National Library of Energy BETA

Sample records for ornl neutron sciences

  1. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spallation Neutron Source Spallation Neutron Source SNS is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. SNS produces neutrons with an accelerator-based system that delivers short (microsecond) proton pulses to a target/moderator system, where neutrons are produced by a process called spallation. State-of-the-art experiment stations provide a variety of capabilities for researchers across a

  2. ORNL Neutron Sciences Annual Report for 2007

    SciTech Connect (OSTI)

    Anderson, Ian S; Horak, Charlie M; Counce, Deborah Melinda; Ekkebus, Allen E

    2008-07-01

    This is the first annual report of the Oak Ridge National Laboratory Neutron Sciences Directorate for calendar year 2007. It describes the neutron science facilities, current developments, and future plans; highlights of the year's activities and scientific research; and information on the user program. It also contains information about education and outreach activities and about the organization and staff. The Neutron Sciences Directorate is responsible for operation of the High Flux Isotope Reactor and the Spallation Neutron Source. The main highlights of 2007 were highly successful operation and instrument commissioning at both facilities. At HFIR, the year began with the reactor in shutdown mode and work on the new cold source progressing as planned. The restart on May 16, with the cold source operating, was a significant achievement. Furthermore, measurements of the cold source showed that the performance exceeded expectations, making it one of the world's most brilliant sources of cold neutrons. HFIR finished the year having completed five run cycles and 5,880 MWd of operation. At SNS, the year began with 20 kW of beam power on target; and thanks to a highly motivated staff, we reached a record-breaking power level of 183 kW by the end of the year. Integrated beam power delivered to the target was 160 MWh. Although this is a substantial accomplishment, the next year will bring the challenge of increasing the integrated beam power delivered to 887 MWh as we chart our path toward 5,350 MWh by 2011.

  3. High Flux Isotope Reactor | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Flux Isotope Reactor High Flux Isotope Reactor Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than

  4. Neutronics at Wisconsin, ORNL advances ITER shielding and internationa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutronics at Wisconsin, ORNL advances ITER shielding and international collaboration American Fusion News Category: U.S. ITER Link: Neutronics at Wisconsin, ORNL advances ITER...

  5. DOE Science Showcase - Neutron Science Research from DOE Databases | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access Shull's early research records in Energy Citations Database. Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize

  6. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report Citation Details In-Document Search Title: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce. Authors: Mirmelstein, A. [1] ; Podlesnyak, Andrey A [2] ; Kolesnikov, Alexander I [2] ; Saporov, B. [3] ; Sefat, A.S. [3] ; Tobin, J. G. [4] + Show Author Affiliations

  7. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  8. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Authors: Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I ; Saporov, B ; Sefat, A S ; Tobin, J G Publication Date: 2014-04-13 OSTI Identifier: 1132013 Report Number(s): LLNL-PROC-653272 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 2014 Materials Research

  9. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  10. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at...

  11. Neutron and Nuclear Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Recent publications related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science Publications Chi-Nu Publications DANCE Publications GEANIE...

  12. CASL - ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Oak Ridge, TN Oak Ridge National Laboratory (ORNL), which was founded to develop the world's first nuclear fuel cycle, is DOE's largest science and energy laboratory. ORNL has world-leading capabilities in computing and computational science and substantial programs and assets in nuclear energy R&D, as well as a record of accomplishment in leading large-scale scientific collaborations. Key Contributions Serves as the consortium's home organization, providing

  13. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  14. ORNL/TM-1999/264 Environmental Sciences Division

    Office of Scientific and Technical Information (OSTI)

    TM-1999/264 Environmental Sciences Division Bamboo: an overlooked biomass resource? J. M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6407 U.S.A. D. C. Dayton and B. Hames National Renewable Energy Laboratory 1617 Cole Boulevard, MS 3311 Golden, CO 80401 U.S.A. Environmental Sciences Division Publication No. 4963 Date Published: January 2000 Prepared for the U.S. DEPARTMENT OF ENERGY Office of Transportation Technologies EB 52 03 00

  15. Supplementary neutron-flux calculations for the ORNL Pool Critical Assembly Pressure Vessel Facility

    SciTech Connect (OSTI)

    Maudlin, P.J.; Maerker, R.E.

    1982-01-01

    A three-dimensional Monte Carlo calculation using the MORSE code was performed to validate a procedure previously adopted in the ORNL discrete ordinate analysis of measurements made in the ORNL Pool Critical Assembly Pressure Vessel Facility. The results of these flux calculations agree, within statistical undertainties of about 5%, with those obtained from a discrete ordinate analysis employing the same procedure. This study therefore concludes that the procedure for combining several one- and two-dimensional discrete ordinate calculations into a three-dimensional flux is sufficiently accurate that it does not account for the existing discrepancies observed between calculations and measurements in this facility.

  16. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    SciTech Connect (OSTI)

    Mirmelstein, A. [Russian Federal Nuclear Center VNIITF, Snezhinsk, Russia; Podlesnyak, Andrey A [ORNL; Kolesnikov, Alexander I [ORNL; Saporov, B. [Oak Ridge National Laboratory (ORNL); Sefat, A.S. [Oak Ridge National Laboratory (ORNL); Tobin, J. G. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce.

  17. Center for Nanophase Materials Sciences (CNMS) - ORNL develops lignin-based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermoplastic conversion process ORNL DEVELOPS LIGNIN-BASED THERMOPLASTIC CONVERSION PROCESS (Newswise) Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory... Other ORNL authors are Tomonori Saito, Rebecca Brown, Marcus Hunt, Deanna Pickel, Joseph Pickel, Jamie Messman, Frederick Baker and Martin Keller. The research

  18. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Neutron Science Center lansce.lanl.gov lansce-user-office@lanl.gov mesaheader Beam Status Accelerator Ops (Internal) Operating Schedule Long Range Operating Schedule User Resources User Agreements Proposals Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User Program Headlines

  19. Scott Robert [ORNL]; Lavrik, Nickolay V [ORNL]; Bannuru, Thirumalesh

    Office of Scientific and Technical Information (OSTI)

    ORNL; Mostafa, Salwa ORNL; Rajic, Slobodan ORNL; Datskos, Panos G ORNL 14 SOLAR ENERGY; COMPUTERS; EFFICIENCY; ELECTRICITY; ENERGY CONVERSION; FABRICATION;...

  20. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    SciTech Connect (OSTI)

    Nelson, Ronald Owen; Wender, Steve

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  1. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  2. ORNL OLCF Facilities Plans Jack Wells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL OLCF Facilities Plans Jack Wells Director of Science Oak Ridge Leadership Computing Facility Oak Ridge National Laboratory HEP-ASCR Requirements Workshop Bethesda 10 June 2015...

  3. Los Alamos Neutron Science Center | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    LANSCE provides the scientific community with intense sources of neutrons supporting both ... the DOE, NNSA, Office of Science and Office of Nuclear Energy, Science and Technology. ...

  4. Chemical Sciences at ORNL

    Broader source: Energy.gov [DOE]

    Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

  5. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  6. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  7. Photo: US ITER/ORNL INSIDE: ITER Site Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Before joining ORNL in 2001, Murdoch worked as a senior project engineer at the ISIS Spallation Neutron Source at Rutherford Appleton Laboratory in England. A native of Scotland, ...

  8. ORNL Bioenergy technologies

    SciTech Connect (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-02

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  9. ORNL Bioenergy technologies

    ScienceCinema (OSTI)

    Davison, Brian; Narula, Chaintanya; Langholtz, Matt; Dale, Virginia

    2014-07-15

    ORNL researchers discuss breakthroughs in biomass conversion, feedstocks, logistics and sustainability

  10. Neutron Scattering | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Neutron Scattering Print Text Size: A A A FeedbackShare Page This activity supports basic research on the fundamental interactions of neutrons with matter to achieve an understanding of the atomic,

  11. WUFI-ORNL

    Energy Science and Technology Software Center (OSTI)

    003036IBMPC00 WUFI (W?rme and Feuchte Instation?r)-Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP  http://web.ornl.gov/sci/ees/etsd/btric/wufi/ 

  12. About the Neutron and Nuclear Science Research (WNR) facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Neutron and Nuclear Science (WNR) Facility The Neutron and Nuclear Science (WNR) Facility provides neutron and proton beams and detector arrays for basic, applied, industrial, and defense-related research. Neutron and Nuclear Science The Neutron and Nuclear Science (WNR) Facility consists of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center (Target-1), and a proton reaction area (Target-2).

  13. Lab Breakthrough: Neutron Science for the Fusion Mission | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital

  14. ORNL trends and balances, 1987-1992

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A brief overview is given that covers the roles, organization, R and D sponsors, and recent achievements of Oak Ridge National Laboratory. Current R and D programs are described in the areas of nuclear and engineering technologies, advanced energy systems, biomedical and environmental sciences, and basic physical sciences. ORNL's future activities are discussed. (LEW)

  15. Spallation Neutron Source (SNS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities » Spallation Neutron Source (SNS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities Spallation Neutron Source (SNS) Print Text Size: A A A

  16. ORNL Energy Efficiency | Open Energy Information

    Open Energy Info (EERE)

    ORNL Energy Efficiency (Redirected from Energy Efficiency Capabilities at ORNL) Jump to: navigation, search Logo: Energy Efficiency Capabilities at ORNL Name Energy Efficiency...

  17. ORNL Energy Efficiency | Open Energy Information

    Open Energy Info (EERE)

    ORNL Energy Efficiency Jump to: navigation, search Logo: Energy Efficiency Capabilities at ORNL Name Energy Efficiency Capabilities at ORNL AgencyCompany Organization Oak Ridge...

  18. Oak Ridge National Laboratory | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Diversity Hubs, Centers and Institutes Working with ORNL Partnerships Small Business Technology Licensing University Partnerships Academia User Facilities Building...

  19. Neutron Detection Using an Embedded Sol-Gel Neutron Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Neutron Detection Using an Embedded Sol-Gel Neutron Absorber Oak Ridge National Laboratory Contact ORNL About This Technology...

  20. Los Alamos Neutron Science Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Neutron Science Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs

  1. ORNL SunTracker

    Energy Science and Technology Software Center (OSTI)

    2005-09-14

    The ORNL Sun Tracker software is the user interface that operates on a Personal Computer and serially communicates with the controller board. This software allows the user to manually operate the Hybrid Solar Lighting (HSL) unit. It displays the current location of the HSL unit, its parameters and it provides real-time monitoring. The ORNL Sun Tracker software is also the main component used in setting up and calibrating the tracker. It contains a setup screenmore » that requires latitude, longitude, and a few other key values to accurately locate the sun's position. The software also will provide the user access to calibrate the tracking location in relation to the sun's actual position.« less

  2. ORNL Flexible Research Platforms

    Energy Savers [EERE]

    Flexible Research Platforms Presented by: Joshua New January 28, 2015 Empirical Validation of Whole-Building Energy Simulation Programs Patrick Hughes Ed Vineyard Melissa Lapsa PM: Joshua New PIs - Piljae Im and Mahabir Bhandari (Model) PI - Jibo Sanyal (Provenance) PI - Charles Castello (Sensor QA) PI - Joshua New (Visual Analytics) PI - Philip Boudreaux (Occupancy) PIs - Tony Gehl and Chris Halford (Sensors) PI - F&O (Installation) 2 Presentation name ORNL works with industry to accelerate

  3. Neutron Star Science with the NuSTAR

    SciTech Connect (OSTI)

    Vogel, J. K.

    2015-10-16

    The Nuclear Spectroscopic Telescope Array (NuSTAR, Figure 1), launched in June 2012, helped scientists obtain for the first time a sensitive high-­energy X-­ray map of the sky with extraordinary resolution. This pioneering telescope has aided in the understanding of how stars explode and neutron stars are born. LLNL is a founding member of the NuSTAR project, with key personnel on its optics and science team. We used NuSTAR to observe and analyze the observations of different neutron star classes identified in the last decade that are still poorly understood. These studies not only help to comprehend newly discovered astrophysical phenomena and emission processes for members of the neutron star family, but also expand the utility of such observations for addressing broader questions in astrophysics and other physics disciplines. For example, neutron stars provide an excellent laboratory to study exotic and extreme phenomena, such as the equation of state of the densest matter known, the behavior of matter in extreme magnetic fields, and the effects of general relativity. At the same time, knowing their accurate populations has profound implications for understanding the life cycle of massive stars, star collapse, and overall galactic evolution.

  4. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  5. ORNL/RASA-85/

    Office of Legacy Management (LM)

    e?Ll ( U o't /u/ / ORNL/RASA-85/ 4I 4 RESULTS 0FRADI0L0GICALMEASUREMENTSTMENNEA OF BUFFALO AVENUE A'ID HYffi PARK BLVD. IN NIAGARA FALLS' NET{ YORK Access to the inlormation in thit rtport ir limitcd to tho!' ino-icateo on tha distribution list and to oepartmsnt of Encrgy tnd Oepartment ol Enoqy Contracton F This report was prepared as an accountof work sponsored by an agency of the UnitedstatesGovernment.NeithertheUnitedstatesGovernmentnoranyagency thereo|, nor any o| the.r employees, makes any

  6. ORNL-5680 Radiological Surveys

    Office of Legacy Management (LM)

    DOVEV-0005/l (Supplement) ORNL-5680 Radiological Surveys of Properties in the Middlesex, New Jersey, Area R. W. Leggett D. L. Anderson F. F. Haywood D. J. Christian W. D. Cottrell R. W. Doane D. J. Crawford W. H. Shinpaugh E. B. Wagner T. E. Myrick W. A. Goldsmith Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A07 Microfiche ,401 I I This

  7. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and ORNL to demonstrate a novel polymer fiber material and production process technology. ... in research and development, materials science, and high-volume polymer processing. ...

  8. ORNL Lightweighting Research Featured on MotorWeek

    ScienceCinema (OSTI)

    None

    2014-06-03

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  9. ORNL Lightweighting Research Featured on MotorWeek

    SciTech Connect (OSTI)

    2014-04-15

    PBS MotorWeek, television's longest running automotive series, featured ORNL lightweighting research for vehicle applications in an episode that aired in early April 2014. The crew captured footage of research including development of new metal alloys, additive manufacturing, carbon fiber production, advanced batteries, power electronics components, and neutron imaging applications for materials evaluation.

  10. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department

  11. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  12. A Large-Area Detector for Fundamental Neutron Science | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) A Large-Area Detector for Fundamental Neutron Science Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 09.01.15 A Large-Area Detector for Fundamental

  13. Protons and Neutrons for Testing at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Protons and Neutrons for Testing at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  14. Final Report Gentile, Thomas R. 36 MATERIALS SCIENCE neutron...

    Office of Scientific and Technical Information (OSTI)

    spin filter; polarization; helium-3 We propose to extend the technique of polarized neutron scattering into new domains by continued development and application of polarized...

  15. DOE Science Showcase - Neutron Sources for Studying Matter |...

    Office of Scientific and Technical Information (OSTI)

    Related Research Information in DOE Databases In the OSTI Collections: Neutron Sources for Studying Matter, Dr. William Watson DOE PAGESBeta - journal articles and accepted ...

  16. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  17. Los Alamos Neutron Science Center gets capacity boost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  18. Educational Opportunities in Bioenergy - ORNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Opportunities in Bioenergy Office of the Biomass Program Webinar April 23, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy ORNL - Educational Opportunities in Bioenergy Agenda Overview of programs - Tim Theiss - Laboratory Relationship Manager, Biomass Program - Oak Ridge National Laboratory * Mentor perspective - Erin Webb, Ph.D., P.E - Research Engineer, Renewable Systems Group - Oak Ridge National Laboratory * Post-graduate perspective - Scott Curran - Research

  19. ornl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ornl | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  20. The Science Program at the Los Alamos Ultracold Neutron Source (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: The Science Program at the Los Alamos Ultracold Neutron Source Citation Details In-Document Search Title: The Science Program at the Los Alamos Ultracold Neutron Source Authors: Saunders, Alexander [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-13 OSTI Identifier: 1083838 Report Number(s): LA-UR-13-24322 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National

  1. ornl

    National Nuclear Security Administration (NNSA)

    of 25 Million Grant to Improve Technological Capabilities for Detecting Nuclear Proliferation http:www.nnsa.energy.govmediaroompressreleasesncstateconsortium

  2. ornl

    National Nuclear Security Administration (NNSA)

    of 25 Million Grant to Improve Technological Capabilities for Detecting Nuclear Proliferation http:nnsa.energy.govmediaroompressreleasesncstateconsortium

  3. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect (OSTI)

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  4. David Sims - ORNL - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Dims Photo of David Sims, Commercialization Manager in the Partnerships Directorate at the Oak Ridge National Laboratory (ORNL) Meet David Sims. David is a Commercialization Manager in the Partnerships Directorate at the Oak Ridge National Laboratory (ORNL), operated and managed by UT-Battelle, LLC. David plays a key role within the laboratory, managing and licensing UT-Battelle's buildings, computational, nanophase materials, and transportation technologies portfolio. David joined ORNL

  5. Microsoft Word - ORNL-TM-2008-185.doc

    Office of Scientific and Technical Information (OSTI)

    Vehicle Technologies, EE-2G 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY2009 EVALUATION OF THE 2008 LEXUS LS 600H HYBRID SYNERGY DRIVE SYSTEM Prepared by: Oak Ridge National Laboratory Mitch Olszewski, Program Manager Submitted to: Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Vehicle Systems Team Susan A. Rogers, Technology Development Manager January 2009 ORNL/TM-2008/185 Energy and Transportation Science Division EVALUATION OF THE 2008 LEXUS LS

  6. George D. Wignall Neutron Scattering Sciences Division Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George D. Wignall Neutron Scattering Sciences Division Oak Ridge National Laboratory Joint Meeting with the V CNMS D V { { x x Å Å | | v v t t Ä Ä f f v v | | x x Ç Ç v v x x ĂĄ ĂĄ W W | | Ă€ Ă€ | | ĂĄ ĂĄ | | É É Ç Ç Wednesday, November 1, 2006 2:00 pm Weinberg Auditorium (4500N) Refreshments will be served at 1:45 pm "Neutron Scattering from Polymers and Nano-structured Composite Materials; Everything you ever wanted to know about SANS, but were afraid to ask" D I I S S C C

  7. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect (OSTI)

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  8. Dow Partners with ORNL to Commercialize Advanced Energy-Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings August 5, ...

  9. ORNL Global Change and Developing Country Programs | Open Energy...

    Open Energy Info (EERE)

    Oak Ridge National Laboratory Sector Energy Website http:www.esd.ornl.goveessg References Global Change 1 "For more than twenty years, ORNL has been active in energy...

  10. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CumminsORNL-FEERC CRADA: NOx Control &...

  11. ORNL Crowdsourcing Site Advances Building Technologies Ideas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... A model of the concept was 3-D printed and exhibited at the Industry Day event at ORNL. Rod Stucker, an entrepreneur and owner of RM Enterprises in Idaho, was chosen as the winner ...

  12. Educational Opportunities in Bioenergy - ORNL | Department of Energy

    Office of Environmental Management (EM)

    ORNL Educational Opportunities in Bioenergy - ORNL ORNL presentation about the educational opportunities in bioenergy at the lab. PDF icon ornl_opportunities_bioenergy.pdf More Documents & Publications PHEV Engine Control and Energy Management Strategy Ensuring Project Success - The Fundamental Art of Managing the Interfaces Carbon Fiber Technology Facility

  13. Tracking Provenance in ORNL's Flexible Research Platforms

    SciTech Connect (OSTI)

    Hensley, Zachary P; Sanyal, Jibonananda; New, Joshua Ryan

    2013-08-01

    Provenance is dened as information about the origin of objects, a concept that applies to both physical and digital objects and often overlaps both. The use of provenance in systems designed for research is an important but forgotten feature. Provenance allows for proper and exact tracking of information, its use, its lineage, its derivations and other metadata that are important for correctly adhering to the scien- tic method. In our project's prescribed use of provenance, researchers can determine detailed information about the use of sensor data in their experiments on ORNL's Flexible Research Platforms (FRPs). Our project's provenance system, Provenance Data Management System (ProvDMS), tracks information starting with the creation of information by an FRP sensor. The system determines station information, sensor information, and sensor channel information. The system allows researchers to derive generations of experiments from the sensor data and tracks their hierarchical flow. Key points can be seen in the history of the information as part of the information's workflow. The concept of provenance and its usage in science is relatively new and while used in other cases around the world, our project's provenance diers in a key area. To keep track of provenance, most systems must be designed or redesigned around the new provenance system. Our system is designed as a cohesive but sepa- rate entity and allows for researchers to continue using their own methods of analysis without being constrained in their ways in order to track the provenance. We have designed ProvDMS using a lightweight provenance library, Core Provenance Library (CPL) v.6 In addition to keeping track of sensor data experiments and its provenance, ProvDMS also provides a web-enabled visualization of the inheritance.

  14. Center for Nanophase Materials Sciences - Newsletter January...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Nanophase Materials Sciences and Panos Datskos of ORNL Measurement Science and Systems Engineering Division The technology, based on nonlinear nanomechanical resonators,...

  15. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  16. Microsoft Word - ORNL_first_shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Receives First Shipment From Oak Ridge National Laboratory CARLSBAD, N.M., September 25, 2008 - Oak Ridge National Laboratory (ORNL) in Tennessee has become the latest site to ship defense-related transuranic waste directly to the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). A truck with three loaded TRUPACT-II shipping containers departed ORNL yesterday and arrived at WIPP this morning - the 6,894th safe shipment to WIPP since the project opened in 1999.

  17. ORNL Soils Remediation and Slabs Removal - The Bridge from D and D to Redevelopment - 12342

    SciTech Connect (OSTI)

    Travaglini, Mike; Halsey, Pat; Conger, Malinda; Schneider, Ken

    2012-07-01

    The landscape of the Oak Ridge National Laboratory (ORNL) has dramatically changed over the past 2 years with demolition of aging facilities in the Central Campus. Removal of these infrastructure legacies was possible due to an influx of DOE-Environmental Management funding through the American Recovery and Reinvestment Act of 2009 (ARRA). Facility D and D traditionally removes everything down to the building slab, and the Soils and Sediments Program is responsible for slabs, below-grade footers and sub-grade structures, abandoned waste utilities, and soils contaminated above certain risk levels that must be removed before the site can be considered for redevelopment. DOE-EM has used a combination of base and ARRA funding to facilitate the clean-up process in ORNL's 2000 Area. Demolition of 13 buildings in the area was funded by the ARRA. Characterization of the remaining slabs, underground pipelines and soils was funded by DOE-EM base funding. Additional ARRA funding was provided for the removal of the slabs, pipelines and contaminated soils. Removal work is in progress and consists of removing and disposing of approximately 7,650 cubic meters (m{sup 3}) of concrete, 2,000 m{sup 3} of debris, and 400 m{sup 3} of contaminated soil. Immediately adjacent to the 2000 Area is the Oak Ridge Science and Technology Park and the modernized ORNL western campus. The Science and Technology Park is the only private sector business and technology park located within the footprint of a national laboratory. The completion of this work will not only greatly reduce the risk to the ORNL campus occupants but also allow this much sought after space to be available for redevelopment and site reuse efforts at ORNL. Demolition of aging facilities enabled by injection of ARRA funding has significantly altered the landscape at ORNL while reducing risk to laboratory personnel and operations and providing valuable central campus land parcels for redevelopment to expand and enhance the science mission of the Laboratory. D and D of these infrastructure legacies that were once eyesores that harbored risk in the ORNL Central Campus have been transformed to green spaces and extremely valuable candidate sites for future buildings. The 2000 Area slabs and soils removal marks the first step in creating the bridge between the modernized east and west campus and acts as the cornerstone in the redevelopment of the ORNL Central Campus area which will be a key contributor to ORNL meeting its vision of the future. (authors)

  18. New Developments in Proton Radiography at the Los Alamos Neutron Science Center (LANSCE)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Morris, C. L.; Brown, E. N.; Agee, C.; Bernert, T.; Bourke, M. A. M.; Burkett, M. W.; Buttler, W. T.; Byler, D. D.; Chen, C. F.; Clarke, A. J.; et al

    2015-12-30

    An application of nuclear physics, a facility for using protons for flash radiography, was developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography because of their long mean free path, good position resolution, and low scatter background. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials and the dynamics of chemical reactions. The advantages of protons are discussed, data from some recentmore » experiments will be reviewed and concepts for new techniques are introduced.« less

  19. ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market ORNL Crowdsourcing Site Advances Building Technologies Ideas to the Market September 24, 2015 - 4:09pm Addthis James White, Rod Stucker and James Rowland, winners of DOE's inaugural Buildings Crowdsourcing Community Campaign, joined GE Applianceñ€™s Venkat Venkatakrishnan and DOE Assistant Secretary David Danielson for a panel discussion at EERE Industry Day at ORNL. Image: ORNL. James White,

  20. ORNL: HVAC Lab Research - 2015 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL: HVAC Lab Research - 2015 Peer Review ORNL: HVAC Lab Research - 2015 Peer Review Presenter: Jeffrey Munk, ORNL View the Presentation PDF icon ORNL: HVAC Lab Research - 2015 Peer Review More Documents & Publications Residential Buildings Integration Program Overview - 2015 BTO Peer Review Space Conditioning Standing Technical Committee Strategic Plan Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners

  1. ORNL Publishes Study on Superconducting Wire Performance | Department of

    Energy Savers [EERE]

    Energy ORNL Publishes Study on Superconducting Wire Performance ORNL Publishes Study on Superconducting Wire Performance August 23, 2013 - 4:06pm Addthis The Department of Energy's Oak Ridge National Laboratory (ORNL) recently released a new study on advances in superconducting wire technology. A team led by ORNL's Amit Goyal demonstrated that the ability to control nanoscale imperfections in superconducting wires results in materials with excellent and customized performance. The team's

  2. ORNL-5489 Radon and Radon Daughter

    Office of Legacy Management (LM)

    _._-l"." .-_ "...",.,~~-- ORNL-5489 Radon and Radon Daughter Measurements at and near the Former Middlesex Sampling Plant, Middlesex, New Jersey F. F. Haywood P. T. Perdue D. J . Chris tian R. W . Leggett H. W . Dickson T. E. Myric k ,--___ . . . ^.. Printed in the United States of America. Available from National Technical information Service US. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A04 Microfiche A01 This

  3. ORNL/TM-2010/87

    National Nuclear Security Administration (NNSA)

    6) September 2012 Guidance for Gas Centrifuge Enrichment Plants ORNL/TM-2012/364 Implementing Safeguards-by-Design at Gas Centrifuge Enrichment Plants September 2012 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information

  4. Big data for ecologists: Highlighting the ORNL DAAC

    SciTech Connect (OSTI)

    Boyer, Alison G; Cook, Robert B; Devarakonda, Ranjeet; Eby, Pete I; Thornton, Michele M; Thornton, Peter E; SanthanaVannan, Suresh K; Virdi, Makhan L; Wei, Yaxing

    2014-01-01

    Ecologists are increasingly confronted by questions that can be addressed only by integrating data from numerous sources, often across large geographic areas and broad time periods. The supply of ecological big data is increasing at a rapid pace as researchers are publishing their data sets and large, public science and data infrastructures (such as NEON, DataONE, LTER, & NCEAS) are producing and curating extensive volumes of complex data and metadata. While supply of, and demand for, ecological data is on the rise, many ecologists now face a new challenge in locating and synthesizing the data relevant for their particular question. Here we highlight selected popular big data products applicable to ecological research available from the NASA Distributed Active Archive Center (DAAC) located at Oak Ridge National Laboratory (ORNL).

  5. ORNL/RASA-95/14

    Office of Legacy Management (LM)

    ORNL/RASA-95/14 Results of the Radiological Verification Survey at the Former Herring-Hall-Marvin Safe Company, S5O Grand Boulevard, Hamilton Ohio (HOOOlV) M. E. Murray J. I;. Allred (II. A. ,Johnson -. I This report has been reproduced directly from the best available copy. I AvailaM to DOE and DOE contractors from the Office of Scientific and Techni- cal Information, P.O. Box 62. Oak Ridge, TN 37831; prices available from (615) 576-8401. FTS 6266401. Available to the public from ths National

  6. ORNL/RASA-84/LT6

    Office of Legacy Management (LM)

    !DJr .. 'AIrm H !Jfl JAN 3 1989 ii ORNL/RASA-84/LT6 JAN 3 1 1989 i ._ OTS I Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 59 AVENUE C (LJ006), LODI, NEW JERSEY R. W. Doane Investigation Team B. A. Berven - RASA Program Manager W. D. Cottrell - RASA/FUSRAP Project Director R. W. Doane - Survey Field Supervisor Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN

  7. ORNL/RASA-85/4

    Office of Legacy Management (LM)

    5/4 c Health and Safety Research Division FOLLOW-UP SURVEY OF BRIDGEPORT BRASS COMPANY SEYMOUR, CONNE(XIC!UT May 1985 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-85/4 Health and Safety Research Division FOLLOW-UP SURVEY OF BRIDGEPORT BRASS COMPANY SEYMOUR, CONNECTICUT W. D. Cottrell

  8. ORNL/TM-2014/59

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ORNL/TM-2014/59 Emissions and Performance Benchmarking of a Prototype Dimethyl Ether-Fueled Heavy-Duty Truck February 2014 Prepared by James P. Szybist Oak Ridge National Laboratory Samuel McLaughlin Volvo North America Suresh Iyer The Pennsylvania State University DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be

  9. Lithiated Glass Scintillating-Particle Neutron Detector - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Lithiated Glass Scintillating-Particle Neutron Detector Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00209_ID1215.pdf (452 KB) Technology Marketing SummaryA unique neutron detector developed at ORNL features a matrix material that uses scintillating particles, suspended in glass, to detect neutron radiation. The

  10. Improved Lithium-Loaded Liquid Scintillators for Neutron Detection - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Improved Lithium-Loaded Liquid Scintillators for Neutron Detection Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary A liquid scintillator with a substantially increased lithium weight was developed by ORNL researchers. Scintillators are widely used for the detection of neutron radiation emitted by radioactive sources. Conventional liquid scintillators are loaded with neutron absorbers. However, these scintillators generally have

  11. ORISE: Science Education Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interested in conducting undergraduate research at Oak Ridge National Laboratory? DOE is currently seeking undergraduate students for paid internships at ORNL for the 2015 spring term of the Science Undergraduate Laboratory Internship Program. The program at ORNL is administered by ORAU, through a contract with DOE to manage ORISE. Oak Ridge Institute for Science Education Science Education Programs The U.S. Department of Energy (DOE) and more than a dozen other federal agencies rely on the Oak

  12. Production, Distribution, and Applications of Californium-252 Neutron Sources

    SciTech Connect (OSTI)

    Balo, P.A.; Knauer, J.B.; Martin, R.C.

    1999-10-03

    The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6-year half-life. A source the size of a person's little finger can emit up to 10{sup 11} neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). DOE sells The radioisotope {sup 252}Cf is routinely encapsulated into compact, portable, intense neutron sources with a 2.6- year half-life. A source the size of a person's little finger can emit up to 10 neutrons/s. Californium-252 is used commercially as a reliable, cost-effective neutron source for prompt gamma neutron activation analysis (PGNAA) of coal, cement, and minerals, as well as for detection and identification of explosives, laud mines, and unexploded military ordnance. Other uses are neutron radiography, nuclear waste assays, reactor start-up sources, calibration standards, and cancer therapy. The inherent safety of source encapsulations is demonstrated by 30 years of experience and by U.S. Bureau of Mines tests of source survivability during explosions. The production and distribution center for the U. S Department of Energy (DOE) Californium Program is the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory(ORNL). DOE sells {sup 252}Cf to commercial reencapsulators domestically and internationally. Sealed {sup 252}Cf sources are also available for loan to agencies and subcontractors of the U.S. government and to universities for educational, research, and medical applications. The REDC has established the Californium User Facility (CUF) for Neutron Science to make its large inventory of {sup 252}Cf sources available to researchers for irradiations inside uncontaminated hot cells. Experiments at the CUF include a land mine detection system, neutron damage testing of solid-state detectors, irradiation of human cancer cells for boron neutron capture therapy experiments, and irradiation of rice to induce genetic mutations.

  13. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  14. ORNL Researchers Develop 'Autotune' Software to Make it Quicker,

    Energy Savers [EERE]

    Easier, and Cheaper to Model Energy Use of Buildings | Department of Energy ORNL Researchers Develop 'Autotune' Software to Make it Quicker, Easier, and Cheaper to Model Energy Use of Buildings ORNL Researchers Develop 'Autotune' Software to Make it Quicker, Easier, and Cheaper to Model Energy Use of Buildings October 15, 2014 - 12:34pm Addthis ORNL buildings researchers Jibonananda Sanyal, left, and Joshua New are developing software that will automatically calibrate models for simulating

  15. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review...

  16. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CumminsORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of...

  17. ORNL Supplier Database - Stay in Touch! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL Supplier Database - Stay in Touch! ORNL Supplier Database - Stay in Touch! December 5, 2014 - 4:19pm Addthis Small business owners seeking to do business with the U.S. Department of Energy may already be aware of the Oak Ridge Supplier Database. The Small Business Programs Office at Oak Ridge National Laboratory (ORNL) would like to keep in touch with you periodically about pertinent, small business-related information. This may include updates from ORNL, the Department of Energy (DOE), the

  18. Accelerating Data Acquisition, Reduction, and Analysis at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Campbell, Stuart I; Kohl, James Arthur; Granroth, Garrett E; Miller, Ross G; Doucet, Mathieu; Stansberry, Dale V; Proffen, Thomas E; Taylor, Russell J; Dillow, David

    2014-01-01

    ORNL operates the world's brightest neutron source, the Spallation Neutron Source (SNS). Funded by the US DOE Office of Basic Energy Science, this national user facility hosts hundreds of scientists from around the world, providing a platform to enable break-through research in materials science, sustainable energy, and basic science. While the SNS provides scientists with advanced experimental instruments, the deluge of data generated from these instruments represents both a big data challenge and a big data opportunity. For example, instruments at the SNS can now generate multiple millions of neutron events per second providing unprecedented experiment fidelity but leaving the user with a dataset that cannot be processed and analyzed in a timely fashion using legacy techniques. To address this big data challenge, ORNL has developed a near real-time streaming data reduction and analysis infrastructure. The Accelerating Data Acquisition, Reduction, and Analysis (ADARA) system provides a live streaming data infrastructure based on a high-performance publish subscribe system, in situ data reduction, visualization, and analysis tools, and integration with a high-performance computing and data storage infrastructure. ADARA allows users of the SNS instruments to analyze their experiment as it is run and make changes to the experiment in real-time and visualize the results of these changes. In this paper we describe ADARA, provide a high-level architectural overview of the system, and present a set of use-cases and real-world demonstrations of the technology.

  19. ORNL/RASA-86/ L9

    Office of Legacy Management (LM)

    Qq {8 oL'/7 8.-uf*t^* l/fii ORNL/RASA-86/ L9 COMPREHENSIVE MDIOLOGICAL $JRVEY OF OFF-SITE PROPERTY O NIAGARA FALLS STORAGE SITE LEWISTON, NE}J YORK Access to the lnformatlon ln this report ls llmlted to those l n d l c a t e d o n t h e d l s t r l b u t l o n l l s t a n d t o D e p a r t m e n t o f E n e r g y and Departnent of Energy Contractors Thi! roport w!! preprtcd a! an account of wott lponlot€d by an agency ot the Unatcd Stttos Govrrnmant. Naithcr thcU nited StltttGovcrnmrnt nor any

  20. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  1. Computing and Computational Sciences Directorate - Information Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL's Jaguar being phased out, but Titan could be No. 1 Nanotube 'sponge' has potential in oil spill cleanup Women Still Struggle to Find Their Place in HPC Science on Titan (the supercomputer, not the Saturn moon) What it's like to play with the Jaguar supercomputer Three ORNL Supercomputers in Top 20 at SC11 Secretary of Energy recognizes ORNL Fukushima, Gulf, nonproliferation efforts Popular Science asks Jaguar: Oak Ridge National Lab Turns to NVIDIA Tesla GPUs to Deploy World's Leading

  2. Computing and Computational Sciences Directorate - About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL's Jaguar being phased out, but Titan could be No. 1 Nanotube 'sponge' has potential in oil spill cleanup Women Still Struggle to Find Their Place in HPC Science on Titan (the supercomputer, not the Saturn moon) What it's like to play with the Jaguar supercomputer Three ORNL Supercomputers in Top 20 at SC11 Secretary of Energy recognizes ORNL Fukushima, Gulf, nonproliferation efforts Popular Science asks Jaguar: Oak Ridge National Lab Turns to NVIDIA Tesla GPUs to Deploy World's Leading

  3. ORNL/TM-1999/264 Environmental Sciences Division

    Office of Scientific and Technical Information (OSTI)

    exploited. Used mostly for paper- making and construction. Dendrocalamus asper - thought to be native to Thailand. Thailand intends to propagate plantlets of this species...

  4. Center for Nanophase Materials Sciences (CNMS) - Related ORNL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In particular, the facilities listed on this page offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research...

  5. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  6. Schoenborn wins Bau Neutron Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of LANL's Bioenergy and Biome Sciences group, to receive the 2016 Bau Neutron Diffraction Award. The award recognizes exceptional research achievement in neutron...

  7. Microsoft Word - Zr-ORNL-final-IV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 227 Reber Building, University Park, PA 16802, atm2@psu.edu 10. Donald Brenner, Department of Material Science and Engineering, North Carolina State University,...

  8. Computing and Computational Sciences Directorate - National Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences Home National Center for Computational Sciences The National Center for Computational Sciences (NCCS), formed in 1992, is home to two of Oak Ridge National Laboratory's (ORNL's) high-performance computing projects-the Oak Ridge Leadership Computing Facility (OLCF) and the National Climate-Computing Research Center (NCRC). The OLCF (www.olcf.ornl.gov) was established at ORNL in 2004 with the mission of standing up a supercomputer 100 times more powerful than the leading

  9. January 16, 2009: Expansion of Spallation Neutron Source | Department of

    Energy Savers [EERE]

    Energy 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009 The Department gives its initial approval to begin plans for the Oak Ridge National Laboratory (ORNL) to build a second target station for the Spallation Neutron Source, expanding what is already the world's most powerful pulsed neutron scattering facility. The new station, which will cost approximately $1

  10. ORISE: ORAU, ORNL partnered to host first ever Career Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE: July 14, 2011 FY11-38 Career Center Discovery Event attendees visit the ORNL Graphite Reactor Click image to enlarge. OAK RIDGE, Tenn.-Career center staff representing 21...

  11. Pressure Safety Program Implementation at ORNL

    SciTech Connect (OSTI)

    Lower, Mark; Etheridge, Tom; Oland, C. Barry

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.

  12. Jessica Mulhern | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    short-term projects focused on the most current and innovative science research at ORNL. ... County University School of Education and Ocean County Superintendents of Schools for ...

  13. Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy HCCI Exhaust Speciation - ORNL Reference Fuel Blends Detailed HCCI Exhaust Speciation - ORNL Reference Fuel Blends *Accurately measure exhaust profile from an HCCI engine with a variety of fuels and create a better understanding of HCCI engine emissions. PDF icon deer09_bunting.pdf More Documents & Publications A Comparison of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends Combustion, Efficiency, and Fuel

  14. Vehicle Systems Integration (VSI) Research Laboratory at ORNL | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Systems Integration (VSI) Research Laboratory at ORNL Vehicle Systems Integration (VSI) Research Laboratory at ORNL 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss035_smith_2011_o.pdf More Documents & Publications The ArvinMeritor Dual Mode Hybrid Powertrain (DMHP): Opportunities and Potential for Systems Optimization Vehicle Technologies Office Merit Review 2014: Cummins MD & HD Accessory

  15. ORNL Researchers Study Market Entry Challenges for Building Envelope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Product | Department of Energy ORNL Researchers Study Market Entry Challenges for Building Envelope Retrofit Product ORNL Researchers Study Market Entry Challenges for Building Envelope Retrofit Product December 9, 2015 - 10:06am Addthis DOE laboratories that are participating in the Lab-Corps pilot program have assembled entrepreneurial teams to identify private sector opportunities for commercializing promising sustainable energy technologies. Each Lab-Corps team has its own

  16. The ORNL Surplus Facilities Management Program Long Range Plan

    SciTech Connect (OSTI)

    Myrick, T.E.

    1984-09-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy`s (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 76 individual surplus facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. The ORNL SFMP has prepared this Long Range Plan to outline the long-term management strategy for those facilities included in the program. The primary objective of this plan are to: (1) develop a base of information for each ORNL SFMP facility, (2) conduct preliminary decommissioning analyses to identify feasible alternatives, (3) assess the current and future risk of each facility, (4) establish a priority list for the decommissioning projects, and (5) integrate the individual project costs and schedules into an overall program schedule and cost estimate for the ORNL site. The Long Range Plan also provides an overview of the ORNL SFMP management structure, specifies the decommissioning criteria to be employed, and identifies special technical problems, research and development needs, and special facilities and equipment that may be required for decommissioning operations.

  17. ORNL researchers make magazine's top 100 list

    ScienceCinema (OSTI)

    None

    2010-01-08

    When you flip through the pages of one of the country's most-read science magazines, you'll soon see the names of a bunch of researchers from Oak Ridge National Laboratory.

  18. Reportable Nuclide Criteria for ORNL Waste Management Activities - 13005

    SciTech Connect (OSTI)

    McDowell, Kip; Forrester, Tim; Saunders, Mark Edward

    2013-01-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed a reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of this criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration.

  19. Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005

    SciTech Connect (OSTI)

    McDowell, Kip; Forrester, Tim; Saunders, Mark

    2013-07-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

  20. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have questions or comments regarding any of our research and development activities, how to work with ORNL and the Computational Sciences and Engineering (CSE) Division, or the content of this website please contact one of the following people: If you have questions regarding CSE technologies and capabilities, job opportunities, working with ORNL and the CSE Division, intellectual property, etc., contact, Shaun S. Gleason, Ph.D. Division Director, Computational Sciences and Engineering

  1. ORISE: Completion of environmental characterization at ORNL a Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success ORISE's completion of environmental characterization at ORNL is a Recovery Act success Exterior of K-33 superstructure at ORNL This 2.8 million-square-foot facility known as K-33 was formerly used to house a uranium-enrichment operation during the Manhattan Project. The superstructure was one of three dozen facilities ORISE characterized under the American Recovery and Reinvestment Act-an effort that proved to be challenging due to the complexity of the facilities and the project's

  2. Building America … ORNL R&D: HVAC Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America - ORNL R&D: HVAC Research 2015 Building Technologies Office Peer Review Jeffrey Munk, munkjd@ornl.gov Oak Ridge National Laboratory Philip Boudreaux, Roderick Jackson, Wale Odukomaiya Project Summary Timeline: Start date: 10/1/2013 Planned end date: 9/30/2014 Key Milestones 1. Heating Performance Curves; 4/15/2014 2. Cooling Performance Curves; 7/15/2014 3. Final Report w/Sizing Guidelines; 2/28/2015 Budget: Total DOE $ to date: $200k Total future DOE $: $ 0 Target

  3. EXHIBIT IV DOE/EV-0003/29 ORNL-5734

    Office of Legacy Management (LM)

    v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W.

  4. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  5. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  6. ORNL concept would greatly increase optical data storage

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    ORNL researchers have developed a technique, surface-enhanced Raman optical data storage (SERODS), which uses the light-emitting properties of molecules to pack considerably more information into compact discs. This new technology has the potential to store 10 days of music-instead of just 90 minutes-on a single disc.

  7. ORNL takes energy-efficient housing to a new level

    ScienceCinema (OSTI)

    None

    2010-01-08

    Oak Ridge National Laboratory, TVA and the Department of Energy are taking energy-saving research into a West Knox County neighborhood. In the Campbell Creek subdivision, ORNL researchers have helped builders to construct three homes with three different levels of energy-saving features.

  8. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with several other user facilities at ORNL to define a program that will be of broad interest to users of these facilities, including the Spallation Neutron Source, High Flux...

  9. 11th LANSCE School on Neutron Scattering | Hands-On Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Institute for Materials Science Los Alamos Neutron Science Center MaRiE Los Alamos Neutron Science Center Matter Radiation Interactions in Extremes CINT...

  10. 11th LANSCE School on Neutron Scattering | Free-Day Excursion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Institute for Materials Science Los Alamos Neutron Science Center MaRiE Los Alamos Neutron Science Center Matter Radiation Interactions in Extremes CINT...

  11. Accident Investigation of the August 21, 2012, Contamination Incident at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    On August 25, 2012, radioactive contamination was identified on Flight Path 04 of the Lujan Center, an experimental area that is part of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory in New Mexico. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC. The Operating Contractor quickly determined that the contamination had spread offsite, and response teams were immediately brought in.

  12. Neutron Characterization of Additively Manufactured Components. Workshop Report

    SciTech Connect (OSTI)

    Watkins, Thomas R.; Payzant, E. Andrew; Babu, Sudarsanam Suresh

    2015-09-01

    Additive manufacturing (AM) is a collection of promising manufacturing methods that industry is beginning to explore and adopt. Macroscopically complicated and near net shape components are being built using AM, but how the material behaves in service is a big question for industry. Consequently, AM components/materials need further research into exactly what is made and how it will behave in service. This one and a half day workshop included a series of invited presentations from academia, industry and national laboratories (see Appendix A for the workshop agenda and list of talks). The workshop was welcomed by Alan Tennant, Chief Scientist, Neutron Sciences Directorate, ORNL, and opened remotely by Rob Ivestor, Deputy Director, Advanced Manufacturing Office-DOE, who declared AM adoptees as titans who will be able to create customized 3-D structures with 1 million to 1 billion micro welds with locally tailored microstructures. Further he stated that characterization with neutrons is key to be able to bring critical insight/information into the AM process/property/behavior relationship. Subsequently, the presentations spanned a slice of the current state of the art AM techniques and many of the most relevant characterization techniques using neutrons. After the talks, a panel discussion was held; workshop participants (see Appendix B for a list of attendees) providing questions and the panel answers. The main purpose of the panel discussion was to build consensus regarding the critical research needs in AM that can be addressed with neutrons. These needs were placed into three categories: modes of access for neutrons, new capabilities needed, new AM material issues and neutrons. Recommendations from the workshop were determined based on the panel discussion.

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS CONTACTS Mailing address: Center for Nanophase Materials Sciences Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831-6496 FAX: 865.574.1753 Staff Directory Organization Chart Director Hans Christen christenhm@ornl.gov P: 865.574.5081 Deputy Director Bobby Sumpter sumpterbg@ornl.gov P: 865.574.4973 Division Administrative Support Amanda Zetans, zetansac@ornl.gov P: 865.241.1182 User Program Manager Tony Haynes, hayneste@ornl.gov P: 865.576.2858 Operations Manager Scott

  14. Nuclear Science Research facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction to LANSCE The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons for experiments supporting national security, academic and industrial research. LANSCE has two spallation neutron sources: the Manuel Lujan Jr. Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility (Target-4). Together they provide neutrons over a

  15. ORNL FISH Telomere Segmentation GUI and Instruction Manual

    Energy Science and Technology Software Center (OSTI)

    2002-12-01

    The ORNL FISH Telomere Segmentation GUI takes images of cellular chromosomes and telomeres obtained through Fluorescent in-situ Hybridization and automatically labels the pixels that belong to the chromosomes and telomeres, which are cellular structures of interest to cancer researchers. The process of labeling the pixels is called segmentation. The resulting segmentation can be edited through the use of an extensive graphical user-interface or GUI, saved, and exported to a data file suitable for use withmore » data analysis programs such as Microsoft Excel.« less

  16. Microsoft Word - ORNL_ADCP_POST_PROCESSING_CODES_FINAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS September 2011 Prepared by Budi Gunawan, Ph.D. Vincent S. Neary, Ph.D., P.E. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical

  17. DOE/EV-0005/21 ORNL-5714

    Office of Legacy Management (LM)

    1 ORNL-5714 Radiological Survey of the Former Uranium Recovery Pilot and Process Sites, Gardinier, Incorporated, Tampa, Florida F. F. Haywood W. A. Goldsmith R. W. Leggett R. W. Doane W. F. Fox W. H. Shinpaugh D. R. Stone D. J. Crawford Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A07 Microfiche A01 This report was prepared as an account

  18. DOE/EV-0005/31 ORNL-5799

    Office of Legacy Management (LM)

    1 ORNL-5799 Radiological Survey of the Shpack Landfill, Norton, Massachusetts W. D. Cottrell F. F. Haywood D. A. Witt T. E. Myrick W. A. Goldsmith W. H. Shinpaugh E. T. Loy Fll F f!IIPY -.... ._ll_~..-- in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes-Printed Copy: A09 Microfiche ,401 This report was prepared as an account of work sponsored by an agency of the

  19. Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, and it will continue in that capacity in the future as the basis for MaRIE, the Laboratory's planned next-generation facility that will enable researchers to...

  20. Neutron Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven hydrodynamic experiments include high explosives; high-velocity gas guns; and high-current, high-voltage pulsed power. Sophisticated diagnostics like...

  1. Center for Nanophase Materials Sciences (CNMS) - General Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities GENERAL CHARACTERIZATION FACILITIES Neutron Scattering CNMS users are encouraged to take advantage of the world-class neutron scattering facilities that are available at ORNL's High-Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS). Beamlines of particular relevance to CNMS Scientific Themes include the small-angle scattering and diffractometry instruments on the HFIR cold source, HFIR thermal neutron diffraction and spectroscopy capabilities, and

  2. The ORNL Chemical Technology Division, 1950-1994

    SciTech Connect (OSTI)

    Jolley, R.L.; Genung, R.K.; McNeese, L.E.; Mrochek, J.E.

    1994-10-01

    This document attempts to reconstruct the role played by the Chemical Technology Division (Chem Tech) of the Oak Ridge National Laboratory (ORNL) in the atomic era since the 1940`s related to the development and production of nuclear weapons and power reactors. Chem Tech`s early contributions were landmark pioneering studies. Unknown and dimly perceived problems like chemical hazards, radioactivity, and criticality had to be dealt with. New chemical concepts and processes had to be developed to test the new theories being developed by physicists. New engineering concepts had to be developed and demonstrated in order to build facilities and equipment that had never before been attempted. Chem Tech`s role was chemical separations, especially uranium and plutonium, and nuclear fuel reprocessing. With diversification of national and ORNL missions, Chem Tech undertook R&D studies in many areas including biotechnology; clinical and environmental chemistry; nuclear reactors; safety regulations; effective and safe waste management and disposal; computer modeling and informational databases; isotope production; and environmental control. The changing mission of Chem Tech are encapsulated in the evolving activities.

  3. Work Begins On First Recovery Act Funded Demolition Project at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Work Begins On First Recovery Act Funded Demolition Project at ORNL Work Begins On First Recovery Act Funded Demolition Project at ORNL July 20, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The Department of Energy's (DOE) Oak Ridge National Laboratory (ORNL) has begun cleanup and demolition of the former Radioisotope Development Laboratory, a long-vacant facility on the Laboratory's central campus. Contractors expect to employ approximately 30 workers for the project,

  4. MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets July 26, 2013 - 12:00am Addthis Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles (FCEV) and challenges to achieving success over time, including competition with incumbent and advanced vehicle

  5. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  6. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and researchers at work. News Releases Science Briefs Photos Picture of the Week Social Media Videos Fact Sheets Publications PHOTOS BY TOPIC Careers Community Visitors...

  7. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  8. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  9. EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Ability to Power One Another | Department of Energy ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another November 17, 2015 - 10:42am Addthis EERE Success Storyñ€”ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another In September, the Department of Energy's Oak Ridge National Laboratory (ORNL) announced successful

  10. EERE Success Story-ORNL Unveils 3D-Printed Home and Vehicle with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The building was constructed with the help of ORNL's Governor's Chair for Energy and Urbanism, and the addition of industry partners including Owings, Merill, and Skidmore, and ...

  11. Microsoft Word - DOE-ID-12-040 ORNL EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a novel in situ method established at ORNL to demonstrate materials with increased resistance to radiation and thermal degradation. In order to complete the project objectives,...

  12. ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Another | Department of Energy ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another November 17, 2015 - 10:42am Addthis ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One Another In September, the Department of Energy's Oak Ridge National Laboratory (ORNL) announced successful efforts of the the lab's Additive Manufacturing Integrated Energy

  13. Computing and Computational Sciences Directorate - Information Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences and Engineering The Computational Sciences and Engineering Division (CSED) is ORNL's premier source of basic and applied research in the field of data sciences and knowledge discovery. CSED's science agenda is focused on research and development related to knowledge discovery enabled by the explosive growth in the availability, size, and variability of dynamic and disparate data sources. This science agenda encompasses data sciences as well as advanced modeling and

  14. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    SciTech Connect (OSTI)

    Walker, Randy M; Gross, Ian G; Smith, Cyrus M; Hill, David E

    2011-11-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulness of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.

  15. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  16. Potentiometric studies at ORNL with hydrogen electrode concentration cells

    SciTech Connect (OSTI)

    Mesmer, R.E.; Palmer, D.A.; Wesolowski, D.J.

    1994-12-31

    The absence of suitably stable reference electrodes for and to 300 C led ORNL to develop hydrogen electrode concentration cells for studies of equilibria of interest in reactor and steam generator systems to about 300 C during the late 1960`s and seventies. During the intervening two dozen years over twenty scientists have participated in potentiometric studies at Oak Ridge and much of that work will be summarized in this paper. A description of hydrogen electrode concentration cells developed in the late sixties and currently in use at Oak Ridge is given. The method of measurement, data interpretation, and published results are reviewed for studies of acid-base ionization, metal ion hydrolysis, and metal complexation reactions using principally such cells in titration or flow modes. 41 refs.

  17. Rheology and TIC/TOC results of ORNL tank samples

    SciTech Connect (OSTI)

    Pareizs, J. M.; Hansen, E. K.

    2013-04-26

    The Savannah River National Laboratory (SRNL)) was requested by Oak Ridge National Laboratory (ORNL) to perform total inorganic carbon (TIC), total organic carbon (TOC), and rheological measurements for several Oak Ridge tank samples. As received slurry samples were diluted and submitted to SRNL-Analytical for TIC and TOC analyses. Settled solids yield stress (also known as settled shear strength) of the as received settled sludge samples were determined using the vane method and these measurements were obtained 24 hours after the samples were allowed to settled undisturbed. Rheological or flow properties (Bingham Plastic viscosity and Bingham Plastic yield stress) were determined from flow curves of the homogenized or well mixed samples. Other targeted total suspended solids (TSS) concentrations samples were also analyzed for flow properties and these samples were obtained by diluting the as-received sample with de-ionized (DI) water.

  18. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  19. Microsoft PowerPoint - Clark_2014_CNMS Staff Science Highlight...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The work (GG) was partially supported by the ORNL-UTK Joint Institute of Advanced

  20. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  1. Computing and Computational Sciences Directorate - Computer Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics Division Computer Science and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic and applied research in high-performance computing, applied mathematics, and intelligent systems. Our mission includes basic research in computational sciences and application of advanced computing systems, computational, mathematical and analysis techniques to the solution of scientific problems of national importance. We seek to work

  2. Fast-neutron coded-aperture imaging of special nuclear material configurations

    SciTech Connect (OSTI)

    P. A. Hausladen; M. A. Blackston; E. Brubaker; D. L. Chichester; P. Marleau; R. J. Newby

    2012-07-01

    In the past year, a prototype fast-neutron coded-aperture imager has been developed that has sufficient efficiency and resolution to make the counting of warheads for possible future treaty confirmation scenarios via their fission-neutron emissions practical. The imager is constructed from custom-built pixelated liquid scintillator detectors. The liquid scintillator detectors enable neutron-gamma discrimination via pulse shape, and the pixelated construction enables a sufficient number of pixels for imaging in a compact detector with a manageable number of channels of readout electronics. The imager has been used to image neutron sources at ORNL, special nuclear material (SNM) sources at the Idaho National Laboratory (INL) Zero Power Physics Reactor (ZPPR) facility, and neutron source and shielding configurations at Sandia National Laboratories. This paper reports on the design and construction of the imager, characterization measurements with neutron sources at ORNL, and measurements with SNM at the INL ZPPR facility.

  3. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    Lawrence Livermore National Laboratory (LLNL), Livermore, CA USDOE United States 2014-04-13 English Conference Conference: Presented at: 2014 Materials Research Society...

  4. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (LLNL), Livermore, CA Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND...

  5. Neutrons measure phase behavior in pores at Angstrom size

    SciTech Connect (OSTI)

    Bardoel, Agatha A; Melnichenko, Yuri B

    2012-01-01

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storage for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS instrument to study how the size and shape of pores in sub-nanometer porous carbons varies, depending on the manufacturing conditions. While small angle X-ray scattering (SAXS) can do the job too, Melnichenko says, the SANS method broke new ground in analyzing the shape and behavior of pores at subnanometer size, when subjected to varying synthesis temperature. 'We found that these very small pores are in fact spherical, and that when we change the synthesis conditions, they become elongated, even 'slit-like', and all of this on a subnanometer scale,' Melnichenko said.

  6. ORNL long-range environmental and waste management plan

    SciTech Connect (OSTI)

    Baldwin, J.S.; Bates, L.D.; Brown, C.H.; Easterday, C.A.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Payne, T.L.; Pepper, C.E.; Robinson, S.M.; Rohwer, P.S.; Scanlan, T.F.; Smith, M.A.; Stratton, L.E.; Trabalka, J.R.

    1989-09-01

    This report, the ORNL Long-Range Environmental and Waste Management Plan, is the annual update in a series begun in fiscal year 1985. Its primary purpose is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The document also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document; it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. As with any document of this nature, the near-term (one to three years) part of the plan is a pragmatic assessment of the current program and ongoing capital projects and reflects the efforts perceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. 55 figs., 72 tabs.

  7. Treatment options for low-level radiologically contaminated ORNL filtercake

    SciTech Connect (OSTI)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

  8. Safety analysis report for packaging: the ORNL DOT specification 6M - special form package

    SciTech Connect (OSTI)

    Schaich, R.W.

    1982-07-01

    The ORNL DOT Specification 6M - Special Form Package was fabricated at the Oak Ridge Nation al Laboratory (ORNL) for the transport of Type B solid non-fissile radioactive materials in special form. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities in special form of non-fissile radioactive materials.

  9. Bill McMillan named federal project director for ORNL cleanup | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bill McMillan named federal project director for ORNL cleanup Bill McMillan named federal project director for ORNL cleanup September 20, 2012 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy's Oak Ridge Office of Environmental Management (EM) has named Bill McMillan as its new federal project director for cleanup at the Oak Ridge National Laboratory (ORNL). As federal project director, McMillan oversees all cleanup, decontamination, decommissioning, waste storage

  10. Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL Ford-Dow Partnership Is Linked to Carbon Fiber Research at ORNL May 16, 2013 - 12:00am Addthis EERE provided funding to Dow Chemical, Ford Motor Company, and ORNL to demonstrate a novel polymer fiber material and production process technology. These funds support EERE's strategy of investing in emerging technologies that create high-quality, domestic manufacturing jobs and enhance the competitiveness of U.S.

  11. DOE Awards More than $16 Million for Recovery Act Cleanup at ORNL |

    Office of Environmental Management (EM)

    Department of Energy More than $16 Million for Recovery Act Cleanup at ORNL DOE Awards More than $16 Million for Recovery Act Cleanup at ORNL March 31, 2010 - 12:00pm Addthis OAK RIDGE, Tenn. - As a part of the American Recovery and Reinvestment Act, the Department of Energy has awarded a $16.8 million contract to Safety and Ecology Corporation (SEC) for environmental cleanup operations at the Oak Ridge National Laboratory (ORNL). Under this contract, SEC will demolish and dispose (D&D)

  12. EERE Success Story-MA3T Model Application at ORNL Assesses the Future of

    Office of Environmental Management (EM)

    Fuel Cell Markets | Department of Energy MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets EERE Success Story-MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets July 26, 2013 - 12:00am Addthis Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles (FCEV) and challenges to achieving success over time, including competition with

  13. Science for Society Workshop Summary Report

    SciTech Connect (OSTI)

    Wolfe, Amy K; Bjornstad, David J; Lenhardt, W Christopher; Shumpert, Barry L; Wang, Stephanie

    2012-02-01

    Science for Society, a workshop held at the Oak Ridge National Laboratory (ORNL) on September 27, 20111, explored ways to move Laboratory science toward use. It sought actionable recommendations. Thus the workshop focused on: (1) current practices that promote and inhibit the translation of science into use, (2) principles that could lead to improving ORNL's translational knowledge and technology transfer efforts, and (3) specific recommendations for making these principles operational. This highly interactive workshop struck a positive chord with participants, a group of 26 ORNL staff members from diverse arenas of science and technology (S and T), technology transfer, and external laboratory relations, who represented all levels of science, technology, and management. Recognizing that the transformation of fundamental principles into operational practices often follows a jagged path, the workshop sought to identify key choices that could lead to a smoother journey along this path, as well as choices that created roadblocks and bottlenecks. The workshop emphasized a portion of this pathway, largely excluding the marketplace. Participants noted that research translation includes linkages between fundamental and applied research and development (R and D), and is not restricted to uptake by manufacturers, consumers, or end users. Three crosscutting ideas encapsulate workshop participants observations: (1) ORNL should take more action to usher the translation of its S and T products toward use, so as to make a positive national and global impact and to enhance its own competitiveness in the future; (2) ORNL (and external entities such as DOE and Congress) conveys inconsistent messages with regard to the importance of research translation and application, which (a) creates confusion, (b) poses disincentives to pursue research translation, (c) imposes barriers that inhibit cross-fertilization and collaboration, and (d) diminishes the effectiveness of both the science mission and the translation of that science for use; and (3) ORNL should design its commitments and actions for helping move science from the Laboratory toward use to align with one another and should integrate them into its institutional culture in such a way as to elevate research translation and application to coequal status with scientific excellence. Participants made several actionable recommendations for enhancing research translation at ORNL, some of which were particular to specific S and T domains. Among the recommendations that participants agreed apply Lab-wide are to: align metrics and incentives with research translation goals; manage risks and conflicts of interest instead of avoiding them; and create programs (e.g., entrepreneurial leave) that promote interactions between key ORNL staff and industry in ways that complement careers at ORNL.

  14. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students calculate results About the LANSCE School on Neutron Scattering The annual Los Alamos Neutron Science Center (LANSCE) School on Neutron Scattering is 9- to 10-day school focusing on specific science topics to which neutron scattering makes a critical impact. The focus-driven agenda makes it distinct from other neutron schools in the nation. The LANSCE Neutron Scattering School began in 2004 and it has had a continuous and successful run to this day. General School Format The first day

  15. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  16. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  17. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  18. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  19. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  20. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  1. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    SciTech Connect (OSTI)

    NA, NA

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  2. ORNL/CP-102359 ENERGY DISSIPATION IN THE TARGET STATION OF THE

    Office of Scientific and Technical Information (OSTI)

    ...epmnas.eprn.ornl.govpgm-nsns. html Briemeister, J. F., Editor, "MCNP: A General Monte Carlo N-Particle Transport Code," Los Alamos National Laboratory, LA- 12625-M (March 1997). ...

  3. penORNL: a parallel monte carlo photon and electron transport package using PENELOPE

    SciTech Connect (OSTI)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  4. Environmental Data from the ORNL Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    •\tThe Prototype Validation Exercise (PROVE) The ORNL DAAC also provides access to data for many regional and global projects and to a model archive. (Specialized Interface)(Registration Required)

  5. L2:VRI.P3.01 John Turner ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P3.01 John Turner ORNL Completed: 93011 CASL-U-2011-0017-002 SANDIA REPORT SAND2011-8524 Unlimited Release Printed November, 2011 An Introduction to LIME 1.0 and its Use in...

  6. L3:VRI.PSS.P3.01 Ross Bartlett ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VRI.PSS.P3.01 Ross Bartlett ORNL Completed: 93011 CASL-U-2011-0167-000 Technical Note Virtual Reactor Integration VERA From: Roscoe A. Bartlett (ORNNL), and Roger Pawlowski (SNL)...

  7. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  8. Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells |

    Office of Environmental Management (EM)

    Department of Energy .28.2011]: Neutron Scattering and Full-Spectrum Solar Cells Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells January 28, 2011 - 5:11pm Addthis Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Niketa Kumar Niketa Kumar Public Affairs Specialist,

  9. GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D

    Office of Environmental Management (EM)

    Oak Ridge National Laboratory Tennessee GammaCam TM Technology Demonstration at ORNL Buildings 3026C and 3026D Challenge Buildings 3026C and 3026D at the Oak Ridge National Laboratory (ORNL) are in an advanced stage of deterioration. Rainwater damage and physical aging have reduced the structural integrity of these facilities to the point where human entry is restricted. Consequently, most activities within these facilities have ceased, including internal surveillance and maintenance.

  10. ORISE: ORAU, ORNL partnered to host first ever Career Center Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event ORAU, ORNL partnered to host college and university career center employees Attendees learned of research opportunities for students at their schools FOR IMMEDIATE RELEASE: July 14, 2011 FY11-38 Career Center Discovery Event attendees visit the ORNL Graphite Reactor Click image to enlarge. OAK RIDGE, Tenn.-Career center staff representing 21 colleges and universities were onsite at Oak Ridge National Laboratory Tuesday, July 12, for the first ever Career Center Discovery Event. The

  11. Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only] | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. ORNL- deer.ppt [Read-Only] Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only] 2003 DEER Conference Presentation: Oak Ridge National Laboratory/National Transportation Research Center PDF icon 2003_deer_imre.pdf More Documents & Publications Real-Time Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Exploring Advanced Combustion Regimes for Efficiency and Emissions Characterization of Pre-Commercial Gasoline Engine Particulates

  12. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace032_partridge_2011_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle

  13. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace032_partridge_2010_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

  14. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace032_partridge_2012_o.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines,

  15. ORNL's Amit Goyal wins E.O. Lawrence Award | Department of Energy

    Energy Savers [EERE]

    ORNL's Amit Goyal wins E.O. Lawrence Award ORNL's Amit Goyal wins E.O. Lawrence Award November 29, 2011 - 9:31am Addthis Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, has been named a winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy

  16. GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D |

    Energy Savers [EERE]

    Department of Energy GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D GammaCam Technology Demonstration at ORNL Buildings 3026C and 3026D The GammaCam system is an effective tool for remotely identifying high gamma radiation in radioactive environments. Its versatility allows the user to perform preliminary characterization of an area to determine the location of gamma emitting radioactive sources while minimizing the exposure to workers. PDF icon GammaCam Technology

  17. Environmental Survey Report for ORNL: Small Mammal Abundance and Distribution Survey Oak Ridge National Environmental Research Park 2009 - 2010

    SciTech Connect (OSTI)

    Giffen, Neil R; Reasor, R. Scott; Campbell, Claire L.

    2009-12-01

    This report summarizes a 1-year small mammal biodiversity survey conducted on the Oak Ridge National Environmental Research Park (OR Research Park). The task was implemented through the Oak Ridge National Laboratory (ORNL) Natural Resources Management Program and included researchers from the ORNL Environmental Sciences Division, interns in the Oak Ridge Institute for Science and Education Higher Education Research Experiences Program, and ORNL Environmental Protection Services staff. Eight sites were surveyed reservation wide. The survey was conducted in an effort to determine species abundance and diversity of small mammal populations throughout the reservation and to continue the historical inventory of small mammal presence for biodiversity records. This data collection effort was in support of the approved Wildlife Management Plan for the Oak Ridge Reservation, a major goal of which is to maintain and enhance wildlife biodiversity on the Reservation. Three of the sites (Poplar Creek, McNew Hollow, and Deer Check Station Field) were previously surveyed during a major natural resources inventory conducted in 1996. Five new sites were included in this study: Bearden Creek, Rainy Knob (Natural Area 21), Gum Hollow, White Oak Creek and Melton Branch. The 2009-2010 small mammal surveys were conducted from June 2009 to July 2010 on the Oak Ridge National Environmental Research Park (OR Research Park). The survey had two main goals: (1) to determine species abundance and diversity and (2) to update historical records on the OR Research Park. The park is located on the Department of Energy-owned Oak Ridge Reservation, which encompasses 13,580 ha. The primary focus of the study was riparian zones. In addition to small mammal sampling, vegetation and coarse woody debris samples were taken at certain sites to determine any correlations between habitat and species presence. During the survey all specimens were captured and released using live trapping techniques including Sherman and pitfall traps. In total 227 small mammals representing nine species were captured during the course of the study. The most common species found in the study was the white-footed mouse (Peromyscus leucopus). The least common species found were the deer mouse (Peromyscus maniculatus), meadow jumping mouse (Zapus hudsonius), woodland vole (Microtus pinetorum), and northern short-tailed shrew (Blarina brevicauda).

  18. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  19. A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences

    SciTech Connect (OSTI)

    Bryant, Rebecca

    2010-12-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

  20. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  1. Computing and Computational Sciences Directorate - Joint Institute for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences Joint Institute for Computational Sciences To help realize the full potential of new-generation computers for advancing scientific discovery, the University of Tennessee (UT) and Oak Ridge National Laboratory (ORNL) have created the Joint Institute for Computational Sciences (JICS). JICS combines the experience and expertise in theoretical and computational science and engineering, computer science, and mathematics in these two institutions and focuses these skills on

  2. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  3. NERSC-ScienceHighlightsSeptember2014.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 NERSC Science Highlights --- 1 --- NERSC User Science Highlights Biochemistry Quantum calculations establish critical basis for understanding environmental fate of a major global pollutant. (J. Smith, ORNL) Astrophysics Rad-hydro simulation of primordial star suggests a totally new pathway to highly energetic thermonuclear supernova explosion. (K. Chen/S. Woosley (U. Minnesota/UC Santa Cruz) Data Science NERSC innovations in data analysis pipelines for DOE beamline facilities

  4. Data System Sciences & Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSS Directorate ORNL Data System Sciences & Engineering Group Computational Sciences & Engineering Division Home Organization The Advanced Computing Solutions Team The Data Systems Research Integration Team Research Areas Data Systems Architectures for National Security Risk Analysis Streaming Realtime Sensor Networks Visual Analytics Opportunities Contact Us Data System Sciences & Engineering Group DSSE goes past traditional approaches to develop new methods for meeting user needs

  5. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Experimental Physical Sciences Developing and applying materials science and experimental physics capabilities to programs and problems of national importance. Advancing physics and materials science for problems of national importance Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium READ MORE Los Alamos among new DOE projects Create new technology pathways for low-cost fusion energy development READ MORE Combined methods

  6. Oak Ridge National Laboratory (ORNL): Industrial Collaborations with the Fuel Cell Technologies Program: Accelerating Widespread Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) Industrial Collaborations with the ORNL Fuel Cell Technologies Program: Accelerating Widespread Commercialization David L. Wood, III, Ph.D. Senior Scientist & Fuel Cell Technologies Program Manager T2M Event at the 2014 Fuel Cell Seminar Los Angeles, CA 11/11/14 2 FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) ORNL Overview * Founded: 1943 as a key Manhattan Project location. * Location: Oak Ridge, TN * 4250 Employees * Budget:

  7. Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Results show single fuel model could not represent all fuels studied but engine performance could be predicted with a grouped approach using cetane with secondary effects from volatility or heavy fuel components PDF icon deer10_bunting.pdf More Documents & Publications Response of Oil Sands Derived Fuels in Diesel HCCI Operation APBF

  8. DOE Awards $10 Million in Recovery Act Funding for Soil Cleanup at ORNL |

    Office of Environmental Management (EM)

    Department of Energy $10 Million in Recovery Act Funding for Soil Cleanup at ORNL DOE Awards $10 Million in Recovery Act Funding for Soil Cleanup at ORNL September 22, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy has awarded $10.1 million to an Ohio-based small business to contain and cap contaminated soil in the Bethel Valley area near the Oak Ridge National Laboratory. Starting in October, LATA-Sharp Remediation Services, LLC of Westerville, Ohio is expected to

  9. EERE Success Story-Dow Partners with ORNL to Commercialize Advanced

    Office of Environmental Management (EM)

    Energy-Saving Sealant for Buildings | Department of Energy Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings EERE Success Story-Dow Partners with ORNL to Commercialize Advanced Energy-Saving Sealant for Buildings August 5, 2015 - 11:29am Addthis A liquid flashing product invented by Dow and evaluated at Oak Ridge National Laboratory can be brushed or sprayed on surfaces to seal gaps, cracks, and seams and improve a buildingñ€™s energy efficiency. Photo

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Neutron Reflectometry to Investigate Interactions across Polymer Thin Films David Uhrig, Jamie Messman, Jimmy Mays, and Phil Britt, CNMS J. F. Ankner, X. Tao, C. Halbert, Spallation Neutron Source, ORNL S. M. Kilbey, II, Clemson University, Clemson, SC, and CNMS Visiting Scientist <>Understanding how ultrathin layers of polymers organize at the solid-fluid interface and adjust their structure in response to species in the solution environment is relevant to a broad array of

  11. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  12. Overview of recent U235 neutron cross section evaluation work

    SciTech Connect (OSTI)

    Lubitz, C. [Lockheed Martin Corp., Schenectady, NY (United States)

    1998-10-01

    This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on.

  13. ABSTRACT Bayarbadrakh, Baramsai. Neutron Capture Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayarbadrakh, Baramsai. Neutron Capture Reactions on Gadolinium Isotopes. (Under the direction of Dr. G. E. Mitchell and U. Agvaanluvsan). The neutron capture reaction on 155 Gd, 156 Gd and 158 Gd isotopes has been studied with the DANCE calorimeter at Los Alamos Neutron Science Center. The highly segmented calorimeter provided detailed multiplicity distributions of the capture Îł-rays. With this information the spins of the neutron capture resonances have been determined. The new technique

  14. ORNL Evaluation of Electrabel Safety Cases for Doel 3 / Tihange 2: Final Report

    SciTech Connect (OSTI)

    Bass, Bennett Richard; Dickson, Terry L.; Gorti, Sarma B.; Klasky, Hilda B.; Nanstad, Randy K.; Sokolov, Mikhail A.; Williams, Paul T.; Server, W. L.

    2015-11-01

    Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasilaminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop an independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, Fracture Toughness Criteria for Protection Against Failure, New York (1992 and 2004). That screening assessment of all EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, Alternative Characterization Rules for QuasiLaminar Flaws . Results and conclusions from the ORNL flaw acceptance assessments of D3/T2 were compared with those from the 2015 EBL Safety Cases. Specific findings of the ORNL evaluation of that part of the EBL structural integrity assessment focusing on stability of the flaw population subjected to primary design transients include the following: ORNL s analysis results were similar to those of EBL in that very few characterized flaws were found not compliant with the ASME (1992) acceptance criterion. ORNL s application of the more recent ASME Section XI (2004) produced only four noncompliant flaws, all due to LOCAs. The finding of a greater number of non-compliant flaws in the EBL screening assessment is due principally to a significantly more restrictive (conservative) criterion for flaw size acceptance used by EBL. ORNL s screening assessment results (obtained using an analysis methodology different from that of EBL) are interpreted herein as confirming the EBL screening results for D3/T2. ORNL s independent refined analysis demonstrated the EBL-characterized flaw 1660, which is non-compliant in the ORNL and EBL screening assessment, is rendered compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-D XFEM analysis approach. ORNL s and EBL s refined analyses are in good agreement for the flaw 1660 close to the clad/base metal interface; ORNL is not persuaded that repeating this exercise for more than one non-compliant flaw is necessary to accept the EBL conclusions derived from the aggregate of EBL refined analysis results. ORNL General Conclusions Regarding the Structural Integrity Assessment (SIA) Conducted by EBL for D3/T2 Based on comparative evaluations of ORNL and EBL SIA analyses and on consideration of other results, ORNL is in agreement with the general conclusions reported by Electrabel in their RPV D3/T2 Technical Summary Note of April 14, 2015: More than 99 percent of flaws in D3/T2 meet the defined screening criterion, rendering them benign with respect to initiation in the event of a design transient. Refined analyses of non-compliant flaws from the screening assessment indicate that only 11 of the 16196 detected flaws have a critical reference-temperature material index (designated RTNDT) that implies the possibility of the initiation of cleavage fracture at some future time. For those 11 2 flaws, the calculated margin in RTNDT (a measure of acceptable embrittlement relative to end-ofservice-life conditions) is significant, being greater than 80 C. Fatigue crack growth is not a concern in the flaw-acceptability analyses. Primary stress re-evaluation confirms that the collapse pressure is more than 1.5 times the design pressure in the presence of defects detected in D3/T2. Sufficient conservatisms are built into the input data and into the different steps of the SIA; in some cases, those conservatisms are quantified and imply that additional margins exist in the SIA. Taken as a whole, the foregoing results and conclusions confirm the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16196 detected flaws.

  15. ORNL ADCP POST-PROCESSING GUIDE AND MATLAB ALGORITHMS FOR MHK SITE FLOW AND TURBULENCE ANALYSIS

    SciTech Connect (OSTI)

    Gunawan, Budi; Neary, Vincent S

    2011-09-01

    Standard methods, along with guidance for post-processing the ADCP stationary measurements using MATLAB algorithms that were evaluated and tested by Oak Ridge National Laboratory (ORNL), are presented following an overview of the ADCP operating principles, deployment methods, error sources and recommended protocols for removing and replacing spurious data.

  16. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  17. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News Archive: 2006 Is Nuclear Fusion Possible? Energy Central, December 4, 2006 ORNL Plays Key Part in Fusion Deal ORNL Neutron Science Division, November 22, 2006 US ITER...

  18. Nuclear Engineering Science Laboratory Synthesis program accepting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applications for spring, summer 2016 Nuclear Engineering Science Laboratory Synthesis program accepting applications for spring, summer 2016 Opportunity provides students with research experience at Oak Ridge National Laboratory FOR IMMEDIATE RELEASE Nov. 11, 2015 FY16-06 OAK RIDGE, Tenn.-The Nuclear Engineering Science Laboratory Synthesis (NESLS) program is accepting applications for spring and summer 2016. NESLS is a cooperative research initiative at Oak Ridge National Laboratory (ORNL)

  19. Protons and Neutrons for Testing at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Protons and Neutrons for Testing at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of ...

  20. Neutron storage time for the neutron EDM experiment (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Neutron storage time for the neutron EDM experiment Citation Details In-Document Search Title: Neutron storage time for the neutron EDM experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  1. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect (OSTI)

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  2. 2012 CERTS LAAR Program Peer Review - Frequency Responsive Load Evaluation and Benefits - Isabelle Snyder, ORNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frequency responsive loads Isabelle Snyder, Ph.D. Power and Energy Systems Group ORNL 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Project objective * Study the use of load for frequency regulation: - Identify frequency measurement accuracies based on different approaches - Identify accuracy requirement for frequency responsive load applications - Study the impact of frequency responsive loads on a large system (ERCOT or EI) 3 Managed by UT-Battelle for the U.S.

  3. Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_32_partridge.pdf More Documents & Publications Cummins/ORNL-FEERC CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines CLEERS Coordination & Development of Catalyst Process Kinetic Data

  4. Microsoft Word - ORNL-NTRC-006_P E Johnson_TRAGIS Users Manual.doc

    National Nuclear Security Administration (NNSA)

    ORNL/NTRC-006 Rev. 0 Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual Revision 0 June 2003 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA

  5. ORNL Soils Remediation and Slabs Removal The Bridge from D&D to Redevelopment

    SciTech Connect (OSTI)

    Conger, M Malinda; Schneider, Ken R

    2012-01-01

    The landscape of the Oak Ridge National Laboratory (ORNL) has dramatically changed over the past 2 years with demolition of aging facilities in the Central Campus. Removal of these infrastructure legacies was possible due to an influx of DOE-Environmental Management funding through the American Recovery and Reinvestment Act of 2009 (ARRA). Facility D&D traditionally removes everything down to the building slab, and the Soils and Sediments Program is responsible for slabs, below-grade footers, abandoned waste utilities, and soils contaminated above certain risk levels that must be removed before the site can be considered for redevelopment. , DOE-EM has used a combination of base and ARRA funding to facilitate the clean-up process in ORNL s 2000 Area. Demolition of 13 buildings in the area was funded by the ARRA. Characterization of the remaining slabs, underground pipelines and soils was funded by DOE-EM base funding. Additional ARRA funding was provided for the removal of the slabs, pipelines and contaminated soils. Removal work is in progress and consists of removing and disposing of approximately 10,000 cubic yards (CY) of concrete, 2,500 CY of debris, and 500 CY of contaminated soil. The completion of this work will allow the site to be available for redevelopment and site reuse efforts at ORNL.

  6. Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

    SciTech Connect (OSTI)

    Croes, Kenneth James; Garino, Terry J.; Mowry, Curtis D.; Nenoff, Tina M.

    2015-12-15

    This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added as further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I2.

  7. The ORNL Indoor Air Quality Study: Re-cap, Context, and Assessment on Radon

    SciTech Connect (OSTI)

    Tonn, Bruce Edward; Rose, Erin M.; Ternes, Mark P.

    2015-10-01

    As part of the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program that was led by Oak Ridge National Laboratory (ORNL), an assessment of the impacts of weatherization on indoor air quality (IAQ) was conducted. This assessment included nearly 500 treatment and control homes across the country. Homes were monitored for carbon monoxide, radon, formaldehyde, temperature and humidity pre- and post-weatherization. This report focuses on the topic of radon and addresses issues not thoroughly discussed in the original IAQ report. The size, scope and rigor of the radon component of the IAQ study are compared to previous studies that assessed the impacts of weatherization on indoor radon levels. It is found that the ORNL study is by far the most extensive study conducted to date, though the ORNL results are consistent with the findings of the other studies. However, the study does have limitations related to its reliance on short-term measurements of radon and inability to attribute changes in radon levels in homes post-weatherization to specific weatherization measures individually or in combination.

  8. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  9. WUFI (WÀrme and Feuchte InstationÀr)-Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP

    Energy Science and Technology Software Center (OSTI)

    2014-05-20

    WUFI - Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP is a menu-driven PC program which allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather. It is based on the newest findings regarding vapor diffusion and liquid transport in building materials and has been validated by detailed comparison with measurements obtained in the laboratory and on outdoor testing fields. Together with Oak Ridge National Laboratory (ORNL)more » Fraunhofer IBP has developed a special version of WUFI Ÿ for North America. WUFIŸ ORNL is a functionally limited free version of WUFIŸ Pro for non-commercial purposes. It contains climate data for 62 cities in the USA and Canada which are all available in the free version. http://web.ornl.gov/sci/ees/etsd/btric/wufi/ http://www.WUFI.com/ORNL« less

  10. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at...

    Office of Science (SC) Website

    Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  11. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  12. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  13. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  14. Prompt fission neutron spectra of actinides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  15. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  16. Type B investigation report of curium-244 exposure at the ORNL TRU Facility, January 15, 1986

    SciTech Connect (OSTI)

    Love, G.L.; Butler, H.M.; Duncan, D.T.; Oakes, T.W.

    1986-04-01

    This Type B Investigative Report provides an evaluation of relevant events and activities that led to, were a part of, or resulted from the release of curium-244 in the Building 7920 facility at ORNL in January 1986. Impacts have been evaluated with respect to employee exposures and the costs and loss of productivity resulting from increased bioassay analyses and activities of investigative committees. Management systems evaluated include (1) training of employees performing lab analyses, (2) adherence to procedures, and (3) response to unusual circumstances.

  17. ORNL/TM-2011/360 Reference Inflow Characterization for River Resource Reference Model:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL/TM-2011/360 Reference Inflow Characterization for River Resource Reference Model: Reference Model 2 (RM2) October 2011 Prepared by Vincent S. Neary, Ph.D., P.E. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information

  18. ORNL/RASA-85/l OAK RIDGE NATIONAL LABORATORY RESULTS OF THE MOBILE GAMMA SCANNING

    Office of Legacy Management (LM)

    d-I. 17-9 d &y-?-T /,' k~:" , q ORNL/RASA-85/l OAK RIDGE NATIONAL LABORATORY RESULTS OF THE MOBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEW YORK AREA ,. OPERATED BY MARTIN MARIEITA ENERGY SYSTEMS, INC. FOR THE UNITED STATES 'DEPARTMENT OF ENERGY ACCeSS t0 the information in this rePoti is limited (o those indicated on the distribution list and to Depanment of &ergy and Department of Energy Contractors Health and Safety Research Division EESULTS OFTBEMlBILEGAJMA SCANNING

  19. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  20. Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Accelerator Mass Spectrometry at ANL and ORNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  1. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  2. Center for Nanophase Materials Sciences (CNMS) - Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH CAPABILITIES The CNMS provides users with access to a complete suite of nanoscience research Capabilities (facilities and expertise) housed in an 80,000-ft2 building adjacent to the Spallation Neutron Source at ORNL. The links to pages below provide descriptions of the equipment, facilities, and staff expertise that comprise the research capabilities being offered to users. Prospective users should consult this list, the associated web links, and the staff scientists when developing

  3. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  4. ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    . oo> ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 61 TRUDY DRIVE (LJ002), LODI, NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ2 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 61 TRUDY

  5. DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science |

    Energy Savers [EERE]

    Department of Energy Supercomputer Now World's Fastest for Open Science DOE's Oak Ridge Supercomputer Now World's Fastest for Open Science November 10, 2008 - 4:47pm Addthis OAK RIDGE, Tenn. -- The latest upgrade to the Cray XT Jaguar supercomputer at the Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) has increased the system's computing power to a peak 1.64 "petaflops," or quadrillion mathematical calculations per second, making Jaguar the world's first

  6. Center for Nanophase Materials Sciences (CNMS) - About CNMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ABOUT CNMS The Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is one of five nanoscience research centers (NSRCs) funded by the U.S. Department of Energy (DOE) Scientific User Facilities Division. It provides a diverse user community - predominantly in the US but also internationally - with access to state-of-the-art nanoscience research capabilities, expertise, and equipment. The scientists at the CNMS also drive a world class science program with

  7. The ORNL Basemapping and Imagery Project: Data collection, processing and dissemination

    SciTech Connect (OSTI)

    Tuttle, M.; Pace, P.

    1996-04-01

    Over the past three years, the GIS and Computer Modeling (GCM) Group at Oak Ridge National Laboratory (ORNL), has been engaged in creating a very comprehensive geospatial data base for Department of Energy (DOE) installations managed by the DOE Oak Ridge Operations Office (DOE-ORO). This effort encompasses topographic, planimetric, land use/land cover, flood plain, digital elevation, and digital imagery data for the Oak Ridge Reservation (ORR) and surrounding areas. The ORR covers approximately 34,800 acres and includes ORNL, the K-25 Site and the Y-12 Plant. The geographic extent of the Base Mapping and Imagery Project covers the ORR and surrounding area and two other DOE plants (Portsmouth, Ohio and Paducah, Kentucky) for a total of 166,000 acres. The resulting data represent a major improvement in the spatial accuracy and currency of data which are used as a foundation for environmental restoration, facility studies, and other GIS data applications. A GIS data server was also created in order to store and disseminate the new basemapping data. This paper describes the history of the Base Mapping and Imagery Project with emphasis on the logistical aspects of data quality assessment. data tracking, and data product work flow for a large comprehensive spatial data base. The paper then describes the evolution of the GIS data server including its design from an FTP server to a NetScape-based World Wide Web interface. This combination of data and data access provides the ORR environmental community with a carefully configured and managed GIS dataset.

  8. Recent Fast Neutron Imaging Measurements with the Fieldable Nuclear Materials Identification System

    SciTech Connect (OSTI)

    Wellington, Tracey; Palles, Blake A; Mullens, James Allen; Mihalczo, John T; Archer, Daniel E; Thompson, Thad; Britton Jr, Charles L; Ezell, N Dianne Bull; Ericson, Milton Nance; Farquhar, Ethan; Lind, Randall F; Carter, Jake

    2015-01-01

    This paper describes some recent fast neutron imaging measurements of the fieldable nuclear materials identification system (FNMIS) under development by the National Nuclear Security Administration (NNSA-NA-22) for possible future use in arms control and nonproliferation applications. The general configuration of FNMIS has been previously described, and a description of the application-specific integrated circuit (ASIC) electronics designed for FNMIS has been reported. This paper presents initial imaging measurements performed at ORNL with a Thermo Fisher API 120 DT generator and the fast-neutron imaging module of FNMIS.

  9. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  11. Alternative Neutron Detection Testing Summary

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stromswold, David C.; Woodring, Mitchell L.

    2010-04-08

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. Most currently deployed radiation portal monitors (RPMs) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large area neutron detector. This type of neutron detector is used in the TSA and other RPMs installed in international locations and in the Ludlum and Science Applications International Corporation RPMs deployed primarily for domestic applications. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated wavelength-shifting plastic fibers. Reported here is a summary of the testing carried out at Pacific Northwest National Laboratory on these technologies to date, as well as measurements on 3He tubes at various pressures. Details on these measurements are available in the referenced reports. Sponsors of these tests include the Department of Energy (DOE), Department of Homeland Security (DHS), and the Department of Defense (DoD), as well as internal Pacific Northwest National Laboratory funds.

  12. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  13. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  14. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  15. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    SciTech Connect (OSTI)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  16. Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Neutrons Reveal New Electrocatalyst Family for Producing Hydrogen Fuel Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  17. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  18. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  19. Results of Inspections of Operation of the ORNL Mock Feed/Withdrawal System

    SciTech Connect (OSTI)

    White-Horton, Jessica L; Laughter, Mark D; Krichinsky, Alan M

    2010-01-01

    Remote monitoring of process activities is one tool under consideration by the International Atomic Energy Agency (IAEA) to handle increasing demands for conducting verification inspections at safeguarded facilities. The ability for the IAEA to continuously monitor feed and withdrawal (F&W) station operations (e.g., load cells and other process attributes) would provide independent verification of normal plant operations, supply data that would make safeguards more effective and efficient, and enable information-driven inspections. Researchers at Oak Ridge National Laboratory (ORNL) have assembled a mock UF6 F&W system using water in lieu of UF6 to test the feasibility of advanced process monitoring systems and concepts (such as remote monitoring) for safeguards. One use of the F&W mockup involves exploring how a safeguards inspector would interact with the data and use it to perform onsite inspections more effectively, so the researchers divided staff into two groups: operators and inspectors. This paper will discuss this process and the promising results of the inspections that have been performed at the mock facility to verify operator declarations and detect material diversion. This paper also will present the intuitive and user-friendly graphic interface researchers used to analyze the information. Although the data gathered previously came from a computer local to the F&W system, future work will include remote transmission and analysis of the data.

  20. An Investigation of the Applicability and Limitations of the ORNL Expanded Plug Test

    SciTech Connect (OSTI)

    McAfee, Wallace J.; Hemrick, James G.

    2014-01-15

    The expanded plug test technique for measuring the circumferential tensile properties of irradiated nuclear fuel cladding was developed at Oak Ridge National Laboratory (ORNL) and has been used successfully in several applications. The primary advantage of this technique over other procedures is its simplicity for application in the complex hot cell environment. During the development stage, efforts were made to both qualify the technique as much as possible regarding its experimental application and to develop and validate the data reduction procedures. However, since this is a new technique, the technical community is cautious in adopting a procedure that has not been fully vetted. The purpose of this effort was to address several baseline issues regarding the applicability of the technique and the precision of the use of experimental expanded ring load-deformation data to calculate material circumferential stress-strain properties. The tests performed, in conjunction with the developed data reduction procedures, demonstrate good reliability in the prediction of ring material stress-strain behavior for several materials of widely different strengths.

  1. BF3 Neutron Detector Tests

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.; Woodring, Mitchell L.

    2009-12-09

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world; thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and detection capabilities are being investigated. Reported here are the results of tests of the efficiency of BF3 tubes at a pressure of 800 torr. These measurements were made partially to validate models of the RPM system that have been modified to simulate the performance of BF3-filled tubes. While BF3 could be a potential replacement for 3He, there are limitations to its use in deployed systems.

  2. Protons Pair Up With Neutrons | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Embargoed: Not for Release Until 2:00 p.m. Eastern Time Thursday, 29 May Contact: Kandice Carter 757-269-7263 Protons Pair Up With Neutrons NEWPORT NEWS, VA - Research performed at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has found that protons are about 20 times more likely to pair up with neutrons than with other protons in the nucleus. The result will be published online by the journal Science, at the Science Express website. BigBite Correlated protons

  3. NEUTRON COUNTER

    DOE Patents [OSTI]

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  4. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call issued for Lujan Neutron Scattering Center proposals Call issued for Lujan Neutron Scattering Center proposals The Lujan Neutron Scattering Center invites proposals addressing science of NNSA and LANL programmatic interest for the 2014 run cycle. May 20, 2014 Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. This call for proposals

  5. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.; Woodring, Mitchell L.

    2010-03-07

    PNNL-18938 Revision Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of two successive prototypes of a system manufactured by GE Reuter Stokes.

  6. Full Scale Coated Fiber Neutron Detector Measurements

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Stromswold, David C.; Woodring, Mitchell L.

    2010-03-17

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. Reported here are the results of tests of the full-scale 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT) and Saint Gobain, and is a follow-up report to an earlier one on a smaller prototype system.

  7. Boron-Lined Neutron Detector Measurements

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Siciliano, Edward R.

    2009-11-02

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a newly designed boron-lined proportional counter option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Reuter Stokes.

  8. Lithium Loaded Glass Fiber Neutron Detector Tests

    SciTech Connect (OSTI)

    Ely, James H.; Erikson, Luke E.; Kouzes, Richard T.; Lintereur, Azaree T.; Stromswold, David C.

    2009-11-12

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world and, thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of the lithium-loaded glass fibers option. This testing measured the neutron detection efficiency and gamma ray rejection capabilities of a small system manufactured by Nucsafe (Oak Ridge, TN).

  9. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL/FEERC Emissions CRADA: NOx Control & Measurement Technology for Heavy-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  10. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  11. Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

    SciTech Connect (OSTI)

    Agouridis, D.C.; Gayle, T.M.; Griest, W.H.

    1993-02-24

    There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental results on empty cccs in laboratory conditions demonstrate satisfactory performance of the instrument. Additional work is needed to bring the prototype to its optimum usefulness and accuracy for field measurements. This includes: Calibration of the meter scale with full-up munitions; Data and evaluation procedures to adjust the performance of the meter for different environmental conditions such as temperature and humidity; and Studies of the dielectric properties of moist ccc materials, as a function of frequency and temperature, are needed for adjustment of the meter for optimal performance.

  12. ORNL Nuclear Safety Research and Development Program Bimonthly Report for July-August 1968

    SciTech Connect (OSTI)

    Cottrell, W.B.

    2001-08-17

    The accomplishments during the months of July and August in the research and development program under way at ORNL as part of the U.S. Atomic Energy Commission's Nuclear Safety Program are summarized, Included in this report are work on various chemical reactions, as well as the release, characterization, and transport of fission products in containment systems under various accident conditions and on problems associated with the removal of these fission products from gas streams. Although most of this work is in general support of water-cooled power reactor technology, including LOFT and CSE programs, the work reflects the current safety problems, such as measurements of the prompt fuel element failure phenomena and the efficacy of containment spray and pool-suppression systems for fission-product removal. Several projects are also conducted in support of the high-temperature gas-cooled reactor (HTGR). Other major projects include fuel-transport safety investigations, a series of discussion papers on various aspects of water-reactor technology, antiseismic design of nuclear facilities, and studies of primary piping and steel, pressure-vessel technology. Experimental work relative to pressure-vessel technology includes investigations of the attachment of nozzles to shells and the implementation of joint AEX-PVFX programs on heavy-section steel technology and nuclear piping, pumps, and valves. Several of the projects are directly related to another major undertaking; namely, the AEC's standards program, which entails development of engineering safeguards and the establishment of codes and standards for government-owned or -sponsored reactor facilities. Another task, CHORD-S, is concerned with the establishment of computer programs for the evaluation of reactor design data, The recent activities of the NSIC and the Nuclear Safety journal in behalf of the nuclear community are also discussed.

  13. 2016 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 News News Home Featured Articles Science Headlines 2015 2014 2013 2016 Beam-Beam Compensation Scheme Doubles Proton-Proton Collision Rates at RHIC External link PPPL Physicists Simulate Innovative Method for Starting Up Tokamaks Without Using a Solenoid External link ORNL on Team Officially Recognized for Elements 115, 117 Discovery External link Q&A: Biologist Describes Milestone Toward a Universal Flu Vaccine External link Finding New Ways to Optimize Old Codes External link A Nanoscale

  14. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  15. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  16. Software Design for Petascale Climate Science (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Software Design for Petascale Climate Science Citation Details In-Document Search Title: Software Design for Petascale Climate Science No abstract prepared. Authors: Drake, John B [1] ; Jones, Philip W [2] ; Vertenstein, Mariana [3] ; White III, James B [1] ; Worley, Patrick H [1] + Show Author Affiliations ORNL Los Alamos National Laboratory (LANL) National Center for Atmospheric Research (NCAR) Publication Date: 2008-01-01 OSTI Identifier: 979074 DOE Contract Number: DE-AC05-00OR22725

  17. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  18. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  19. AwesomeEyeballsŽ… an amazing group of students visit Y-12 and ORNL, part 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Awesome Eyeballs" - an amazing group of students visit Y-12 and ORNL, part 1 When I first heard that a group of students had found a way to remove mercury from fish, I thought surely we have a group of post doctorial students here. What I learned was these students who have invented a fish food that pulls mercury from fish are actually five youngsters who are part of the Young Innovators Society. Four of the five students were able to attend the visit to Y-12 National Security Complex

  20. AwesomeEyeballsŽ… an amazing group of students visit Y-12 and ORNL, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Awesome Eyeballs" - an amazing group of students visit Y-12 and ORNL, part 2 This continues the report provided by an adult leader of the "Awesome Eyeballs," a group of four 10-12 year old students who are experimenting with a process to produce fish food that will remove mercury from fish. The rest of the report follows: ... Very few people see this level of equipment until college at the earliest. I think that since the kids had already prepared samples in solution using

  1. DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26

    Office of Legacy Management (LM)

    9 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W. A. Goldsmith F. F. Haywood W. M. Johnson M. T. Ryan W. H. Shinpaugh Worked performed as part of the Remedial Action Survey and Certification Activities Date Published: February 1982 OAK RIDGE NATIONAL LABORATORY operated by UNION'CARBIDE CORPORATION for the

  2. ORNL/RASA-84/LJ3 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    LJ3 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 59 TRUDY DRIVE (LJ003), LODI. NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ3 Health and Safety Research Division RESULTS OF TEE RADIOLOGICAL SURVEY AT 59 TRUDY DRIVE (LJ003), LODI,

  3. ORNL/RASA-84/LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT

    Office of Legacy Management (LM)

    LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 58 TRUDY DRIVE (LJ004), LODI, NEW JERSEY October 1984 Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400 ORNL/RASA-84/LJ4 Health and Safety Research Division RESULTS OF THE RADIOLOGICAL SURVEY AT 58 TRUDY DRIVE (LJ004), LODI.

  4. Prompt Neutron Time Decay in Single HEU and DU Metal Annular Storage Castings

    SciTech Connect (OSTI)

    Pena, Kirsten E [ORNL] [ORNL; McConchie, Seth M [ORNL] [ORNL; Mihalczo, John T [ORNL] [ORNL

    2010-01-01

    Previous measurements of highly enriched uranium (HEU) storage castings performed by Oak Ridge National Laboratory (ORNL) at the Y-12 National Security Complex showed a prompt neutron time decay that is not exponential. These measurements showed that multiple time constants originating from multiplication, time-of-flight, scattering in the assembly and room return could be associated with this prompt neutron decay. In this work, the contribution not associated with neutron multiplication was investigated via measurements with a depleted uranium (DU) casting. The measurements at ORNL used an annular (5.0-in OD, 3.5-in ID, 6.0-in H) DU casting with a time-tagged 252Cf source, centered vertically on the axis, and four closely coupled 1 1 6-in.-long plastic scintillators with -in.- thick lead shielding adjacent to the outer surface of the casting. This setup was identical to the configuration used in the previously performed measurements with HEU castings at Y-12. The time correlation between fission events and detections in the plastic scintillators was measured, as well as the time distribution of coincidences between multiple detectors within a 512-ns time window. The measurement results were then compared to MCNP-PoliMi calculations and the previous HEU measurements. Time constants from decay fits to the HEU and DU data were compared to characterize the contributions resulting from multiplication, time-of-flight, and scattering.

  5. A crystallographer keen on showing off the revealing properties of neutrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealing properties of neutrons A crystallographer keen on showing off the revealing properties of neutrons Olivier Gourdon shows visiting researchers some of the latest tricks that can be performed using this 100-year old multidisciplinary science. February 27, 2014 Olivier Gourdon Olivier Gourdon "With neutron diffraction, we can learn much more than where are the atoms." At Los Alamos's Lujan Neutron Scattering Center, crystallographer Olivier Gourdon shows visiting researchers

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Measurements for Use in Carbon Models Hargrove, W.W.(a), Brandt, C.C.(a), Jager, H.I.(a), Hanan, N.(b), and McCord, R.A.(a), Oak Ridge National Laboratory (ORNL)(a), Natural Resource Ecology Laboratory (NREL)(b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data gaps limit the use of ARM data as input for simulation models. Because the ARM program records actual measurements, circumstances

  7. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  8. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  9. Neutron streak camera

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  10. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  11. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  12. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  13. Neutronic Reactor Design to Reduce Neutron Loss

    DOE Patents [OSTI]

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  14. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOE Patents [OSTI]

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  15. CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

    SciTech Connect (OSTI)

    Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad; Derybowski, Edward

    2011-10-01

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and exiting the LNT showed high utilization of light alkenes, followed by mono-aromatics; branched alkanes passed through the LNT largely unreacted. Follow-on experiments at a 'road load' condition were conducted, revealing that the NOx reduction was better without the DOC at lower temperatures. The improved performance was attributed to the large swings in the NOx adsorber core temperature. Split-injection experiments were conducted with ultra-low sulfur diesel fuel and three pure HC compounds: 1-pentene, toluene, and iso-octane. The pure compound experiments confirmed the previous results regarding hydrocarbon reactivity: 1-pentene was the most efficient LNT reductant, followed by toluene. Injection location had minimal impact on the reactivity of these two compounds. Iso-octane was an ineffective LNT reductant, requiring high doses (resulting in high HC emissions) to achieve reasonable NOx conversions. Diesel fuel reactivity was sensitive to injection location, with the best performance achieved through fuel injection downstream of the DOC. This configuration generated large LNT temperature excursions, which probably improved the efficiency of the NOx storage/reduction process, but also resulted in very high HC emissions. The ORNL team demonstrated an LNT desulfation under 'road load' conditions using throttling, EGR, and in-pipe injection of diesel fuel. Flow reactor characterization of core samples cut from the front and rear of the engine-aged LNT revealed complex spatially dependent degradation mechanisms. The front of the catalyst contained residual sulfates, which impacted NOx storage and conversion efficiencies at high temperatures. The rear of the catalyst showed significant sintering of the washcoat and precious metal particles, resulting in lower NOx conversion efficiencies at low temperatures. Further flow reactor characterization of engine-aged LNT core samples established that low temperature performance was limited by slow release and reduction of stored NOx during regeneration. Carbon monoxide was only effective at regenerating the LNT at temperatures above 200 C; propene was unreactive even at 250 C. Low temperature operation also resulted in unselective NOx reduction, resulting in high emissions of both N{sub 2}O and NH{sub 3}. During the latter years of the CRADA, the focus was shifted from LNTs to other aftertreatment devices. Two years of the CRADA were spent developing detailed ammonia SCR device models with sufficient accuracy and computational efficiency to be used in development of model-based ammonia injection control algorithms.ORNL, working closely with partners at Navistar and Mi

  16. Microsoft Word - ORNL TM INFLOW CHARACTERISTICS FOR RIVER REFERENCE MODEL 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    360 Environmental Science Division Reference Inflow Characteristics for River Resource Reference Model: Reference Model 2 (RM2) Vincent S. Neary, Ph.D., P.E. Date Published: October 2011 Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

  17. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V. (Pleasanton, CA); Hankins, Dale E. (Livermore, CA); Tomasino, Luigi (Rome, IT); Gomaa, Mohamed A. M. (Heliopolis, EG)

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  18. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  19. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  20. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  1. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  2. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  3. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs /newsroom/_assets/images/newsroom-icon.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Science Briefs - 2016» Science Briefs - 2015» Science Briefs - 2014» Science Briefs - 2013» Science Briefs - 2012» Science Briefs - 2011» Shown are time lapse images of supercritical CO2 displacing water in a fracture etched into a shale micromodel. The white, blue and gray colors represent supercritical CO2,

  4. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Neutrons - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons Neutron beams are available at the 88-Inch Cyclotron. Available energies range of from 8 to 30 MeV, with fluxes of up to 1E8 neutrons/cm^2/sec. For more information, please contact Mike Johnson via e-mail at MBJohnson@lbl.gov, or by phone at at (510) 486-4389.

  6. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  7. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs newsroomassetsimageslegacy-icon-short.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are...

  8. Nuclear Theory Helps Forecast Neutron Star Temperatures | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Nuclear Theory Helps Forecast Neutron Star Temperatures Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 05.01.14 Nuclear Theory Helps Forecast Neutron

  9. Neutron Computed Tomography of Turbine Blade

    SciTech Connect (OSTI)

    Bilheux, Hassina

    2015-06-03

    ORNL Researcher Hassina Bilheux explains the ability of SNS to explore the internal structure of a 3D-printed turbine blade.

  10. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  11. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Transformations Nanoscience and Electron Microscopy Centers X-Ray and Neutron Scattering Facilities Scientific User Facilities Division Materials Sciences and...

  12. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  13. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  14. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  15. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  16. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, Michael A. (Albuquerque, NM); Ginley, David S. (Albuquerque, NM)

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  17. Science Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science Events Learn about our science by coming to Frontiers in Science lectures, catch Cafe Scientific events in your community, or come to sicence events at the Bradbury...

  18. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  19. Center for Nanophase Materials Sciences (CNMS) - Career Opportunities at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the CNMS CAREER OPPORTUNITIES at CNMS For additional information and to view other opportunities at ORNL visit Careers at ORNL.

  20. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    SciTech Connect (OSTI)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A; McGreevy, Robert L; Ekkebus, Allen E; Kszos, Lynn A; Anderson, Ian S

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

  1. Oak Ridge Reservation site evaluation report for the Advanced Neutron Source

    SciTech Connect (OSTI)

    Sigmon, B.; Heitzman, A.C. Jr.; Morrissey, J. )

    1990-03-01

    The Advanced Neutron Source (ANS) is a research reactor that is the US Department of Energy (DOE) plans to build for initial service late in this century. The primary purpose of the ANS is to provide a useable neutron flux for scattering experiments 5 to 10 times as a high as that generated by any existing research reactor, secondary purposes include production of a variety of transuranic and other isotopes and irradiation of materials. The ANS is proposed to be located on the DOE Oak Ridge Reservation (ORR) at Oak Ridge, Tennessee, and operated by the Oak Ridge National Laboratory (ORNL). This report documents the evaluation of alternative sites on the ORR and the selection of a site for the ANS.

  2. Electron-Impact Ionization of Multicharged Ions: Cross-Sections Data from Oak Ridge National Laboratory (ORNL) and the Controlled Fusion Atomic Data Center (CFADC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This website presents experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments. For details of the theoretical work, refer to the original publication given for the particular experiment. These pages are based primarily on three technical memorandums issued by ORNL: 1(D. H. Crandall, R. A. Phaneuf, and D. C. Gregory, Electron Impact Ionization of Multicharged Ions, ORNL/TM-7020, Oak Ridge National Laboratory, 1979; 2) D. C. Gregory, D. H. Crandall, R. A. Phaneuf, A. M. Howald, G. H. Dunn, R. A. Also presented are more recent (1993-present) data, both published and unpublished. The data pages feature dynamic plotting, allowing the user to choose which sets of data to plot and zoom in on regions of interest within the plot. [Taken from http://www-cfadc.phy.ornl.gov/xbeam/index.html

  3. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  4. Neutron Detectors for Detection of Nuclear Materials at LANL| U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation / Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  5. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high performance networks is a consistent, widely deployed, well-maintained toolset that is optimized for wide area, high-speed data transfer (e.g. GridFTP) that allows scientists to easily utilize the services and capabilities that the network provides. Network test and measurement is an important part of ensuring that these tools and network services are functioning correctly. One example of a tool in this area is the recently developed perfSONAR, which has already shown its usefulness in fault diagnosis during the recent deployment of high-performance data movers at NERSC and ORNL. On the other hand, it is clear that there is significant work to be done in the area of authentication and access control - there are currently compatibility problems and differing requirements between the authentication systems in use at different facilities, and the policies and mechanisms in use at different facilities are sometimes in conflict. Finally, long-term software maintenance was of concern for many attendees. Scientists rely heavily on a large deployed base of software that does not have secure programmatic funding. Software packages for which this is true include data transfer tools such as GridFTP as well as identity management and other software infrastructure that forms a critical part of the Open Science Grid and the Earth System Grid.

  6. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScience Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Science New C-band scanning ARM

  7. PACIFICA (PACIFic ocean Interior CArbon) Database: A Data Synthesis Resource (NDP-92, ORNL/CDIAC-159)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suzuki, T.; Ishii, M.; Aoyama, M. R; Christian, J. R.; Enyo, K.; Kawano, T.; Key, R. M.; Kosugi, N.; Kozyr, A.; Miller, L. A.; Murata, A.; Nakano, T.; Ono, T.; Saino, T.; Sasaki, K.; Sasano, D; Takatani, Y.; Wakita, M.; Sabine, C.

    PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for synthesis of data on ocean interior carbon and its related parameters in the Pacific Ocean. The North Pacific Marine Science Organization (PICES), Section on Carbon and Climate (S-CC) supported the project. Hydrographic/hydrochemical datasets have been merged from a total of 272 cruises, including those from cruises conducted between the late 1980s and 2000 but not included in GLODAP, as well as CLIVAR/CO2 Repeat Hydrography datasets from the 2000s. Adjustments were calculated to account for analytical offsets in dissolved inorganic carbon, total alkalinity, salinity, oxygen, and nutrients (nitrate and nitrite, phosphate, and silicic acid) for each cruise as a result of the secondary quality control procedure, based on crossover analysis using data from deep layers (Tanhua et al., 2010). A total of 59 adjusted datasets from Line P off the west coast of Canada were also merged. Finally, the authors have produced the adjusted PACIFICA database that consists of datasets from a total of 306 cruises that also includes 34 datasets from WOCE Hydrographic Program cruises in the Pacific Ocean conducted in the 1990s. The PACIFICA database is available free of charge as a numeric data package (NDP-92) from the Carbon Dioxide Information Analysis Center (CDIAC) and the primary PACIFICA data site at pacifica.pices.jp. The NDP consists of the original cruise data files, adjusted data product, and the documentation.

  8. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  9. Neutron detection apparatus

    DOE Patents [OSTI]

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

  10. US ITER | Media Corner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Jacob's Room at US ITER Fusion Comes to the Secret City Published June 20, 2011 The USIPO joined ORNL neighbor Spallation Neutron Source to offer an interactive "science...

  11. Bioenergy Science Center to Develop Better Ways of Making Fuel From Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Bioenergy Science Center to Develop Better Ways of Making Fuel From Plants NREL among partners in Dept. of Energy's efforts to accelerate biofuels research June 26, 2007 A team that includes the National Renewable Energy Laboratory (NREL) has won a bid from the Department of Energy for a $125 million bioenergy research center that will seek new ways to produce biofuels. Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., will lead the team. Funded by the

  12. ORISE: Applications being accepted for 2015 spring term of DOE's Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate Laboratory Internship Applications being accepted for 2015 spring term of DOE's Science Undergraduate Laboratory Internship Program at ORNL Students have the opportunity to perform research alongside world-renowned national laboratory scientists and engineers FOR IMMEDIATE RELEASE July 31, 2014 FY14-34 OAK RIDGE, Tenn.-The U.S. Department of Energy is currently seeking undergraduate students for paid internships at Oak Ridge National Laboratory for the 2015 spring term of the

  13. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE: Mission-Critical for National Security Nuclear Energy for Our Challenging Future The Invisible Neutron Threat Blasting Missiles Out of the Sky LANL and the Air Force: Partners in Excellence NSO Interns Explore the National Security Environment In the News Reflections Issue 3 2011 Try the Digital Version! Download this Issue (pdf) Louis Rosen Laboratory Senior Fellow Emeritus, Louis Rosen, was the driving force behind the conception and the development of the Los Alamos Neutron Science

  14. Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a crucial role in the Laboratory's Science of Signatures scientific thrust. Measurement and detection science areas that require chemistry include nuclear and radiological, materials, biological, energy, climate, and space. Los Alamos scientists integrate chemical-science capabilities to ensure that the Laboratory can

  15. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  16. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  17. Boron-Lined Multichamber and Conventional Neutron Proportional Counter Tests

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, multichamber proportional counter manufactured by LND, Inc. Also reported are results obtained with an earlier design of conventional, boron-lined, proportional counters from LND. This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detectors.

  18. Boron-Lined Multitube Neutron Proportional Counter Test

    SciTech Connect (OSTI)

    Woodring, Mitchell L.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2010-09-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. These technologies are: 1) Boron trifluoride (BF3)-filled proportional counters, 2) Boron-lined proportional counters, 3) Lithium-loaded glass fibers, and 4) Coated non-scintillating plastic fibers. In addition, a few other companies have detector technologies that might be competitive in the near term as an alternative technology. Reported here are the results of tests of a boron-lined, “multitube” proportional counter manufactured by Centronic Ltd. (Surry, U.K. and Houston, TX). This testing measured the required performance for neutron detection efficiency and gamma-ray rejection capabilities of the detector.

  19. Boron-Lined Straw-Tube Neutron Detector Test

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Ely, James H.; Stromswold, David C.

    2010-08-07

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Four technologies have been identified as being currently commercially available, potential alternative neutron detectors to replace the use of 3He in RPMs. Reported here are the results of tests of a boron-lined proportional counter design variation. In the testing described here, the neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Proportional Technologies, Inc, was tested.

  20. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  1. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  2. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  3. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Gateways A science gateway is a web-based interface to access HPC computers ... perform shared computations, and generally interact with NERSC resources over the web. ...

  4. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  5. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  6. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  7. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  8. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  9. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  10. Tribology of improved transformation-toughened ceramics-heat engine test. Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J.

    1992-04-01

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  11. Environmental Sciences Laboratory dedication, February 26-27, 1979

    SciTech Connect (OSTI)

    Auerbach, S.I.; Millemann, N.T.

    1980-09-01

    The dedication of the new Environmental Sciences Laboratory coincided with the 25th year of the establishment of the science of ecology at Oak Ridge National Laboratory. That quarter century witnessed the evolution of ecology from an obscure, backwater discipline of biology to a broadly used, everyday household word. The transition reflected broad and basic changes in our social and cultural view of the world. This was brought about as a result of the awareness developed in our society of the importance of the environment, coupled with efforts of ecologists and other environmental scientists who identified, clarified, and formulated the issues and challenges of environmental protection for both the lay public and the scientific community. In many respects, the activities in ecology at ORNL were a microcosm of the broader social scene; the particular problems of the environment associated with atomic energy needed to be defined in scientific terms and articulated in both the specific and general sense for a larger audience which was unfamiliar with the field and somewhat alien to its concepts and philosophy. The success of this effort is reflected in the existence of the new Environmental Sciences Laboratory. This dedication volume brings together the thoughts and reflections of many of these scientists whose efforts contributed in a unique and individualistic fashion not only to ORNL but also to the national identification of ecology and its importance to the achievement of our national goals. Their remarks and presentations are not only a pleasant and personally gratifying recapitulation of the past and of ORNL's contributions to ecology but also portend some of the challenges to ecology in the future.

  12. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  13. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    SciTech Connect (OSTI)

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  14. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  15. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of

  16. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities » High Flux Isotope Reactor (HFIR) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Print Text Size: A A A FeedbackShare Page Quick

  17. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to

  19. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  20. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader Joanne Wendelberger Email Deputy Group Leader James R. Gattiker Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research. Statistical

  1. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Science Explosives Science Current efforts in explosives science cover many areas critical to national security. One particular area is the need for countermeasures against explosive threats. v Comprehensive explosives process Los Alamos National Laboratory offers a comprehensive explosives process. This process leverages entire technical divisions dedicated to explosives science. Los Alamos scientists combine advanced expertise and capabilities with modern facilities. These assets

  2. Thiyaga | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Thiyaga P. Thiyagarajan Materials Sciences and Engineering (MSE) Division MSE Home About Staff What's New Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Thiyaga P. Thiyagarajan Print Text Size: A A A FeedbackShare Page Thiyagarajan Program Manager Neutron Scattering Materials Sciences and Engineering Division Office of Basic Energy Sciences SC-22.2/Germantown Building, Rm F-411 U.S. Department of Energy 1000 Independence Avenue, SW

  3. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  4. Three-dimensional computational fluid dynamics for the Spallation Neutron Source liquid mercury target

    SciTech Connect (OSTI)

    Wendel, M.W.; Siman-Tov, M.

    1998-11-01

    The Spallation Neutron Source (SNS) is a high-power accelerator-based pulsed spallation source being designed by a multilaboratory team led by Oak Ridge National Laboratory (ORNL) to achieve high fluxes of neutrons for scientific experiments. Computational fluid dynamics (CFD) is being used to analyze the SNS design. The liquid-mercury target is subjected to the neutronic (internal) heat generation that results from the proton collisions with the mercury nuclei. The liquid mercury simultaneously serves as the neutronic target medium, transports away the heat generated within itself, and cools the metallic target structure. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots. These zones exist because the most feasible target designs include a complete U-turn flow redirection. Although the primary concern is that the target is adequately cooled, the pressure drop from inlet to outlet must also be considered because pressure drop directly affects structural loading and required pumping power. Based on the current design, a three-dimensional CFD model has been developed that includes the stainless steel target structure, the liquid-mercury target flow, and the liquid-mercury cooling jacket that wraps around the nose of the target.

  5. Neutron stars is focus of Los Alamos National Laboratory Frontiers in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science lectures Frontiers in Science lectures Neutron stars is focus of Los Alamos National Laboratory Frontiers in Science lectures Lectures are intended to increase local public awareness of the diversity of science and engineering research at the Laboratory. October 27, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  6. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  7. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  8. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  10. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Explore Science Create your own science adventure by exploring our varied exhibits, and learn what inspired our scientists, engineers and technicians to discover new things. August 18, 2014 boys conducting experiment [Science is] a great game. It is inspiring and refreshing. The playing field is the universe itself. -I.I. Rabi Science is thinking in an organized way about things. You don't need a license or permission to practice science. Scientists are interested in just about anything

  11. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  12. National Laboratory Frontiers in Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stars is focus of Los Alamos National Laboratory Frontiers in Science lectures October 27, 2009 Los Alamos, New Mexico, October 27, 2009-Los Alamos National Laboratory scientist Sanjay Reddy talks about the nature of neutron stars in a Frontiers in Science lecture at 7 p.m., November 3, in the Duane Smith Auditorium at Los Alamos High School. Reddy will give the same lecture November 5, 10, and 16 in Albuquerque, Española, and Santa Fe, respectively. All the talks begin at 7 p.m. and are free

  13. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  14. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  15. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  16. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  17. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  18. Ultracold neutrons (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ultracold neutrons Citation Details In-Document Search Title: Ultracold neutrons This series of slides describes ultracold neutrons (UCN) and their properties, various ...

  19. ORNL TM Report Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    difficult in large rivers and tidal channels where depths commonly exceed several meters, currents are greater than 1ms and surface waves and turbulence are generated by...

  20. Video: ORNL Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  1. ORNL/TM-11184

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11184 International Impacts of Global Climate Change Testimony to House Appropriations Subcommittee on Foreign Operations, Export Financing and Related Programs W. Fulkerson R. M. Cushman G. Marland S. Rayner DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility

  2. Video: ORNL Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  3. XDD (ORNL extensions)

    Energy Science and Technology Software Center (OSTI)

    2013-09-17

    XDD is a disk benchmarking tool and data transfer tool. It is well known to move data particularly efficiently both to and from storage devices.

  4. ORNL TM Report Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph.D., P.E. James R. McNutt DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. ...

  5. Microsoft Word - ORNL RH

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS MEDIA CONTACT: March 2, 2009 Roger Nelson, Carlsbad Field Office (575) 234-7213 Walter Perry, Oak Ridge Office (865) 576-0885 FIRST OAK RIDGE REMOTE-HANDLED TRANSURANIC WASTE...

  6. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Science Briefs Science Briefs ALS Science Briefs are short (200 words maximum) descriptions of recently published ALS-related work. These "brief" highlights also include one image, a caption (50 words), and the publication citation. All ALS users and beamline scientists are invited to fill out the short submission form here

  7. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs /science-innovation/_assets/images/icon-science.jpg Science Programs The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Applied Energy Programs» Civilian Nuclear Programs» Laboratory Directed Research & Development» Office of Science»

  8. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  9. Final Report - Nucelar Astrophysics & Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    Carlton, Robert F

    2009-12-01

    This enduring research program of 28 years has taken advantage of the excellent research facility of ORELA at Oak Ridge National Laboratory. The fruitful collaborations include a number of scientists from ORNL and some from LASL. This program which has ranged from nuclear structure determinations to astrophysical applications has resulted in the identification and/or the refinement of the nuclear properties of more than 5,000 nuclear energy levels or compound energy states. The nuclei range from 30Si to 250Cf, the probes range from thermal to 50 MeV neutrons, and the studies range from capture gamma ray spectra to total and differential scattering and absorption cross sections. Specific target nuclei studied include the following: 120Sn 124Sn 125Sn 113Sn 115Sn 117Sn 119Sn 249Cf 33S 34S 249Bk 186Os 187Os 188Os 30Si 32S 40Ca 48Ca 60Ni 54Fe 86Kr 88Sr 40Ar 122Sn 90Zr 122Sn(n,?) 208Pb 204Pb 52Cr 54Cr 50Cr 53Cr As can be seen, we have studied, on average, more than one isotope per year of grant funding and have focused on exploiting those elements having multiple isotopes in order to investigate systematic trends in nuclear properties, for the purpose of providing more stringent tests of the nuclear spherical optical model with a surface imaginary potential. We have investigated an l-dependence of the real-well depth of the spherical optical model; we have used these measurements to deduce the existence of doorway states in the compound nucleus; and in the total cross section measurements we have, in addition to resonance energies and widths, obtained values for the level density and neutron strength function. Due to the high neutron energy resolution of the ORELA and in some cases the addition of differential scattering cross section data, we have been able to disaggregate the spin states and provide level spacing and strength function for each partial wave in the neutron-nucleus interaction, in some cases up to d5/2. In the following we will summarize the most recent analyses of neutron total cross section measurements, some of which have not been previously reported.

  10. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  11. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  12. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  13. Science DMZ for ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  14. Category:Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Looking for the Neutron Log page? For detailed information on Neutron Log, click here. Category:Neutron Log Add.png Add a new Neutron Log Technique Pages in category...

  15. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  16. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Clifford Shull, Neutron Diffraction, and Neutron Scattering Resources with Additional Information Clifford G. Shull was awarded the 1994 Nobel Prize in Physics "for the development of the neutron diffraction technique". 'Professor Shull's prize was awarded for his pioneering work in neutron scattering, a technique that reveals where atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge

  17. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Maurer, R., Detweiler, R.

    2012-06-22

    This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

  18. Science DMZ Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study...

  19. Protons Hog the Momentum in Neutron-Rich Nuclei | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Protons Hog the Momentum in Neutron-Rich Nuclei Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 05.01.15 Protons Hog the Momentum in Neutron-Rich Nuclei

  20. Development of a New 47-Group Library for the CASL Neutronics Simulators

    SciTech Connect (OSTI)

    Kim, Kang Seog; Williams, Mark L; Wiarda, Dorothea; Godfrey, Andrew T

    2015-01-01

    The CASL core simulator MPACT is under development for the neutronics and thermal-hydraulics coupled simulation for the pressurized light water reactors. The key characteristics of the MPACT code include a subgroup method for resonance self-shielding, and a whole core solver with a 1D/2D synthesis method. The ORNL AMPX/SCALE code packages have been significantly improved to support various intermediate resonance self-shielding approximations such as the subgroup and embedded self-shielding methods. New 47-group AMPX and MPACT libraries based on ENDF/B-VII.0 have been generated for the CASL core simulator MPACT of which group structure comes from the HELIOS library. The new 47-group MPACT library includes all nuclear data required for static and transient core simulations. This study discusses a detailed procedure to generate the 47-group AMPX and MPACT libraries and benchmark results for the VERA progression problems.

  1. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  2. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  3. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  4. Neutronic reactor construction

    DOE Patents [OSTI]

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  5. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  6. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  7. Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of...

  8. ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA

    Office of Legacy Management (LM)

    Nf7 n-q gz75 tLtY r 1 irl,r:'a :.a l: i , l : i l ',:lr.:'. itl:t i .,,::l ' i , t . . ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA Access to the information in this report is limited to thoss indicated on the distribution list and io Department ol Energy ancl Depsrtment of Energy Contractors This report was prepared as an account ol work sponsored by an agency of the United States Government. Neither the U nited StatesGovernment nor any

  9. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  12. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  13. Bioenergy Science Center KnowledgeBase

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Syed, M. H.; Karpinets, T. V.; Parang, M.; Leuze, M. R.; Park, B. H.; Hyatt, D.; Brown, S. D.; Moulton, S. Galloway, M.D.; Uberbacher, E. C.

    The challenge of converting cellulosic biomass to sugars is the dominant obstacle to cost effective production of biofuels in s capable of significant enough quantities to displace U. S. consumption of fossil transportation fuels. The BioEnergy Science Center (BESC) tackles this challenge of biomass recalcitrance by closely linking (1) plant research to make cell walls easier to deconstruct, and (2) microbial research to develop multi-talented biocatalysts tailor-made to produce biofuels in a single step. [from the 2011 BESC factsheet] The BioEnergy Science Center (BESC) is a multi-institutional, multidisciplinary research (biological, chemical, physical and computational sciences, mathematics and engineering) organization focused on the fundamental understanding and elimination of biomass recalcitrance. The BESC Knowledgebase and its associated tools is a discovery platform for bioenergy research. It consists of a collection of metadata, data, and computational tools for data analysis, integration, comparison and visualization for plants and microbes in the center.The BESC Knowledgebase (KB) and BESC Laboratory Information Management System (LIMS) enable bioenergy researchers to perform systemic research. [http://bobcat.ornl.gov/besc/index.jsp

  14. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  15. Fermilab | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science

  16. Microsoft Word - Defense Science Quarterly Nov 2007 final.doc

    National Nuclear Security Administration (NNSA)

    November 2007 Dr. Brad Wallin Dr. Robert Hanrahan Defense Science Quarterly Inside This Issue 1 Message from the Director 2 Contributions of the Los Alamos Proton Radiography Program to the Nuclear Weapons Program 4 Contributions of the Los Alamos Weapons Neutron Research Facility Programs to the Nuclear Weapons Program 5 Cross-cutting Science: Materials in Extreme Environments 7 Academic Outreach: The Stewardship Science Academic Alliances Program 10 Z Refurbishment Project Wraps Up 11

  17. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  18. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  19. SCIENCE Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program early science program Early at the Argonne Leadership Computing Facility CONTACT Argonne Leadership Computing Facility | www.alcf.anl.gov | (877) 737-8615...

  20. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  1. Neutron-Irradiated Samples as Test Materials for MPEX

    SciTech Connect (OSTI)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.

  2. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  3. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  4. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  5. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  6. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  7. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  8. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  9. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  10. The COHERENT Experiment at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Elliott, Steven Ray

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  11. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    DOE R&D Accomplishments [OSTI]

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  12. Notes on the Lumped Backward Master Equation for the Neutron...

    Office of Scientific and Technical Information (OSTI)

    ... FISSION; FISSION NEUTRONS; FLUCTUATIONS; MULTIPLICITY; NEUTRON SOURCES; NEUTRONS; NUCLEAR WEAPONS; PHYSICS; POWER REACTORS; PROBABILITY; PROGENY; RANDOMNESS; REACTOR PHYSICS; ...

  13. SHARP Neutronics Expanded | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutronics Expanded SHARP Neutronics Expanded January 29, 2013 - 1:28pm Addthis Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR SHARP neutronics Module Development The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis. The

  14. DIVERSITY. EDUCATION. SCIENCE. The ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sciences-Biology, Computer, Information Technology, Geology, Mathematics, Microbiology, and Physics. Social Sciences-Economics, Organizational Psychology, Political Science, ...

  15. Center for Nanophase Materials Sciences (CNMS) - >ES&H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... All Users performing work at CNMS are required to wear an ORNL distributed badgeID in a readily visible location above the waist at all times. All CNMS computers on the ORNL ...

  16. Center for Nanophase Materials Sciences - Conference 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy for chemical analysis Organizers: Sergey Shilov and James Burgess (Bruker Optics) Local Contact: Brad Lokitz, ORNL Event overview: Join us to learn about Infrared and...

  17. Review of Livermore-Led Neutron Capture Studies Using DANCE

    SciTech Connect (OSTI)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O'Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  18. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  19. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  20. Fermilab | Science | Particle Physics 101 | Science of Matter, Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space and Time Science of Matter, Energy, Space and Time Standard Model and Higgs Illustration What is the world made of? The building blocks Physicists have identified 13 building blocks that are the fundamental constituents of matter. Our everyday world is made of just three of these building blocks: the up quark, the down quark and the electron. This set of particles is all that's needed to make protons and neutrons and to form atoms and molecules. The electron neutrino, observed in the

  1. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  2. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  3. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  4. Microsoft Word - Y12NeutronDoseFinalDraft.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Neutron Radiation G.D. Kerr 1 , E.L. Frome 2 , W.G. Tankersley 3 , and J.P. Watkins 3 ORAU Technical Report # 2004-1406 1 Kerr Consulting Company 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory 3 Center for Epidemiologic Research, Oak Ridge Associated Universities This work was done under Contract No. 200-2002-00593 with the National Institute for Occupational Safety and Health. 2 Table of Contents List of Figures

  5. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & ANALYSIS www.sciencemag.org SCIENCE VOL 339 8 FEBRUARY 2013 635 Steven Chu, the fi rst Nobel-winning scien- tist to lead the sprawling U.S. Department of Energy (DOE), has rarely...

  6. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  7. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  8. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Science Highlights Science highlights feature research conducted by staff and users at the ALS. If a Power Point summary slide or a PDF handout of the highlight is available, you will find it linked beneath the highlight listing and on the highlight's page. You may also print a version of a highlight by clicking the print icon associated with each highlight. Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 ALS research has shown that

  10. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  11. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  12. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  13. Application of modified direct denitration to support the ORNL coupled-end-to-end demonstration in production of mixed oxides suitable for pellet fabrication

    SciTech Connect (OSTI)

    Walker, E.A.; Vedder, R.J.; Felker, L.K.; Marschman, S.C.

    2007-07-01

    The current and future development of the Modified Direct Denitration (MDD) process is in support of Oak Ridge National Laboratory's (ORNL) Coupled End-to-End (CETE) research, development, and demonstration (R and D) of proposed advanced fuel reprocessing and fuel fabrication processes. This work will involve the co-conversion of the U/Pu/Np product streams from the UREX+3 separation flow sheet utilizing the existing MDD glove-box setup and the in-cell co-conversion of the U/Pu/Np/Am/Cm product streams from the UREX+1a flow sheet. Characterization equipment is being procured and installed. Oxide powder studies are being done on calcination/reduction variables, as well as pressing and sintering of pellets to permit metallographic examinations. (authors)

  14. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  15. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  16. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.

  17. Schoenborn wins Bau Neutron Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retired Laboratory Senior Fellow Benno Schoenborn to receive the 2016 Bau Neutron Diffraction Award. August 12, 2015 Benno Schoenborn Benno Schoenborn Communications Office...

  18. Advanced Neutron Source (ANS) Project

    SciTech Connect (OSTI)

    Campbell, J.H.; Selby, D.L.; Harrington, R.M.; Peretz, F.J.

    1991-02-01

    This report discusses the research and development, design and safety of the Advanced Neutron Source at Oak Ridge National Laboratory. (LSP)

  19. Inside Ice Under High Pressure | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside Ice Under High Pressure Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.14 Inside Ice Under High Pressure New insights from neutron

  20. Efficiency measurements using tagged neutrons (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Efficiency measurements using tagged neutrons Citation Details In-Document Search Title: Efficiency measurements using tagged neutrons You are accessing a document from the...

  1. Efficiency measurements using tagged neutrons (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Efficiency measurements using tagged neutrons Citation Details In-Document Search Title: Efficiency measurements using tagged neutrons Authors: Taddeucci, Terry N 1 + Show Author...

  2. Ultracold neutrons (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ultracold neutrons Citation Details In-Document Search Title: Ultracold neutrons You are accessing a document from the Department of Energy's (DOE) SciTech Connect....

  3. SciTech Connect: "neutron scattering"

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutron scattering" Semantic Semantic Term Title: Full Text: Bibliographic...

  4. LANSCE | Lujan Center | Instruments | Neutron Radiography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Radiography The recently acquired energy-dispersive neutron imaging detector can be used on various Lujan Center beam-lines to combine scattering with imaging. In most...

  5. High energy neutron Computed Tomography developed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    objects. May 9, 2014 Neutron tomography horizontal "slice" of a tungsten and polyethylene test object containing tungsten carbide BBs. Neutron tomography horizontal "slice"...

  6. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling

    SciTech Connect (OSTI)

    Psaltis, Dimitrios; Özel, Feryal; Chakrabarty, Deepto E-mail: fozel@email.arizona.edu

    2014-06-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the second harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a specified measurement precision for neutron star radius. We find that accumulating 10{sup 6} counts in a pulse profile is sufficient to achieve a ? 5% uncertainty in the neutron star radius, which is the level of accuracy required to determine the equation of state of neutron-star matter. Finally, we formally derive the background limits that can be tolerated in the measurements of the various pulsation amplitudes as a function of the system parameters.

  7. Maintenance neutron coincidence counter manual

    SciTech Connect (OSTI)

    Krick, M.S.; Polk, P.J.; Atencio, J.D.

    1989-09-01

    A compact thermal-neutron coincidence counter has been constructed specifically for use by the International Atomic Energy Agency as a reference neutron detector for maintenance activities. The counter is designed for use only with {sup 252}Cf sources in SR-CF-100 capsules. This manual describes the detector's mechanical and electrical components and its operating characteristics. 2 refs., 8 figs.

  8. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum January 9, 2014 First in series of evening lectures open to public LOS ALAMOS, N.M., Jan. 9, 2014-Los Alamos National Laboratory Senior Fellow Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons stockpile plays in maintaining the nation's defense - and that of our allies - in a talk at 5:30 p.m., Jan. 15 at the Bradbury Science Museum. The talk is the first in a

  9. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emerging threats to global security focus of March 12 talk at Bradbury Science Museum March 6, 2014 Terry Wallace to address Lab's role in helping the government meet national security challenges LOS ALAMOS, N.M., March 6, 2014-Terry Wallace, principal associate director for Global Security at Los Alamos National Laboratory, will talk about potential emerging threats in a lecture at 5:30 p.m., March 12 at the Bradbury Science Museum. The talk is the third in a series of evening lectures planned

  10. Methods for Neutron Spectrometry

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  11. Fast neutron environments.

    SciTech Connect (OSTI)

    Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N.; Goods, Steven Howard; Foiles, Stephen Martin; Puskar, Joseph David; Hattar, Khalid Mikhiel; Doyle, Barney Lee; Boyce, Brad Lee; Clark, Blythe G.

    2011-10-01

    The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.

  12. The Science Program at the Los Alamos Ultracold Neutron Source...

    Office of Scientific and Technical Information (OSTI)

    Los Alamos National Laboratory Physics of Elementary Particles & Fields(72) Atomic and Nuclear Physics Atomic and Nuclear Physics Abstract Not Provided Los Alamos National...

  13. Public to have rare opportunity to tour Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility. At LANSCE, a stream of protons (hydrogen ions) are accelerated to nearly the speed of light in a linear accelerator. The protons are then used for a variety of...

  14. Los Alamos Neutron Science Center | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  15. Center for Nanophase Materials Sciences (CNMS) - Microsocpy, Neutron and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Scattering Capabilities ELECTRON & ATOM PROBE MICROSCOPY Advanced Scanning Electron Microscopy (SEM) and Spectroscopy (now listed under Nanofabrication Research Laboratory) Advanced Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS), and Energy Dispersive Spectroscopy (EDS) Soft Matter TEM (Zeiss Libra 120 TEM) This TEM features variable voltage (60 to 120 kV) and offers enhanced capabilities for

  16. The Science Program at the Los Alamos Ultracold Neutron Source...

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these results? Save Share this Record Citation Formats MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My ...

  17. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  18. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Print Text Size: A A A FeedbackShare Page BES User Facilities Brochure BES User Facilities Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and

  19. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  20. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  1. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  2. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  3. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadrunner firsts pave way for greener, faster supercomputing science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and ...

  4. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  5. Boron nitride solid state neutron detector

    DOE Patents [OSTI]

    Doty, F. Patrick

    2004-04-27

    The present invention describes an apparatus useful for detecting neutrons, and particularly for detecting thermal neutrons, while remaining insensitive to gamma radiation. Neutrons are detected by direct measurement of current pulses produced by an interaction of the neutrons with hexagonal pyrolytic boron nitride.

  6. Neutron capture therapy with deep tissue penetration using capillary neutron focusing

    DOE Patents [OSTI]

    Peurrung, Anthony J.

    1997-01-01

    An improved method for delivering thermal neutrons to a subsurface cancer or tumor which has been first doped with a dopant having a high cross section for neutron capture. The improvement is the use of a guide tube in cooperation with a capillary neutron focusing apparatus, or neutron focusing lens, for directing neutrons to the tumor, and thereby avoiding damage to surrounding tissue.

  7. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively since the late 1980s, only in the last decade has the field matured into a cohesive area of science. November 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  8. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As

  9. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  10. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  12. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been able to

  13. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  14. Progress in Alternative Neutron Detection to Address the Helium-3 Shortage

    SciTech Connect (OSTI)

    Kouzes, Richard T.; Lintereur, Azaree T.; Siciliano, Edward R.

    2015-06-01

    One of the main uses for 3He is in gas proportional counters for neutron detection. Such detectors are used at neutron scattering science facilities and in radiation portal monitors deployed for homeland security and non-proliferation applications. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, lung imaging, for targets in nuclear research, and for basic research in condensed matter physics. The supply of 3He comes entirely from the decay of tritium produced for nuclear weapons in the U.S. and Russia. Due to the large increase in use of 3He for science and homeland security (since 2002), the supply has dwindled, and can no longer meet the demand. This has led to the development of a number of alternative neutron detection schemes.

  15. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  16. Ion chamber based neutron detectors

    SciTech Connect (OSTI)

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  17. The Spallation Neutron Source Project

    Broader source: Energy.gov [DOE]

    When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project...

  18. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains ?eV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  19. CONTROL MEANS FOR NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Tonks, L.

    1962-08-01

    A control device surrounding the active portion of a nuclear reactor is described. The control device consists of a plurality of contiguous cylinders partly filled with a neutron absorbing material and partly filled with a neutron reflecting material, each cylinder having a longitudinal reentrant surface into which a portion of an adjacent cylinder extends, one of the cylinders having two re-entrant surfaces, and means for rotating the cylinders one at a time. (AEC)

  20. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.