian Analysis of Semiconductor Manufacturing Processes. (December 1991) Kent Eugene Schultz, B. S. , Iowa... grateful to Dr. Martin Wortman, for his pa- tience and endless stream of examples to help me understand stochastic processes. I would also like to thank Dr. Tep Sastri for his patience and for always having a refer- ence available when I needed it...

Schultz, Kent Eugene

2012-06-07T23:59:59.000Z

180

Electrical Usage Characterization of Semiconductor Processing Tools  

E-Print Network [OSTI]

ELECTRICAL USAGE CHARACTERIZATION OF SEMICONDUCTOR PROCESSING TOOLS Scott R. Hinson Associate Engineer Radian Electronic Systems 15705 Long Vista Drive Austin, TX 78751 Abstract This paper presents the basic concepts in performing... be completed using as much detail as possible. The most often cited reason for aUditing process tools is the large discrepancy between the facilities requirements listed on the tool nameplate and the actual measured usage. I have measured systems...

Hinson, S. R.

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GaTe semiconductor for radiation detection  

DOE Patents [OSTI]

GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

2009-06-23T23:59:59.000Z

182

Wide Bandgap Semiconductors: Essential to Our Technology Future |  

Broader source: Energy.gov (indexed) [DOE]

Wide Bandgap Semiconductors: Essential to Our Technology Future Wide Bandgap Semiconductors: Essential to Our Technology Future Wide Bandgap Semiconductors: Essential to Our Technology Future January 15, 2014 - 8:00am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What are the key facts? North Carolina State University will lead the Energy Department's new manufacturing innovation institute for the next generation of power electronics, focusing on wide bandgap (WBG) semiconductors. Building America's leadership in WBG semiconductor manufacturing while driving down the cost of the technology could lead to more affordable products for businesses and consumers, billions of dollars in energy

183

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

Semiconductor Industry Association (SIA) The Semiconductor Industry Association (SIA) is the premier trade association representing the U.S. semiconductor industry. Founded in 1977 by five microelectronics innovators, the SIA has grown to include over 100 companies that account for more than 83% of U.S.-based semiconductor production. The SIA provides a forum for domestic semiconductor companies to work collectively to advance the competitiveness of the $70 billion U.S. chip industry. Through its national and international network of chief executive officers and working committees, the SIA shapes public policy on issues important to the industry and provides a spectrum of services to help its members grow their businesses. World Semiconductor Council (WSC)

184

Semiconductor and Materials Company Inc SAMCO | Open Energy Information  

Open Energy Info (EERE)

and Materials Company Inc SAMCO and Materials Company Inc SAMCO Jump to: navigation, search Name Semiconductor and Materials Company Inc (SAMCO) Place Kyoto, Kyoto, Japan Zip 612-8443 Sector Solar Product Japanese manufactruer of semiconductor and solar manufacturing equipment such as etching, deposition and cleaning systems. References Semiconductor and Materials Company Inc (SAMCO)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Semiconductor and Materials Company Inc (SAMCO) is a company located in Kyoto, Kyoto, Japan . References ↑ "Semiconductor and Materials Company Inc (SAMCO)" Retrieved from "http://en.openei.org/w/index.php?title=Semiconductor_and_Materials_Company_Inc_SAMCO&oldid=350738

185

Method and system for powering and cooling semiconductor lasers  

DOE Patents [OSTI]

A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

Telford, Steven J; Ladran, Anthony S

2014-02-25T23:59:59.000Z

186

Deposition method for producing silicon carbide high-temperature semiconductors  

DOE Patents [OSTI]

An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

1987-01-01T23:59:59.000Z

187

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

2009-11-24T23:59:59.000Z

188

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

2013-05-14T23:59:59.000Z

189

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

2014-03-04T23:59:59.000Z

190

Methods and devices for fabricating and assembling printable semiconductor elements  

DOE Patents [OSTI]

The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

2011-07-19T23:59:59.000Z

191

Climate VISION: Private Sector Initiatives: Semiconductors: Resources and  

Office of Scientific and Technical Information (OSTI)

Technical Information Technical Information Download Acrobat Reader Modeling China's Semiconductor Industry Fluorinated Compound Emissions and Drafting a Roadmap for Climate Protection. (PDF 101 KB) 14th Annual International Semiconductor Environment Safety & Health (ISESH) Conference in Jeju, Korea (June 2007) presentation by Scott Bartos, U.S. EPA. Estimating the Impact of Migration to Asian Foundry Production on Attaining the WSC 2010 PFC Reduction Goal. (PDF 458 KB) 11th Annual ISESH Conference in Makuhari, Japan (July 2004) presentation by Scott Bartos, U.S. EPA. Guidelines for Environmental Characterization of Semiconductor Equipment (PDF 361 KB) This document provides guidelines for suppliers of semiconductor processing and abatement equipment to characterize their equipment to meet

192

July 28, 2010, Guiding semiconductor research through collaborative engagement  

Broader source: Energy.gov (indexed) [DOE]

The SRC ... The SRC ... Guiding semiconductor research through collaborative engagement Elizabeth J. Weitzman Exec. VP, SRC Exec. Director, Focus Center Research Program Semiconductor Research Corporation 2 ... Awarded Nat'l Medal of Technology Presidential Citation: "For building the world's largest and most successful university research force to support the ... semiconductor industry; For proving the concept of collaborative research as the first high-tech research consortium; and For creating the concept and methodology that evolved into the International Technology Roadmap for Semiconductors." 3 Key Attributes of SRC Research Entities 1. Accepted IP model. SRC's model has been

193

Semiconductor research capabilities at the Lawrence Berkeley Laboratory  

SciTech Connect (OSTI)

This document discusses semiconductor research capabilities (advanced materials, processing, packaging) and national user facilities (electron microscopy, heavy-ion accelerators, advanced light source). (DLC)

Not Available

1987-02-01T23:59:59.000Z

194

Method for depositing high-quality microcrystalline semiconductor materials  

DOE Patents [OSTI]

A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

Guha, Subhendu (Bloomfield Hills, MI); Yang, Chi C. (Troy, MI); Yan, Baojie (Rochester Hills, MI)

2011-03-08T23:59:59.000Z

195

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

Science Journals Connector (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for...

Neil P. Dasgupta; Peidong Yang

2014-06-01T23:59:59.000Z

196

Method of transferring a thin crystalline semiconductor layer  

DOE Patents [OSTI]

A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

Nastasi, Michael A. (Sante Fe, NM); Shao, Lin (Los Alamos, NM); Theodore, N. David (Mesa, AZ)

2006-12-26T23:59:59.000Z

197

Multiplex Chaos Synchronization in Semiconductor Lasers with Multiple Optoelectronic Feedbacks  

E-Print Network [OSTI]

Secure chaos based multiplex communication system scheme is proposed utilizing globally coupled semiconductor lasers with multiple variable time delay optoelectronic feedbacks.

E. M. Shahverdiev; K. A. Shore

2011-11-06T23:59:59.000Z

198

Peltier cooling stage utilizing a superconductor-semiconductor junction  

SciTech Connect (OSTI)

This paper describes a Peltier cooling stack. It comprises: a first electrode; a superconducting layer electrically coupled to the first electrode; a semiconducting layer electrically coupled to the superconducting layer; and a second superconducting layer electrically coupled to the semiconductor layer; and a second electrode electrically coupled to the second superconducting layer, electrons flowing under an applied voltage from the first electrode through the first superconducting layer, semiconductor layer, second superconducting layer and second electrode, the electrical junction between the first superconducting layer and semiconductor providing Peltier cooling while the electrical junction between the semiconductor layer and the second superconducting layer providing Peltier heating, whereby a cryogenic Peltier cooling stack is provided.

Skertic, M.M.

1991-04-09T23:59:59.000Z

199

Holey Germanium - New Routes to Ordered Nanoporous Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

currently exploring a variety of applications for these materials, including nanoscale solar cells and adsorption based chemical sensors. Because the semiconductor surface is...

200

Coherence length tunable semiconductor laser with optical feedback  

Science Journals Connector (OSTI)

We report the experimental results to continuously tune the coherence length of a semiconductor laser using an optical feedback scheme. The coherence length can be controlled by...

Wang, Yuncai; Kong, Lingqin; Wang, Anbang; Fan, Linlin

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Organic Semiconductor Chemistry | MIT-Harvard Center for Excitonics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Semiconductor Chemistry December 13, 2012 at 3pm36-428 Seth Marder Department of ChemistryBiochemistry, Director, Center for Organic Photonics and Electronics, Georgia...

202

Exchange Coupling in the Ferromagnetic Semiconductor GaMnAs.  

E-Print Network [OSTI]

?? The study of ferromagnetic semiconductors (FMS) continues to be of great interest because of their potential for spintronic devices. While there has been much (more)

Leiner, Jonathan Carl

2012-01-01T23:59:59.000Z

203

Photons, Electrons and Holes: Fundamentals of Photocatalysis with Semiconductors  

Science Journals Connector (OSTI)

Although not all the heterogeneous photocatalysts are semiconductors, this type of solids represents, by far, the most representative and widely investigated photoactive materials. For that reason, the fundamentals

Juan Manuel Coronado

2013-01-01T23:59:59.000Z

204

Exchange interaction studies in magnetic semiconductors by neutron scattering.  

E-Print Network [OSTI]

??Theories predict that making a dilute magnetic semiconductor strongly p -type would allow it to remain ferromagnetic at room temperature. This is of intrest as (more)

Wiren, Zachary Quincy

2008-01-01T23:59:59.000Z

205

High power semiconductor laser diode arrays  

Science Journals Connector (OSTI)

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes single?facet cw output in exces of 5 Watts has been demonstrated and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi?cw (150 usec pulse) output in excesss of 11 Watts and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Peter S. Cross

1986-01-01T23:59:59.000Z

206

High power semiconductor laser diode arrays  

SciTech Connect (OSTI)

The cw optical power obtainable from semiconductor laser diodes has been extended to unprecedented levels in recent years through the use of multistripe arrays. By spreading out the optical power with more than 100 stripes, single-facet, cw output in exces of 5 Watts has been demonstrated, and 500 mW cw is now commercially available. Recent improvements to array performance include: arrays up to 1 cm wide that generates quasi-cw (150 usec pulse) output in excesss of 11 Watts, and a novel device structure which produces up to 215 mW cw in a single diffraction limited lobe.

Cross, P.S.

1986-08-15T23:59:59.000Z

207

Reusing rinse wastewater at a semiconductor plant  

SciTech Connect (OSTI)

Two pilot rinse wastewater reuse projects were developed as part of a long-term water conservation program for a Motorola semiconductor manufacturing site in Phoenix, Ariz. The conceptual designs for the projects grew out of a detailed wastewater reuse study that characterized wastewater streams at their generation points. Both treatment techniques were specifically researched, bench-tested, and adapted to further water conservation efforts while ensuring 100 percent compliance with appropriate effluent regulations and industrial discharge permit conditions. Together, the pilot projects save the city of Phoenix approximately 45 mil gal (17 {times} 10{sup 4} m{sup 3}) of water annually.

Shah, A.R. [Motorola SCG, McDowell, MD (United States). Environmental, Safety, and Industrial Hygiene Dept.; Ploeser, J.H. [Phoenix Water Services Dept., AZ (United States). Water Conservation Office

1999-08-01T23:59:59.000Z

208

Transient Rayleigh scattering from single semiconductor nanowires  

SciTech Connect (OSTI)

Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 (United States); Yarrison-Rice, Jan M. [Department of Physics, Miami University, Oxford, OH 45056 (United States); Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

2013-12-04T23:59:59.000Z

209

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

210

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

211

Design Enablement and Design-Centric Assessment of Future Semiconductor Technologies  

E-Print Network [OSTI]

ITRa] International Technology Roadmap for Semiconductors,ITRb] International Technology Roadmap for Semiconductors,val- ues from ITRS technology roadmap [ITRb] and typical

Abou Ghaida, Rani

2012-01-01T23:59:59.000Z

212

On a mathematical model for hot carrier injection in semiconductors  

E-Print Network [OSTI]

On a mathematical model for hot carrier injection in semiconductors Naoufel Ben Abdallah (1) Pierre of a semiconductor device heavily depends on the injection mechanism of carriers into the active regions through by the relation V bi = U th log N + N \\Gamma ; where U th = kBT=q is the thermal voltage and N + ; N \\Gamma

Schmeiser, Christian

213

Magnetically and electrically tunable semiconductor quantum waveguide inverter  

E-Print Network [OSTI]

Magnetically and electrically tunable semiconductor quantum waveguide inverter M. J. Gilbert,a) R implementations. We present an electrically tunable semiconductor quantum waveguide implementation of an inverter. On the other hand, if a ``0'' is present in the control bit, then the qubit is inverted. In a recent study

Gilbert, Matthew

214

Semiconductors 4-bit I2C LED dimmer  

E-Print Network [OSTI]

Philips Semiconductors PCA9533 4-bit I2C LED dimmer Product data sheet Supersedes data of 2003 Sep 19 2004 Oct 01 INTEGRATED CIRCUITS #12;Philips Semiconductors Product data sheet PCA95334-bit I2C LED dimmer 22004 Oct 01 FEATURES · 4 LED drivers (on, off, flashing at a programmable rate) · 2 selectable

Berns, Hans-Gerd

215

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic  

E-Print Network [OSTI]

Communication using Synchronization of Chaos in Semiconductor Lasers with optoelectronic feedback S. The Chaos in the single-mode semiconductor lasers is generated by means of an optoelectronic feedback with optoelectronic feedback has been demonstrated for quite slow data rates by using chaotic wavelength fluctuations

Illing, Lucas

216

Multistability in a semiconductor laser with optoelectronic feedback  

E-Print Network [OSTI]

Multistability in a semiconductor laser with optoelectronic feedback Guang-Qiong Xia1,2 , Sze with delayed optoelectronic feedback is observed experimentally. For a given delay time, the observed dynamical-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling," Phys. Rev. E 73, 047201-1-4 (2006) 8. G

Chan, Sze-Chun

217

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*,  

E-Print Network [OSTI]

Semiconductor Nanowires for Energy Conversion Allon I. Hochbaum*, and Peidong Yang* Department. Introduction: Role of Materials in Energy Conversion 527 2. Why Are Semiconductor Nanowires Special? 527 3 of Materials in Energy Conversion Between 2004 and 2030 the annual global consumption of energy is estimated

Wu, Zhigang

218

Photonic switching devices based on semiconductor nanostructures  

E-Print Network [OSTI]

Focusing and guiding light into semiconductor nanostructures can deliver revolutionary concepts for photonic devices, which offer a practical pathway towards next-generation power-efficient optical networks. In this review, we consider the prospects for photonic switches using semiconductor quantum dots (QDs) and photonic cavities which possess unique properties based on their low dimensionality. The optical nonlinearity of such photonic switches is theoretically analyzed by introducing the concept of a field enhancement factor. This approach reveals drastic improvement in both power-density and speed, which is able to overcome the limitations that have beset conventional photonic switches for decades. In addition, the overall power consumption is reduced due to the atom-like nature of QDs as well as the nano-scale footprint of photonic cavities. Based on this theoretical perspective, the current state-of-the-art of QD/cavity switches is reviewed in terms of various optical nonlinearity phenomena which have been utilized to demonstrate photonic switching. Emerging techniques, enabled by cavity nonlinear effects such as wavelength tuning, Purcell-factor tuning and plasmonic effects are also discussed.

Chao-Yuan Jin; Osamu Wada

2014-02-26T23:59:59.000Z

219

Coated semiconductor devices for neutron detection  

DOE Patents [OSTI]

A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

2002-01-01T23:59:59.000Z

220

Distributed Quantum Computation Architecture Using Semiconductor Nanophotonics  

E-Print Network [OSTI]

In a large-scale quantum computer, the cost of communications will dominate the performance and resource requirements, place many severe demands on the technology, and constrain the architecture. Unfortunately, fault-tolerant computers based entirely on photons with probabilistic gates, though equipped with "built-in" communication, have very large resource overheads; likewise, computers with reliable probabilistic gates between photons or quantum memories may lack sufficient communication resources in the presence of realistic optical losses. Here, we consider a compromise architecture, in which semiconductor spin qubits are coupled by bright laser pulses through nanophotonic waveguides and cavities using a combination of frequent probabilistic and sparse determinstic entanglement mechanisms. The large photonic resource requirements incurred by the use of probabilistic gates for quantum communication are mitigated in part by the potential high-speed operation of the semiconductor nanophotonic hardware. The system employs topological cluster-state quantum error correction for achieving fault-tolerance. Our results suggest that such an architecture/technology combination has the potential to scale to a system capable of attacking classically intractable computational problems.

Rodney Van Meter; Thaddeus D. Ladd; Austin G. Fowler; Yoshihisa Yamamoto

2009-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Control of coherence resonance in semiconductor superlattices  

E-Print Network [OSTI]

We study the effect of time-delayed feedback control and Gaussian white noise on the spatio-temporal charge dynamics in a semiconductor superlattice. The system is prepared in a regime where the deterministic dynamics is close to a global bifurcation, namely a saddle-node bifurcation on a limit cycle ({\\it SNIPER}). In the absence of control, noise can induce electron charge front motion through the entire device, and coherence resonance is observed. We show that with appropriate selection of the time-delayed feedback parameters the effect of coherence resonance can either be enhanced or destroyed, and the coherence of stochastic domain motion at low noise intensity is dramatically increased. Additionally, the purely delay-induced dynamics in the system is investigated, and a homoclinic bifurcation of a limit cycle is found.

Johanne Hizanidis; Eckehard Schoell

2008-09-01T23:59:59.000Z

222

Hybrid Semiconductors for Hardier Electronics and Optoelectronics? |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unveiling the Molecular Structure of the Target of Many Drugs Unveiling the Molecular Structure of the Target of Many Drugs A New Scenario for First Life on Earth Surface Orbital 'Roughness' in Colossal Magnetoresistive Oxide Different Roads Toward Quantum Criticality Orbital Reconstruction at a Complex Oxide Interface Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Hybrid Semiconductors for Hardier Electronics and Optoelectronics? DECEMBER 21, 2007 Bookmark and Share The crystal structure of β-ZnTe(en)0:5, determined by single-crystal x-ray diffraction. Two-monolayerthick ZnTe slabs are interconnected by ethylenediamine (C2N2H8) molecules bonded to zinc atoms. Zn-Green, Te-Red, N-Blue,and C-Gray. Hydrogen atoms are omitted for clarity.

223

Large-area semiconductor detectors of beta radiation  

SciTech Connect (OSTI)

This paper describes silicon semiconductor detectors with a diameter of 90 mm with hole-type conduction. The detectors had been grown with the Czochralski technique and had a specific resistivity lambda - 12 omega /SUP ./ cm and a carrier lifetime tau = 50 usec. In the case of semiconductor detectors for counting, silicon grown from a melt has its advantages because the distribution of the specific resistivity in low-resistivity semiconductor crystals is more homogeneous than in high-resistivity crystals in both longitudinal and transverse direactions relative to the axis of crystal growth.

Azimov, S.A.; Baizakov, B.B.; Karpov, V.S.; Muminov, R.A.

1986-08-01T23:59:59.000Z

224

Varian Semiconductor Equipment Associates Inc VSEA | Open Energy  

Open Energy Info (EERE)

Varian Semiconductor Equipment Associates Inc VSEA Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name Varian Semiconductor Equipment Associates Inc (VSEA) Place Gloucester, Massachusetts Zip 1930 Sector Services Product Massachusetts-based, designs, manufactures, and services semiconductor processing equipment used in the fabrication of integrated circuits. Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Ramgraber Semiconductor Equipment GmbH | Open Energy Information  

Open Energy Info (EERE)

Ramgraber Semiconductor Equipment GmbH Ramgraber Semiconductor Equipment GmbH Jump to: navigation, search Name Ramgraber Semiconductor Equipment GmbH Place Brunnthal, Germany Zip 85649 Sector Solar Product Makes semiconductor processing equipment, including solar cell manufacturing lines. Coordinates 48.006898°, 11.684687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.006898,"lon":11.684687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Argonne licenses diamond semiconductor discoveries to AKHAN Technologies |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

licenses diamond semiconductor discoveries to AKHAN Technologies licenses diamond semiconductor discoveries to AKHAN Technologies By Joseph Bernstein * By Jared Sagoff * March 4, 2013 Tweet EmailPrint LEMONT, Ill. - The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The Argonne-developed technology allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400 degrees Celsius. The combination of the Argonne's low-temperature diamond technology with AKHAN's Miraj Diamond(tm) process represents the state of the art in diamond semiconductor

227

Printable semiconductor structures and related methods of making and assembling  

DOE Patents [OSTI]

The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

2013-03-12T23:59:59.000Z

228

Printable semiconductor structures and related methods of making and assembling  

DOE Patents [OSTI]

The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

2010-09-21T23:59:59.000Z

229

Printable semiconductor structures and related methods of making and assembling  

DOE Patents [OSTI]

The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

2011-10-18T23:59:59.000Z

230

Generating dispatching rules for semiconductor manufacturing to minimize weighted tardiness  

Science Journals Connector (OSTI)

Dispatching rules play an important role especially in semiconductor manufacturing scheduling, because these fabrication facilities are characterized by high complexity and dynamics. The process of developing and adapting dispatching rules is currently ...

Christoph Pickardt; Jrgen Branke; Torsten Hildebrandt; Jens Heger; Bernd Scholz-Reiter

2010-12-01T23:59:59.000Z

231

Semiconductor Laser Lidar Wind Velocity Sensor for Turbine Control  

Science Journals Connector (OSTI)

A dual line-of-sight CW lidar that measures both wind speed and direction is presented. The wind lidar employs a semiconductor laser, which allows for inexpensive remote sensors geared...

Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

232

Review of the Semiconductor Industry and Technology Roadmap  

Science Journals Connector (OSTI)

The semiconductor industry operates in a constant state of deflation. It is vital to our survival and progress in this knowledge era. The industry is extremely competitive and requires ongoing technological advan...

Sameer Kumar; Nicole Krenner

2002-09-01T23:59:59.000Z

233

Translating semiconductor device physics into nanoparticle films for electronic applications  

E-Print Network [OSTI]

This thesis explores and quantifies some of the important device physics, parameters, and mechanisms of semiconductor nanocrystal quantum dot (QD) electronic devices, and photovoltaic devices in particular. This involves ...

Wanger, Darcy Deborah

2014-01-01T23:59:59.000Z

234

Improving reuse of semiconductor equipment through benchmarking, standardization, and automation  

E-Print Network [OSTI]

The 6D program at Intel Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

Silber, Jacob B. (Jacob Bradley)

2006-01-01T23:59:59.000Z

235

Planar graphene-narrow-gap semiconductor-graphene heterostructure  

Science Journals Connector (OSTI)

A planar heterostructure composed of two graphene films between which a narrow-gap semiconductor ... paradox is absent when conical points of the graphene Brillouin zone are in the band gap...

P. V. Ratnikov; A. P. Silin

2008-11-01T23:59:59.000Z

236

Energy Conservation Through Water Usage Reduction in the Semiconductor Industry  

E-Print Network [OSTI]

ENERGY CONSERVATION THROUGH WATER USAGE REDUCTION IN THE SEMICONDUCTOR INDUSTRY Laura Mendicino Kathy McCormack Sarah Gibson Bob Patton Dana Lyon Jeff Covington Engineer Engineer ESrn Manager Engineer Engineer Engineer Motorola Austin, TX...

Mendicino, L.; McCormack, K.; Gibson, S.; Patton, B.; Lyon, D.; Covington, J.

237

Facts and Artifacts in the Blinking Statistics of Semiconductor Nanocrystals  

Science Journals Connector (OSTI)

Since its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in terms of probability distributions for durations of bright, or on, states and dark, or off, states. These distributions are ...

Catherine H. Crouch; Orion Sauter; Xiaohua Wu; Robert Purcell; Claudia Querner; Marija Drndic; Matthew Pelton

2010-04-05T23:59:59.000Z

238

Data sheet acquired from Harris Semiconductor Buffered Inputs  

E-Print Network [OSTI]

1 Data sheet acquired from Harris Semiconductor SCHS121D Features · Buffered Inputs · Typical. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250. CAUTION

Kretchmar, R. Matthew

239

Data sheet acquired from Harris Semiconductor Four Operating Modes  

E-Print Network [OSTI]

1 Data sheet acquired from Harris Semiconductor SCHS164F Features · Four Operating Modes - Shift Ld PDIP NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel

Kretchmar, R. Matthew

240

Semiconductor Aspects of Organic Bulk Heterojunction Solar Cells  

Science Journals Connector (OSTI)

During the last few years organic solar cells have been discussed as a promising alternative to inorganic semiconductors for renewable energy production. These organic photovoltaic devices offer the possibility o...

Christoph J. Brabec

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ultrafast nonlinear optical properties of passive and active semiconductor devices  

E-Print Network [OSTI]

Nonlinear optical properties and ultrafast carrier dynamics of slab-coupled optical waveguide amplifiers, silicon nanowaveguides, and III-V semiconductor saturable Bragg reflectors are studied. The limits imposed by two ...

Motamedi, Ali Reza

2011-01-01T23:59:59.000Z

242

Phenomenological band structure model of magnetic coupling in semiconductors  

E-Print Network [OSTI]

Phenomenological band structure model of magnetic coupling in semiconductors Gustavo M. Dalpian a,1­18]. Several models have been proposed to explain the phenomena, including the phenomenological Zener

Gong, Xingao

243

Iris Visoly-Fisher Molecular Optoelectronics  

E-Print Network [OSTI]

Iris Visoly-Fisher Molecular Optoelectronics Organic semiconductors are excellent candidates single molecules in order to develop better design criteria for photovoltaic energy conversion and opto-electronic

Vardi, Amichay

244

Thermally robust semiconductor optical amplifiers and laser diodes  

DOE Patents [OSTI]

A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

Dijaili, Sol P. (Moraga, CA); Patterson, Frank G. (Danville, CA); Walker, Jeffrey D. (El Cerrito, CA); Deri, Robert J. (Pleasanton, CA); Petersen, Holly (Manteca, CA); Goward, William (Antioch, CA)

2002-01-01T23:59:59.000Z

245

Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters  

SciTech Connect (OSTI)

Pentachlorophenol (PCP) is a toxic chlorinated aromatic molecule widely used as fungicide, a bactericide and a wood preservation, and thus ubiquitous in the environment. The authors report photo-oxidation of PCP using a variety of nanosize semiconductor metal oxides and sulfides in both aqueous and polar organic solvents and compare the photo-oxidation kinetics of these nanoclusters to widely studied bulk powders like Degussa P-25 TiO{sub 2} and CdS. They study both the light intensity dependence of PCP photooxidation for nanosize SnO{sub 2} and the size dependence of PCP photooxidation for both nanosize SnO{sub 2} and MoS{sub 2}. They find an extremely strong size dependence for the latter which they attribute to its size-dependent band gap and the associated change in redox potentials due to quantum confinement of the hole-electron pair. The authors show that nanosize MoS{sub 2} with a diameter of d=3.0 nm and an absorbance edge of {approximately}450 nm is a very effective photooxidation catalyst for complete PCP mineralization, even when using only visible light irradiation.

WILCOXON,JESS P.

2000-04-17T23:59:59.000Z

246

OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES  

SciTech Connect (OSTI)

This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

Grant, C D; Zhang, J Z

2007-09-28T23:59:59.000Z

247

Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane  

E-Print Network [OSTI]

Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.

K. Usami; A. Naesby; T. Bagci; B. Melholt Nielsen; J. Liu; S. Stobbe; P. Lodahl; E. S. Polzik

2010-11-22T23:59:59.000Z

248

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing  

E-Print Network [OSTI]

Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves wastewater is increasing greatly. The objective is that by using EC to treat wastewater streams, this water

Fay, Noah

249

Unusual Bi-Containing Surface Layers of IIIV Compound Semiconductors  

Science Journals Connector (OSTI)

In this chapter, it is first described how the surface science and engineering of the IIIV compound semiconductors are relevant to developing the semiconductor-based materials, including bismuth (Bi) containi...

Pekka Laukkanen; Marko Punkkinen

2013-01-01T23:59:59.000Z

250

Semiconductor wire array structures, and solar cells and photodetectors based on such structures  

DOE Patents [OSTI]

A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

2014-08-19T23:59:59.000Z

251

E-Print Network 3.0 - active fabry-perot semiconductor Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics 45 The Laser DiodeThe Laser Diode Jason HillJason Hill Summary: to a Light Emitting Diode Active medium is a semiconductor pActive medium is a semiconductor p--n...

252

Thin film reactions on alloy semiconductor substrates  

SciTech Connect (OSTI)

The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

Olson, D.A.

1990-11-01T23:59:59.000Z

253

Toward a Unified Treatment of Electronic Processes in Organic Semiconductors  

SciTech Connect (OSTI)

A quantitative study of n-type doping in highly crystalline organic semiconductor films establishes the predominant influence of electrostatic forces in these low-dielectric materials. Based on these findings, a self-consistent model of doped (purposely or not) organic semiconductors is proposed in which: (1) the equilibrium free carrier density, nf, is a small fraction of the total charge density; (2) a superlinear increase in conductivity with doping density is universal; (3) nf increases with applied electric field; and (4) the carrier mobility is field-dependent regardless of crystallinity.

Gregg. B.A.

2005-01-01T23:59:59.000Z

254

Low temperature production of large-grain polycrystalline semiconductors  

DOE Patents [OSTI]

An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

Naseem, Hameed A. (Fayetteville, AR); Albarghouti, Marwan (Loudonville, NY)

2007-04-10T23:59:59.000Z

255

Theory and Design of Smith-Purcell Semiconductor Terahertz Sources  

E-Print Network [OSTI]

-power semiconductor devices, but have also been demonstrated to be highly useful in the development of state of the art light emitting diode (LED) technology. One of the more promising LED materials, gallium nitride (GaN) comes from the three-nitride (III-N) family...-power semiconductor devices, but have also been demonstrated to be highly useful in the development of state of the art light emitting diode (LED) technology. One of the more promising LED materials, gallium nitride (GaN) comes from the three-nitride (III-N) family...

Smith, Don DeeWayne

2013-12-06T23:59:59.000Z

256

POWER SEMICONDUCTORSSTATE OF ART AND FUTURE TRENDS  

Science Journals Connector (OSTI)

The importance of effective energy conversion control including power generation from renewable and environmentally clean energy sources increases due to rising energy demand. Power electronic systems for controlling and converting electrical energy have become the workhorse of modern society in many applications both in industry and at home. Power electronics plays a very important role in traction and can be considered as brawns of robotics and automated manufacturing systems. Power semiconductor devices are the key electronic components used in power electronic systems. Advances in power semiconductor technology have improved the efficiency size weight and cost of power electronic systems.

Vitezslav Benda

2011-01-01T23:59:59.000Z

257

E-Print Network 3.0 - advanced semiconductor devices Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northern Illinois University Collection: Engineering 39 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

258

Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication  

DOE Patents [OSTI]

Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

Sopori, Bhushan

2014-05-27T23:59:59.000Z

259

Laser Cooling of a Semiconductor by 40 Kelvin: An Optical Refrigerator Based on Cadmium Sulfide Nanoribbons  

E-Print Network [OSTI]

of semiconductors using CdS nanoribbons (or nanobelts) in this work. This net cooling effect is found: Optical refrigeration, Laser cooling of semiconductors, CdS nanobelts, anti-Stokes luminescence 1) doped crystals or glasses and direct bandgap semiconductors. Rare-earth doped materials were proposed

Xiong, Qihua

260

Streamlining the supply chain information system of the semiconductor industry using multi-XML schema  

Science Journals Connector (OSTI)

This study develops a supply chain informational infrastructure that streamlines message exchange among partners in the semiconductor industry to enhance the performance of the semiconductor industry's supply chain system, from the upstream IC design ... Keywords: XML), e-commerce, electronic commerce, extensible markup language (, metadata 1, production information management, semiconductor industry supply chain

Ruey-Shun Chen; Kung-Yung Lu; Yen-Ming Chu

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A High Through-put Combinatorial Growth Technique for Semiconductor Thin Film Search  

SciTech Connect (OSTI)

Conventional semiconductor material growth technique is costly and time-consuming. Here we developed a new method to growth semiconductor thin films using high through-put combinatorial technique. In this way, we have successfully fabricated tens of semiconductor libraries with high crystallinity and high product of {mu}{tau} for the purpose of radiation detection.

Ma, Z. X.; Hao, H. Y.; Xiao, P.; Oehlerking, L. J.; Liu, D. F.; Zhang, X. J.; Yu, K.-M.; Walukiewicz, W.; Mao, S. S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yu, P. Y. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States)

2011-12-23T23:59:59.000Z

262

Advanced semiconductor fabrication process control using dual filter exponentially weighted moving average  

Science Journals Connector (OSTI)

Semiconductor industry needs to meet high standards to ensure survival and success in the 21st century. Rising expectations from the customers are demanding the semiconductor industry to manufacture products with both accuracy and precision. To comply ... Keywords: Dual filter EWMA, EWMA, Process control, Run-to-run, Semiconductor fabrication process

Hyo-Heon Ko; Jihyun Kim; Sang-Hoon Park; Jun-Geol Baek; Sung-Shick Kim

2012-06-01T23:59:59.000Z

263

Ados Co Ltd Dong Yang Semiconductor | Open Energy Information  

Open Energy Info (EERE)

Ados Co Ltd Dong Yang Semiconductor Ados Co Ltd Dong Yang Semiconductor Jump to: navigation, search Name Ados Co Ltd (Dong Yang Semiconductor) Place Seoul, Seoul, Korea (Republic) Product Korean manufacturer of semiconductors; through Ersol's technology, will develop PV plants and begin to roll out crystalline silicon wafers and cells by H2 2007. Coordinates 37.557121°, 126.977379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.557121,"lon":126.977379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Semiconductor Components Industries, LLC, 2004 July, 2004 -Rev. 13  

E-Print Network [OSTI]

© Semiconductor Components Industries, LLC, 2004 July, 2004 - Rev. 13 Publication Order Number: LM339/D 1 LM339, LM239, LM2901, LM2901V, NCV2901, MC3302 Single Supply Quad Comparators://onsemi.com TSSOP-14 DTB SUFFIX CASE 948G 1 14 #12;LM339, LM239, LM2901, LM2901V, NCV2901, MC3302 http

Ravikumar, B.

265

Electric-dipole-induced spin resonance in disordered semiconductors  

E-Print Network [OSTI]

ARTICLES Electric-dipole-induced spin resonance in disordered semiconductors MATHIAS DUCKHEIM One of the hallmarks of spintronics is the control of magnetic moments by electric fields enabled in such structures is electric-dipole-induced spin resonance (EDSR), where the radio-frequency fields driving

Loss, Daniel

266

Freescale Semiconductor Successfully Implements an Energy Management System  

Broader source: Energy.gov [DOE]

This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year.

267

Optical absorption intensity of semiconductor single-wall carbon nanotubes  

E-Print Network [OSTI]

Optical absorption intensity of semiconductor single-wall carbon nanotubes Y. Oyama1 , R. Saito1. The optical absorption intensity is inversely proportional to the diameter in the unit of per carbon atom of single-wall carbon nanotubes (SWNT) synthesized by alcohol CCVD (ACCVD) method and HiPco method [1

Maruyama, Shigeo

268

Single-photon imaging in complementary metal oxide semiconductor processes  

Science Journals Connector (OSTI)

...integrated in new materials, e.g. germanium-on-silicon...implemented as an active or as passive...bias of the cathode or the anode...A review of active and passive...voltage at the cathode to follow an...semiconductor material with decreasing...region. The cathode (in this case...whereas active quenching is...

2014-01-01T23:59:59.000Z

269

Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications  

E-Print Network [OSTI]

Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications with material composition over a range of 0.7 to 5 eV. This factor allows them to be used for optoelectronic. Improvement in growth quality and doping of GaN is needed to improve the performance of optoelectronics

Li, Mo

270

Transition metal oxides on organic semiconductors Yongbiao Zhao a  

E-Print Network [OSTI]

semiconductors (OSs) structure has been widely used in inverted organic optoelectronic devices, including toward in simplifying the fabrication process of the organic optoelectronic devices. ? 2014 Elsevier B], have gained great attention because of their wide applications in optoelectronic devices composed

Demir, Hilmi Volkan

271

CHARACTERISATION OF SEMICONDUCTOR OPTICAL AMPLIFIERS FOR ALL-OPTICAL REGENERATION  

E-Print Network [OSTI]

electrical pumping, broad spectral range and opportunities for integration and mass production. Among these components, the semiconductor optical amplifier (SOA) with gain saturation, low optical and electrical power Various SOAs from Alcatel-Thales III-V lab were characterized in the framework of the French project FUTUR

Paris-Sud XI, Université de

272

Electronic displays using optically pumped luminescent semiconductor nanocrystals  

SciTech Connect (OSTI)

A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

2014-03-25T23:59:59.000Z

273

Profiling the Thermoelectric Power of Semiconductor Junctions with  

E-Print Network [OSTI]

sources realize energy conversion between heat and electricity without the use of moving me- chanical the thermoelectric power, band struc- tures, and carrier concentrations of semiconductor junctions that constitute S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

274

Hydrogen in compound semiconductors M. D. McCluskeya)  

E-Print Network [OSTI]

Hydrogen in compound semiconductors M. D. McCluskeya) and N. M. Johnson Xerox Palo Alto Research Center, Palo Alto, California 94304 Received 9 October 1998; accepted 18 December 1998 Hydrogen can consequence of hydrogenation is the passivation of dopant impurities, which leads to a decrease

McCluskey, Matthew

275

FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS  

E-Print Network [OSTI]

= heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

Sen, Mihir

276

Semiconductor gamma radiation detectors: band structure effects in energy resolution  

E-Print Network [OSTI]

high precision and in a broad energy range, the number of created pairs N is just proportional (referred to as the pair excitation energy). For semiconductor materials the pair excitation energy becomes important in the search for materials with improved energy resolution. #12;Theoretical models used

Luryi, Serge

277

Method for altering the luminescence of a semiconductor  

DOE Patents [OSTI]

A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region. 4 figs.

Barbour, J.C.; Dimos, D.B.

1999-01-12T23:59:59.000Z

278

Semiconductor nanocrystal probes for biological applications and process for making and using such probes  

DOE Patents [OSTI]

A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

2014-01-28T23:59:59.000Z

279

Operation and performance of the ATLAS semiconductor tracker  

E-Print Network [OSTI]

The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; kesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimares da Costa, Joo; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jrg; Bernabu, Jos; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin

2014-01-01T23:59:59.000Z

280

Operation and performance of the ATLAS semiconductor tracker  

E-Print Network [OSTI]

The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

ATLAS Collaboration

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Semiconductor laser devices having lateral refractive index tailoring  

DOE Patents [OSTI]

A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.

Ashby, Carol I. H. (Edgewood, NM); Hadley, G. Ronald (Alburquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1990-01-01T23:59:59.000Z

282

Hybrid high-temperature superconductor-semiconductor tunnel diode  

E-Print Network [OSTI]

We report the demonstration of hybrid high-Tc-superconductor-semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices were fabricated by our newly-developed mechanical bonding technique, resulting in high-Tc-semiconductor planar junctions acting as superconducting tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi2Sr2CaCu2O8+{\\delta} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity - in good agreement with theoretical predictions for a d-wave superconductor-normal material junction, and similar to spectra obtained in scanning tunneling microscopy. Additional junctions are demonstrated using Bi2Sr2CaCu2O8+{\\delta} combined with graphite or Bi2Te3. Our results pave the way for new methods in unconventional superconductivity studies, novel materials and quantum technology applications.

Alex Hayat; Parisa Zareapour; Shu Yang F. Zhao; Achint Jain; Igor G. Savelyev; Marina Blumin; Zhijun Xu; Alina Yang; G. D. Gu; Harry E. Ruda; Shuang Jia; R. J. Cava; Aephraim M. Steinberg; Kenneth S. Burch

2013-01-09T23:59:59.000Z

283

Hybrid High-Temperature-SuperconductorSemiconductor Tunnel Diode  

Science Journals Connector (OSTI)

We report the demonstration of hybrid high-Tc-superconductorsemiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices are fabricated by our newly developed mechanical-bonding technique, resulting in high-Tc-superconductorsemiconductor tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi2Sr2CaCu2O8+? combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity, similarly to spectra obtained in scanning-tunneling microscopy, and is in good agreement with theoretical predictions for a d-wave-superconductornormal-material junction. Additional junctions are demonstrated using Bi2Sr2CaCu2O8+? combined with graphite or Bi2Te3. Our results pave the way for new methods in unconventional superconductivity studies, novel materials, and quantum technology applications.

Alex Hayat; Parisa Zareapour; Shu Yang F. Zhao; Achint Jain; Igor G. Savelyev; Marina Blumin; Zhijun Xu; Alina Yang; G. D. Gu; Harry E. Ruda; Shuang Jia; R. J. Cava; Aephraim M. Steinberg; Kenneth S. Burch

2012-12-27T23:59:59.000Z

284

First-principles simulations of exciton diffusion in organic semiconductors  

Science Journals Connector (OSTI)

Exciton diffusion is crucial for the performance of organic semiconductors in photovoltaic and solid state lighting applications. We propose a first-principles approach that can predict exciton dynamics in organic semiconductors. The method is based on time-dependent density functional theory to describe the energy and many-body wave functions of excitons. Nonadiabatic ab initio molecular dynamics is used to calculate phonon-assisted transition rates between localized exciton states. Using Monte Carlo simulations, we determine the exciton diffusion length, lifetime, diffusivity, and harvesting efficiency in poly(3-hexylthiophene) polymers at different temperatures, which agree very well with the experiments. We find that exciton diffusion is primarily determined by the density of states of low-energy excitons. A widely speculated diffusion mechanism, namely an initial downhill migration followed by thermally activated migration, is confirmed and elucidated by the simulations. Some general guidelines for designing more efficient organic solar cells are obtained from the simulations.

Xu Zhang; Zi Li; Gang Lu

2011-12-22T23:59:59.000Z

285

Semiconductor Nanocrystals-Based White Light Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid state lighting, such as white light emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement could cut the ever-increasing energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, we highlight the recent progress in semiconductor nanocrystals-based WLEDs, compare different approaches for generating white light, and discuss the benefits and challenges of the solid state lighting technology.

Dai, Quanqin [ORNL; Hu, Michael Z. [ORNL; Duty, Chad E [ORNL

2010-01-01T23:59:59.000Z

286

Semiconductor-Nanocrystals-Based White Light-Emitting Diodes  

SciTech Connect (OSTI)

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white lightemitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment. In this review, the recent progress in semiconductor-nanocrystals-based WLEDs is highlighted, the different approaches for generating white light are compared, and the benefits and challenges of the solid-state lighting technology are discussed.

Dai, Quanqin [ORNL; Duty, Chad E [ORNL; Hu, Michael Z. [ORNL

2010-01-01T23:59:59.000Z

287

Neutron detection using boron gallium nitride semiconductor material  

SciTech Connect (OSTI)

In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to ?-rays but poor sensitivity to ?-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after ?-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

Atsumi, Katsuhiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Inoue, Yoku; Nakano, Takayuki, E-mail: ttnakan@ipc.shizuoka.ac.jp [Department of Electrical and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Mimura, Hidenori; Aoki, Toru [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)

2014-03-01T23:59:59.000Z

288

Method for measuring the drift mobility in doped semiconductors  

DOE Patents [OSTI]

A method for measuring the drift mobility of majority carriers in semiconductors consists of measuring the current transient in a Schottky-barrier device following the termination of a forward bias pulse. An example is given using an amorphous silicon hydrogenated material doped with 0.2% phosphorus. The method is particularly useful with material in which the dielectric relaxation time is shorter than the carrier transit time. It is particularly useful in material useful in solar cells. 10 figs.

Crandall, R.S.

1982-03-09T23:59:59.000Z

289

Imaging of semiconductors using a flying laser spot scanning system  

E-Print Network [OSTI]

be obsezved in the wavelength vs. absorption coefficient curves shown in Figure 1 for both a direct and an indirect semiconductor material (gallium-arsenide and silicon). It is only in the direct absorption and subsequent generation of a hole electron pair... in wavelength of light used to generate carriers pro- vides some contzol over the depth of the material analyzed. Long wavelength energy (- 1 micrometer) penetrates deeply into silicon, while gallium phosphide is considered almost transparent for a typical...

Richardson, Thomas William

2012-06-07T23:59:59.000Z

290

Contacts Between Metals and Between a Metal and a Semiconductor  

Science Journals Connector (OSTI)

The problem of contacts between metals and between a metal and a semiconductor is treated classically with the help of the results of wave mechanical theory of electron energy states in solids. The potential and electron density distributions in the two bodies near the contact are discussed. The bodies are assumed to be in immediate contact. The problem of a body in vacuum and the problem of two bodies separated by a gap are discussed qualitatively.

H. Y. Fan

1942-10-01T23:59:59.000Z

291

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Structure and Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

292

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

293

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host such as GaAs, ZnO, or GaN. The interaction among these spins leads to ferromagnetic order at low temperatures, which is necessary to create spin-polarized carriers. A research team working at ALS Beamline 4.0.2 and European Synchrotron Radiation Facility Beamline ID8 made a big leap forward in clarifying the microscopic picture of magnetism and anisotropy in Mn-doped GaAs by resolving localized and hybridized d states using angle-dependent x-ray magnetic circular dichroism (XMCD) measurements.

294

Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study  

SciTech Connect (OSTI)

Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

2014-01-07T23:59:59.000Z

295

Realization of Spin Gapless Semiconductors: The Heusler Compound Mn2CoAl  

Science Journals Connector (OSTI)

Recent studies have reported an interesting class of semiconductor materials that bridge the gap between semiconductors and half-metallic ferromagnets. These materials, called spin gapless semiconductors, exhibit a band gap in one of the spin channels and a zero band gap in the other and thus allow for tunable spin transport. Here, we report the first experimental verification of the spin gapless magnetic semiconductor Mn2CoAl, an inverse Heusler compound with a Curie temperature of 720K and a magnetic moment of 2?B. Below 300K, the compound exhibits nearly temperature-independent conductivity, very low, temperature-independent carrier concentration, and a vanishing Seebeck coefficient. The anomalous Hall effect is comparatively low, which is explained by the symmetry properties of the Berry curvature. Mn2CoAl is not only suitable material for room temperature semiconductor spintronics, the robust spin polarization of the spin gapless semiconductors makes it very promising material for spintronics in general.

Siham Ouardi; Gerhard H. Fecher; Claudia Felser; Jrgen Kbler

2013-03-05T23:59:59.000Z

296

OR PRACTICE---R&D Project Portfolio Analysis for the Semiconductor Industry  

Science Journals Connector (OSTI)

We introduce a decision-support framework for the research and development (R&D) portfolio selection problem faced by a major U.S. semiconductor manufacturer. R&D portfolio selection is of critical importance to high-tech operations such as semiconductors ... Keywords: R&D project interdependency, R&D/project selection, multiperiod horizon, organizational studies/strategy, programming/stochastic, scenario generation, semiconductor industry

Banu Gemici-Ozkan; S. David Wu; Jeffrey T. Linderoth; Jeffry E. Moore

2010-11-01T23:59:59.000Z

297

Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms  

Science Journals Connector (OSTI)

We present a portable ultrafast Semiconductor Disk Laser (SDL) (or vertical extended cavity surface emitting laserVECSELs), to be used for nonlinear microscopy. The SDL is...

Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J; Sdmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Santos, Susana I C O; Artigas, David; Loza-Alvarez, Pablo

2011-01-01T23:59:59.000Z

298

Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications  

DOE Patents [OSTI]

The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

2008-03-18T23:59:59.000Z

299

Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate  

DOE Patents [OSTI]

A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

300

Comment on "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"  

E-Print Network [OSTI]

This is a comment on PRL paper by A.P. Kirk "Analysis of quantum coherent semiconductor quantum dot p-i-n junction photovoltaic cells"

Scully, Marlan O

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Type-II quasi phase matching in periodically intermixed semiconductor superlattice waveguides  

E-Print Network [OSTI]

. Many semicon- ductors have nonlinear optical susceptibilities with values well in excess of conventional materials, such as lithium niobate. Semiconductors have an addi- tional advantage

302

E-Print Network 3.0 - average power semiconductor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

externalexternal, and power, and power efficiencyefficiency 12;25 Optoelectronic Semiconductor... cavity light emitting diodesResonant cavity light emitting diodes...

303

E-Print Network 3.0 - active complementary metal-oxide-semiconductor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion-implanted p and n dopants in germanium Summary: wavelength spectrum allowing optoelectronic integra- tion to enhance complementary-metal-oxide- semiconductor... lim- its in...

304

E-Print Network 3.0 - ag-in-s ternary semiconductor Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 14 Semiconductor Materials S. K. Tewksbury Summary: and for optoelectronic devices. Optoelectronics has taken advantage of ternary and quaternary III-V...

305

E-Print Network 3.0 - atlas semiconductor tracker Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atlas semiconductor tracker Page: << < 1 2 3 4 5 > >> 1 ATLAS Tracker Upgrade: Silicon Strip...

306

Cooling by adiabatic magnetization of a degenerate semiconductor in the ultra-quantum region  

Science Journals Connector (OSTI)

The possibility of using the adiabatic magnetization of a degenerate semiconductor in the ultra-quantum region for producing temperatures below 100 mK is examined.

J. -P. Jay-Gerin; A. Briggs

1981-11-01T23:59:59.000Z

307

E-Print Network 3.0 - area metal-oxide-semiconductor electron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inversion layer mobility Joo-Hiuk Son,a) Seongtae... measured absorption of terahertz radiation pulses by metal-oxide-semiconductor MOS inversion layers... of the...

308

Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications  

Broader source: Energy.gov [DOE]

Presentation slides from the DOE Fuel Cell Technologies Office webinar, Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications, held on October 21, 2014.

309

Development of fluorescent semi-conductor nanocrystal conjugates for in vitro and in vivo imaging applications  

E-Print Network [OSTI]

Semiconductor nanocrystals, also known as quantum dots (QDs), are promising imaging probes with characteristic optical properties: tunable bandgap from visible to infrared, narrow and symmetric emission features, broad ...

Han, Hee-Sun, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

310

Coherent instabilities in a semiconductor laser with fast gain recovery  

E-Print Network [OSTI]

Coherent instabilities in a semiconductor laser with fast gain recovery Christine Y. Wang,1 L. Diehl,2 A. Gordon,3 C. Jirauschek,3 F. X. K?rtner,3,* A. Belyanin,4 D. Bour,5 S. Corzine,5 G. H?fler,5 M. Troccoli,2 J. Faist,6 and Federico Capasso2.... The different quantities reported on the graph were deduced from the experimental data shown in #1;a#2;. The dashed line is a least-square linear fit of the data. WANG et al. PHYSICAL REVIEW A 75, 031802#1;R#2; #1;2007#2; RAPID COMMUNICATIONS 031802...

Wang, Christine Y.; Diehl, L.; Gordon, A.; Jirauschek, C.; Kartner, F. X.; Belyanin, Alexey; Bour, D.; Corzine, S.; Hofler, G.; Troccoli, M.; Faist, J.; Capasso, Federico

2007-01-01T23:59:59.000Z

311

Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors  

E-Print Network [OSTI]

- Magnetization relaxation in ?Ga,M Jairo Sinova,1 T. Jungwirth,2,3 X. Liu,4 Y. Sasaki,4 J. K 1Department of Physics, Texas A&M Universit 2Institute of Physics ASCR, Cukrovarnick 3Department of Physics, University of Texa 4Department of Physics, University... is currently the focus of a considerable experimental16 and theoretical17 research. Spin-transfer switching has not yet been demonstrated in all-semiconductor systems, but the effect promises to have a richer phenomenology in this case because...

Sinova, Jairo; Jungwirth, T.; Liu, X.; Sasaki, Y.; Furdyna, JK; Atkinson, WA; MacDonald, AH.

2004-01-01T23:59:59.000Z

312

Electric Field effects on quantum correlations in semiconductor quantum dots  

E-Print Network [OSTI]

We study the effect of external electric bias on the quantum correlations in the array of optically excited coupled semiconductor quantum dots. The correlations are characterized by the quantum discord and concurrence and are observed using excitonic qubits. We employ the lower bound of concurrence for thermal density matrix at different temperatures. The effect of the F\\"orster interaction on correlations will be studied. Our theoretical model detects nonvanishing quantum discord when the electric field is on while concurrence dies, ensuring the existence of nonclassical correlations as measured by the quantum discord.

S. Shojaei; M. Mahdian; R. Yousefjani

2012-05-01T23:59:59.000Z

313

Solubility of Flaws in Heavily-Doped Semiconductors  

Science Journals Connector (OSTI)

The solubility of a charged impurity in a semiconductor depends upon the Fermi level. This dependence may be understood in terms of a conceptual model in which an impurity is allowed to diffuse in a specimen containing a p-n junction, so that the Fermi level varies in respect to the band edges. If the impurity can exist in many states of charge (i.e., is a "flaw"), then the concentration of flaws with charge r times the electronic charge varies as the rth power of the hole density. Summing the concentrations for the different states of charge gives the solubility and its dependence upon hole concentration, and, hence, Fermi level.

W. Shockley and J. L. Moll

1960-09-01T23:59:59.000Z

314

Semiconductor-To-Metal Transitions in Transition-Metal Compounds  

Science Journals Connector (OSTI)

The theory presented in a previous paper is applied to the transition-metal compounds which are known to exhibit semiconductor-to-metal transitions. In particular, the predictions of the theory are compared with the experimental results of Feinleib and Paul on V2O3. Very good agreement is obtained for the magnitude of the energy gap and for its pressure and stress coefficients. The theory appears to be consistent with the available data on the other oxides of vanadium and titanium as well. Band models for all of these compounds are suggested. The effects of spin-disorder scattering and broadening, polaron formation, and non-stoichiometry are considered quantitatively.

David Adler; Julius Feinleib; Harvey Brooks; William Paul

1967-03-15T23:59:59.000Z

315

Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han, Junfeng Song, Xuemei Li, Yang Liu, Dingsan Gao,  

E-Print Network [OSTI]

Spontaneous emission factor for semiconductor superluminescent diodes Yongsheng Zhao, Weihua Han emission factor is an important parameter for the characterization of semiconductor light emitting devices difference involved in each device. In this article, the spontaneous emission factor for superluminescent

Cao, Hui

316

Electronic States and Optical Transitions in Bulk and Quantum Well Structures of III-V Compound Semiconductors  

E-Print Network [OSTI]

In this work we apply the methods of band structure calculation combined with self-consistent treatment of the light-matter interaction to a variety of problems in bulk semiconductors and semiconductor heterostructures as well as in new...

Cho, Yong Hee 1976-

2011-05-06T23:59:59.000Z

317

Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles  

E-Print Network [OSTI]

wavelengths, which can be more efficiently converted to electricity by a PV cell. To achieve this, most-remission events. This is also a big advantage over conventional single material semiconductor nanopar- ticles of semiconductor-based LSCs in detail we employ Monte Carlo simulations (see Sec. II) using the measured data

Ilan, Boaz

318

Origin of the Variation of Exciton Binding Energy in Semiconductors Marc Dvorak,1  

E-Print Network [OSTI]

Origin of the Variation of Exciton Binding Energy in Semiconductors Marc Dvorak,1 Su-Huai Wei,2 Renewable Energy Laboratory, Golden, Colorado 80401, USA (Received 13 July 2012; revised manuscript received, and the exciton binding energy Eb in technologically important semiconductors varies from merely a few me

Wu, Zhigang

319

Fall-2003 PH-314 A. La Rosa I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR  

E-Print Network [OSTI]

Fall-2003 PH-314 A. La Rosa JUNCTIONS I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR of the JUNCTION V. FORWARD BIAS, REVERSE BIAS I. HARNESSING ELECTRICAL CONDUCTIVITY IN SEMICONDUCTOR MATERIALS Let III. CHEMICAL POTENTIAL (FERMI LEVEL) IV. COMPARISON of CHARGE-CARRIER POPULATION at EACH SIDE

La Rosa, Andres H.

320

Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT  

Science Journals Connector (OSTI)

Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT ... In a dielectric environment, the electrostatic force between the electron and the hole can be approximated by the eq 1. ... Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: New York, 2004. ...

Tangui Le Bahers; Michel Rrat; Philippe Sautet

2014-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Semiconductor sensors for the detection of uorocarbons, uorine and hydrogen uoride  

E-Print Network [OSTI]

Semiconductor sensors for the detection of ¯uorocarbons, ¯uorine and hydrogen ¯uoride W. Moritza±insulator±semiconductor structure gas sensors based on silicon or silicon carbide to different ¯uorine- containing gases was studied in the temperature range 20±5308C. Silicon based gas sensors could be used for the determination of ¯uorine

Moritz, Werner

322

Frster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum dots for solid  

E-Print Network [OSTI]

F�rster resonance energy transfer enhanced color-conversion using colloidal semiconductor quantum August 2009; published online 15 October 2009 In this paper, we present F�rster resonance energy transfer FRET -enhanced color-conversion using colloidal semiconductor quantum dot nanocrystals NCs to make

Demir, Hilmi Volkan

323

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents [OSTI]

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2002-01-01T23:59:59.000Z

324

Method and apparatus for thermal processing of semiconductor substrates  

DOE Patents [OSTI]

An improved apparatus and method for thermal processing of semiconductor wafers. The apparatus and method provide the temperature stability and uniformity of a conventional batch furnace as well as the processing speed and reduced time-at-temperature of a lamp-heated rapid thermal processor (RTP). Individual wafers are rapidly inserted into and withdrawn from a furnace cavity held at a nearly constant and isothermal temperature. The speeds of insertion and withdrawal are sufficiently large to limit thermal stresses and thereby reduce or prevent plastic deformation of the wafer as it enters and leaves the furnace. By processing the semiconductor wafer in a substantially isothermal cavity, the wafer temperature and spatial uniformity of the wafer temperature can be ensured by measuring and controlling only temperatures of the cavity walls. Further, peak power requirements are very small compared to lamp-heated RTPs because the cavity temperature is not cycled and the thermal mass of the cavity is relatively large. Increased speeds of insertion and/or removal may also be used with non-isothermal furnaces.

Griffiths, Stewart K. (Danville, CA); Nilson, Robert H. (Cardiss, CA); Mattson, Brad S. (Los Gatos, CA); Savas, Stephen E. (Alameda, CA)

2000-01-01T23:59:59.000Z

325

Helicon wave excitation to produce energetic electrons for manufacturing semiconductors  

DOE Patents [OSTI]

A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18-0.35 mm or less.

Molvik, Arthur W. (Livermore, CA); Ellingboe, Albert R. (Fremont, CA)

1998-01-01T23:59:59.000Z

326

Helicon wave excitation to produce energetic electrons for manufacturing semiconductors  

DOE Patents [OSTI]

A helicon plasma source is controlled by varying the axial magnetic field or rf power controlling the formation of the helicon wave. An energetic electron current is carried on the wave when the magnetic field is 90 G; but there is minimal energetic electron current when the magnetic field is 100 G in one particular plasma source. Similar performance can be expected from other helicon sources by properly adjusting the magnetic field and power to the particular geometry. This control for adjusting the production of energetic electrons can be used in the semiconductor and thin-film manufacture process. By applying energetic electrons to the insulator layer, such as silicon oxide, etching ions are attracted to the insulator layer and bombard the insulator layer at higher energy than areas that have not accumulated the energetic electrons. Thus, silicon and metal layers, which can neutralize the energetic electron currents will etch at a slower or non-existent rate. This procedure is especially advantageous in the multilayer semiconductor manufacturing because trenches can be formed that are in the range of 0.18--0.35 mm or less. 16 figs.

Molvik, A.W.; Ellingboe, A.R.

1998-10-20T23:59:59.000Z

327

Organic Semiconductors for LowCost Solar Cells  

Science Journals Connector (OSTI)

The current cost of solar electricity derived from silicon photovoltaics is about 30 to 40 cents per kilowatthour. This cost is similar to peakpower charges in California during the height of summer thus establishing a partial path to economic viability. However this competitiveness is not viable in other seasons and many other locations. This paper will discuss the basic theory and progress of a new class of photovoltaic semiconductors derived from organic polymer materials. These materials have obtained promising results with 5% conversion efficiency. In addition these materials can be manufactured relatively easily by using printing technologies and roll?to?roll coating machines similar to those used to make photographic film or newspapers. Solar cells made this way would not only be cheaper but could also be incorporated into roofing materials to reduce installation costs. Organic semiconductors can be dissolved in common solvents and sprayed or printed onto substrates so they are very promising candidates for the solar production of electricity.

Michael D. McGehee; Chiatzun Goh

2008-01-01T23:59:59.000Z

328

High-efficiency photovoltaics based on semiconductor nanostructures  

SciTech Connect (OSTI)

The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

Yu, Paul K.L. [University of California, San Diego; Yu, Edward T. [University of Texas at Austin; Wang, Deli [University of California, San Diego

2011-10-31T23:59:59.000Z

329

Lattice thermal expansion for normal tetrahedral compound semiconductors  

SciTech Connect (OSTI)

The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)]. E-mail: dr_m_s_omar@yahoo.com

2007-02-15T23:59:59.000Z

330

Argonne CNM News: State-of-the-Art Diamond Semiconductor Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies State-of-the-Art Diamond Semiconductor Technology Licensed to AKHAN Technologies The U.S. Department of Energy's Argonne National Laboratory announced today that the laboratory has granted AKHAN Technologies, Inc., exclusive diamond semiconductor application licensing rights to breakthrough low-temperature diamond deposition technology developed by Argonne's Center for Nanoscale Materials (CNM). The method allows for the deposition of nanocrystalline diamond on a variety of wafer substrate materials at temperatures as low as 400°C, highly advantageous for integration with processed semiconductor electronic materials and resulting in the deposition of low-defect nanocrystalline diamond (NCD) thin films. The combination of CNM's low-temperature diamond technology with the AKHAN Miraj Diamond(tm) process represents the state of the art in diamond semiconductor thin-film technology.

331

Oxide Ferromagnetic Semiconductors for Spin-Electronic Transprt  

SciTech Connect (OSTI)

The objective of this research was to investigate the viability of oxide magnetic semiconductors as potential materials for spintronics. We identified some members of the solid solution series of ilmenite (FeTiO3) and hematite (Fe2O3), abbreviated as (IH) for simplicity, for our investigations based on their ferromagnetic and semiconducting properties. With this objective in focus we limited our investigations to the following members of the modified Fe-titanates: IH33 (ilmenitehematite with 33 atomic percent hematite), IH45 (ilmenite-hematite with 45 atomic percent hematite), Mn-substituted ilmenite (Mn-FeTiO3), and Mn-substituted pseudobrookite (Mn- Fe2TiO5). All of them are: 1. wide bandgap semiconductors with band gaps ranging in values between 2.5 to 3.5 eV; 2. n-type semiconductors; 3.they exhibit well defined magnetic hysteresis loops and 4. their magnetic Curie points are greater than 400K. Ceramic, film and single crystal samples were studied and based on their properties we produced varistors (also known as voltage dependent resistors) for microelectronic circuit protection from power surges, three-terminal microelectronic devices capable of generating bipolar currents, and an integrated structured device with controlled magnetic switching of spins. Eleven refereed journal papers, three refereed conference papers and three invention disclosures resulted from our investigations. We also presented invited papers in three international conferences and one national conference. Furthermore two students graduated with Ph.D. degrees, three with M.S. degrees and one with B.S. degree. Also two post-doctoral fellows were actively involved in this research. We established the radiation hardness of our devices in collaboration with a colleague in an HBCU institution, at the Cyclotron Center at Texas A&M University, and at DOE National Labs (Los Alamos and Brookhaven). It is to be appreciated that we met most of our goals and expanded vastly the scope of research by including investigations of Mn-FeTiO3, Mn-Fe2TiO5 and by producing a novel three terminal device capable of generating bipolar currents besides producing radiation resistant varistors and a magnetically switchable device. Furthermore we conclusively established the radiation hardness of the four modified iron titanates we studied. In all our publications, conference and seminar presentations, dissertations and theses sponsorship of DOE has been acknowledged

Dr. R. K. Pandey, Cudworth Endowed Professor (Professor Emeritus of The Unviersity of Alabama)

2008-11-24T23:59:59.000Z

332

Transforming the Lighting Sector with Semiconductor Lighting Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17-TED-000924-9/27 SR#2000-2333C 17-TED-000924-9/27 SR#2000-2333C Transforming the Lighting Sector With Semiconductor Lighting Technologies Thomas Drennen Sandia National Laboratories Roland Haitz Agilent Technologies Jeffrey Tsao E20 Communications Sandia National Laboratories USAEE/IAEE Annual Meetings Philadelphia, PA September 24-27, 2000 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000 2 6217-TED-000924-9/27 SR#2000-2333C Overview * Introduction * U.S. Lighting Demand * Evolution of LEDs * The LED Simulation Model (LEDSim) * Results 3 6217-TED-000924-9/27 SR#2000-2333C Introduction 0 50 100 150 200 1970 1980 1990 2000 2010 2020 Efficiency (lm/W) Year Incandescent Halogen Fluorescent Semi- conductor

333

System for characterizing semiconductor materials and photovoltaic devices through calibration  

DOE Patents [OSTI]

A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

Sopori, Bhushan L. (Denver, CO); Allen, Larry C. (Arvada, CO); Marshall, Craig (Littleton, CO); Murphy, Robert C. (Golden, CO); Marshall, Todd (Littleton, CO)

1998-01-01T23:59:59.000Z

334

Scanning Hall probe microscopy of a diluted magnetic semiconductor  

SciTech Connect (OSTI)

We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga{sub 0.94}Mn{sub 0.06}As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 mum wide and fairly stable with temperature. Magnetic clusters are observed above T{sub C}, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

Kweon, Seongsoo [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Samarth, Nitin [Physics Department, Penn State University, University Park, Pennsylvania 16802 (United States); Lozanne, Alex de [Materials Science and Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2009-05-01T23:59:59.000Z

335

Experimental verification of Frster energy transfer between semiconductor quantum dots  

Science Journals Connector (OSTI)

In recent years, energy transfer (ET) using semiconductor quantum dots (QDs) is getting increased attention. However, it has been postulated that ET between QDs is based on the Frster model, which is a well-established model of ET mechanism in organic dye systems, without verification. In this work, we have investigated ET mechanism in colloidal CdS QDs measuring photoluminescence dynamics of a bilayer structure consisting of differently sized CdS QDs. In the bilayer structure, the distance between the monolayer of donor QDs and that of acceptor QDs was controlled precisely by a spacer layer that is layer-by-layer assembly of polyelectrolytes. The bilayer structure enabled us to systematically measure the spacer-layer dependence of photoluminescence dynamics reflecting the ET process between QDs. It is demonstrated that ET between the donor and acceptor QDs is conclusively dominated by the dipole-dipole interaction, which verifies the appropriateness of the Frster model.

DaeGwi Kim; Shinya Okahara; Masaaki Nakayama; YongGu Shim

2008-10-02T23:59:59.000Z

336

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion  

SciTech Connect (OSTI)

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Dasgupta, Neil; Yang, Peidong

2013-01-23T23:59:59.000Z

337

Recent progress in transparent oxide semiconductors: Materials and device application  

Science Journals Connector (OSTI)

This paper reviews our recent research progress on new transparent conductive oxide (TCO) materials and electronic and optoelectronic devices based on these materials. First, described are the materials including p-type materials, deep-UV transparent TCO(?-Ga2O3), epitaxially grown ITO with atomically flat surface, transparent electrochromic oxide (NbO2F), amorphous TCOs, and nanoporous semiconductor 12CaO7Al2O3. Second, presented are TCO-based electronic/optoelectronic devices realized to date, UV/blue LED and UV-sensors based on transparent pn junction and high performance transparent TFT using n-type TCO as an n-channel. Finally, unique optoelectronic properties (p-type degenerate conduction, transfer doping of carriers, RT-stable exciton, and large optical nonlinearity) originating from 2D-electronic nature in p-type layered oxychalcogenides are summarized along with the fabrication method of epitaxial thin films of these materials.

Hideo Hosono

2007-01-01T23:59:59.000Z

338

System for characterizing semiconductor materials and photovoltaic devices through calibration  

DOE Patents [OSTI]

A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

1998-05-26T23:59:59.000Z

339

High gain photoconductive semiconductor switch having tailored doping profile zones  

DOE Patents [OSTI]

A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

Baca, Albert G. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Zutavern, Fred J (Albuquerque, NM); Hjalmarson, Harold P. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); O'Malley, Martin W. (Edgewood, NM); Helgeson, Wesley D. (Albuquerque, NM); Denison, Gary J. (Sandia Park, NM); Brown, Darwin J. (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM); Hou, Hong Q. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

340

Electronic stopping?power calculations for heavy ions in semiconductors  

Science Journals Connector (OSTI)

A model for ion stopping in semiconductors which considers separate stopping contributions from valence and core electrons and explicitly includes the effect of the gap has been used to calculate the electronic stopping power of energetic B P and As in Si Ge GaAs and CdTe for projectile energies 10 keV100 MeV. Account was taken of the partially stripped incident ions by means of the effective charge. There is good agreement at low ion velocity with Lindhard and Scharffs [J. Lindhard and M. Scharff Phys. Rev. 1 2 4 128 (1961)] values which for heavy ions do not depend on effective charge theory as well as with the semiempirical curves at energies E?0.2 MeV/nucleon where they can be compared.

S. G. Elkomoss; A. Pape; S. Unamuno

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The silicon microstrip sensors of the ATLAS semiconductor tracker  

SciTech Connect (OSTI)

This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

ATLAS SCT Collaboration; Spieler, Helmuth G.

2007-04-13T23:59:59.000Z

342

Module Title: Project Module Code: OPTO6005  

E-Print Network [OSTI]

Ibsen, Dr Ping Hua, Prof James Wilkinson Contact (email ID) sm@orc.soton.ac.uk, mi@orc.soton.ac.uk, ph2@orc.soton.ac.uk, jsw@orc.soton.ac.uk Is the module subject to external accreditation? No If yes and optical labs of the ORC 3. Train in technical and hands-on research skills to gain technical insight

Anderson, Jim

343

Technische Universiteit Eindhoven Opto-Electronic Devices  

E-Print Network [OSTI]

in micro­ and optoelectronic devices. TUHH Heinrich Voss Iterative projection methods New Orleans 2005 4 and their potential for applications in micro­ and optoelectronic devices. In such nanostructures, the free carriers of their special physical properties and their potential for applications in micro­ and optoelectronic devices

Lipari, Giuseppe

344

Soft X-ray spectromicroscopy and its application to semiconductor microstructure characterization  

SciTech Connect (OSTI)

The universal trend towards device miniaturization has driven the semiconductor industry to develop sophisticated and complex instrumentation for the characterization of microstructures. Many significant problems of relevance to the semiconductor industry cannot be solved with conventional analysis techniques, but can be addressed with soft x-ray spectromicroscopy. An active spectromicroscopy program is being developed at the Advanced Light Source, attracting both the semiconductor industry and the materials science academic community. Examples of spectromicroscopy techniques are presented. An ALS {mu}-XPS spectromicroscopy project is discussed, involving the first microscope completely dedicated and designed for microstructure analysis on patterned silicon wafers.

Gozzo, F.; Franck, K.; Howells, M.R.; Hussain, Z. [and others

1996-05-01T23:59:59.000Z

345

Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics  

DOE Patents [OSTI]

In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

2014-05-20T23:59:59.000Z

346

Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics  

DOE Patents [OSTI]

In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

Rogers, John A. (Champaign, IL); Meitl, Matthew (Raleigh, NC); Sun, Yugang (Naperville, IL); Ko, Heung Cho (Urbana, IL); Carlson, Andrew (Urbana, IL); Choi, Won Mook (Champaign, IL); Stoykovich, Mark (Dover, NH); Jiang, Hanqing (Urbana, IL); Huang, Yonggang (Glencoe, IL); Nuzzo, Ralph G. (Champaign, IL); Lee, Keon Jae (Tokyo, JP); Zhu, Zhengtao (Rapid City, SD); Menard, Etienne (Durham, NC); Khang, Dahl-Young (Seoul, KR); Kan, Seong Jun (Daejeon, KR); Ahn, Jong Hyun (Suwon, KR); Kim, Hoon-sik (Champaign, IL)

2012-07-10T23:59:59.000Z

347

Energy resolution in semiconductor gamma radiation detectors using heterojunctions and methods of use and preparation thereof  

DOE Patents [OSTI]

In one embodiment, a system comprises a semiconductor gamma detector material and a hole blocking layer adjacent the gamma detector material, the hole blocking layer resisting passage of holes therethrough. In another embodiment, a system comprises a semiconductor gamma detector material, and an electron blocking layer adjacent the gamma detector material, the electron blocking layer resisting passage of electrons therethrough, wherein the electron blocking layer comprises undoped HgCdTe. In another embodiment, a method comprises forming a hole blocking layer adjacent a semiconductor gamma detector material, the hole blocking layer resisting passage of holes therethrough. Additional systems and methods are also presented.

Nikolic, Rebecca J.; Conway, Adam M.; Nelson, Art J.; Payne, Stephen A.

2012-09-04T23:59:59.000Z

348

Methods of forming semiconductor devices and devices formed using such methods  

DOE Patents [OSTI]

Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

2013-05-21T23:59:59.000Z

349

Understanding How Semiconductors Absorb Light | U.S. DOE Office of Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Semiconductors Absorb Light How Semiconductors Absorb Light Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » March 2013 Understanding How Semiconductors Absorb Light Advances in how we calculate optical properties of semiconductors shorten the path to improved solar cells and other optoelectronic devices. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo

350

Time-, Energy-, and Phase-Resolved Second-Harmonic Generation at Semiconductor Interfaces  

Science Journals Connector (OSTI)

Time-, Energy-, and Phase-Resolved Second-Harmonic Generation at Semiconductor Interfaces ... We report the development of a femtosecond spectral interferometry technique for second-harmonic generation with time, energy, and phase resolution. ...

C. A. Nelson; J. Luo; A. K.-Y. Jen; R. B. Laghumavarapu; D. L. Huffaker; X.-Y. Zhu

2014-11-12T23:59:59.000Z

351

Optical Probe for Semiconductor: Cooperative Research and Development Final Report, CRADA Number CRD-06-206  

SciTech Connect (OSTI)

This CRADA involves development of a new semiconductor characterization tool, Optical Probe, which can be commercialized by GT Solar. GT Solar will participate in the design and testing of this instrument that will be developed under an IPP project.

Sopori, B.

2011-02-01T23:59:59.000Z

352

Analysis of silicon carbide based semiconductor power devices and their application in power factor correction  

E-Print Network [OSTI]

cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. Material technologies superior to Si are needed for future power device developments. Silicon Carbide (SiC) based semiconductor devices...

Durrani, Yamin Qaisar

2005-11-01T23:59:59.000Z

353

Economic feasibility of a PV system for grid-connected semiconductor facilities in South Korea  

Science Journals Connector (OSTI)

In this study, a cost optimization and sensitivity analysis were carried out for the deployment of a photovoltaic (PV) system in a semiconductor facility in South Korea. The Microgrid software (HOMER) was used...

Hyung Jong Choi; Gwon Deok Han

2013-11-01T23:59:59.000Z

354

Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide  

E-Print Network [OSTI]

Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

Pereira, LMC; Wahl, U

355

Size-Dependent Composition of Semiconductor Nanoparticles in Glass* P. D. Persans, L. B. Lurio+  

E-Print Network [OSTI]

1 Size-Dependent Composition of Semiconductor Nanoparticles in Glass* P. D. Persans, L. B. Lurio in nanoparticle precipitates. * Supported by DOE DE-FG02-97ER45662. Contact: P. D. Persans, Physics Department

Persans, Peter D.

356

Novel fabrication and optoelectronic property of semiconductor filaments by optical-fiber thermal drawing  

E-Print Network [OSTI]

One dimensional nanostructure such as nanowires is typically fabricated by the wafer-based approach. Here we report nanowires are fabricated by thermal drawing of fiber. A thin viscous semiconductor film internal to the ...

Deng, D. S.

357

Ge-on-Si Integrated Photonics: New Tricks from an Old Semiconductor  

E-Print Network [OSTI]

We review recent progress in Ge active photonic devices for electronic-photonic integration on Si, demonstrating new tricks in optoelectronics from this old semiconductor material used for the first transistor more than ...

Jifeng, Liu

358

Physics and simulation of transport processes in hybrid organic semiconductor devices  

E-Print Network [OSTI]

Organic semiconductors and nanomaterials promise to potentially form the basis for future efficient and cost-effective large area optoelectronic devices, such as lightemitting diodes and solar cells. Although these materials' ...

Rousseau, Ian Michael

2010-01-01T23:59:59.000Z

359

Semiconductor-based all-optical switching for optical time-division multiplexed networks  

E-Print Network [OSTI]

All-optical switching will likely be required for future optical networks operating at data rates which exceed electronic processing speeds. Switches utilizing nonlinearities in semiconductor optical amplifiers (SOA) are ...

Robinson, Bryan S. (Bryan Shawn), 1975-

2003-01-01T23:59:59.000Z

360

Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications  

Broader source: Energy.gov [DOE]

Recording and text version of the Fuel Cell Technologies Office webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014.

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

362

Reliability-yield allocation for semiconductor integrated circuits: modeling and optimization  

E-Print Network [OSTI]

This research develops yield and reliability models for fault-tolerant semiconductor integrated circuits and develops optimization algorithms that can be directly applied to these models. Since defects cause failures in microelectronics systems...

Ha, Chunghun

2005-11-01T23:59:59.000Z

363

Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor  

Broader source: Energy.gov [DOE]

In highly mismatched semiconductor alloys, localized states of the impurities hybridize with energy bands of the host and lead to a density of states that can be optimally tuned to enhance the thermoelectric thermopower

364

Semiconductor with protective surface coating and method of manufacture thereof. [Patent application  

DOE Patents [OSTI]

Passivation of predominantly crystalline semiconductor devices is provided for by a surface coating of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating of amorphous germanium onto the etched and quenched diode surface in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices, which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating compensates for pre-existing undesirable surface states as well as protecting the semiconductor device against future impregnation with impurities.

Hansen, W.L.; Haller, E.E.

1980-09-19T23:59:59.000Z

365

Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby  

DOE Patents [OSTI]

Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

Devaney, Walter E. (Seattle, WA)

1987-08-04T23:59:59.000Z

366

Investigation of inherent radio frequency oscillation and minor switching in amorphous chalcogenide semiconductors  

E-Print Network [OSTI]

INVESTIGATION OF INHERENT RADIO FREQUENCY OSCILLATION AND MINOR SWITCHING IN AMORPHOUS CHALCOGENIDE SEMICONDUCTORS A Thesis by ROBERT WAYNE GILL JR. Submitted to the Graduate College of Texas AAM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1971 Major Subject: Electrical Engineering INVESTIGATION OF INHERENT RADIO FREQUENCY OSCILLATION AND MINOR SWITCHING IN AMORPHOUS CHALCOGENIDE SEMICONDUCTORS A Thesis by ROBERT WAYNE GILL JR...

Gill, Robert Wayne

1971-01-01T23:59:59.000Z

367

Compositions of doped, co-doped and tri-doped semiconductor materials  

DOE Patents [OSTI]

Semiconductor materials suitable for being used in radiation detectors are disclosed. A particular example of the semiconductor materials includes tellurium, cadmium, and zinc. Tellurium is in molar excess of cadmium and zinc. The example also includes aluminum having a concentration of about 10 to about 20,000 atomic parts per billion and erbium having a concentration of at least 10,000 atomic parts per billion.

Lynn, Kelvin (Pullman, WA); Jones, Kelly (Colfax, WA); Ciampi, Guido (Watertown, MA)

2011-12-06T23:59:59.000Z

368

Metal-semiconductor hybrid thin films in field-effect transistors  

SciTech Connect (OSTI)

Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

Okamura, Koshi, E-mail: koshi.okamura@kit.edu; Dehm, Simone [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universitt Darmstadt, Petersenstr. 32, 64287 Darmstadt (Germany)

2013-12-16T23:59:59.000Z

369

Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires  

E-Print Network [OSTI]

optoelectronic devices. KEYWORDS: Cadmium sulfide selenide, bandgap-graded nanowire, lasing, defining wavelength, mode selectivity Semiconductor NW lasers have recently attracted a great deal of interest, since they have large numbers of potential... applications in future photonic and optoelectronic devices.1-5 To push NW lasers closer to practical applications, some important challenges, for instance, wavelength variability, must be addressed. To date, a number of binary semiconductor NW lasers...

Yang, Zongyin; Wang, Delong; Meng, Chao; Wu, Zhemin; Wang, Yong; Ma, Yaoguang; Dai, Lun; Liu, Xiaowei; Hasan, Tawfique; Liu, Xu; Yang, Qing

2014-05-05T23:59:59.000Z

370

Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors  

SciTech Connect (OSTI)

The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of charge carriers is known to evolve as the carrier concentration increases, due to the presence of intrinsic disorder in organic semiconductors. Thus, a complementary question is: how does the nature of charge transport change as a function of carrier concentration?

Zhu, Xiaoyang

2014-12-10T23:59:59.000Z

371

Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces  

Science Journals Connector (OSTI)

One of key ingredients for many future applications is the ability to precisely pattern nanoscale features on technologically relevant semiconductor surfaces such as silicon and germanium, as well as compound semiconductors such as gallium arsenide and indium phosphide. ... Deposition of these metals is possible presumably due to the water solubility of their oxides:? Ge oxide,14c As oxide,24 and P oxide25 are soluble in water. ...

Masato Aizawa; Jillian M. Buriak

2007-09-25T23:59:59.000Z

372

Preliminary studies and tests of semiconductors for their use as nuclear radiation detectors  

E-Print Network [OSTI]

of the semiconductors which were used in the tests~ and from Hughes Ines of Culver City, California, who provided a set of diodes of a type that had been sucessfully used as a radiation detector. 1 1 See article by Salzberg and Siegal of Airborne Instru- ments... that each semiconductor junction has a different breakdown point and has a different thermal noise pulse versus temperature characteristic. Silicon diodes were selected for tests because of their low thermal noise char- acteristics. The experimenter...

Willis, Giles Whitehurst

2012-06-07T23:59:59.000Z

373

Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 2)-O  

Science Journals Connector (OSTI)

The exothermic nature of oxidation causes nearly all semiconductor applications in various fields like electronics, medicine, photonics, and sensor technology to acquire an oxidized semiconductor surface part during the application manufacturing. The significance of understanding and controlling the atomic scale properties of oxidized semiconductor surfaces is expected to increase even further with the development of nanoscale semiconductor crystals. The nature of oxidized semiconductor layers is, however, hard to predict and characterize as they are usually buried and amorphous. To shed light on these issues, we pursue a different approach based on oxidized III-V semiconductor layers that are crystalline. We present a comprehensive characterization of oxidized crystalline InSb(100)(12)-O layers by ab initio calculations, photoelectron spectroscopy, scanning tunneling microscopy, and spectroscopy, and demonstrate the electronic band structures of different oxidized phases of the semiconductor, which elucidate the previous contradictory semiconductor-oxidation effects. At 0.5 monolayer (ML) oxidation, oxygen atoms tend to occupy subsurface Sb sites, leading to metallic states in the semiconductor band gap, which arise from top dimers. When the oxidation is increased to the 1.02.0 ML concentration, oxygen occupies also interstitial sites, and the insulating band structure without gap states is stabilized with unusual occupied In dangling bonds. In contrast, the 2.53.0 ML oxide phases undergo significant changes toward a less ordered structure. The findings suggest a methodology for manipulating the electronic structure of oxidized semiconductor layers.

J. J. K. Lng; M. P. J. Punkkinen; M. Tuominen; H.-P. Hedman; M. Vh-Heikkil; V. Polojrvi; J. Salmi; V.-M. Korpijrvi; K. Schulte; M. Kuzmin; R. Punkkinen; P. Laukkanen; M. Guina; K. Kokko

2014-07-29T23:59:59.000Z

374

Semiconductor bridge: A plasma generator for the ignition of explosives  

SciTech Connect (OSTI)

Small metal bridgewires are commonly used to ignite energetic powders such as pyrotechnics, propellants, and primary or secondary explosives. In this paper we describe a new means for igniting explosive materials using a semiconductor bridge (SCB). When driven with a short (20 ..mu..s), low-energy pulse (less than 3.5 mJ), the SCB produces a hot plasma that ignites explosives. The SCB, a heavily n-doped silicon film, typically 100 ..mu..m long by 380 ..mu..m wide by 2 ..mu..m thick, is 30 times smaller in volume than a conventional bridgewire. SCB devices produce a usable explosive output in a few tens of microseconds and operate at one-tenth the input energy of metal bridgewires. In spite of the low energies for ignition, SCB devices are explosively safe. We describe SCB processing and experiments evaluating SCB operation. Also discussed are the SCB vaporization process, plasma formation, optical spectra from the discharge, heat transfer mechanisms from the SCB to the explosive powders, and SCB device applications.

Benson, D.A.; Larsen, M.E.; Renlund, A.M.; Trott, W.M.; Bickes R.W. Jr.

1987-09-01T23:59:59.000Z

375

Semiconductor bridge: A plasma generator for the ignition of explosives  

Science Journals Connector (OSTI)

Small metal bridgewires are commonly used to ignite energetic powders such as pyrotechnics propellants and primary or secondary explosives. In this paper we describe a new means for igniting explosive materials using a semiconductor bridge (SCB). When driven with a short (20 ?s) low?energy pulse (less than 3.5 mJ) the SCB produces a hot plasma that ignites explosives. The SCB a heavily n?doped silicon film typically 100 ?m long by 380 ?m wide by 2 ?m thick is 30 times smaller in volume than a conventional bridgewire. SCB devices produce a usable explosive output in a few tens of microseconds and operate at one?tenth the input energy of metal bridgewires. In spite of the low energies for ignition SCB devices are explosively safe. We describe SCB processing and experiments evaluating SCB operation. Also discussed are the SCB vaporization process plasma formation optical spectra from the discharge heat transfer mechanisms from the SCB to the explosive powders and SCB device applications.

D. A. Benson; M. E. Larsen; A. M. Renlund; W. M. Trott; R. W. Bickes Jr.

1987-01-01T23:59:59.000Z

376

Metal-to-Semiconductor Transition in Hexagonal NiS  

Science Journals Connector (OSTI)

Recent electrical resistivity measurements have shown that the hexagonal form of stoichiometric NiS exhibits an abrupt metal-to-semiconductor transition at 264K. Neutron diffraction studies have shown that a first-order paramagnetic-to-antiferromagnetic transition also occurs at 264K. No crystal lattice distortion is observed at the transition nor detected at 4.2K, suggesting that this may be a transition of the kind considered by Adler and Brooks. The measured magnetic moment at 4.2K is 1.660.08 ?? and at 260K it is 150.0.10 ?? indicating that the sublattice magnetization is within 10% of saturation immediately upon ordering. The neutron data also shown that no more than about 1% of the Ni atoms migrate to tetragonal interstitial sites on warming from 4.2K to room temperature. Thus, Ni atom migration apparently plays no part in this transition. The powder magnetic susceptibility is 2.2410-6 emu/g at 300K and is virtually temperature-independent above the transition. ? increases abruptly at 264K by about 15% and exhibits some field-cooling effects. Studies on the compounds NiXS, for X=1.01,0.99,0.97,and0.94 show that excess sulfur lowers the transition temperature.

JOSEPH T. SPARKS and TED KOMOTO

1968-10-01T23:59:59.000Z

377

Peltier heat of a small polaron in a magnetic semiconductor  

SciTech Connect (OSTI)

The heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, ..pi.., is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to ..pi... Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to ..pi... At extremely high temperature when kT exceeds the intrasite exchange energy, the first effect dominates. Then ..pi.. is simply augmented by kTln2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat.

Liu, N.L.H.; Emin, D.

1984-01-01T23:59:59.000Z

378

Peltier heat of a small polaron in a magnetic semiconductor  

SciTech Connect (OSTI)

For the first time the heat transported with a small polaron in both antiferromagnetic and ferromagnetic semiconductors is calculated. This heat, the Peltier heat, ..pi.., is obtained from the change of the entropy of the total system upon introduction of a charge carrier. We explicitly consider both the intrasite and intersite exchange interactions between a small polaron and the interacting spins of a spin-1/2 magnet. There are two competing magnetic contributions to the Peltier heat. First, adding the carrier increases the spin entropy of the system. This provides a positive contribution to ..pi... Second, the exchange between the carrier and the sites about it enhances the exchange binding between these sites. This reduces the energetically allowable spin configurations and provides a negative contribution to ..pi... At extremely high temperatures when kT exceeds the intrasite exchange energy, the first effect dominates. Then ..pi.. is simply augmented by kT ln 2. However, well below the magnetic transition temperature the second effect dominates. In the experimentally accessible range between these limits both effects are comparable and sizable. The net magnetic contribution to the Peltier heat rises with temperature. Thus, a carrier's interactions with its magnetic environment produces a significant and distinctive contribution to its Peltier heat.

Liu, N.H.; Emin, D.

1985-04-15T23:59:59.000Z

379

Sputter deposition of semiconductor superlattices for thermoelectric applications  

SciTech Connect (OSTI)

Theoretical dramatic improvement of the thermoelectric properties of materials by using quantum confinement in novel semiconductor nanostructures has lead to considerable interest in the thermoelectric community. Therefore, we are exploring the critical materials issues for fabrication of quantum confined structures by magnetron sputtering in the lead telluride and bismuth telluride families of materials. We have synthesized modulated structures from thermoelectric materials with bilayer periods of as little as 3.2 nm and shown that they are stable at deposition temperatures high enough to grow quality films. Issues critical to high quality film growth have been investigated such as nucleation and growth conditions and their effect on crystal orientation and growth morphology. These investigations show that nucleating the film at a temperature below the growth temperature of optimum electronic properties produces high quality films. Our work with sputter deposition, which is inherently a high rate deposition process, builds the technological base necessary to develop economical production of these advanced materials. High deposition rate is critical since, even if efficiencies comparable with CFC based refrigeration systems can be achieved, large quantities of quantum confined materials will be necessary for cost-competitive uses.

Wagner, A.V.; Foreman, R.J.; Farmer, J.C.; Barbee, T.W.

1996-11-01T23:59:59.000Z

380

Electromagnetic waves reflection, transmission and absorption by graphene - magnetic semiconductor - graphene sandwich-structure in magnetic field: Faraday geometry  

E-Print Network [OSTI]

Electrodynamic properties of the graphene - magnetic semiconductor - graphene sandwich-structure have been investigated theoretically with taking into account the dissipation processes. Influence of graphene layers on electromagnetic waves propagation in graphene - semi-infinte magnetic semiconductor and graphene - magnetic semiconductor - graphene sandwich-structure has been analyzed. Frequency and field dependences of the reflectance, transmittance and absorbtance of electromagnetic waves by such structure have been calculated. The size effects associated with the thickness of the structure have been analyzed. The possibility of efficient control of electrodynamic properties of graphene - magnetic semiconductor - graphene sandwich structure by an external magnetic field has been shown.

Kuzmin, Dmitry A; Shavrov, Vladimir G

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-wave technique for silicon process  

E-Print Network [OSTI]

Photo-carrier radiometry of semiconductors: A novel powerful optoelectronic diffusion-defect PCR images thus obtained prove that very-near-surface (where optoelectronic device fabrication takes

Mandelis, Andreas

382

Environmental Stewardship: How Semiconductor Suppliers Help to Meet Energy-Efficiency Regulations and Voluntary Specifications in China  

E-Print Network [OSTI]

How Semiconductor Suppliers Help to Meet Energy-EfficiencyCorrection (PFC) controllers helps to regulate current tofurther be achieved to help to meet some of the stringent

Aizhen, Li; Fanara, Andrew; Fridley, David; Merriman, Louise; Ju, Jeff

2008-01-01T23:59:59.000Z

383

Production of films and powders for semiconductor device applications  

DOE Patents [OSTI]

A process is described for chemical bath deposition of selenide and sulfide salts as films and powders employable as precursors for the fabrication of solar cell devices. The films and powders include (1) Cu{sub x}Se{sub n}, wherein x=1--2 and n=1--3; (2) Cu{sub x}Ga{sub y}Se{sub n}, wherein x=1--2, y=0--1 and n=1--3; (3) Cu{sub x}In{sub y}Se{sub n}, wherein x=1--2.27, y=0.72--2 and n=1--3; (4) Cu{sub x}(InGa){sub y}Se{sub n}, wherein x=1--2.17, y=0.96--2 and n=1--3; (5) In{sub y}Se{sub n}, wherein y=1--2.3 and n=1--3; (6) Cu{sub x}S{sub n}, wherein x=1--2 and n=1--3; and (7) Cu{sub x}(InGa){sub y}(SeS){sub n}, wherein x=1--2, y=0.07--2 and n=0.663--3. A reaction vessel containing therein a substrate upon which will form one or more layers of semiconductor material is provided, and relevant solution mixtures are introduced in a sufficient quantity for a sufficient time and under favorable conditions into the vessel to react with each other to produce the resultant salt being prepared and deposited as one or more layers on the substrate and as a powder on the floor of the vessel. Hydrazine is present during all reaction processes producing non-gallium containing products and optionally present during reaction processes producing gallium-containing products to function as a strong reducing agent and thereby enhance reaction processes. 4 figs.

Bhattacharya, R.N.; Noufi, R.; Li Wang

1998-03-24T23:59:59.000Z

384

Thermoelectric power of small polarons in magnetic semiconductors  

SciTech Connect (OSTI)

The thermoelectric power (Seebeck coefficient) ..cap alpha.. of a small polaron in both ferromagnetic and antiferromagnetic semiconductors and insulators is calculated for the first time. In particular, we obtain the contribution to the Seebeck coefficient arising from exchange interactions between the severely localized carrier (i.e., small polaron) of charge q and the spins of the host lattice. In essence, we study the heat transported along with a carrier. This heat, the Peltier heat, Pi, is related to the Seebeck coefficient by the Kelvin relation: Pi = qT..cap alpha.., where T is the temperature. The heat per carrier is simply the product of the temperature and the change of the entropy of the system when a small polaron is added to it. The magnetic contribution to the Seebeck coefficient is therefore directly related to the change of the magnetic entropy of the system upon introduction of a charge carrier. We explicitly treat the intrasite and intersite exchange interactions between a small polaron and the spins of a spin-1/2 system. These magnetic interactions produce two competing contributions to the Seebeck coefficient. First, adding the carrier tends to provide extra spin freedom (e.g., spin up or spin down of the carrier). This effect augments the entropy of the system, thereby producing a positive contribution to the Peltier heat. Second, however, the additional exchange between the carrier and the sites about it enhances the exchange binding among these sites. This generally reduces the energetically allowable spin configurations. The concomitant reduction of the system's entropy provides a negative contribution to the Peltier heat. At the highest of temperatures, when kT exceeds the intrasite exchange energy, the first effect dominates. Then, the Peltier heat is simply augmented by kT ln2.

Liu, N.H.; Emin, D.

1984-09-15T23:59:59.000Z

385

Details in Semiconductors Gordon Conference, New London, NH, August 3-8, 2008  

SciTech Connect (OSTI)

Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in homogeneous and structured semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, with an increases emphasis on nanostructures as compared to previous conferences. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference deals with defects in a broad range of bulk and nanoscale electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, doped nanoparticles, and organic semiconductors. Presentations of state-of-the-art theoretical methods will contribute to a fundamental understanding of atomic-scale phenomena. The program consists of about twenty invited talks, with plenty of discussion time, and a number of contributed poster sessions. Because of the large amount of discussion time, the conference provides an ideal forum for dealing with topics that are new and/or controversial.

Shengbai Zhang and Nancy Ryan Gray

2009-09-16T23:59:59.000Z

386

Semiconductor structures having electrically insulating and conducting portions formed from an AlSb-alloy layer  

DOE Patents [OSTI]

The semiconductor structure comprises a plurality of semiconductor layers formed on a substrate including at least one layer of a III-V compound semiconductor alloy comprising aluminum (Al) and antimony (Sb), with at least a part of the AlSb-alloy layer being chemically converted by an oxidation process to form superposed electrically insulating and electrically conducting portions. The electrically insulating portion formed from the AlSb-alloy layer comprises an oxide of aluminum (e.g., Al{sub 2}O{sub 3}), while the electrically conducting portion comprises Sb. A lateral oxidation process allows formation of the superposed insulating and conducting portions below monocrystalline semiconductor layers for forming many different types of semiconductor structures having particular utility for optoelectronic devices such as light-emitting diodes, edge-emitting lasers, vertical-cavity surface-emitting lasers, photodetectors and optical modulators (waveguide and surface normal), and for electronic devices such as heterojunction bipolar transistors, field-effect transistors and quantum-effect devices. The invention is expected to be particularly useful for forming light-emitting devices for use in the 1.3--1.6 {mu}m wavelength range, with the AlSb-alloy layer acting to define an active region of the device and to effectively channel an electrical current therein for efficient light generation. 10 figs.

Spahn, O.B.; Lear, K.L.

1998-03-10T23:59:59.000Z

387

Low Energy Ion Implantationin Semiconductor Manufacturing | U.S. DOE Office  

Office of Science (SC) Website

Low Energy Ion Implantation in Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Low Energy Ion Implantation in Semiconductor Manufacturing Print Text Size: A A A RSS Feeds FeedbackShare Page Application/Instrumentation: Low Energy Ion Implantation in Semiconductor Manufacturing Developed at: BNL, New York; High Current Electronic Institute, Tomsk, Russia; Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

388

Argonne CNM News: New inorganic semiconductor layers hold promise for solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New inorganic semiconductor layers hold promise for solar energy New inorganic semiconductor layers hold promise for solar energy Inorganic surface ligands Inorganic surface ligands enable facile electron transport between quantum dots and opened novel opportunities for using nanostructures in solar cells. Inorganic dot array Arrays of quantum dots allow fabrication of solar cells by printing and other inexpensive techniques. A team of users from the University of Chicago, working with the NanoBio Interfaces Group, has demonstrated a method that could produce cheaper semiconductor layers for solar cells. The inorganic nanocrystal arrays, created by spraying a new type of colloidal "ink," have excellent electron mobility and could be a step toward addressing fundamental problems with current solar technology.

389

Predicted band structures of III-V semiconductors in the wurtzite phase  

SciTech Connect (OSTI)

While non-nitride III-V semiconductors typically have a zinc-blende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier ab initio calculations, and where experimental results are available (InP, InAs, and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may facilitate the development of spin-based devices.

De, A.; Pryor, Craig E. [Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242 (United States)

2010-04-15T23:59:59.000Z

390

Spatiotemporal patterns in a dc semiconductor-gas-discharge system: Stability analysis and full numerical solutions  

Science Journals Connector (OSTI)

A system very similar to a dielectric barrier discharge, but with a simple stationary dc voltage, can be realized by sandwiching a gas discharge and a high-ohmic semiconductor layer between two planar electrodes. In experiments this system forms spatiotemporal and temporal patterns spontaneously, quite similarly to, e.g., Rayleigh-Bnard convection. Here it is modeled with a simple discharge model with space charge effects, and the semiconductor is approximated as a linear conductor. In previous work, this model has reproduced the phase transition from homogeneous stationary to homogeneous oscillating states semiquantitatively. In the present work, the formation of spatial patterns is investigated through linear stability analysis and through numerical simulations of the initial value problem; the methods agree well. They show the onset of spatiotemporal patterns for high semiconductor resistance. The parameter dependence of temporal or spatiotemporal pattern formation is discussed in detail.

Ismail R. Rafatov, Danijela D. ija?i?, and Ute Ebert

2007-09-12T23:59:59.000Z

391

Spectroscopy of Charge Carriers and Traps in Field-Doped Organic Semiconductors  

SciTech Connect (OSTI)

This research project aims to achieve quantitative and molecular level understanding of charge carriers and traps in field-doped organic semiconductors via in situ optical absorption spectroscopy, in conjunction with time-resolved electrical measurements. During the funding period, we have made major progress in three general areas: (1) probed charge injection at the interface between a polymeric semiconductor and a polymer electrolyte dielectric and developed a thermodynamic model to quantitatively describe the transition from electrostatic to electrochemical doping; (2) developed vibrational Stark effect to probe electric field at buried organic semiconductor interfaces; (3) used displacement current measurement (DCM) to study charge transport at organic/dielectric interfaces and charge injection at metal/organic interfaces.

Zhu, Xiaoyang; Frisbie, C Daniel

2012-08-13T23:59:59.000Z

392

Solid-state lighting : lamp targets and implications for the semiconductor chip.  

SciTech Connect (OSTI)

A quiet revolution is underway. Over the next 5-10 years inorganic-semiconductor-based solid-state lighting technology is expected to outperform first incandescent, and then fluorescent and high-intensity-discharge, lighting. Along the way, many decision points and technical challenges will be faced. To help understand these challenges, the U.S. Department of Energy, the Optoelectronics Industry Development Association and the National Electrical Manufacturers Association recently updated the U.S. Solid-State Lighting Roadmap. In the first half of this paper, we present an overview of the high-level targets of the inorganic-semiconductor part of that update. In the second half of this paper, we discuss some implications of those high-level targets on the GaN-based semiconductor chips that will be the 'engine' for solid-state lighting.

Tsao, Jeffrey Yeenien

2003-08-01T23:59:59.000Z

393

Selective Alcohol Dehydrogenation and Hydrogenolysis with Semiconductor-Metal Photocatalysts: Toward Solar-to-Chemical Energy Conversion of Biomass-Relevant Substrates  

Science Journals Connector (OSTI)

Selective Alcohol Dehydrogenation and Hydrogenolysis with Semiconductor-Metal Photocatalysts: Toward Solar-to-Chemical Energy Conversion of Biomass-Relevant Substrates ... Coupled semiconductors of well-matched band energies are convenient to improve charge sepn. ...

T. Purnima A. Ruberu; Nicholas C. Nelson; Igor I. Slowing; Javier Vela

2012-09-13T23:59:59.000Z

394

Optically Detected Magnetic Resonance Studies on ?-conjugated semiconductor systems  

SciTech Connect (OSTI)

Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in ?-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at {delta}m{sub S}={+-}1 and {delta}m{sub S}={+-}2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal may originate from the higher concentration of deep traps near cathode. A quantitative analysis based on this assumption was carried out and found to be consistent with the experimental results.

Chen, Ying

2011-12-06T23:59:59.000Z

395

Obtaining and investigation of Pb1-xMnxTe(Se, S) semimagnetic semiconductor nanolayers sesitive to infrared rays  

Science Journals Connector (OSTI)

In the given work the energy spectrum and wave functions have been theoretically calculated for quantum-sized films of Pb1-xMnxTe (Se,S) semimagnetic semiconductors. The photo-and electroluminescence properties of Pb1-xMnxTe ... Keywords: detector, electroluminescence, energy spectrum, infrared, nanolayer, photoluminescence, semimagnetic semiconductor, sensitive

M. A. Mehrabova; I. R. Nuriyev; R. M. Mamishova; T. I. Kerimova

2011-11-01T23:59:59.000Z

396

Magnetic quenching of time-reversed light in photorefractive diluted magnetic semiconductors M. Dinu, I. Miotkowski, and D. D. Nolte  

E-Print Network [OSTI]

Magnetic quenching of time-reversed light in photorefractive diluted magnetic semiconductors M 47907-1396 Received 18 February 1998 Magnetic fields selectively quench phase conjugation during photorefractive four-wave mixing experiments in the diluted magnetic semiconductor Cd1 xMnxTe. Phase conjugation

Nolte, David D.

397

Metal-insulator-semiconductor structures on p-type GaAs with low interface state density  

E-Print Network [OSTI]

Metal-insulator-semiconductor structures on p-type GaAs with low interface state density Zhi Chen properties of in situ deposited Si3N4 /Si/p-GaAs metal-insulator-semiconductor structures have been offered by a low gate leakage technology in GaAs, such as metal insulator structures, func- tional Ga

Chen, Zhi

398

A 75 GHz silicon metal-semiconductor-metal Schottky photodiode Sotiris Alexandrou, Chia-Chi Wang, and Thomas Y. Hsiang  

E-Print Network [OSTI]

A 75 GHz silicon metal-semiconductor-metal Schottky photodiode Sotiris Alexandrou, Chia-Chi Wang-semiconductor-metal (MSM) photodiodes with 300 nm finger width and spacing were measured with a subpicosecond electro of silicon MSM photodiodes. A configuration is suggested to improve the speed of these detectors at long

399

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 13, NO. 2, MAY 2000 181 Evaluating the Impact of Process Changes on  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 13, NO. 2, MAY 2000 181 Evaluating--Cluster tools are highly integrated machines that can perform a sequence of semiconductor manufacturing. In addition, we present an integrated simulation model that in- cludes a process model. For a given scheduling

Rubloff, Gary W.

400

Opto-Electron. Rev., 19, no. 3, 2011 I Opto-Electronics Review  

E-Print Network [OSTI]

electrodes in optoelectronic devices, electrical sheet resistance and optical transmittance are two) are essential components for numerous optoelectronic devices that require transport of both electrons

New Mexico, University of

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping  

Science Journals Connector (OSTI)

We report the discovery of a diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As, Li(Zn,Mn)P was found to be a p-type ferromagnetic semiconductor with excess lithium providing charge doping. First-principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Ferromagnetism with Curie temperature up to 34 K is achieved while the system still shows semiconducting transport behavior.

Z. Deng; K. Zhao; B. Gu; W. Han; J. L. Zhu; X. C. Wang; X. Li; Q. Q. Liu; R. C. Yu; T. Goko; B. Frandsen; L. Liu; Jinsong Zhang; Yayu Wang; F. L. Ning; S. Maekawa; Y. J. Uemura; C. Q. Jin

2013-08-21T23:59:59.000Z

402

Farey tree and devil's staircase of a modulated external-cavity semiconductor laser  

SciTech Connect (OSTI)

We report frequency locking at Farey fractions of an electrically modulated semiconductor laser within an external cavity. The winding numbers as a function of the ratio of the modulation frequency to inverse resonator round trip time show the hierarchy of a Farey tree and the structure of a devil's staircase. The dimension of the set complementary to the stairs is determined to be 0.89. This demonstrates that the external-cavity semiconductor laser exhibits the universal properties characteristic for nonlinear systems driven by two competing frequencies.

Baums, D.; Elsasser, W.; Gobel, E. O.

1989-07-10T23:59:59.000Z

403

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.  

E-Print Network [OSTI]

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes an impact on future post-complementary metal- oxide-semiconductor (CMOS) technology depends on more factors

404

Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers  

E-Print Network [OSTI]

Engineering, University of California--Riverside, Riverside, California 92521, USA Received 15 February 2005 dissimilar materials. As example systems, we have considered GaN nanowires with AlN and plastic barrier­5 The modification of the acoustic phonon dispersion in semiconductor superlattices has been mostly studied, both

405

Sputtered pin amorphous silicon semi-conductor device and method therefor  

DOE Patents [OSTI]

A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

Moustakas, Theodore D. (Berkeley Heights, NJ); Friedman, Robert A. (Milford, NJ)

1983-11-22T23:59:59.000Z

406

Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis  

E-Print Network [OSTI]

or photoelectrochemical degradation of organic pollutants, the splitting of water into H2, and solar cells holds promise for meeting the global challenge of supplying clean energy. In this context, semiconductor TiO2 stands out and depletion of fossil fuel resources have emerged as two major obstacles for the sustainable development

Lin, Zhiqun

407

Microwave-Assisted Synthesis of II-VI Semiconductor Micro- and Nanoparticles towards Sensor Applications  

E-Print Network [OSTI]

be tuned for application as sensors. ZnO is a direct bandgap semiconductor (3.37 eV) with a large exciton binding energy (60 meV) leading to photoluminescence (PL) at room temperature. A microwave-assisted hydrothermal approach allows the use of sub-5 nm...

Majithia, Ravish

2013-01-15T23:59:59.000Z

408

Enhanced von Weizscker Wang-Govind-Carter kinetic energy density functional for semiconductors  

SciTech Connect (OSTI)

We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizscker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.

Shin, Ilgyou [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States)] [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263 (United States)

2014-05-14T23:59:59.000Z

409

Tailoring the Lasing Modes in Semiconductor Nanowire Cavities Using Intrinsic Self-Absorption  

E-Print Network [OSTI]

lasing with a high degree of mode selectivity (over 30 nm). The cadmium sulfide (CdS) NW lasing. Modification of semiconductor band structure/bandgap through electric field modulation, elemental doping success in tuning the optical cavity modes through (a) electric field modulation and (b) elemental doping

Xiong, Qihua

410

Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity  

E-Print Network [OSTI]

.1063/1.3093821 Semiconductor lasers based on cadmium sulfide CdS , zinc oxide ZnO , gallium nitride GaN nanowires, and gal-earth doped microfiber knot laser with knot diameter below 1 mm failed due to the insufficient pump absorption

Wu, Shin-Tson

411

A Study Of Semiconductor Quantum Dots In The Application To Terahertz Sensors  

E-Print Network [OSTI]

A Study Of Semiconductor Quantum Dots In The Application To Terahertz Sensors Raymond Davis M and referenced as part of background information used in this project. Raymond Davis October 1, 2011 ii #12 sensors. For detection of terahertz radia- tion we probe charge excitations of QDs caused

Sheldon, Nathan D.

412

Ferromagnetism in Doped Thin-Film Oxide and Nitride Semiconductors and Dielectrics  

SciTech Connect (OSTI)

The principal goal in the field of high-Tc ferromagnetic semiconductors is the synthesis, characterization and utilization of semiconductors which exhibit substantial carrier spin polarization at and above room temperature. Such materials are of critical importance in the emerging field of semiconductor spintronics. The interaction leading to carrier spin polarization, exchange coupling between the dopant spins and the valence or conduction band, is known to be sufficiently weak in conventional semiconductors, such as GaAs and Si, that magnetic ordering above cryogenic temperatures is essentially impossible. Since the provocative theoretical predictions of Tc above ambient in p-Mn:ZnO and p-Mn:GaN (T. Dietl et al., Science 287 1019 (2000)), and the observation of room-temperature ferromagnetism in Co:TiO2 anatase (Y. Matsumoto et al., Science 291 854 (2001)), there has been a flurry of work in oxides and nitrides doped with transition metals with unpaired d electrons. It has even been claimed that room-temperature ferromagnetism can be obtained in certain d0 transition metals oxides without a dopant. In this Report, the field of transition metal doped oxides and nitrides is critically reviewed and assessed from a materials science perspective. Since much of the field centers around thin film growth, this Report focuses on films prepared not only by conventional vacuum deposition methods, but also by spin coating colloidal nanoparticles.

Chambers, Scott A.

2006-10-01T23:59:59.000Z

413

Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles  

DOE Patents [OSTI]

The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

2014-06-24T23:59:59.000Z

414

Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration  

E-Print Network [OSTI]

Polymeric Electro-optic Modulators: From Chromophore Design to Integration with Semiconductor Very Large Scale Integration Electronics and Silica Fiber Optics L. Dalton, A. Harper, A. Ren, F. Wang, G California, Los Angeles, California 90089-1661 Chromophores with optimized second-order optical nonlinearity

415

Electron-deformation mechanism of photoexcitation of hypersound in semiconductors in a dc electric field  

SciTech Connect (OSTI)

The effect of a dc electric field on photoexcitation of a hypersonic pulse in a semiconductor via an electron-deformation mechanism is studied. The profiles of acoustic pulses are simulated for different directions of the electric field. (laser applications and other topics in quantum electronics)

Chigarev, N V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

2002-09-30T23:59:59.000Z

416

Synchronizing Coupled Semiconductor Lasers under General Coupling Shuai Li, Yi Guo, and Yehuda Braiman  

E-Print Network [OSTI]

tools in- spired by recent cooperative control advances. Examining the dynamic model of coupled to analytic understanding of semiconductor lasers, but also advance cooperative control by providing the advance in laser diode production, the output power from single mode LD remains quite limited. Coherent

Guo, Yi

417

Recycling ZnTe, CdTe, and Other Compound Semiconductors by Ambipolar Electrolysis  

E-Print Network [OSTI]

The electrochemical behavior of ZnTe and CdTe compound semiconductors dissolved in molten ZnCl[subscript 2] and equimolar CdCl[subscript 2]KCl, respectively, was examined. In these melts dissolved Te is present as the ...

Osswald, Sebastian

418

A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing  

Science Journals Connector (OSTI)

A Hybrid Life Cycle Inventory of Nano-Scale Semiconductor Manufacturing ... There is a need to both quantify unit process emissions and the impacts of auxiliary equipment at the facility scale; (iii) There is a need for streamlined methodologies to assess upstream impacts of manufacturing chemicals, materials and equipment infrastructure. ...

Nikhil Krishnan; Sarah Boyd; Ajay Somani; Sebastien Raoux; Daniel Clark; David Dornfeld

2008-03-19T23:59:59.000Z

419

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films  

E-Print Network [OSTI]

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films A. Bulusu and D. G. Walker1 Interdisciplinary Program in Material Science Vanderbilt University Nashville on device characteristics of 1D and 2D thin film superlattices whose applications include thermoelectric

Walker, D. Greg

420

FY08 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)  

SciTech Connect (OSTI)

This is the annual report for an old project funded by NA22. The purpose of the project was to develop amorphous semiconductors for use as radiation detectors. The annual report contains information about the progress made in synthesizing, characterizing, and radiation response testing of these new materials.

Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Ryan, Joseph V.; Sundaram, S. K.; McCloy, John S.; Rockett, Angus

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FY06 Annual Report: Amorphous Semiconductors for Gamma Radiation Detection (ASGRAD)  

SciTech Connect (OSTI)

We describe progress in the development of new materials for portable, room-temperature, gamma-radiation detection at Pacific Northwest National Laboratory at the Hanford Site in Washington State. High Z, high resistivity, amorphous semiconductors are being designed for use as solid-state detectors at near ambient temperatures; principles of operation are analogous to single-crystal semiconducting detectors. Amorphous semiconductors have both advantages and disadvantages compared to single crystals, and this project is developing methods to mitigate technical problems and design optimized material for gamma detection. Several issues involved in the fabrication of amorphous semiconductors are described, including reaction thermodynamics and kinetics, the development of pyrolytic coating, and the synthesis of ingots. The characterization of amorphous semiconductors is described, including sectioning and polishing protocols, optical microscopy, X-ray diffraction, scanning electron microscopy, optical spectroscopy, particle-induced X-ram emission, Rutherford backscattering, and electrical testing. Then collaboration with the University of Illinois at Urbana-Champaign is discussed in the areas of Hall-effect measurements and current voltage data. Finally, we discuss the strategy for continuing the program.

Johnson, Bradley R.; Riley, Brian J.; Crum, Jarrod V.; Sundaram, S. K.; Henager, Charles H.; Zhang, Yanwen; Shutthanandan, V.

2007-01-01T23:59:59.000Z

422

Transition-metal silicides as materials for magnet-semiconductor heterostructures*  

E-Print Network [OSTI]

Transition-metal silicides as materials for magnet-semiconductor heterostructures* Peter Kratzer as of binary late transition metal monosilicides, in contact with the Si surface. For the Heusler alloy Co2MnSi, we could show that the 001 surface retains the half-metallic character of the bulk if a fully Mn

423

Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth  

DOE Patents [OSTI]

Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

Fan, John C. C. (Chestnut Hill, MA); Tsaur, Bor-Yeu (Arlington, MA); Gale, Ronald P. (Bedford, MA); Davis, Frances M. (Framingham, MA)

1986-12-30T23:59:59.000Z

424

Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth  

DOE Patents [OSTI]

Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

Fan, John C. C. (Chestnut Hill, MA); Tsaur, Bor-Yeu (Arlington, MA); Gale, Ronald P. (Bedford, MA); Davis, Frances M. (Framingham, MA)

1992-02-25T23:59:59.000Z

425

Optical approach to thermopower and conductivity measurements in thin-film semiconductors  

SciTech Connect (OSTI)

An optical beam deflection technique is applied to measure the Joule and Peltier heat generated by electric currents through thin-film semiconductors. The method yields a spatially resolved conductivity profile and allows the determination of Peltier coefficients. Results obtained on doped hydrogenated amorphous silicon films are presented.

Dersch, H.; Amer, N.M.

1984-08-01T23:59:59.000Z

426

Spin-polarized current oscillations in diluted magnetic semiconductor multiple quantum wells Manuel Bejar,1  

E-Print Network [OSTI]

. The transport properties of Mn-based heterostructures have been studied10 including miniband transportSpin-polarized current oscillations in diluted magnetic semiconductor multiple quantum wells Manuel. The spin polarization oscillates in both magnetic and nonmagnetic quantum wells and the time average

Sánchez, David

427

Infrared emission from the substrate of GaAs-based semiconductor lasers Mathias Ziegler,1,a  

E-Print Network [OSTI]

GaP single QW surrounded by AlGaInP waveguide WG and cladding layers, whereas the NIR laser incorporates a GaInfrared emission from the substrate of GaAs-based semiconductor lasers Mathias Ziegler,1,a Robert in GaAs-based broad-area laser diodes. Spectrally and spatially resolved scanning optical microscopy

Peinke, Joachim

428

Guided Self-Assembly of Au Nanocluster Arrays Electronically Coupled to Semiconductor Device Layers  

E-Print Network [OSTI]

Guided Self-Assembly of Au Nanocluster Arrays Electronically Coupled to Semiconductor Device Layers diameter Au clusters within patterned regions on GaAs device layers, thus demonstrating guided self-assembly ordering of the clusters is achieved by a chemical self- assembly process, while micron scale patterning

429

Self-Assembled Metal/Molecule/Semiconductor Nanostructures for Electronic Device  

E-Print Network [OSTI]

565 Self-Assembled Metal/Molecule/Semiconductor Nanostructures for Electronic Device and Contact 27, 1999) Special Issue Paper 565 INTRODUCTION Self-assembly techniques provide a means to real- ize itself to the assembly of specific device structures or intercon- nected devices. For self-assembled

Woodall, Jerry M.

430

Self-assembly of 1-D organic semiconductor nanostructures Thuc-Quyen Nguyen,*a  

E-Print Network [OSTI]

Self-assembly of 1-D organic semiconductor nanostructures Thuc-Quyen Nguyen,*a Richard Martel: 10.1039/b609956d This review focuses on the molecular design and self-assembly of a new class have a permanent dipole moment that sums as the subunits self assemble into molecular stacks

Hone, James

431

Guided self-assembly of Au nanocluster arrays electronically coupled to semiconductor device layers  

E-Print Network [OSTI]

Guided self-assembly of Au nanocluster arrays electronically coupled to semiconductor device layers clusters within patterned regions on GaAs device layers, thus demonstrating guided self-assembly ordering of the clusters is achieved by a chemical self-assembly process, while micron scale patterning

Woodall, Jerry M.

432

The optimisation and exploitation of compound semiconductors will lead to more efficient lighting,  

E-Print Network [OSTI]

The optimisation and exploitation of compound semiconductors will lead to more efficient lighting. This will reduce the consumption of fossil fuels and therefore lower greenhouse gas emissions. Other applications structures. Market and applications · High power electronics. · LED lighting. Licensing and development

Strathclyde, University of

433

PHYSICAL REVIEW B 90, 115415 (2014) Geometrically induced transitions between semimetal and semiconductor in graphene  

E-Print Network [OSTI]

and semiconductor in graphene Marc Dvorak and Zhigang Wu* Department of Physics, Colorado School of Mines, Golden of graphene remains an outstanding problem in nanoscience, which precludes the practical method of patterning graphene from being widely adopted for making graphene-based electronic and optoelectronic devices, because

Wu, Zhigang

434

Probing many-particle correlations in semiconductor quantum wells using double-quantum-coherence signals  

E-Print Network [OSTI]

Probing many-particle correlations in semiconductor quantum wells using double-quantum-coherence, 92697-2025, United States ABSTRACT Multidimensional analysis of coherent signals is commonly used-dimensional correlation spectroscopy technique which employs double-quantum-coherence to investigate many-body effects

Mukamel, Shaul

435

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing Water Use and Reuse in  

E-Print Network [OSTI]

Phase 4 Water Usage in the US Fabs #12;Engineering Research Center for Environmentally Benign, and energy usage as we move to nano-scale · Solution: Development of new ESH-friendly nano in Water and Energy Usage #12;Engineering Research Center for Environmentally Benign Semiconductor

Cushing, Jim. M.

436

Techniques for increasing output power from mode-locked semiconductor lasers  

SciTech Connect (OSTI)

Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

Mar, A.; Vawter, G.A.

1996-02-01T23:59:59.000Z

437

SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report  

SciTech Connect (OSTI)

This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

MCBRAYER,JOHN D.

2000-12-01T23:59:59.000Z

438

Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, from 12:00 to 1:00 p.m. Eastern Daylight Time. Representatives of Cree Inc., leading innovators in the WBG electronics industry, will be presenting.

439

Dopant type and/or concentration selective dry photochemical etching of semiconductor materials  

DOE Patents [OSTI]

Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

Ashby, C.R.H.; Dishman, J.L.

1985-10-11T23:59:59.000Z

440

Dopant type and/or concentration selective dry photochemical etching of semiconductor materials  

DOE Patents [OSTI]

A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network [OSTI]

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

442

A mixed finite-element scheme of a semiconductor energy-transport model  

E-Print Network [OSTI]

A mixed finite-element scheme of a semiconductor energy-transport model using dual entropy variables Stephan Gadau, Ansgar J¨ungel, and Paola Pietra Abstract. One-dimensional stationary energy employing a mixed-hybrid finite- element method which has the advantage to fulfill current conser- vation

Hanke-Bourgeois, Martin

443

Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics  

SciTech Connect (OSTI)

The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmap for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the significant body of existing research on understanding its material properties.

Black, C.T.

2011-02-01T23:59:59.000Z

444

Room-Temperature Ferromagnetism in a II-VI Diluted Magnetic Semiconductor Zn1-xCrxTe  

Science Journals Connector (OSTI)

The magnetic and magneto-optical properties of a Cr-doped II-VI semiconductor ZnTe were investigated. Magnetic circular dichroism measurements showed a strong interaction between the sp carriers and localized d spins, indicating that Zn1-xCrxTe is a diluted magnetic semiconductor. The Curie temperature of the film with x=0.20 was estimated to be 30010???K, which is the highest value ever reported for a diluted magnetic semiconductor in which sp-d interactions were confirmed. In spite of its high Curie temperature, Zn1-xCrxTe film shows semiconducting electrical transport properties.

H. Saito; V. Zayets; S. Yamagata; K. Ando

2003-05-20T23:59:59.000Z

445

Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers  

SciTech Connect (OSTI)

An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal [Research Institute for Networks and Communications Engineering, Dublin City University, Glasnevin, Dublin 9 (Ireland)

2010-08-23T23:59:59.000Z

446

The synthesis of inorganic semiconductor nanocrystalline materials for the purpose of creating hybrid organic/inorganic light-emitting devices  

E-Print Network [OSTI]

Colloidal semiconductor nanocrystals (NCs) or quantum dots (QDs) can be synthesized to efficiently emit light from the ultraviolet, across the entire visible spectrum, and into the near infrared. This is now possible due ...

Steckel, Jonathan S. (Jonathan Stephen)

2006-01-01T23:59:59.000Z

447

Rapid Roughening in Thin Film Growth of an Organic Semiconductor (Diindenoperylene) A. C. Durr,1,* F. Schreiber,1,2,  

E-Print Network [OSTI]

Rapid Roughening in Thin Film Growth of an Organic Semiconductor (Diindenoperylene) A. C. Du¨rr,1 roughening mechanism related to grain boundaries between tilt domains, which are a common feature of many

Schreiber, Frank

448

Physica E 34 (2006) 15 Single-shot readout of electron spins in a semiconductor quantum dot  

E-Print Network [OSTI]

states in a semiconductor quantum dot that is robust against charge noise and can be used even when readout (E-RO), the spin levels are positioned around the electrochemical potential of the reservoir mres

449

Perfect light trapping in nanoscale thickness semiconductor films with resonant back reflector and spectrum-splitting structures  

E-Print Network [OSTI]

The optical absorption of nanoscale thickness semiconductor films on top of light-trapping structures based on optical interference effects combined with spectrum-splitting structures is theoretically investigated. Nearly perfect absorption over a broad spectrum range can be achieved in $solar absorption and low carrier thermalization loss can be achieved when the light-trapping structures with wedge-shaped spacer layer or semiconductor films are combined with spectrum-splitting structures.

Liu, Jiang-Tao; Yang, Wen; Li, Jun

2014-01-01T23:59:59.000Z

450

STATEMENT OF CONSIDERATIONS REQUEST BY VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC. ("VSEA")  

Broader source: Energy.gov (indexed) [DOE]

VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC. ("VSEA") VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC. ("VSEA") FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE 1\ WARD NO. DE-EE0004737; W(A) 2011-027 VSEA has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced grant entitled "Reduced Cost and Manufacturing Complexity of High Efficiency IBC Solar Cells Using Ion Implantation and In Situ Patterning." The grant was awarded under the DE-FOA- 0000234 High Impact Supply Chain Research and Development for PV Technologies and Systems Funding Opportunity Announcement. VSEA is performing all the work under the grant without the use of any sub-awardees.

451

Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors  

SciTech Connect (OSTI)

The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S. [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan)

2011-08-15T23:59:59.000Z

452

Method and apparatus for electron-only radiation detectors from semiconductor materials  

DOE Patents [OSTI]

A system for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and Hgl.sub.2, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

Lund, James C. (429 Warwick Ave., San Leandro, CA 94577)

2000-01-01T23:59:59.000Z

453

Moessbauer studies of two-electron centers with negative correlation energy in crystalline and amorphous semiconductors  

SciTech Connect (OSTI)

The results of the study of donor U{sup -}-centers of tin and germanium in lead chalcogenides by Moessbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U{sup -}-centers of tin in glassy binary arsenic and germanium chalcogenides using Moessbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Moessbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U{sup -}-centers of copper in lattices of semimetal copper oxides by Moessbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Moessbauer U{sup -}-centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.

Bordovsky, G. A. [Alexander Herzen State Pedagogical University of Russia (Russian Federation); Nemov, S. A. [St Petersburg State Polytechnical University (Russian Federation); Marchenko, A. V.; Seregin, P. P., E-mail: ppseregin@mail.ru [Alexander Herzen State Pedagogical University of Russia (Russian Federation)

2012-01-15T23:59:59.000Z

454

Quantitative determination of local potential values in inhomogeneously doped semiconductors by scanning tunneling microscopy  

Science Journals Connector (OSTI)

Local potential changes arising from nanoscale three-dimensional spatial fluctuations in the dopant distribution in Zn-doped GaAs were investigated quantitatively by scanning tunneling microscopy and spectroscopy at (110) cleavage surfaces. Tunneling spectra measured in areas with different local doping concentration show apparent shifts of the valence band edge and apparent changes of the band gap. A quantitative analysis, combined with band bending and tunnel current simulations, demonstrates that these effects arise from tip-induced band bending that modulates the real potential changes. It is illustrated how exact potential changes between locally high and low doped areas can be determined. It is found that the local potential fluctuations in three-dimensionally doped semiconductors are approximately one order of magnitude smaller that those observed in two-dimensionally doped semiconductors.

P. H. Weidlich, R. E. Dunin-Borkowski, and Ph. Ebert

2011-08-29T23:59:59.000Z

455

Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism  

SciTech Connect (OSTI)

The electronic and magnetic properties of graphene nanoflakes (GNFs) can be tuned by patterned adsorption of hydrogen. Controlling the H coverage from bare GNFs to half hydrogenated and then to fully hydrogenated GNFs, the transformation of small-gap semiconductor {yields} half-metal {yields} wide-gap semiconductor occurs, accompanied by a magnetic {yields} magnetic {yields} nonmagnetic transfer and a nonmagnetic {yields} magnetic {yields} nonmagnetic transfer for triangular and hexagonal nanoflakes, respectively. The half hydrogenated GNFs, associated with strong spin polarization around the Fermi level, exhibit the unexpected large spin moment that is scaled squarely with the size of flakes. The induced spin magnetizations of these nanoflakes align parallel and lead to a substantial collective character, enabling the half hydrogenated GNFs to be spin-filtering flakes. These hydrogenation-dependent behaviors are then used to realize an attractive approach to engineer the transport properties, which provides a new route to facilitate the design of tunable spin devices.

Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Sun, Xin; Zu, Xiaotao; Gao, Fei

2012-03-08T23:59:59.000Z

456

Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organicinorganic light emitting diode  

Science Journals Connector (OSTI)

Abstract We report on the fabrication of a hybrid light-emitting-diode based on colloidal semiconductor CdSe nanoplatelets as emitters and organic TAZ [3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole] and TPD [N, N?-bis (3-methylphenyl)-N, N?-bis (phenyl)-benzidine] materials as the electron and hole transporting layers. Electroluminescent and currentvoltage characteristics of the developed hybrid device with the turn-on voltage of 5.5V and the radiation wavelength of 515nm have been obtained. Semiconductor nanoplatelets like CdSe are attractive for the fabrication of hybrid \\{LEDs\\} with low operating voltages, spectrally pure color and short-wavelength electroluminescence, which is required for RGB devices.

A.G. Vitukhnovsky; V.S. Lebedev; A.S. Selyukov; A.A. Vashchenko; R.B. Vasiliev; M.S. Sokolikova

2015-01-01T23:59:59.000Z

457

Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics  

SciTech Connect (OSTI)

The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul; Joo, Young-Chang, E-mail: ycjoo@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of)] [Department of Materials Science and Engineering, Seoul National University, 151-744 Seoul (Korea, Republic of); Uk Lee, Yong; Evans, Louise A. [Center for Process Innovation Limited, Thomas Wright Way, NETPark, Sedgefield, TS21 3FG County Durham (United Kingdom)] [Center for Process Innovation Limited, Thomas Wright Way, NETPark, Sedgefield, TS21 3FG County Durham (United Kingdom)

2013-12-09T23:59:59.000Z

458

Measurement of semiconductor local carrier concentration from displacement current-voltage curves with a scanning vibrating probe  

Science Journals Connector (OSTI)

A theoretical equation has been fitted to displacement current-voltage curves of semiconductor in order to obtain the local carrier concentration of the semiconductor. The distance between a semiconductor surface and a scanning probe is changed sinusoidally and is adjusted as small as a few nm at which tunneling current flows. Displacement current due to the change in electric flux from the semiconductor surface to the scanning probe flows periodically in accordance with the vibration of the scanning probe, and it is separated from tunneling current using a two-phase lock-in amplifier. The displacement current-probe voltage curve is analyzed by taking into account two-dimensional electric flux profile from the semiconductor surface. It is realized that the lateral resolution of the displacement current depends on the probe voltage and that it is between one-eighth and one-fifteenth smaller than the top radius of the probe since the depletion-layer width of the semiconductor is determined by the probe voltage, the distance, and the carrier concentration. The theoretical displacement current-voltage curves are in good agreement with the measurement in both voltage regions where the majority carriers are accumulated and depleted. The local carrier concentration can be determined by fitting the theoretical displacement current-voltage curve with the experimental results.

Yutaka Majima; Yutaka Oyama; Mitsumasa Iwamoto

2000-07-15T23:59:59.000Z

459

Heterogeneous reaction mechanisms and kinetics relevant to the CVD of semiconductor materials  

SciTech Connect (OSTI)

This report documents the state of the art in experimental and theoretical techniques for determining reaction mechanisms and chemical kinetics of heterogeneous reactions relevant to the chemical vapor deposition of semiconductor materials. It summarizes the most common ultra-high vacuum experimental techniques that are used and the types of rate information available from each. Several case studies of specific chemical systems relevant to the microelectronics industry are described. Theoretical methods for calculating heterogeneous reaction rate constants are also summarized.

Creighton, J.R.; Coltrin, M.E.

1994-03-01T23:59:59.000Z

460

Semiconductor-based, large-area, flexible, electronic devices on {110}<100> oriented substrates  

DOE Patents [OSTI]

Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110}<100> textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

Goyal, Amit

2014-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Crystalline phases of II-VI compound semiconductors grown by pulsed laser deposition  

E-Print Network [OSTI]

-VI compound semiconductors, ZnS, ZnSe, CdS, CdSe, and CdTe, were grown epitaxially on 111 and 100 InP and Ga and mirror-like surface morphology. It was found that, on 111 -oriented substrates, CdS and CdSe films were, which is the main source of the troublesome native doping in II-VI compounds. High energy atoms and ions

Kwok, Hoi S.

462

Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well  

SciTech Connect (OSTI)

We show that an asymmetric semiconductor quantum well that forms a three-level cascade configuration can be controlled by the relative phase of a laser field and its second harmonic. The electron population in the three subbands and the probe absorption/dispersion spectra are crucially phase dependent. As an example, electron inversion between the upper and lower subbands and change of the spectrum from absorption to gain is found by solely varying the relative phase of the two fields.

Dynes, J. F.; Paspalakis, E. [London Center for Nanotechnology, London WC1H 0AH (United Kingdom); Materials Science Department, School of Natural Sciences, University of Patras, Patras 265 04 (Greece)

2006-06-15T23:59:59.000Z

463

OPTICAL ABSORPTION IN DEGENERATE SEMICONDUCTORS By J. GAVORET, P. NOZIRES, B. ROULET and M. COMBESCOT,  

E-Print Network [OSTI]

987. OPTICAL ABSORPTION IN DEGENERATE SEMICONDUCTORS By J. GAVORET, P. NOZI?RES, B. ROULET and M-Bernard, Paris, 5e (France). (Reçu le 15 septembre 1969.) Résumé. 2014 L'absorption optique dans les electrons de conduction et le trou profond créé par absorption. Une attention particulière est donnée aux

Paris-Sud XI, Université de

464

Eyesafe pulsed microchip laser using semiconductor saturable absorber R. Fluck,a)  

E-Print Network [OSTI]

a metal-organic chemical vapor deposition MOCVD grown InGaAsP/InP semiconductor saturable absorber mirror an InGaAsP/InP SESAM to obtain a higher modulation depth than for an InGaAs/GaAs SESAM.15 The InGaAsP coupler and the SESAM. The ytterbium codoping of the glass makes possible the efficient absorption

Keller, Ursula

465

Probing semiconductor quantum dot state and manipulation with superconducting transmission line resonator  

E-Print Network [OSTI]

A coupled system of a superconducting transmission line resonator with a semiconductor double quantum dot is analyzed. We simulate the phase shift of the microwave signal in the resonator, which is sensitive to the quantum dot qubit state and manipulation. The measurement quality is sufficiently high and the results demonstrate a solid-state quantum processor based on this type of circuit can be envisioned.

Zhe Guan

2013-12-08T23:59:59.000Z

466

Controlling ferromagnetism of (In,Fe)As semiconductors by electron doping  

SciTech Connect (OSTI)

Based on experimental results, using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method and Monte Carlo simulation, we study the mechanism of ferromagnetic behavior of (In,Fe)As. We show that with doped Be atoms occupying in interstitial sites, chemical pair interactions between atoms and magnetic exchange interactions between Fe atoms change due to electron concentration. Therefore, by controlling the doping process, magnetic behavior of (In,Fe)As is controlled and ferromagnetism is observed in this semiconductor.

Dang Vu, Nguyen; Fukushima, Tetsuya; Katayama-Yoshida, Hiroshi [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan); Sato, Kazunori [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

2014-02-21T23:59:59.000Z

467

More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the devices efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphis GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

None

2010-02-01T23:59:59.000Z

468

Anisotropic picosecond photoconductivity caused by optical alignment of electron momenta in cubic semiconductors  

SciTech Connect (OSTI)

Transient photoconductivity in cubic semiconductors InGaAs and InAs excited by a femtosecond laser pulse in the presence of a uniform dc electric field has been studied with the use of the Monte Carlo simulation by taking into account optical alignment of photoexcited electrons over their momenta. Simulations show that due to the optical alignment effect and energy dependence of the electron mobility, the transient photoconductivity in cubic semiconductors becomes anisotropic during the first few picoseconds after optical excitation. The magnitude of this anisotropy reaches its peak when the excess energy of the optically excited electrons approaches the threshold for the intervalley transfer. It has also been found that when the electrons are excited near the threshold energy for the intervalley transfer, the component of the transient photocurrent directed along the dc field for a short time after the end of the femtosecond optical pulse can become negative. The anisotropy of the transient photoconductivity has been investigated experimentally on (001) InGaAs sample by the optical pump - terahertz-probe technique. Optically induced changes in terahertz pulse amplitude were found to be dependent on the direction of terahertz field relative to the polarization of the optical pump pulse and to the crystallographic axes of the semiconductor. Experimental data have been explained in terms of the transient anisotropic photoconductivity and correlate with the results of the Monte Carlo simulation.

Malevich, Y. V., E-mail: malevich@pfi.lt; Adomavi?ius, R.; Krotkus, A. [Center for Physical Sciences and Technology, A. Gostauto 11, 01108 Vilnius (Lithuania); Malevich, V. L. [Institute of Physics, National Academy of Sciences of Belarus, Nezalezhnasti ave., 68, 220072 Minsk (Belarus)

2014-02-21T23:59:59.000Z

469

LBL-37525 UC-404 Surface Recombination in Semiconductors J.M. Langer* and W. Walukiewicz**  

Office of Scientific and Technical Information (OSTI)

37525 37525 UC-404 Surface Recombination in Semiconductors J.M. Langer* and W. Walukiewicz** "Institute of Physics Polish Academy of Sciences Al. Lotnikow 32/46 02668 Warsaw, Poland **Center for Advanced Materials Materials Sciences Division Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 July 1995 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

470

Comparative study of polyoxometalates and semiconductor metal oxides as catalyst. Photochemical oxidative degradation of thioethers  

SciTech Connect (OSTI)

The photochemical degradation of thioether substrates catalyzed by representative semiconductor metal oxides and sulfides (anatase TiO{sub 2}, SnO{sub 2}, cubic WO{sub 3}, and CdS) and photoredox-active early-transition-metal polyometalates (W{sub 10}O{sub 32}{sup 4{minus}}, PMo{sub 12}O{sub 40}{sup 3{minus}}, PW{sub 12}O{sub 40}{sup 3{minus}}, SiMo{sub 12}O{sub 40}{sup 4{minus}}, PV{sub 2}Mo{sub 10}O{sub 10}{sup 5{minus}}, and P{sub 2}W{sub 18}O{sub 62}{sup 6{minus}}) have been examined under both anaerobic and aerobic conditions. Under anaerobic conditions, all the semiconductors are completely ineffective at photochemically oxidizing or degrading the exemplary thioether substrate tetrahydrothiophene (THT) in the oxidatively resistant solvent acetonitrile. In contrast, all the homogeneous polyoxometalate systems under the same reaction condition, except the neutral tetra-n-butylammonium (Q) salt of PW{sub 12}O{sub 40}{sup 3{minus}}, are quite effective. The latter systems generate products derived from the carbon-based radical {alpha} to the sulfur atom and not sulfoxide or sulfone, the usual products of thioether oxidation by oxometal species. The rate for the most active anaerobic system, that involving the photochemical degradation of THT by Q{sub 4}W{sub 10}O{sub 32}, under optically dilute conditions, is first order in W{sub 10}O{sub 32} {sup 4{minus}} and light intensity and variable order in THT substrate. A rate law consistent with these data is given. Upon addition of O{sub 2}, TiO{sub 2} (with or without Pt(O)) becomes highly active, SnO{sub 2} becomes active, but WO{sub 3} and CdS remain inactive. Reactivity in thioether oxidation is dominated by the interactions of the semiconductors with O{sub 2} and O{sub 2}-derived intermediates; there is no correlation between reactivity and semiconductor band gap. Upon addition of O{sub 2}, all the polyoxometalate systems become more active. 29 refs., 4 figs., 3 tabs.

Chambers, R.C.; Hill, C.L. (Emory Univ., Atlanta, GA (United States))

1991-06-26T23:59:59.000Z

471

Improved method of preparing p-i-n junctions in amorphous silicon semiconductors  

DOE Patents [OSTI]

A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

Madan, A.

1984-12-10T23:59:59.000Z

472

Clathrates as effective p-type and n-type tetrahedral carbon semiconductors  

Science Journals Connector (OSTI)

Based on ab initio calculations, we predict that a carbon clathrate compound (hexagonal C40) is suitable to be n doped by Li insertion and p doped by substitutional boron. This material represents an example of n- and p-type tetrahedral carbon semiconductor, alternative to the n-doped diamondlike films whose realization is still in progress. Although this compound has not been synthesized so far, its study can also provide insights into the properties of nanostructured carbon thin films, grown by supersonic cluster beam deposition techniques that display local morphologies similar to the channels and fullereniclike cages present in the system here investigated.

M. Bernasconi; S. Gaito; G. Benedek

2000-05-15T23:59:59.000Z

473

Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction  

SciTech Connect (OSTI)

We theoretically study the current-phase relation in semiconductor nanowire Josephson junction in the presence of spin-orbit interaction. In the nanowire, the impurity scattering with strong SO interaction is taken into account using the random matrix theory. In the absence of magnetic field, the Josephson current I and phase difference ? between the superconductors satisfy the relation of I(?) = I(?). In the presence of magnetic field along the nanowire, the interplay between the SO interaction and Zeeman effect breaks the current-phase relation of I(?) = I(?). In this case, we show that the critical current depends on the current direction, which qualitatively agrees with recent experimental findings.

Yokoyama, Tomohiro; Eto, Mikio [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nazarov, Yuli V. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands (Netherlands)

2013-12-04T23:59:59.000Z

474

Optical properties of metallic (III, Mn)V ferromagnetic semiconductors in the infrared to visible range  

E-Print Network [OSTI]

, Texas 77843-4242, USA 2Institute of Physics, ASCR, Cukrovarnick? 10, 162 53 Praha 6, Czech Republic 3Department of Physics, University of Texas, Austin, Texas 78712-0264, USA 4Institute of Physics, Polish Academy of Sciences, al. Lotnik?w 32/46, PL-02... of ferromagnetic semiconductors based on (III, Mn)V materials.1?4 These materials have been the focus of intensive research over the recent years after nonequilibrium growth procedures5,6 have demonstrated the ability to achieve a ferromagnetic phase...

Hankiewicz, EM; Jungwirth, T.; Dietl, T.; Timm, C.; Sinova, Jairo.

2004-01-01T23:59:59.000Z

475

X-ray microscopy: An emerging technique for semiconductor microstructure characterization  

SciTech Connect (OSTI)

The advent of third generation synchrotron radiation x-ray sources, such as the Advanced Light Source (ALS) at Berkeley have enabled the practical realization of a wide range of new techniques in which mature chemical or structural probes such as x-ray photoelectron spectroscopy (XPS) and x-ray diffraction are used in conjunction with microfocused x-ray beams. In this paper the characteristics of some of these new microscopes are described, particularly in reference to their applicability to the characterization of semiconductor microstructures.

Padmore, H.A.

1998-05-01T23:59:59.000Z

476

Fiber optic coupling of a microlens conditioned, stacked semiconductor laser diode array  

DOE Patents [OSTI]

The output radiation from the two-dimensional aperture of a semiconductor laser diode array is efficiently coupled into an optical fiber. The two-dimensional aperture is formed by stacking individual laser diode bars on top of another in a "rack and stack" configuration. Coupling into the fiber is then accomplished using individual microlenses to condition the output radiation of the laser diode bars. A lens that matches the divergence properties and wavefront characteristics of the laser light to the fiber optic is used to focus this conditioned radiation into the fiber.

Beach, Raymond J. (Livermore, CA); Benett, William J. (Livermore, CA); Mills, Steven T. (Antioch, CA)

1997-01-01T23:59:59.000Z

477

Magnetic filter apparatus and method for generating cold plasma in semiconductor processing  

DOE Patents [OSTI]

Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

Vella, M.C.

1996-08-13T23:59:59.000Z

478

Electrodeposition of Antimony Selenide Thin Films and Application in Semiconductor Sensitized Solar Cells  

Science Journals Connector (OSTI)

The currentvoltage characteristic of the cells were measured using a xenon arc lamp simulator (Sun 2000, ABET Technologies) with an AM 1.5 G spectral filter, and the intensity was adjusted to provide 1 sun (100 mW/cm2) using a calibrated silicon solar cell. ... In selenosulfate electrolyte, the cathodic current detected for V production of Se2 by means of SeSO32 + 2 e = Se2 + SO2. ... Indeed, the Jsc is similar to values reported for the state of the art of the inorganic semiconductor sensitized solar cells based on liquid(36) and organic(7) hole conductors. ...

T. Tuyen Ngo; Sudam Chavhan; Ivet Kosta; Oscar Miguel; Hans-Jurgen Grande; Ramn Tena-Zaera

2014-01-17T23:59:59.000Z

479

Phonon-cavity-enhanced low-temperature thermal conductance of a semiconductor nanowire with narrow constrictions  

Science Journals Connector (OSTI)

We study the effect of the phonon cavity lying in a narrow constriction of a semiconductor nanowire on the ballistic phonon thermal conductance at low temperatures. At higher temperatures, the thermal conductance of the nanowire with phonon cavity is lower than that of the nanowire without phonon cavity since more discontinuous interfaces scatter phonons. On the contrary, it is found that the cavity can enhance the thermal conductance at very low temperatures despite phonons are scattered by its interfaces. The enhancement originates from the coupling between more excited cavity modes in the phonon cavity and phonon modes in the constrictions.

Wei-Qing Huang; Gui-Fang Huang; Ling-Ling Wang; Bai-Yun Huang

2007-06-27T23:59:59.000Z

480

Anisotropic exchange coupling in diluted magnetic semiconductors: Ab initio spin-density functional theory  

Science Journals Connector (OSTI)

A different scheme to calculate the exchange tensor J?ij describing in a phenomenological way the anisotropic exchange coupling of two moments in a magnetically ordered system is presented. The ab initio approach is based on spin-polarized relativistic multiple-scattering theory within the framework of spin-density functional theory. The scheme is applied to ferromagnetic CrTe as well as the diluted magnetic semiconductor system Ga1?xMnxAs. In the latter case the results show that there is a noticeable anisotropy in the exchange coupling present, although not as pronounced as those suggested in recent theoretical investigations.

H. Ebert and S. Mankovsky

2009-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "osram opto semiconductors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Comparison of the coherence properties of superradiance and laser emission in semiconductor structures  

SciTech Connect (OSTI)

The coherence properties of a transient electron - hole state developing during superradiance emission in semiconductor laser structures have been studied experimentally using a Michelson interferometer and Young's classic double-slit configuration. The results demonstrate that, in the lasers studied, the first-order correlation function, which quantifies spatial coherence, approaches unity for superradiant emission and is 0.2 - 0.5 for laser emission. The supercoherence is due to long-range ordering upon the superradiant phase transition. (special issue devoted to the 90th anniversary of n.g. basov)

Vasil'ev, Petr P; Penty, R V; White, I H

2012-12-31T23:59:59.000Z

482

Picosecond response of gallium-nitride metalsemiconductormetal photodetectors  

Science Journals Connector (OSTI)

Metalsemiconductormetal ultraviolet photodiodes fabricated on GaN were tested in the picosecond regime with an electro-optic sampling system. A device with a feature size of 1 ?m showed a response with 1.4 ps rise time and 3.5 ps full width at half maximum. The derived electron velocity 1.4310 7 ? cm/s is in good agreement with independent photoexcitation measurements. A slower impulse response was observed in a device with smaller feature size of 0.5?? m .

Jianliang Li; Ying Xu; T. Y. Hsiang; W. R. Donaldson

2004-01-01T23:59:59.000Z

483

Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication  

SciTech Connect (OSTI)

Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palto Alto, CA)

2002-01-01T23:59:59.000Z

484

Photoacoustic investigation of semiconductors: Influence of carrier diffusion and recombination in PbTe and Si  

Science Journals Connector (OSTI)

The photoacoustic signal of a narrow-gap semiconductor and of Si is investigated as a function of the modulation frequency through the use of a heat-transmission configuration. It is shown that in the thermally thick modulation-frequency range the signal amplitude can single out the different heating sources responsible for the photoacoustic signal. It is also shown that from the signal phase data, as a function of the modulation frequency, we can obtain the values of the surface recombination velocity and the nonradiative band-to-band recombination time.

A. Pinto Neto; H. Vargas; N. F. Leite; L. C. M. Miranda

1989-08-15T23:59:59.000Z

485

Devil's staircase, spontaneous-DC bias, and chaos via quasiperiodic plasma oscillations in semiconductor superlattices  

E-Print Network [OSTI]

We study a plasma instability in semiconductor superlattices irradiated by a monochromatic, pure AC electric field. The instability leads to sustained oscillations at a frequency \\omega 2 that is either incommensurate to the drive, or frequency-locked to it, \\omega 2 = (p/q) \\omega. A spontaneously generated DC bias is found when either p or q in the locking ratio are even integers. Frequency locked regions form Arnol'd tongues in parameter space and the ratio \\omega 2 / \\omega\\ exhibits a Devil's staircase. A transition to chaotic motion is observed as resonances overlap.

Jukka Isohtl; Kirill N. Alekseev

2012-01-30T23:59:59.000Z

486

Study of optical parameters of the Se-As chalcogenide semiconductor system containing EuF{sub 3} impurities  

SciTech Connect (OSTI)

Optical properties of chalcogenide vitreous semiconductors of composition Se{sub 95}As{sub 5} containing different amounts of rare-earth metal fluorides (EuF{sub 3}) are studied, and, on this basis, the fundamental parameters, such as the refractive index and extinction coefficient, are determined. The dependences of these parameters on the content of EuF{sub 3} molecules are nonmonotonic: the low content (below 0.25 at %) aids in decreasing the parameters, whereas the high content tends to increase them. From the analysis of the results with consideration for the structural features of chalcogenide vitreous semiconductors of the Se{sub 95}As{sub 5} system (the presence of ordered high-coordinated microregions separated from each other by regions with a lower atomic density), it is concluded that the optical properties of the chalcogenide vitreous semiconductor system under study can be described in the context of Penn's model.

Isayev, A. I.; Mekhtiyeva, S. I.; Garibova, S. N., E-mail: sgaribova@rambler.ru; Alekperov, R. I.; Zeynalov, V. Z. [Azerbaijan National Academy of Sciences, Abdullaev Institute of Physics (Azerbaijan)

2011-08-15T23:59:59.000Z

487

Substrate effects on the formation of flat Ag films on (110) surfaces of III-V compound semiconductors  

Science Journals Connector (OSTI)

Ag films grown at 135 K on (110) surfaces of III-V compound semiconductors and annealed at room temperature are investigated by scanning tunneling microscopy and low-energy electron diffraction. Ag films on Ga-V semiconductors are well ordered, atomically flat, and exhibit a specific critical thickness, which is a function of the substrate material. Films grown on In-V semiconductors are still rather flat, but significantly more disordered. The (111) oriented Ag films on III-arsenides and III-phosphides exhibit a clear twofold superstructure. Films on III-antimonides exhibit threefold low-energy electron diffraction images. The morphology of the Ag films can be explained on the basis of the electronic growth mechanism.

K.-J. Chao, Zhenyu Zhang, Ph. Ebert, and C. K. Shih

1999-08-15T23:59:59.000Z

488

In Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000.  

E-Print Network [OSTI]

automation, real- time shop-floor control, Web-based simulation ABSTRACT Traditionally, the semiconductorIn Proceedings of the International Conference on Modeling and Analysis of Semiconductor Manufacturing, Arizona State University, Tempe, AZ, USA, May, 2000. HIGH-FIDELITY RAPID PROTOTYPING OF THE REAL

489

Metal-insulator-semiconductor structure on low-temperature grown GaAs M. Young, W. Li, and T. P. Ma  

E-Print Network [OSTI]

Metal-insulator-semiconductor structure on low-temperature grown GaAs A. Chen,a M. Young, W. Li Received 28 July 2006; accepted 30 October 2006; published online 7 December 2006 The metal-insulator dielectrics and metal-insulator-semiconductor MIS structures; for ex- ample, in situ deposited Ga2O3 Gd2O3

Woodall, Jerry M.

490

Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback Joana G. Freire1,2  

E-Print Network [OSTI]

Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feed comprehensive review, see Wieczorek et al. 6 . The impact of optoelectronic systems in the science and applica

Gallas, Jason

491

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-  

E-Print Network [OSTI]

Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips%; Venezuela, 15%; Canada, 8%; and other, 8%. Silicon metal: Brazil, 38%; South Africa, 24%; Canada, 16

492

Energy-loss rate of a fast particle in two-dimensional semiconductors with Rashba spin-orbit coupling  

SciTech Connect (OSTI)

The energy-loss rate (ELR) of a charged particle in a two-dimensional semiconductor with Rashba spin-orbit coupling is studied. Our model takes into account of the temperature and density dependence of the electronic properties of the Rashba system. The energy and temperature dependence of the ELR are presented. It is found that a finite Rashba spin-orbit coupling offers a mechanism of tuning the mean scattering time in narrow-gap semiconductors. With a change of Rashba parameter of around 3 times, the mean scattering time can change by one to two orders of magnitude.

Feng, W. [Department of Physics, Jiangsu University, Zhenjiang, Jiangsu (China)] [Department of Physics, Jiangsu University, Zhenjiang, Jiangsu (China); Tawfiq, Asya [School of Physics, University of Wollongong, New South Wales 2522 (Australia)] [School of Physics, University of Wollongong, New South Wales 2522 (Australia); Cao, J. C. [Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai (China)] [Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai (China); Zhang, C. [School of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522 (Australia)] [School of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522 (Australia)

2013-02-04T23:59:59.000Z

493

Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy  

SciTech Connect (OSTI)

We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

2007-11-01T23:59:59.000Z

494

Investigation of the semiconductoroxide electrolyte interface in GaAs utilizing electrolyte electroreflectance  

Science Journals Connector (OSTI)

We have investigated the electrolyte electroreflectance (EER) spectra of NGaAs in the vicinity of the E o transition (direct gap at k?=0). A pronounced interference phenomenon sensitive to the d c b i a s e l e c t r i c f i e l d has been observed which we identify with an exciton quenching effect within the semiconductor spacecharge region (SCR). We have utilized this excitonic feature to interferometrically probe the dynamic and steady?state properties of the SCR during electrochemical anodization procedures. The same EER spectra also exhibit FranzKeldysh oscillations the period of which is explicitly dependent on the a c e l e c t r i c f i e l d. Using these phenomena we have shown that the interfacial and oxide electric fields under steady?state conditions are just sufficient to continue growing the oxide in compensation for slow dissolution. If the dc bias voltage is suddenly reduced the SCR temporarily collapses due to transient effects which we attribute to very slow interface states in the oxide. These techniques are applicable to the study of the SCR in a variety of semiconductorelectrolyte systems as well as in the Schottky barrier configuration.

R. P. Silberstein; F. H. Pollak

1980-01-01T23:59:59.000Z

495

Identification and sizing of particle defects in semiconductor-wafer processing  

Science Journals Connector (OSTI)

An experimental study of the sizing of submicron particles on semiconductor wafers is presented. The objective of the study was to determine the accuracy of a state-of-the-art optical wafer scanner by comparing its size response with that of two well established techniques namely differential mobility analysis (DMA) and secondary electronmicroscopy(SEM). Test particles used include polystyrenelatex spheres and SiO 2 Si 3 N 4 W and Cu particles of 64 107 and 202 nm nominal (DMA) sizes. The scanner-indicated sizes using the oblique and normal operational modes were compared to the DMA sizes and to average sizes determined from the SEM images. Results show that the scanner-indicated size is comparable to the SEM-indicated size. However both the scanner size and SEM size exhibit large distributions for a given nominal (DMA) size. The discrepancies are due to a combination of factors such as the effects of particle shape and material and the presence of larger doubly charged particles among those analyzed. A comparison of the normal and oblique scanner operational mode results for the scanner further show that the normal mode undersizes particles somewhat. These results collectively indicate that accurate sizing of complex and unknown submicron sized particles on semiconductor wafers is not an easy task. A thorough understanding of the scanner response to a variety of process particles is essential for the meaningful interpretation of scanning results.

Seong-Ho Yoo; James Weygand; Juergen Scherer; Lawrence Davis; Benjamin Liu; Kurt Christenson; Jeffery Butterbaugh; Natraj Narayanswami

2001-01-01T23:59:59.000Z

496

Financing innovations in uncertain networksFilling in roadmap gaps in the semiconductor industry  

Science Journals Connector (OSTI)

Complex technologies are often developed in inter-organisational networks as actors try to reduce development costs and uncertainty about the viability of these innovations. However, as of to date it remains unclear how such innovations are financed collectively under conditions characterised by extreme uncertainty. Hence we explore how financial resources within innovation networks are mobilised and allocated. This question is of particular importance to the development of system technologies that are viable only if all critical components are functional on time. We explore this issue by reviewing the development of a radically new system technology for mass manufacturing microchips in the semiconductor industry. In this industry, technological roadmaps allow actors to identify critical components that still need to be developed. These components are the so-called roadmap gaps. However, suppliers can be reluctant to develop the required components at their own expense because of the high uncertainties involved. In such cases, providing financial support to component suppliers is a central task of innovation networks. The empirical analysis shows that semiconductor manufacturers take both an individual and a collective approach to filling roadmap gaps. This study contributes to prior research on innovation networks and financial management not only by identifying and clarifying these two approaches, but also by revealing under which conditions they are used. The findings are particularly relevant to scholars interested in the innovations of complex product systems (CoPS).

Knut Lange; Gordon Mller-Seitz; Jrg Sydow; Arnold Windeler

2013-01-01T23:59:59.000Z

497

Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices  

E-Print Network [OSTI]

Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but QD structural asymmetries lower dramatically the degree of entanglement of the sources and hamper severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of highly polarization-entangled photons. The electrically-controlled sources violate Bell inequalities without the need of spectral or temporal filtering and they feature the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75(2). These quantum-devices are at present the most promising candidates for the direct implementation of QD-based entanglement-resources in quantum information science and technology.

Rinaldo Trotta; Johannes S. Wildmann; Eugenio Zallo; Oliver G. Schmidt; Armando Rastelli

2014-03-02T23:59:59.000Z

498

Low-temperature Peltier heat of an itinerant electron in a ferromagnetic semiconductor  

SciTech Connect (OSTI)

The Peltier heat of a wide-band itinerant carrier in a ferromagnetic semiconductor has been calculated for temperatures below the Curie temperature. In this regime we treat the spin fluctuations within the spin-wave approximation. The coupling of the charge carrier to the local moments is via local intra-atomic (e.g., s-f or s-d) exchange. Taking the strength of the intra-atomic exchange interaction to be small compared with the carrier's electronic bandwidth, we treat the interaction between the carrier and the local moments perturbatively through second order. We use the perturbed energy to compute the free energy of the coupled electron-magnon system. From the carrier-induced change of the system's free energy we directly obtain the carrier's Peltier heat. The Peltier heat contains two terms of opposite sign which both increase in magnitude with increasing temperature. These two terms arise from the first- and second-order contributions to the energy of the coupled system. Except at very low temperatures, the first-order contribution dominates. Then the electron-magnon interaction provides a negative contribution to the Peltier heat of a ferromagnetic semiconductor. The magnitude of this contribution varies as T/sup 3/2/.

Liu, N.H.; Emin, D.

1985-08-15T23:59:59.000Z

499

Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction  

SciTech Connect (OSTI)

An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

Lekkala, Swapna; Marohn, John A.; Loring, Roger F., E-mail: roger.loring@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

2013-11-14T23:59:59.000Z

500

Radio frequency coupling apparatus and method for measuring minority carrier lifetimes in semiconductor materials  

DOE Patents [OSTI]

An apparatus for measuring the minority carrier lifetime of a semiconductor sample using radio-frequency coupling. The measuring apparatus includes an antenna that is positioned a coupling distance from a semiconductor sample which is exposed to light pulses from a laser during sampling operations. A signal generator is included to generate high frequency, such as 900 MHz or higher, sinusoidal waveform signals that are split into a reference signal and a sample signal. The sample signal is transmitted into a sample branch circuit where it passes through a tuning capacitor and a coaxial cable prior to reaching the antenna. The antenna is radio-frequency coupled with the adjacent sample and transmits the sample signal, or electromagnetic radiation corresponding to the sample signal, to the sample and receives reflected power or a sample-coupled-photoconductivity signal back. To lower impedance and speed system response, the impedance is controlled by limiting impedance in the coaxial cable and the antenna reactance. In one embodiment, the antenna is a waveguide/aperture hybrid antenna having a central transmission line and an adjacent ground flange. The sample-coupled-photoconductivity signal is then transmitted to a mixer which also receives the reference signal. To enhance the sensitivity of the measuring apparatus, the mixer is operated to phase match the reference signal and the sample-coupled-photoconductivity signal.

Johnston, Steven W. (Golden, CO); Ahrenkiel, Richard K. (Lakewood, CO)

2002-01-01T23:59:59.000Z