Powered by Deep Web Technologies
Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

2

The Cosmic Origins Spectrograph: A Hubble Replacement Instrument  

E-Print Network [OSTI]

The Cosmic Origins Spectrograph: A Hubble Replacement Instrument for the 2002 Reservicing Mission Origins Spectrograph (COS) has recently been selected as a replacement instrument for the Hubble Space Telescope. Installation is scheduled for late 2002, replacing COSTAR, which at that time will be unnecessary

Colorado at Boulder, University of

3

Original article Natural mating of instrumentally  

E-Print Network [OSTI]

before they start egg laying. Thus, the control over mating of parents is lost. To prevent this, queen INTRODUCTION Instrumental insemination assures control over mating of parents in the honey bee. However, Woyke

Paris-Sud XI, Université de

4

Advances in instrumentation for nuclear astrophysics  

SciTech Connect (OSTI)

The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentation necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.

Pain, S. D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-15T23:59:59.000Z

5

E-Print Network 3.0 - advanced wind-tunnel instrumentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind-tunnel instrumentation Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced wind-tunnel instrumentation Page: << < 1 2 3 4 5 > >> 1...

6

E-Print Network 3.0 - advanced instrumentation information Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

instrumentation information Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced instrumentation information Page: << < 1 2 3 4 5 > >> 1 2nd...

7

Advanced Sensors and Instrumentation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORY OFEnergyAdvancedNuclear

8

Advances in nuclear instrumentation for safeguards  

SciTech Connect (OSTI)

This paper describes detectors, instrumentation, and analytical methods under development to address the above issues. The authors will describe work underway on room-temperature semiconductors including attempts to model the response of these detectors to improve spectrum analysis procedures and detector design. Computerized tomography is used in many medical and industrial applications; they are developing both gamma-ray and neutron tomography for improved measurements of waste and direct-use materials. Modern electronics and scintillation detectors should permit the development of fast neutron coincidence detectors with dramatically improved signal-to-noise ratios. For active measurements, they are studying several improved neutron sources, including a high-fluence, plasma-based, d-t generator. New analysis tools from information theory may permit one to better combine data from different measurement systems. This paper attempts to briefly describe a range of new sensors, electronics, and data analysis methods under study at Los Alamos and other laboratories to promote discussion of promising technology that they may bring to bear on these important global issues.

Prettyman, T.H.; Reilly, T.D.; Miller, M.C.; Hollas, C.L.; Pickrell, M.M.; Prommel, J.M.; Dreicer, J.S.

1996-12-31T23:59:59.000Z

9

E-Print Network 3.0 - advanced instrumented center Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

34 Major Research Instrumentation Program (MRI-R) Recovery and Reinvestment Summary: report on "Advanced Research Instrumentation and Facilities" (ARIF) was that the NSF should...

10

Enhanced in-pile instrumentation at the advanced test reactor  

SciTech Connect (OSTI)

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and realtime flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted. (authors)

Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T.; Chase, B. M.; Palmer, J.; Condie, K. G.; Davis, K. L. [Idaho National Laboratory, MS 3840, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

2011-07-01T23:59:59.000Z

11

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

SciTech Connect (OSTI)

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

2012-08-01T23:59:59.000Z

12

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

SciTech Connect (OSTI)

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

2011-06-01T23:59:59.000Z

13

FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards  

SciTech Connect (OSTI)

Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be the best candidate technology for determining nitric acid concentrations but the PGNAA approach may also be applicable. 4) Work was also carried out to begin investigating the use of remote UV imaging to detect air-ionization induced by alpha particle emission from plutonium. This approach has been shown elsewhere as a useful tool for detecting and quantifying plutonium contamination and has the potential of providing a unique and powerful approach for quantifying hold-up in reprocessing facilities. Based on these simple scoping experiments the potential far-reaching capabilities of the measurement are clear.

D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

2009-08-01T23:59:59.000Z

14

5.33 Advanced Chemical Experimentation and Instrumentation, Fall 2005  

E-Print Network [OSTI]

Advanced experimentation, with particular emphasis on chemical synthesis and the fundamentals of quantum chemistry illustrated through molecular spectroscopy. Instruction and practice in the written and oral presentation ...

Gheorghiu, Mircea D.

15

5.33 Advanced Chemical Experimentation and Instrumentation, Fall 2002  

E-Print Network [OSTI]

Advanced experimentation, with particular emphasis on chemical synthesis and the fundamentals of quantum chemistry illustrated through molecular spectroscopy. Instruction and practice in the written and oral presentation ...

Gheorghiu, Mircea D.

16

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

17

Advanced Sensors and Instrumentation Newsletter | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142 U.S.Advanced Sensors

18

Advanced research in instrumentation and control technology: Acoustic parameter studies  

SciTech Connect (OSTI)

In the process of developing acoustic/ultrasonic instruments for coal conversion and combustion processes, there is a need to understand various complex relations between acoustic parameters and physical properties of coal/gas and coal/liquid media so that the instrument readings and measurement accuracy can be evaluated and new sensing techniques can be developed. The primary objective of this project is to examine the theory and perform measurements of acoustic/ultrasonic parameters in such coal media. The acoustic parameters of interest are sound speed, attenuation, scattering pattern, and resonance scattering, which relate directly or indirectly to coal concentration, particle size and distribution, and rheological and thermal properties. In summary, we have developed a laboratory technique for accurate attenuation measurement in highly viscous liquids and coal slurries. For pure liquids, the attenuation in low frequency (0.8 to 2 MHz) provides a direct measurement of fluid shear viscosity. For coal slurries of low concentration (<10% by weight) attenuation in the same frequency range still follows the variation of fluid viscosity. But, for slurries of higher coal concentration, anomalous attenuation may be measured, depending on the fluid structure, which is believed to be a micor-inhomogeneous medium. 8 refs., 5 figs., 1 tab.

Sheen, S.H.; Bobis, J.P.; Raptis, A.C.

1986-01-01T23:59:59.000Z

19

Advanced Sensors and Instrumentation 2013 ANNUAL PROJECT REVIEW  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdward Lyford-Pike,ThisAdvanced

20

Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

J. L. Rempe; D. L. Knudson; J. E. Daw

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011  

SciTech Connect (OSTI)

The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

Not Available

2011-10-01T23:59:59.000Z

22

Seismic isolation of Advanced LIGO gravitational waves detectors: Review of strategy, instrumentation, and performance  

E-Print Network [OSTI]

Isolating ground-based interferometric gravitational wave observatories from environmental disturbances is one of the great challenges of the advanced detector era. In order to directly observe gravitational waves, the detector components and test masses must be highly inertially decoupled from the ground motion not only to sense the faint strain of space-time induced by gravitational waves, but also to maintain the resonance of the very sensitive 4 km interferometers. This article presents the seismic isolation instrumentation and strategy developed for Advanced LIGO interferometers. It reviews over a decade of research on active isolation in the context of gravitational wave detection, and presents the performance recently achieved with the Advanced LIGO observatory. Lastly, it discusses prospects for future developments in active seismic isolation and the anticipated benefits to astrophysical gravitational wave searches. Beyond gravitational wave research, the goal of this article is to provide detailed is...

Matichard, F; Mittleman, R; Mason, K; Kissel, J; McIver, J; Abbott, B; Abbott, R; Abbott, S; Allwine, E; Barnum, S; Birch, J; Biscans, S; Celerier, C; Clark, D; Coyne, D; DeBra, D; DeRosa, R; Evans, M; Foley, S; Fritschel, P; Giaime, J A; Gray, C; Grabeel, G; Hanson, J; Hardham, C; Hillard, M; Hua, W; Kucharczyk, C; Landry, M; Roux, A Le; Lhuillier, V; Macleod, D; Macinnis, M; Mitchell, R; Reilly, B O; Ottaway, D; Paris, H; Pele, A; Puma, M; Radkins, H; Ramet, C; Robinson, M; Ruet, L; Sarin, P; Shoemaker, D; Stein, A; Thomas, J; Vargas, M; Venkateswara, K; Warner, J; Wen, S

2015-01-01T23:59:59.000Z

23

Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.

J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; R. Schley; J. Palmer; K. Condie

2014-01-01T23:59:59.000Z

24

Advances in high-throughput speed, low-latency communication for embedded instrumentation ( 7th Annual SFAF Meeting, 2012)  

ScienceCinema (OSTI)

Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Jordan, Scott [Physik Instrumente

2013-02-11T23:59:59.000Z

25

Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting  

SciTech Connect (OSTI)

The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-01-01T23:59:59.000Z

26

AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF  

SciTech Connect (OSTI)

Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

27

Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration  

SciTech Connect (OSTI)

Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topical areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research exper

J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster; Robert M. Edwards; Kenneth D. Lewis; Paul Turinsky; Jamie Coble

2011-05-31T23:59:59.000Z

28

Advanced Maintenance Modelling StatAvaries : An original multinet decision support tool for  

E-Print Network [OSTI]

the use of the preventive maintenance strategies on the availability of the network whereas the last model and preventive maintenance actions to delays before broken rails detection and related number of missed trains (aAdvanced Maintenance Modelling 1 StatAvaries : An original multinet decision support tool

Paris-Sud XI, Université de

29

Qualification issues associated with the use of advanced instrumentation and control systems hardware in nuclear power plants  

SciTech Connect (OSTI)

The instrumentation and control (I&C) systems in advanced reactors will make extensive use of digital controls, microprocessors, multiplexing, and Tiber-optic transmission. Elements of these advances in I&C have been implemented on some current operating plants. However, the widespread use of the above technologies, as well as the use of artificial intelligence with minimum reliance on human operator control of reactors, highlights the need to develop standards for qualifying I&C used in the next generation of nuclear power plants. As a first step in this direction, the protection system I&C for present-day plants was compared to that proposed for advanced light water reactors (ALWRs). An evaluation template was developed by assembling a configuration of a safety channel instrument string for a generic ALWR, then comparing the impact of environmental stressors on that string to their effect on an equivalent instrument string from an existing light water reactor. The template was then used to address reliability issues for microprocessor-based protection systems. Standards (or lack thereof) for the qualification of microprocessor-based safety I&C systems were also identified. This approach addresses in part issues raised in Nuclear Regulatory Commission policy document SECY-91-292. which recognizes that advanced I&C systems for the nuclear industry are ``being developed without consensus standards, as the technology available for design is ahead of the technology that is well understood through experience and supported by application standards.``

Korsah, K. [Oak Ridge National Lab., TN (United States); Antonescu, C. [Nuclear Regulatory Commission, Rockville, MD (United States). Office of Nuclear Regulatory Research

1993-10-01T23:59:59.000Z

30

E-Print Network 3.0 - advanced reactor instrumentation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in advanced fuel and materials, nuclear medicine... of fission power reactors, to thermonuclear fusion and plasma physics, ... Source: Entekhabi, Dara - Kavli Institute for...

31

Assessment of instrumentation needs for advanced coal power plant applications: Final report  

SciTech Connect (OSTI)

The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

1987-10-01T23:59:59.000Z

32

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R D.

Not Available

1992-12-01T23:59:59.000Z

33

7-GeV Advanced Photon Source Instrumentation Initiative conceptual design report  

SciTech Connect (OSTI)

In this APS Instrumentation Initiative, 2.5-m-long and 5-m-long insertion-device x-ray sources will be built on 9 straight sections of the APS storage ring, and an additional 9 bending-magnet sources will also be put in use. The front ends for these 18 x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build state-of-the-art insertion-device beamlines to meet scientific and technological research demands well into the next century. This new initiative will also include four user laboratory modules and a special laboratory designed to meet the x-ray imaging research needs of the users. The Conceptual Design Report (CDR) for the APS Instrumentation Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. According to these plans, this new initiative begins in FY 1994 and ends in FY 1998. The document also describes the preconstruction R&D plans for the Instrumentation Initiative activities and provides the cost estimates for the required R&D.

Not Available

1992-12-01T23:59:59.000Z

34

Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation  

E-Print Network [OSTI]

This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to partner with industry in taking on such a challenge.

M. Hohlmann

2013-09-05T23:59:59.000Z

35

Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation  

E-Print Network [OSTI]

This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

Hohlmann, M

2013-01-01T23:59:59.000Z

36

Implementation of advanced matrix corrections for active interrogation of waste drums using the CTEN instrument  

SciTech Connect (OSTI)

The combined thermal/epithermal neutron instrument (CTEN) was designed at Los Alamos to improve measurement accuracy and mitigate self shielding effects inherent in the differential dieaway technique (DDT). A major goal in this research effort has been the development of a calibration technique that incorporates recently developed matrix and self-shielding corrections using data generated from additional detectors and new acquisition techniques. A comprehensive data set containing both active and passive measurements was generated using 26 different matrices and comprising a total of 1,400 measurements. In all, 31 flux-and-matrix-dependent parameters, 24 positional parameters, two dieaway times, and a correlated ratio were determined from each of the over 1,400 measurements. A reduced list of matrix indicators, prioritized using the alternating conditional expectation (ACE) algorithm, was used to train a neural network using a generalized regression technique (GRNN) to determine matrix- and position-corrected calibration factors. This paper describes the experimental, analytical, and empirical techniques used to determine the corrected calibration factor for an unknown waste drum. Results from a range of cases are compared with those obtained using a mobile DDT instrument and traditional DDT algorithms.

Melton, S.; Estep, R.; Hollas, C.

1998-12-31T23:59:59.000Z

37

Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University  

SciTech Connect (OSTI)

The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

Luo, Tianhuan; /Indiana U.

2011-08-01T23:59:59.000Z

38

LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013  

SciTech Connect (OSTI)

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Hallbert, Bruce; Thomas, Ken

2014-07-01T23:59:59.000Z

39

Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S.  

SciTech Connect (OSTI)

The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I&C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues.

Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

40

Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

U.S. Department Of Energy Advanced Small Modular Reactor R&D Program: Instrumentation, Controls, and Human-Machine Interface (ICHMI) Pathway  

SciTech Connect (OSTI)

Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of modern ICHMI technology. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, several DOE programs have substantial ICHMI RD&D elements within their respective research portfolios. This paper describes current ICHMI research in support of advanced small modular reactors. The objectives that can be achieved through execution of the defined RD&D are to provide optimal technical solutions to critical ICHMI issues, resolve technology gaps arising from the unique measurement and control characteristics of advanced reactor concepts, provide demonstration of needed technologies and methodologies in the nuclear power application domain, mature emerging technologies to facilitate commercialization, and establish necessary technical evidence and application experience to enable timely and predictable licensing. 1 Introduction Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by licenseability concerns. Although the recent progress in constructing new plants has spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, development of advanced reactor concepts, such as Generation IV designs and small modular reactors, introduces different plant conditions (e.g., higher temperatures, different coolants, etc.) and unique plant configurations (e.g., multiunit plants with shared systems, balance of plant architectures with reconfigurable co-generation options) that increase the need for enhanced ICHMI capabilities to fully achieve industry goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, significant challenges remain to be addressed to enable the nuclear power industry to complete the transition to safe and comprehensive use of m

Holcomb, David Eugene [ORNL; Wood, Richard Thomas [ORNL

2013-01-01T23:59:59.000Z

42

Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs  

SciTech Connect (OSTI)

This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

1994-04-01T23:59:59.000Z

43

Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScienceScripting forAdvances in

44

Exertion instruments  

E-Print Network [OSTI]

This dissertation describes the research, development and reasoning behind a family of musical instruments called Exertion Instruments. They use inline electrical generators to run a synthesizer and an amplifier while ...

Vawter, Noah (Noah Theodore)

2011-01-01T23:59:59.000Z

45

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation

46

ARM - Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX)govCampaignsWintergovInstrumentsAirborne

47

Historical perspective of innovation in electronic payment instruments  

E-Print Network [OSTI]

Electronic Payment Instruments have seen unprecedented innovation in the past XX-th century. Most of this innovation was made possible by advances in information and communication technology. Advances in ICT paired with ...

Pogor, Iulian

2011-01-01T23:59:59.000Z

48

Accenture Life Sciences Advanced Instruments, Inc.  

E-Print Network [OSTI]

Resources DEKA Research and Development Corporation DePuy Spine, Inc. DocBox, Inc. Draeger Medical Systems, Inc. Eastman Kodak Company Eaton-Peabody Laboratory Elm Electrical & Automation EndoCore Essex Genzyme Corporation Goodyear-Veyance Technologies, Inc. Harvard Business School Harvard Medical School

Vajda, Sandor

49

Advanced Instruments, Inc. Applied Medical Resources  

E-Print Network [OSTI]

Cynosure Davol - C.R. Bard, Inc. Decision Resources DEKA Research and Development Corporation DePuy Spine, Inc. DocBox, Inc. Draeger Medical Systems, Inc. Eastman Kodak Company Eaton-Peabody Laboratory Elm USA-CMI GE Healthcare Gems Sensors Genzyme Corporation Goodyear-Veyance Technologies, Inc. Harvard

Vajda, Sandor

50

Accenture Life Sciences Advanced Instruments, Inc.  

E-Print Network [OSTI]

. Decision Resources DEKA Research and Development Corporation DePuy Spine, Inc. DocBox, Inc. Draeger Medical Systems, Inc. Eastman Kodak Company Eaton-Peabody Laboratory Elm Electrical & Automation EndoCore Essex Healthcare Gems Sensors Genzyme Corporation GlobalData Healthcare Goodyear-Veyance Technologies, Inc. Harvard

Vajda, Sandor

51

Advanced Instrumentation, Information, and Control System Technologies:  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41Adam GarberStartDepartment

52

Advanced LIGO  

E-Print Network [OSTI]

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

53

Low activated incore instrument  

DOE Patents [OSTI]

Instrumentation for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials.

Ekeroth, Douglas E. (Delmont, PA)

1994-01-01T23:59:59.000Z

54

Low activated incore instrument  

DOE Patents [OSTI]

Instrumentation is described for nuclear reactor head-mounted incore instrumentation systems fabricated of low nuclear cross section materials (i.e., zirconium or titanium). The instrumentation emits less radiation than that fabricated of conventional materials. 9 figures.

Ekeroth, D.E.

1994-04-19T23:59:59.000Z

55

Candidate Selection Instrument  

Broader source: Energy.gov [DOE]

The candidate selection instrument is designed to take the guesswork out of selecting candidates for the various career development programs of interest. The instrument is straightforward and...

56

Evaluating musical instruments  

SciTech Connect (OSTI)

Scientific measurements of sound generation and radiation by musical instruments are surprisingly hard to correlate with the subtle and complex judgments of instrumental quality made by expert musicians.

Campbell, D. Murray

2014-04-01T23:59:59.000Z

57

Career Map: Instrumentation Coordinator  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Instrumentation Coordinator positions.

58

Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates  

SciTech Connect (OSTI)

This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

Witte, Travis

2011-11-30T23:59:59.000Z

59

Internship experience at Texas Instruments: the internship report  

E-Print Network [OSTI]

This report presents a survey of the author's internship experience with Texas Instruments from November 1980 to November 1981. The internship was spent in the Advanced Research and Development Division of the Digital Systems Group...

Glover, Kerry Cloyce, 1954-

2013-03-13T23:59:59.000Z

60

E-Print Network 3.0 - autonomous instrument guidance Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Intelligent Systems Research Collection: Engineering 31 Header for SPIE use Robot Design Summary: Instrument Arm) Advanced Control & Autonomy (Autonomous Sample...

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PNWD-SA-6893 Instrumenting the Intelligence Analysis Process  

E-Print Network [OSTI]

PNWD-SA-6893 Instrumenting the Intelligence Analysis Process Ernest Hampson Paula Cowley PresentedLean, VA, USA Battelle Memorial Institute #12;Instrumenting the Intelligence Analysis Process Ernest process Abstract The Advanced Research and Development Activity initiated the Novel Intelligence from

62

E-Print Network 3.0 - advanced accelerating structures Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NIU), where advanced accelerator concepts and beam manipulation techniques... accelerators are among the most powerful scientific instruments ... Source: Experimental High...

63

Instrumentation, Control, and Intelligent Systems  

SciTech Connect (OSTI)

Abundant and affordable energy is required for U.S. economic stability and national security. Advanced nuclear power plants offer the best near-term potential to generate abundant, affordable, and sustainable electricity and hydrogen without appreciable generation of greenhouse gases. To that end, Idaho National Laboratory (INL) has been charged with leading the revitalization of nuclear power in the U.S. The INL vision is to become the preeminent nuclear energy laboratory with synergistic, world-class, multi-program capabilities and partnerships by 2015. The vision focuses on four essential destinations: (1) Be the preeminent internationally-recognized nuclear energy research, development, and demonstration laboratory; (2) Be a major center for national security technology development and demonstration; (3) Be a multi-program national laboratory with world-class capabilities; (4) Foster academic, industry, government, and international collaborations to produce the needed investment, programs, and expertise. Crucial to that effort is the inclusion of research in advanced instrumentation, control, and intelligent systems (ICIS) for use in current and advanced power and energy security systems to enable increased performance, reliability, security, and safety. For nuclear energy plants, ICIS will extend the lifetime of power plant systems, increase performance and power output, and ensure reliable operation within the system's safety margin; for national security applications, ICIS will enable increased protection of our nation's critical infrastructure. In general, ICIS will cost-effectively increase performance for all energy security systems.

Not Available

2005-09-01T23:59:59.000Z

64

Intensity Frontier Instrumentation  

E-Print Network [OSTI]

This report summarizes findings of the 2013 Snowmass Community Summer Study Instrumentation Frontier's subgroup on the Intensity Frontier. This report is directed at identifying instrumentation R&D needed to support particle physics research over the coming decades at the Intensity Frontier.

S. H. Kettell; R. A. Rameika; R. S. Tschirhart

2013-09-26T23:59:59.000Z

65

Webinar: Advanced Electrocatalysts for PEM Fuel Cells  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, Advanced Electrocatalysts for PEM Fuel Cells, originally presented on February 12, 2013.

66

Welcome and Advanced Manufacturing Partnership (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

67

INSTRUMENTATION FOR ENVIRONMENTAL MONITORING  

E-Print Network [OSTI]

Nuclear Weapons Advancing Technology Nuclear Power U.Th cosmic rays Diagnostic x-rays (medical, dental) U.S. , Russian tests (

McLaughlin, R.D.

2010-01-01T23:59:59.000Z

68

Space Instrument Realization (ISR-5)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Space Instrument Realization Providing expertise to support the design and fabrication of space-based custom instrumentation Contacts Group Leader Amy Regan Email Staff...

69

Instrument Technique Staff Assisted &  

E-Print Network [OSTI]

Nanophoton Raman 11 Raman Spectroscopy $150 $175 Newport Solar Simulator Solar Simulator $150 $175 Nicolet $175 CM Furnace Furnace $65 $120 CNT Furnace Furnace $65 $120 Desert Cryo Probe Station Probe Station will be added depending on your funding instrument or agreement. #12;Lead Furnace Furnace $65 $120 Lindberg 1

Braun, Paul

70

AC resistance measuring instrument  

DOE Patents [OSTI]

An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.

Hof, P.J.

1983-10-04T23:59:59.000Z

71

E-Print Network 3.0 - advanced stage neuroblastoma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

neuroblastoma Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced stage neuroblastoma Page: << < 1 2 3 4 5 > >> 1 ORIGINAL ARTICLE Inhibition...

72

ARM - Instrumentation Workshop 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDC documentationgovInstrumentstsigovInstrumentswsiFacilityInstrumentation

73

TMT Science and Instruments  

E-Print Network [OSTI]

To meet the scientific goals of the Thirty Meter Telescope Project, full diffraction-limited performance is required from the outset and hence the entire observatory is being designed, as a system, to achieve this. The preliminary design phases of the telescope and the first light adaptive optic facility are now approaching completion so that much better predictions of the system performance are possible. The telescope design and instrumentation are summarized in this presentation, with a brief description of some of the scientific programs that are foreseen.

David Crampton; Luc Simard; David Silva

2008-01-23T23:59:59.000Z

74

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystemCentral FacilityInstruments SGP

75

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAnthe Infrared LandSystemCentral FacilityInstruments

76

ARM - Instrument Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList ofgovInstrumentsContacts

77

ARM - Instrument Location Table  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsListgovInstrumentsLocation Table

78

ARM - RHUBC II Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RHUBC-II Home RHUBC

79

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

80

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions Related Links AzoresInstruments

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions RelatedInactiveInstruments NSA

82

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience Questions RelatedInactiveInstruments

83

ARM - Site Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing DataScience QuestionsInactiveInstruments TWP Related

84

WNR Instrument Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchivesInstrument

85

ARM - Instrument - 50rwp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [FacilityIndiaGVAXAssociatedgovInstruments50rwp

86

The QUIET Instrument  

SciTech Connect (OSTI)

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the Cosmic Microwave Background, targeting the imprint of inflationary gravitational waves at large angular scales ({approx}1{sup o}). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4m side-fed Dragonian telescope. The polarimeters which form the focal planes use a highly compact design based on High Electron Mobility Transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0:1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0:01. The two arrays together cover multipoles in the range {ell} {approx} 25 -- 975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance of, and sources of systematic error for the instrument.

Bischoff, C.; et al.

2012-07-01T23:59:59.000Z

87

New Center for Advanced Medical Instrumentation Created | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1,Department of EnergyNew Center for

88

Advanced Sensors and Instrumentation Annual Project Review 2013 |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclear Energy ProjectsServices

89

Introductory Remarks: ARM AVP Workshop on Advances in Airborne Instrumentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared LandResponses to EngineeredADepartment of1999Two Sign

90

The MICE PID Instrumentation  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight stations, two Aerogel Cerenkov detectors and a KLOE-like calorimeter has been constructed in order to keep beam contamination ($e, \\pi$) well below 1%. The MICE time-of-flight system will measure timing with a resolution better than 70 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and electron backgrounds from RF dark current.

M. Bonesini

2008-10-02T23:59:59.000Z

91

Instrumented Pipeline Initiative  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

92

The MICE PID Instrumentation  

E-Print Network [OSTI]

The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigation of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight stations, two Aerogel Cerenkov detectors and a KLOE-like calorimeter has been constructed in order to keep beam contamination ($e, \\pi$) well below 1%. The MICE time-of-flight system will measure timing with a resolution better than 70 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and electron backgrounds from RF dark current.

Bonesini, M

2008-01-01T23:59:59.000Z

93

E-Print Network 3.0 - advanced gen iv Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hours, 2 courses at the 3000- 4000-level). Must be outside... Instrumental Methods of Chemical Analysis Laboratory 4333 Advanced Inorganic Chem.- Periodic System 4444 Source:...

94

E-Print Network 3.0 - advanced accelerator experimental Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(NIU), where advanced accelerator concepts and beam manipulation techniques... accelerators are among the most powerful scientific instruments mankind has built. They are...

95

Advanced Microturbine Systems  

SciTech Connect (OSTI)

Dept. of Energy (DOE) Cooperative Agreement DE-FC02-00-CH11061 was originally awarded to Honeywell International, Inc. â?? Honeywell Power Systems Inc. (HPSI) division located in Albuquerque, NM in October 2000 to conduct a program titled Advanced Microturbine Systems (AMS). The DOE Advanced Microturbines Systems Program was originally proposed as a five-year program to design and develop a high efficiency, low emissions, durable microturbine system. The period of performance was to be October 2000 through September 2005. Program efforts were underway, when one year into the program Honeywell sold the intellectual property of Honeywell Power Systems Inc. and HPSI ceased business operations. Honeywell made an internal decision to restructure the existing program due to the HPSI shutdown and submitted a formal request to DOE on September 24, 2001 to transfer the Cooperative Agreement to Honeywell Engines, Systems and Services (HES&S) in Phoenix, AZ in order to continue to offer support for DOE's Advanced Microturbine Program. Work continued on the descoped program under Cooperative Agreement No. DE-FC26-00-CH11061 and has been completed.

None

2005-12-31T23:59:59.000Z

96

Solar Energy Research Center Instrumentation Facility  

SciTech Connect (OSTI)

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

97

Intensity Frontier Instrumentation  

SciTech Connect (OSTI)

The fundamental origin of flavor in the Standard Model (SM) remains a mystery. Despite the roughly eighty years since Rabi asked “Who ordered that?” upon learning of the discovery of the muon, we have not understood the reason that there are three generations or, more recently, why the quark and neutrino mixing matrices and masses are so different. The solution to the flavor problem would give profound insights into physics beyond the Standard Model (BSM) and tell us about the couplings and the mass scale at which the next level of insight can be found. The SM fails to explain all observed phenomena: new interactions and yet unseen particles must exist. They may manifest themselves by causing SM reactions to differ from often very precise predictions. The Intensity Frontier (1) explores these fundamental questions by searching for new physics in extremely rare processes or those forbidden in the SM. This often requires massive and/or extremely finely tuned detectors.

Kettell S.; Rameika, R.; Tshirhart, B.

2013-09-24T23:59:59.000Z

98

Instrumentation and Controls Division progress report, September 1, 1980-July 1, 1982  

SciTech Connect (OSTI)

Activities are reported by the Reactor Systems Section, Research Instrument Section, and the Measurement and Controls Engineering Section. Reactor system activities include dynamic analysis, survillanc and diagnostic methods, design and evaluation, detectors, facilities support, process instrumentation development, and special assignments. Activities in the Research Instrument Section include the Navy-ORNL RADIAC development program, advanced ..gamma.. and x ray detector systems, neutron detection and subcriticality measurements, circuit development, position-sensitive detectors, stand-alone computers, environmental monitoring-detectors and systems, plant security, engineering support for fusion energy division, engineering support for accelerator physics, and communications: radio, closed-circuit tv, and computer. Activities in the Measurement and Controls Engineering Section include the AVLIS program; gas centrifuge enrichment technology support; Advanced Instrumentation for Reflood Studies (AIDRS) program; instrumentation development support for fuel reprocessing; in-core experiments and reactor systems; energy, conservation, and electric power systems; computer systems; measurements research; and fossil energy studies Publications are listed. (WHK)

Klobe, L.E.E. (ed.)

1982-12-01T23:59:59.000Z

99

ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS  

SciTech Connect (OSTI)

A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

Joy L. Rempe; Mitchell K. Meyer

2009-04-01T23:59:59.000Z

100

Research Report Hedonic and Instrumental  

E-Print Network [OSTI]

Mitchell,1 and James J. Gross2 1 Boston College and 2 Stanford University ABSTRACT--What motivates, & Rodriguez, 1989). Such instrumental motives might play a role in the regulation of emotion (Parrott, 1993

Gross, James J.

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

2000-12-05T23:59:59.000Z

102

Departmental Business Instrument Numbering System  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

2005-01-27T23:59:59.000Z

103

Advanced Combustion  

SciTech Connect (OSTI)

The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

Holcomb, Gordon R. [NETL

2013-03-11T23:59:59.000Z

104

Safeguards instrumentation: a computer-based catalog. Second edition  

SciTech Connect (OSTI)

This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community.

Auerbach, C.

1985-04-01T23:59:59.000Z

105

Readiness Issues for Emergency Response Instrumentation  

SciTech Connect (OSTI)

Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

C.A. Riland; D.R. Bowman; R.J. Tighe

1999-03-01T23:59:59.000Z

106

Nuclear and fundamental physics instrumentation for the ANS project  

SciTech Connect (OSTI)

This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs.

Robinson, S.J. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics; Raman, S.; Arterburn, J.; McManamy, T.; Peretz, F.J. [Oak Ridge National Lab., TN (United States); Faust, H. [Institut Laue-Langevin, 38 - Grenoble (France); Piotrowski, A.E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

1996-05-01T23:59:59.000Z

107

Future Science Needs and Opportunities for Electron Scattering: Next-Generation Instrumentation and Beyond. Report of the Basic Energy Sciences Workshop on Electron Scattering for Materials Characterization, March 1-2, 2007  

SciTech Connect (OSTI)

To identify emerging basic science and engineering research needs and opportunities that will require major advances in electron-scattering theory, technology, and instrumentation.

Miller, D. J.; Williams, D. B.; Anderson, I. M.; Schmid, A. K.; Zaluzec, N. J.

2007-03-02T23:59:59.000Z

108

ORIGINAL RESEARCH ARTICLE published: 17 December 2013  

E-Print Network [OSTI]

ORIGINAL RESEARCH ARTICLE published: 17 December 2013 doi: 10.3389/fnagi.2013.00090 Advanced Brain,4 and Vera Novak5 1 Structural Brain Mapping Group, Department of Psychiatry, Jena University Hospital, Jena, USA *Correspondence: Katja Franke, Structural Brain Mapping Group, Department of Psychiatry, Jena

Gaser, Christian

109

Science Drivers and Technical Challenges for Advanced Magnetic Resonance  

SciTech Connect (OSTI)

This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

2013-03-07T23:59:59.000Z

110

THE COSMIC ORIGINS SPECTROGRAPH  

SciTech Connect (OSTI)

The Cosmic Origins Spectrograph (COS) is a moderate-resolution spectrograph with unprecedented sensitivity that was installed into the Hubble Space Telescope (HST) in 2009 May, during HST Servicing Mission 4 (STS-125). We present the design philosophy and summarize the key characteristics of the instrument that will be of interest to potential observers. For faint targets, with flux F{sub {lambda}} Almost-Equal-To 1.0 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1} A{sup -1}, COS can achieve comparable signal to noise (when compared to Space Telescope Imaging Spectrograph echelle modes) in 1%-2% of the observing time. This has led to a significant increase in the total data volume and data quality available to the community. For example, in the first 20 months of science operation (2009 September-2011 June) the cumulative redshift pathlength of extragalactic sight lines sampled by COS is nine times than sampled at moderate resolution in 19 previous years of Hubble observations. COS programs have observed 214 distinct lines of sight suitable for study of the intergalactic medium as of 2011 June. COS has measured, for the first time with high reliability, broad Ly{alpha} absorbers and Ne VIII in the intergalactic medium, and observed the He II reionization epoch along multiple sightlines. COS has detected the first CO emission and absorption in the UV spectra of low-mass circumstellar disks at the epoch of giant planet formation, and detected multiple ionization states of metals in extra-solar planetary atmospheres. In the coming years, COS will continue its census of intergalactic gas, probe galactic and cosmic structure, and explore physics in our solar system and Galaxy.

Green, James C.; Michael Shull, J.; Snow, Theodore P.; Stocke, John [Department of Astrophysical and Planetary Sciences, University of Colorado, 391-UCB, Boulder, CO 80309 (United States); Froning, Cynthia S.; Osterman, Steve; Beland, Stephane; Burgh, Eric B.; Danforth, Charles; France, Kevin [Center for Astrophysics and Space Astronomy, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Ebbets, Dennis [Ball Aerospace and Technologies Corp., 1600 Commerce Street, Boulder, CO 80301 (United States); Heap, Sara H. [NASA Goddard Space Flight Center, Code 681, Greenbelt, MD 20771 (United States); Leitherer, Claus; Sembach, Kenneth [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, Boulder, CO 80309-0440 (United States); Savage, Blair D. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Siegmund, Oswald H. W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Spencer, John; Alan Stern, S. [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Welsh, Barry [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); and others

2012-01-01T23:59:59.000Z

111

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced Energy

112

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

113

Original Impact Calculations  

Broader source: Energy.gov [DOE]

Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

114

International Conference Synchrotron Radiation Instrumentation SRI `94  

SciTech Connect (OSTI)

This report contains abstracts for the international conference on Synchrotron Radiation Instrumentation at Brookhaven National Laboratory.

Not Available

1994-10-01T23:59:59.000Z

115

ACRF Instrumentation Status and Information - June 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-06-01T23:59:59.000Z

116

ACRF Instrumentation Status and Information September 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01T23:59:59.000Z

117

ACRF Instrumentation Status and Information July 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-08-13T23:59:59.000Z

118

ACRF Instrumentation Status and Information April 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-05-07T23:59:59.000Z

119

ACRF Instrumentation Status and Information August 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-09-09T23:59:59.000Z

120

ACRF Instrumentation Status and Information May 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Instrumentation  

E-Print Network [OSTI]

indicate the following results. (i) Fair agreement is obtained with the theory of Stine and Wanlass 2 at

J. Picken; B. Sc; R. Harmer; J. Picken; B. Sc; R. Harmer; A Nol

1958-01-01T23:59:59.000Z

122

The GRAVITY instrument software / High-level software  

E-Print Network [OSTI]

GRAVITY is the four-beam, near- infrared, AO-assisted, fringe tracking, astrometric and imaging instrument for the Very Large Telescope Interferometer (VLTI). It is requiring the development of one of the most complex instrument software systems ever built for an ESO instrument. Apart from its many interfaces and interdependencies, one of the most challenging aspects is the overall performance and stability of this complex system. The three infrared detectors and the fast reflective memory network (RMN) recorder contribute a total data rate of up to 20 MiB/s accumulating to a maximum of 250 GiB of data per night. The detectors, the two instrument Local Control Units (LCUs) as well as the five LCUs running applications under TAC (Tools for Advanced Control) architecture, are interconnected with fast Ethernet, RMN fibers and dedicated fiber connections as well as signals for the time synchronization. Here we give a simplified overview of all subsystems of GRAVITY and their interfaces and discuss two examples of...

Burtscher, Leonard; Ott, Thomas; Kok, Yitping; Yazici, Senol; Anugu, Narsireddy; Dembet, Roderick; Fedou, Pierre; Lacour, Sylvestre; Ott, Juergen; Paumard, Thibaut; Lapeyrere, Vincent; Kervella, Pierre; Abuter, Roberto; Pozna, Eszter; Eisenhauer, Frank; Blind, Nicolas; Genzel, Reinhard; Gillessen, Stefan; Hans, Oliver; Haug, Marcus; Haussmann, Frank; Kellner, Stefan; Lippa, Magdalena; Pfuhl, Oliver; Sturm, Eckhard; Weber, Johannes; Amorim, Antonio; Brandner, Wolfgang; Rousselet-Perraut, Karine; Perrin, Guy S; Straubmeier, Christian; Schoeller, Markus

2015-01-01T23:59:59.000Z

123

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-01-30T23:59:59.000Z

124

The Electronic Origin of Photoinduced Strain | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different Impacts ofDepositedofModifying

125

Principal Components Instrumental Variable Estimation  

E-Print Network [OSTI]

of the main results are displayed in two appendices. 2 Econometric Framework Consider the simultaneous equations model y = X? + u and X = Z?+ V , (1) 1 An advantage of such general structure is that the ‘large-sample’ condition used in previous studies Kn/ p n... ? 0, where Kn is the number of instruments and n is the sample size, is not required in our asymptotic approximations. 4 where y is the n × 1 vector containing n observations of the dependent variable; X is the n × G matrix with observations...

Winkelried, Diego; Smith, Richard J.

2011-01-31T23:59:59.000Z

126

Tevatron instrumentation: boosting collider performance  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

2006-05-01T23:59:59.000Z

127

SECTION V: SUPERCONDUCTING CYCLOTRON, INSTRUMENTATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,# , onLightThe natureINSTRUMENTATION

128

ARM - AMF1 Baseline Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1 Baseline Instruments AMF

129

Physics challenges for advanced fuel cycle assessment  

SciTech Connect (OSTI)

Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

2014-06-01T23:59:59.000Z

130

Neutrino astrophysics : recent advances and open issues  

E-Print Network [OSTI]

We highlight recent advances in neutrino astrophysics, the open issues and the interplay with neutrino properties. We emphasize the important progress in our understanding of neutrino flavor conversion in media. We discuss the case of solar neutrinos, of core-collapse supernova neutrinos and of SN1987A, and of the recently discovered ultra-high energy neutrinos whose origin is to be determined.

Volpe, Cristina

2015-01-01T23:59:59.000Z

131

Overview of coal conversion process instrumentation  

SciTech Connect (OSTI)

A review of standard instrumentation used in the processing industries is given, and the applicability of this instrumentation to measurements in mixed phase media and hostile environments such as those encountered in coal conversion processes is considered. The major projects in coal conversion sponsored by the US Department of Energy are briefly reviewed with schematics to pinpoint areas where the standard instrumentation is inadequate or altogether lacking. The next report in this series will provide detailed requirements on the instruments needed for these processes, will review new instruments which have recently become commercially available but are not yet considered standard instrumentation, and report on the status of new instruments which are being developed and, in some cases, undergoing tests in coal conversion plants.

Liptak, B. G.; Leiter, C. P.

1980-05-01T23:59:59.000Z

132

Proceedings of the 10th meeting of the international collaboration on advanced neutron sources  

SciTech Connect (OSTI)

This report contains papers from the 10th meeting of the International Collaboration on Advanced Neutron Sources. Two general types of workshops are discussed, instrument and target-station. Individual papers are indexed separately elsewhere. (LSP)

Hyer, D.K. (comp. and ed.)

1989-03-01T23:59:59.000Z

133

ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility  

SciTech Connect (OSTI)

Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions.

Hardy, J E; Hess, R A; Hylton, J O

1983-11-01T23:59:59.000Z

134

MC and A instrumentation catalog  

SciTech Connect (OSTI)

In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog has been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.

Neymotin, L. [ed.] [Brookhaven National Lab., Upton, NY (United States); Sviridova, V. [ed.] [All-Russian Research Inst. of Automatics, Moscow (Russian Federation)

1998-06-01T23:59:59.000Z

135

Development of metrology instruments for grazing incidence mirrors  

SciTech Connect (OSTI)

The effective utilization of synchrotron radiation (SR) from high-brightness sources requires the use of optical components with very smooth surfaces and extremely precise shapes. Most manufacturers are not capable of measuring the figure and finish quality of the aspheric optics required for use in grazing incidence beam lines. Over the past several years we have developed measurement techniques and metrology instrumentation that have allowed us to measure the surface profile and roughness of large cylinder optics, up to one meter in length. Based on our measurements and feedback, manufacturers have been able to advance the state-of-the-art in mirror fabrication and are now able to produce acceptable components. Our analysis techniques enable designers to write meaningful specifications and predict the performance of real surfaces in their particular beamline configurations. Commercial instruments are now available for measuring surface microroughness with spatial periods smaller than about one millimeter. No commercial instruments are available for measuring the surface figure on cylindrical aspheres over long spatial periods, from one millimeter up to one meter. For that reason we developed a Long Trace Profiler (LTP) that measures surface profile over the long period range in a non-contact manner to extremely high accuracy. Examples of measured surfaces and data analysis techniques will be discussed, and limitations on the quality of optical surfaces related to intrinsic material properties will also be discussed. 15 refs., 14 figs., 2 tabs.

Takacs, P.Z. (Brookhaven National Lab., Upton, NY (USA)); Church, E.L. (Army Research and Development Command, Dover, NJ (USA)); Qian, Shi-nan (China Univ. of Science and Technology, Hefei, AH (China). Hefei National Synchrotron Radiation Lab.); Liu, Wuming (Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics)

1989-10-01T23:59:59.000Z

136

State Technologies Advancement Collaborative  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

137

aexs instrument development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interferometer Ohta, Shigemi 2 Development of Models for Optical Instrument Transformers. Open Access Theses and Dissertations Summary: ??Optical Instrument Transformers...

138

Computational and experimental study of instrumented indentation  

E-Print Network [OSTI]

The effect of characteristic length scales, through dimensional and microstructural miniaturizations, on mechanical properties is systematically investigated by recourse to instrumented micro- and/or nanoindentation. This ...

Chollacoop, Nuwong, 1977-

2004-01-01T23:59:59.000Z

139

Rotary mode system initial instrument calibration  

SciTech Connect (OSTI)

The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

Johns, B.R.

1994-10-01T23:59:59.000Z

140

Kids with disabilities inspire a musical instrument  

ScienceCinema (OSTI)

The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.

Daily, Dan; Pfeifer, Kent

2014-02-10T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Instrumentation for CTA site characterization  

E-Print Network [OSTI]

Many atmospheric and climatic criteria have to be taken into account for the selection of a suitable site for the next generation of imaging air-shower Cherenkov telescopes, the "Cherenkov Telescope Array" CTA. Such data are not available with sufficient precision or the comparability to allow for a comprehensive characterization of the proposed sites to be made. Identical cross-calibrated instruments have been developed which allow for precise comparison between sites, the cross-validation of existing data, and the ground-validation of satellite data. The site characterization work package of the CTA consortium opted to construct and deploy 9 copies of an autonomous multi-purpose weather sensor, incorporating an infrared cloud sensor a newly developed sensor for measuring the light of the night sky, and an All-Sky-Camera, the whole referred to as Autonomous Tool for Measuring Observatory Site COnditions PrEcisely (ATMOSCOPE). We present here the hardware that was combined into the ATMOSCOPE and characterize ...

Fruck, Christian; Ernenwein, Jean-Pierre; Mandát, Dušan; Schweizer, Thomas; Häfner, Dennis; Bulik, Tomasz; Cieslar, Marek; Costantini, Heide; Dominik, Michal; Ebr, Jan; Garczarczyk, Markus; Lorentz, Eckart; Pareschi, Giovanni; Pech, Miroslav; Puerto-Giménez, Irene; Teshima, Masahiro

2015-01-01T23:59:59.000Z

142

Sensors and Actuators for the Advanced LIGO Mirror Suspensions  

E-Print Network [OSTI]

We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.

L. Carbone; S. M. Aston; R. M. Cutler; A. Freise; J. Greenhalgh; J. Heefner; D. Hoyland; N. A. Lockerbie; D. Lodhia; N. A. Robertson; C. C. Speake; K. A. Strain; A. Vecchio

2012-05-25T23:59:59.000Z

143

Advanced Critical Advanced Energy Retrofit Education and Training...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Critical Advanced Energy Retrofit Education and Training and Credentialing - 2014 BTO Peer Review Advanced Critical Advanced Energy Retrofit Education and Training and...

144

Origin State Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama...

145

Effect of geotropism on instrument readings  

SciTech Connect (OSTI)

A review of gravity's effect on instrument readings, also referred to as geotropism. In this essay a review of meter movement construction and the effect are reviewed as it applies to portable radiation instruments. Reference to the three ANSI standards and their requirements are reviewed. An alternate approach to test for the effects is offered.

Rolph, James T.

2006-11-01T23:59:59.000Z

146

Microfabricated field calibration assembly for analytical instruments  

DOE Patents [OSTI]

A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM); Rodacy, Philip J. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

2011-03-29T23:59:59.000Z

147

Void Fraction Instrument operation and maintenance manual  

SciTech Connect (OSTI)

This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

1994-09-01T23:59:59.000Z

148

A revolutionary rotatable electron energy analyzer for advanced high-resolution spin-polarized photoemission studies. Final Report  

SciTech Connect (OSTI)

This report details the construction and testing of a unique analyzer for spin-polarized photoemission studies of magnetic materials. This report details the progress of this project for the period from 9/1/96 through 8/31/99. Progress can be divided into two distinct areas. These are the fabrication, construction, and initial testing of the instrumentation, and the concurrent program of preliminary investigations into materials and experiments appropriate for future studies using the instrumentation developed. The analyzer complete with special input electron optics and Mott detector has been assembled in a special design UHV chamber equipped with all the capabilities needed to perform the described programs of research. These include a sophisticated five motorized axis sample manipulator with low and high temperature capability and rapid temperature cycling (acquired in collaboration with Dr. J.G. Tobin of LLNL), vacuum leak detection and gauging, in situ thin film growth instrumentation, and sample cleaning and magnetizing capabilities, The initial testing of the analyzer has been completed with successful data acquisition using both the multichannel detector mode, and spin-dependent using the Mott detector channeltrons. The data collected using the Mott detector were not truly spin dependent (see below), but demonstrate the operation of the lens and detector design. Acquisition of truly spin-dependent data await use of the EPU. Preliminary indications suggest that the analyzer performs at or above the original design parameters. In the second area of progress, we have conducted a number of preliminary studies toward the ends of identifying appropriate initial systems for investigation, and to further explore new experiments that the new instrumentation will help to pioneer. More detailed descriptions of all of these advances are given.

Waddill, G. D.; Willis, R. F.

1999-10-01T23:59:59.000Z

149

Italian Academy Advanced Studies  

E-Print Network [OSTI]

The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 The Italian Academy for Advanced Studies in America at Columbia University Annual Report 2006­2007 #12;italian academy for advanced studies in america 1161 Amsterdam Avenue New York, NY 10027 tel: (212) 854-2306 fax

Qian, Ning

150

Advanced Search Search Tips  

E-Print Network [OSTI]

Advanced Search Search Tips Advanced Search Search Tips springerlink.com SpringerLink 2,000 40,000 20,000 2010 11 Please visit 7 http://www.springerlink.com GO 1997 1997 SpringerLink Advanced Search Search Tips CONTENT DOI CITATION DOI ISSN ISBN CATEGORY AND DATE LIMITERS Journals Books Protocols

Kinosita Jr., Kazuhiko

151

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

Stefan Miska; Troy Reed; Ergun Kuru

2004-09-30T23:59:59.000Z

152

LCLS-II New Instruments Workshops Report  

SciTech Connect (OSTI)

The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and heterogeneous catalysis. Of particular interest is the efficient conversion of light to electrical or chemical energy, which requires understanding the non-adiabatic dynamics of electronic excited states. Ultrafast x-ray scattering presents an excellent opportunity to investigate structural dynamics of molecular systems with atomic resolution, and x-ray scattering and spectroscopy present an excellent opportunity to investigating the dynamics of the electronic charge distribution. Harnessing solar energy to generate fuels, either indirectly with photovoltaics and electrochemical catalysis or directly with photocatalysts, presents a critical technological challenge that will require the use of forefront scientific tools such as ultrafast x-rays. At the center of this technical challenge is the rational design of efficient and cost effective catalysts. Important materials science opportunities relate to information technology applications, in particular the transport and storage of information on increasingly smaller length- and faster time-scales. Of interest are the understanding of the intrinsic size limits associated with the storage of information bits and the speed limits of information or bit processing. Key questions revolve about how electronic charges and spins of materials can be manipulated by electric and magnetic fields. This requires the exploration of speed limits subject to the fundamental conservation laws of energy and linear and angular momentum and the different coupling of polar electric and axial magnetic fields to charge and spin. Of interest are novel composite materials, including molecular systems combining multi electric and magnetic functionality. Ultrafast x-rays offer the required probing speed, can probe either the charge or spin properties through polarization control and through scattering and spectroscopy cover the entire energy-time-momentum-distance phase space. In the field of atomic and molecular science, LCLS II promises to elucidate the fundamental interactions among electrons and between electrons and nuclei, and to explore the fron

Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC; ,

2012-08-08T23:59:59.000Z

153

Applications of transputers to astronomical instruments  

SciTech Connect (OSTI)

Parallel processing techniques based on transputers are being applied to astronomical instruments under development. On the COSMOS photographic plate measuring machine, a data farm of transputers allows backgrounds to be determined in realtime instead of requiring 1.5 hours of offline VAX processing per plate. Transputers have been adopted as the embedded processors in a submillimetre bolometer array instrument and their use is planned in demanding future applications such as thermal infrared array instruments and data compression applied to remote observing. The techniques of interfacing transputers to external hardware and to VAX/VMS computers are discussed.

Stewart, J.M.; Beard, S,M.; Kelly, B.D.; Paterson, M.J. (Royal Observatory, Edinburgh (UK))

1990-04-01T23:59:59.000Z

154

Plasma instrumentation for fusion power reactor control  

SciTech Connect (OSTI)

Feedback control will be implemented in fusion power reactors to guard against unpredicted behavior of the plant and to assure desirable operation. In this study, plasma state feedback requirements for plasma control by systems strongly coupled to the plasma (magnet sets, RF, and neutral beam heating systems, and refueling systems) are estimated. Generic considerations regarding the impact of the power reactor environment on plasma instrumentation are outlined. Solutions are proposed to minimize the impact of the power reactor environment on plasma instrumentation. Key plasma diagnostics are evaluated with respect to their potential for upgrade and implementation as power reactor instruments.

Sager, G.T.; Bauer, J.F.; Maya, I.; Miley, G.H.

1985-07-01T23:59:59.000Z

155

Enhanced In-pile Instrumentation for Material Testing Reactors  

SciTech Connect (OSTI)

An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

2012-07-01T23:59:59.000Z

156

ACRF Instrumentation Status: New, Current, and Future March 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-03-01T23:59:59.000Z

157

ACRF Instrumentation Status: New, Current, and Future June 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-06-01T23:59:59.000Z

158

ACRF Instrumentation Status: New, Current, and Future May 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-05-01T23:59:59.000Z

159

ACRF Instrumentation Status: New, Current, and Future February 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development

JC Liljegren

2007-02-01T23:59:59.000Z

160

ACRF Instrumentation Status: New, Current, and Future January 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ACRF Instrumentation Status: New, Current, and Future - March 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-04-01T23:59:59.000Z

162

ACRF Instrumentation Status: New, Current, and Future - November – December 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2007-12-01T23:59:59.000Z

163

ACRF Instrumentation Status: New, Current, and Future - September – October 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

JW Voyles

2007-10-30T23:59:59.000Z

164

ACRF Instrumentation Status: New, Current, and Future July 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of ACRF instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

JC Liljegren

2007-07-01T23:59:59.000Z

165

ACRF Instrumentation Status: New, Current, and Future - February 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-03-01T23:59:59.000Z

166

ACRF Instrumentation Status: New, Current, and Future May 2007  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2007-04-01T23:59:59.000Z

167

ACRF Instrumentation Status: New, Current, and Future October 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2006-10-01T23:59:59.000Z

168

The Origins of Mass  

SciTech Connect (OSTI)

The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

Lincoln, Don

2014-07-30T23:59:59.000Z

169

NEUROROBOTICS ORIGINAL RESEARCH ARTICLE  

E-Print Network [OSTI]

-inspiration, prefrontal cortex INTRODUCTION In controlled environments (e.g., industrial applications), robots can achieve is to liberate robots from controlled industrial settings, and allow them to interact with humans and changingNEUROROBOTICS ORIGINAL RESEARCH ARTICLE published: 1 July 2011 doi: 10.3389/fnbot.2011.00001 Robot

Paris-Sud XI, Université de

170

The Origins of Mass  

ScienceCinema (OSTI)

The Higgs boson was discovered in July of 2012 and is generally understood to be the origin of mass. While those statements are true, they are incomplete. It turns out that the Higgs boson is responsible for only about 2% of the mass of ordinary matter. In this dramatic new video, Dr. Don Lincoln of Fermilab tells us the rest of the story.

Lincoln, Don

2014-08-07T23:59:59.000Z

171

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION  

E-Print Network [OSTI]

274 CEREAL CHEMISTRY ANALYTICAL TECHNIQUES AND INSTRUMENTATION Evaluation of the Displacement Value). Production of fuel-grade ethanol, initiated in the late 1970's as a result of rising gasoline prices

172

PRINCIPLES OF SCIENTIFIC INSTRUMENTS Spring 2012  

E-Print Network [OSTI]

/email interaction. Course requirements: Participation in class discussion, problem sets, take home final exam of exponential behavior in chem., biochem., physics: molecules vs. instruments. 6 Light absorption densitometry, energy transfer, photobleaching and single molec., image analysis. Anisotropy and molecular mobility

Sharp, Kim

173

A nano-stepping robotic instrumentation platform  

E-Print Network [OSTI]

The development of an Autonomous Nano-stepping Tool (ANT) system is presented. Each ANT is a small, tripodal, robotic instrument capable of untethered precision motion within a quasi-three-dimensional workspace of arbitrary ...

Wahab, Adam Joseph

2013-01-01T23:59:59.000Z

174

Optimization of naďve dynamic binary instrumentation Tools/  

E-Print Network [OSTI]

The proliferation of dynamic program analysis tools has done much to ease the burden of developing complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation frameworks such as ...

Kleckner, Reid (Reid N.)

2011-01-01T23:59:59.000Z

175

Cellular telephone-based radiation detection instrument  

DOE Patents [OSTI]

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2011-06-14T23:59:59.000Z

176

Positron Emission Tomography Physics, Instrumentation, Data Analysis  

E-Print Network [OSTI]

1 Positron Emission Tomography Physics, Instrumentation, Data Analysis Carl K. Hoh, MD Department fast computer Filtered Back Projection Iterative Reconstruction PET Image Reconstruction #12 PET Scanner Design · Smaller individual crystal size = better spatial resolution · Physical limit

Liu, Thomas T.

177

Field instrumentation for vocalizing avian survey  

E-Print Network [OSTI]

We present automated instruments to facilitate the monitoring of vocalizing species in their environment with minimal disruption. These devices offer recording and acoustic localization of bird calls and relay data via the ...

Elliott, Grant (Grant Andrew)

2007-01-01T23:59:59.000Z

178

X-Ray Nanoimaging: Instruments and Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

179

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Institute Advanced Studies Institute Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

180

Advanced Reciprocating Engine Systems  

Broader source: Energy.gov [DOE]

The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Sources) Hydrogen Time ADVANCED PROPULSION TECHNOLOGY STRATEGY DOWNSIZED TURBO GAS ENGINE CHEVROLET CRUZE 1.4L TURBO ECOTEC Downsized SIDI Turbo Boosting HCCI -...

182

Advanced Fuel Cycle Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

183

Advanced Fuel Cycle Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

184

Advances in Physical Chemistry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2011, Article ID 907129, 18 pages doi:10.11552011907129 Review Article Contrast and Synergy between...

185

Instrumentation and Equipment for Three Independent Research Labs  

SciTech Connect (OSTI)

Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

Darlene Roth

2012-03-29T23:59:59.000Z

186

Article original Pollution fluore  

E-Print Network [OSTI]

Article original Pollution fluorée et croissance radiale des conifères en Maurienne (Savoie, France; accepté le 24 juillet 1989) Résumé - La recherche de l'impact de la pollution fluorée sur la croissance en en fonction de l'éloignement des sources de pollution, l'exposition et l'altitude. L'é- tude porte

Paris-Sud XI, Université de

187

Preface: Special Topic on Advances in Density Functional Theory  

SciTech Connect (OSTI)

This Special Topic Issue on the Advances in Density Functional Theory, published as a celebration of the fifty years of density functional theory, contains a retrospective article, a perspective article, and a collection of original research articles that showcase recent theoretical advances in the field. It provides a timely discussion reflecting a cross section of our understanding, and the theoretical and computational developments, which have significant implications in broad areas of sciences and engineering.

Yang, Weitao [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)] [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

2014-05-14T23:59:59.000Z

188

National Instruments online training and training credits offering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Instruments online training and training credits offering The lab has entered into an Enterprise Agreement with National Instruments (NI) to offer online training and...

189

IceCube: An Instrument for Neutrino Astronomy  

E-Print Network [OSTI]

An Instrument for Neutrino Astronomy Francis Halzen 1 andAn Instrument for Neutrino Astronomy Francis Halzen 1 and94720 Abstract Neutrino astronomy beyond the Sun was first

Halzen, F.

2010-01-01T23:59:59.000Z

190

Surveillance Guides - QAS 2.4 Instrument Calibration  

Broader source: Energy.gov (indexed) [DOE]

of the contractor's program to routinely calibrate instruments, alarms, and sensors. The Facility Representative observes calibration testing of instruments and channels...

191

SciTech Connect: Nuclear power reactor instrumentation systems...  

Office of Scientific and Technical Information (OSTI)

Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

192

Advanced thermally stable jet fuels  

SciTech Connect (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

193

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

194

Kansas Advanced Semiconductor Project  

SciTech Connect (OSTI)

KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

2007-09-21T23:59:59.000Z

195

A novel instrument for quantitative nanoanalytics involving complementary X-ray methodologies  

SciTech Connect (OSTI)

A novel ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation has been constructed and commissioned. This versatile instrument was developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, a rotational and translational movement of several photodiodes as well as a translational movement of an aperture system in and out of the beam is provided. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors such as reference-free X-ray fluorescence analysis (XRF), total-reflection XRF, grazing-incidence XRF in addition to optional X-ray reflectometry measurements or polarization-dependent X-ray absorption fine structure analyses. With this instrument samples having a size of up to 100 mm Multiplication-Sign 100 mm can be analyzed with respect to their mass deposition, elemental or spatial composition, or the species in order to probe surface contamination, layer composition and thickness, the depth profile of matrix elements or implants, the species of nanolayers, nanoparticles or buried interfaces as well as the molecular orientation of bonds. Selected applications of this advanced ultra-high vacuum instrument demonstrate both its flexibility and capability.

Lubeck, J.; Beckhoff, B.; Fliegauf, R.; Holfelder, I.; Hoenicke, P.; Mueller, M.; Pollakowski, B.; Reinhardt, F.; Weser, J. [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

2013-04-15T23:59:59.000Z

196

Matter in Extreme Conditions Instrument - Conceptual Design Report  

SciTech Connect (OSTI)

The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by

Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; /SLAC; Lee, R.W.; /LLNL, Livermore; Nagler, B.; /Rutherford; Scharfenstein, M.; Marsh, D.; White, W.E.; /SLAC; ,

2009-12-09T23:59:59.000Z

197

Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM  

SciTech Connect (OSTI)

At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

2005-02-15T23:59:59.000Z

198

Susceptibility of digital instrumentation and control systems to disruption by electromagnetic interference  

SciTech Connect (OSTI)

The potential for disruption of safety-related digital instrumentation and control (I&C) systems by electromagnetic interference/radio-frequency interference (EMI/RFI) bears directly on the safe operation of advanced reactors. It is anticipated that the use of digital I&C equipment for safety and control functions will be substantially greater for advanced reactor designs than for current-generation nuclear reactors, which primarily use analog I&C equipment. In the absence of significant operational experience, the best available indication of the potential vulnerability of advanced digital safety systems to EMI/RFI comes from environmental testing of an experimental digital safety channel (EDSC) by the Oak Ridge National Laboratory (ORNL). The EDSC is a prototypical system representative of advanced reactor safety system designs with regard to architecture, functionality and communication protocols, and board and component fabrication technologies. An understanding of the electromagnetic environment to be expected for advanced reactors can be drawn from ORNL`s survey of ambient EMI/RFI conditions in the current Generation of nuclear power plants. A summary of the results from these research efforts is reported in this paper. The lessons learned from the EMI/RFI survey and the EDSC tests contribute significantly to determining the best approach to assuring electromagnetic compatibility for the safety-related I&C systems of advanced reactors. 16 refs., 2 figs., 3 tabs.

Kercel, S.W.; Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States)

1997-12-01T23:59:59.000Z

199

Susceptibility of digital instrumentation and control systems to disruption by electromagnetic interference  

SciTech Connect (OSTI)

The potential for disruption of safety-related digital instrumentation and control (I and C) systems by electromagnetic interference/radio-frequency interface (EMI/RFI) bears directly on the safe operation of advanced reactors. It is anticipated that the use of digital I and C equipment for safety and control functions will be substantially greater for advanced reactor designs than for current-generation nuclear reactors, which primarily use analog I and C equipment. In the absence of significant operational experience, the best available indication of the potential vulnerability of advanced digital safety systems to EMI/RFI comes from environmental testing of an experimental digital safety channel (EDSC) by the Oak Ridge National Laboratory (ORNL). The EDSC is a prototypical system representative of advanced reactor safety system designs with regard to architecture, functionality and communication protocols, and board and component fabrication technologies. An understanding of the electromagnetic environment to be expected for advanced reactors can be drawn from ORNL`s survey of ambient EMI/RFI conditions in the current generation of nuclear power plants. A summary of the results from these research efforts is reported in this paper. The lessons learned from the EMI/RFI survey and the EDSC tests contribute significantly to determining the best approach to assuring electromagnetic compatibility for the safety-related I and C systems of advanced reactors.

Kercel, S.W.; Korsah, K.; Wood, R.T.

1997-10-01T23:59:59.000Z

200

Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 NUCLEARFaculty ofPhysics and Nuclear Techniques Academy ofMining and Metallurgy, Cracow, Poland h INFN, Torino INSTRUMENTS 8 METHODS IN PHYSICS RESEARCH SectIonA A fast, high-granularity silicon multiplicity detector

Ramello, Luciano

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

202

THE MATERIAL RESEARCH LABORATORY IN DEVELOPMENT OF THE NEW METHODS AND INSTRUMENTS WITH ITS TESTING IN CONDITIONS  

E-Print Network [OSTI]

used instruments at such expensive installation as a neutron source. The high-flux reactor department). The original program of calculation was created, which allowed correctly to estimate neutron propagation within the neutron guide [1, 2]. Just with the help of this calculation method the constructional

Titov, Anatoly

203

Original Signatures on File  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSD Logo AboutSignature OnOriginal

204

OriginalPrototypes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSD Logo AboutSignature OnOriginalNotes

205

Original Signature on File  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performance onAboutOrhan Kizilkaya,|Original

206

Report on Advanced Detector Development  

SciTech Connect (OSTI)

Neutron, gamma and charged particle detection improvements are key to supporting many of the foreseen measurements and systems envisioned in the R&D programs and the future fuel cycle requirements, such as basic nuclear physics and data, modeling and simulation, reactor instrumentation, criticality safety, materials management and safeguards. This task will focus on the developmental needs of the FCR&D experimental programs, such as elastic/inelastic scattering, total cross sections and fission neutron spectra measurements, and will leverage a number of existing neutron detector development efforts and programs, such as those at LANL, PNNL, INL, and IAC as well as those at many universities, some of whom are funded under NE grants and contracts. Novel materials and fabrication processes combined with state-of-the-art electronics and computing provide new opportunities for revolutionary detector systems that will be able to meet the high precision needs of the program. This work will be closely coordinated with the Nuclear Data Crosscut. The Advanced Detector Development effort is a broadly-focused activity that supports the development of improved nuclear data measurements and improved detection of nuclear reactions and reactor conditions. This work supports the design and construction of large-scale, multiple component detectors to provide nuclear reaction data of unprecedented quality and precision. Examples include the Time Projection Chamber (TPC) and the DANCE detector at LANL. This work also supports the fabrication and end-user application of novel scintillator materials detection and monitoring.

James K. Jewell

2012-09-01T23:59:59.000Z

207

Future Transient Testing of Advanced Fuels  

SciTech Connect (OSTI)

The transient in-reactor fuels testing workshop was held on May 4–5, 2009 at Idaho National Laboratory. The purpose of this meeting was to provide a forum where technical experts in transient testing of nuclear fuels could meet directly with technical instrumentation experts and nuclear fuel modeling and simulation experts to discuss needed advancements in transient testing to support a basic understanding of nuclear fuel behavior under off-normal conditions. The workshop was attended by representatives from Commissariat ŕ l'Énergie Atomique CEA, Japanese Atomic Energy Agency (JAEA), Department of Energy (DOE), AREVA, General Electric – Global Nuclear Fuels (GE-GNF), Westinghouse, Electric Power Research Institute (EPRI), universities, and several DOE national laboratories. Transient testing of fuels and materials generates information required for advanced fuels in future nuclear power plants. Future nuclear power plants will rely heavily on advanced computer modeling and simulation that describes fuel behavior under off-normal conditions. TREAT is an ideal facility for this testing because of its flexibility, proven operation and material condition. The opportunity exists to develop advanced instrumentation and data collection that can support modeling and simulation needs much better than was possible in the past. In order to take advantage of these opportunities, test programs must be carefully designed to yield basic information to support modeling before conducting integral performance tests. An early start of TREAT and operation at low power would provide significant dividends in training, development of instrumentation, and checkout of reactor systems. Early start of TREAT (2015) is needed to support the requirements of potential users of TREAT and include the testing of full length fuel irradiated in the FFTF reactor. The capabilities provided by TREAT are needed for the development of nuclear power and the following benefits will be realized by the refurbishment and restart of TREAT. •TREAT is an absolute necessity in the suite of reactor fuel test capabilities •TREAT yields valuable information on reactivity effects, margins to failure, fuel dispersal, and failure propagation •Most importantly, interpretation of TREAT experiment results is a stringent test of the integrated understanding of fuel performance.

Jon Carmack

2009-09-01T23:59:59.000Z

208

advanced ceramics advanced: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

209

Thermodynamic Origin of Life  

E-Print Network [OSTI]

Understanding the thermodynamic function of life may shed light on its origin. Life, as are all irreversible processes, is contingent on entropy production. Entropy production is a measure of the rate of the tendency of Nature to explore available microstates. The most important irreversible process generating entropy in the biosphere, and thus facilitating this exploration, is the absorption and transformation of sunlight into heat. Here we hypothesize that life began, and persists today, as a catalyst for the absorption and dissipation of sunlight at the surface of shallow seas. The resulting heat is then efficiently harvested by other irreversible processes such as the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the intense ultraviolet light that could have penetrated the dense early atmosphere, and are remarkably rapid in transforming this light into heat in the presence of liquid water. From this perspective, the origin and evolution of life, inseparable from water and the water cycle, can be understood as resulting from the natural thermodynamic imperative of increasing the entropy production of the Earth in its interaction with its solar environment. A mechanism is proposed for the reproduction of RNA and DNA without the need for enzymes, promoted instead through UV light dissipation and the ambient conditions of prebiotic Earth.

K. Michaelian

2010-09-08T23:59:59.000Z

210

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

211

Fact Sheet: Energy Storage Technology Advancement Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership...

212

E-Print Network 3.0 - advanced gastric adenocarcinoma Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: advanced gastric adenocarcinoma Page: << < 1 2 3 4 5 > >> 1 Original article Near-infrared Raman spectroscopy for early diagnosis Summary: of 88, 92 and 94 per cent...

213

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Malaysia tackles illegal logging:52:14 AM Search #12;Asia Times illegal logging," he said, adding that nine Malaysians had been arrested

214

Search Asia Advanced Search  

E-Print Network [OSTI]

Asia Times Search Asia Times Advanced Search Southeast Asia Indonesia looks to curb log smuggling.html (1 of 2)9/4/2007 12:59:34 PM Search #12;Asia Times No material from Asia Times Online may

215

Advanced Review Geometry optimization  

E-Print Network [OSTI]

Advanced Review Geometry optimization H. Bernhard Schlegel Geometry optimization is an important part of most quantum chemical calcu- lations. This article surveys methods for optimizing equilibrium geometries, lo- cating transition structures, and following reaction paths. The emphasis is on optimizations

Schlegel, H. Bernhard

216

UW SCHOOL OF PHARMACY INSTRUMENTATION COMMITTEE  

E-Print Network [OSTI]

UW SCHOOL OF PHARMACY INSTRUMENTATION COMMITTEE 2013-2014 Warren Heideman (chair) Mass spec users-related activities of the School. 4. Provide input and advice to the Dean on issues of importance to the AIC the research enterprise within the School of Pharmacy, across campus, and in the scientific community such as

Sheridan, Jennifer

217

Integrated polymerase chain reaction/electrophoresis instrument  

DOE Patents [OSTI]

A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

Andresen, Brian D. (Livermore, CA)

2000-01-01T23:59:59.000Z

218

Regulative and voluntary instruments for responsible forest  

E-Print Network [OSTI]

carrotssermonssticks PES Comand and control Taxes and subsibies ­ Directness + Education ­Useofeconomicincentives,700 ha di farmland producing corn converted to organic · 92% of the area involved in the program · 200) A similar type of classification " Regulative instruments promoted by public institutions: international

Pettenella, Davide

219

Cooling the dark energy camera instrument  

SciTech Connect (OSTI)

DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.

Schmitt, R.L.; Cease, H.; /Fermilab; DePoy, D.; /Ohio State U.; Diehl, H.T.; Estrada, J.; Flaugher, B.; /Fermilab; Kuhlmann, S.; /Ohio State U.; Onal, Birce; Stefanik, A.; /Fermilab

2008-06-01T23:59:59.000Z

220

Utility Indifference Pricing of Credit Instruments  

E-Print Network [OSTI]

in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics Instruments Georg Sigloch Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2009 consequences of being exposed to credit risk. In this thesis we address these issues by pricing credit

Jaimungal, Sebastian

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

222

Renewable Chemicals and Advanced Biofuels  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Advanced Biofuels & Policy—Brett Lund, Executive Vice President, General Counsel and Secretary, Gevo Inc.

223

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

1992-01-01T23:59:59.000Z

224

Advanced Neutron Source (ANS) Project Progress report, FY 1991  

SciTech Connect (OSTI)

This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

1992-01-01T23:59:59.000Z

225

ACRF Instrumentation Status: New, Current, and Future - April 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-05-01T23:59:59.000Z

226

ACRF Instrumentation Status: New, Current, and Future July 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-07-01T23:59:59.000Z

227

ACRF Instrumentation Status: New, Current, and Future February 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-02-15T23:59:59.000Z

228

ACRF Instrumentation Status: New, Current, and Future September 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-09-01T23:59:59.000Z

229

ARM Climate Research Facility Monthly Instrument Report May 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-06-21T23:59:59.000Z

230

ACRF Instrumentation Status: New, Current, and Future - November 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-12-01T23:59:59.000Z

231

ACRF Instrumentation Status: New, Current, and Future - May 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-05-01T23:59:59.000Z

232

ACRF Instrumentation Status: New, Current, and Future - August 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-09-01T23:59:59.000Z

233

ARM Climate Research Facility Instrumentation Status and Information October 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01T23:59:59.000Z

234

ARM Climate Research Facility Monthly Instrument Report August 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-09-28T23:59:59.000Z

235

ACRF Instrumentation Status: New, Current, and Future - September 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-10-15T23:59:59.000Z

236

ARM Climate Research Facility Instrumentation Status and Information December 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-12-30T23:59:59.000Z

237

ARM Climate Research Facility Monthly Instrument Report June 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-07-13T23:59:59.000Z

238

ACRF Instrumentation Status: New, Current, and Future - July 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-07-01T23:59:59.000Z

239

ARM Climate Research Facility Monthly Instrument Report July 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-08-18T23:59:59.000Z

240

ARM Climate Research Facility Instrumentation Status and Information March 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ARM Climate Research Facility Instrumentation Status and Information January 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-02-28T23:59:59.000Z

242

ARM Climate Research Facility Instrumentation Status and Information February 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-03-25T23:59:59.000Z

243

ACRF Instrumentation Status: New, Current, and Future August 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

JC Liljegren

2006-08-01T23:59:59.000Z

244

ACRF Instrumentation Status: New, Current, and Future - December 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-01-15T23:59:59.000Z

245

ACRF Instrumentation Status: New, Current, and Future - June 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-07-01T23:59:59.000Z

246

ARM Climate Research Facility Instrumentation Status and Information April 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-05-15T23:59:59.000Z

247

ACRF Instrumentation Status: New, Current, and Future March 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-03-15T23:59:59.000Z

248

ACRF Instrumentation Status: New, Current, and Future - October 2008  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2008-10-01T23:59:59.000Z

249

ACRF Instrumentation Status: New, Current, and Future - January 2009  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-03-02T23:59:59.000Z

250

ARM Climate Research Facility Monthly Instrument Report September 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-10-18T23:59:59.000Z

251

INTEGRATIVE NEUROSCIENCE ORIGINAL RESEARCH ARTICLE  

E-Print Network [OSTI]

instrument or a video game. Here we address two questions relating to timing with the goal of better, perception, and production. It is clear that, unlike the clocks on our wrists or walls that can be used

Buonomano, Dean

252

Advanced Instrumentation, Information, and Control System Technologies: Nondestructive Examination Technologies - FY11 Report  

SciTech Connect (OSTI)

Licensees of commercial nuclear power plants in the US are expected to submit license renewal applications for the period of operation of 60 to 80 years which has also been referred to as long term operation (LTO). The greatest challenges to LTO are associated with degradation of passive components as active components are routinely maintained and repaired or placed through maintenance programs. Some passive component degradation concerns include stress corrosion cracking (SCC) of metal components, radiation induced embrittlement of the reactor pressure vessel (RPV), degradation of buried piping, degradation of concrete containment structures, and degradation of cables. Proactive management of passive component aging employs three important elements including online monitoring of degradation, early detection of degradation at precursor stages, and application of prognostics for the prediction of remaining useful life (RUL). This document assesses several nondestructive examination (NDE) measurement technologies for integration into proactive aging management programs. The assessment is performed by discussing the three elements of proactive aging management identified above, considering the current state of the industry with respect to adopting these key elements, and analyzing measurement technologies for monitoring large cracks in metal components, monitoring early degradation at precursor stages, monitoring the degradation of concrete containment structures, and monitoring the degradation of cables. Specific and general needs have been identified through this assessment. General needs identified include the need for environmentally rugged sensors are needed that can operate reliably in an operating reactor environment, the need to identify parameters from precursor monitoring technologies that are unambiguously correlated with the level of pre-macro defect damage, and a methodology for identifying regions where precursor damage is most likely to initiate.

Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

2011-08-30T23:59:59.000Z

253

Development of Advanced Optics and High Resolution Instrumentation for Mass Spectrometry Based Proteomics  

E-Print Network [OSTI]

Imaging mass spectrometry (MS) analysis allows scientists the ability to obtain spatial and chemical information of analytes on a wide variety of surfaces. The ability to image biological analytes is an important tool in many areas of life science...

Sherrod, Stacy D.

2010-01-14T23:59:59.000Z

254

Joint System Prognostics For Increased Efficiency And Risk Mitigation In Advanced Nuclear Reactor Instrumentation and Control  

SciTech Connect (OSTI)

The science of prognostics is analogous to a doctor who, based on a set of symptoms and patient tests, assesses a probable cause, the risk to the patient, and a course of action for recovery. While traditional prognostics research has focused on the aspect of hydraulic and mechanical systems and associated failures, this project will take a joint view in focusing not only on the digital I&C aspect of reliability and risk, but also on the risks associated with the human element. Model development will not only include an approximation of the control system physical degradation but also on human performance degradation. Thus the goal of the prognostic system is to evaluate control room operation; to identify and potentially take action when performance degradation reduces plant efficiency, reliability or safety.

Donald D. Dudenhoeffer; Tuan Q. Tran; Ronald L. Boring; Bruce P. Hallbert

2006-08-01T23:59:59.000Z

255

Instrumentation Report No. 3: performance and reliability of instrumentation deployed for the Spent Fuel Test - Climax  

SciTech Connect (OSTI)

A demonstration of the short-term storage and subsequent retrieval of spent nuclear fuel assemblies was successfully completed at the US Department of Energy`s Nevada Test Site. Nearly 1000 instruments were deployed to monitor the temperature of rock, air, and metallic components of the test; displacements and stress changes within the rock mass; radiation dosage to personnel and to the rock; thermal energy input; characteristics of the ventilation airstream; and the operational status of the test. Careful selection, installation, calibration, and maintenance of these instruments ensured the acquisition of about 15.3 x 10{sup 6} high-quality data points. With few exceptions, the performance and reliability of the instrumentation and associated data acquisition system (DAS) were within specified acceptable limits. Details of the performance and reliability of the instrumentation are discussed in this report. 42 figs., 32 tabs.

Patrick, W.C.; Rector, N.L.; Scarafiotti, J.J.

1984-12-01T23:59:59.000Z

256

Signal conditioning circuitry design for instrumentation systems.  

SciTech Connect (OSTI)

This report details the current progress in the design, implementation, and validation of the signal conditioning circuitry used in a measurement instrumentation system. The purpose of this text is to document the current progress of a particular design in signal conditioning circuitry in an instrumentation system. The input of the signal conditioning circuitry comes from a piezoresistive transducer and the output will be fed to a 250 ksps, 12-bit analog-to-digital converter (ADC) with an input range of 0-5 V. It is assumed that the maximum differential voltage amplitude input from the sensor is 20 mV with an unknown, but presumably high, sensor bandwidth. This text focuses on a specific design; however, the theory is presented in such a way that this text can be used as a basis for future designs.

Larsen, Cory A.

2012-01-01T23:59:59.000Z

257

New customizable phased array UT instrument opens door for furthering research and better industrial implementation  

SciTech Connect (OSTI)

Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control various aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.

Dao, Gavin [Advanced OEM Solutions, 8044 Montgomery Road 700, Cincinnati OH 45236 (United States); Ginzel, Robert [Eclipse Scientific, 97 Randall, Waterloo, Ontario N2V 1C5 (Canada)

2014-02-18T23:59:59.000Z

258

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-01-01T23:59:59.000Z

259

Advanced Hydride Laboratory  

SciTech Connect (OSTI)

Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

Motyka, T.

1989-12-31T23:59:59.000Z

260

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Six-degree-of-freedom Sensor Fish design and instrumentation  

SciTech Connect (OSTI)

Fish passing through dams may be injured or killed despite advances in turbine design, project operations and other fish bypass systems. The Six-degree-of-freedom (6DOF) Sensor Fish device is an autonomous sensor package designed to characterize the physical conditions and physical stresses fish are exposed to when they pass through complex hydraulic environments. It has been used to identify the locations and operations where conditions are severe enough to injure or kill fish. During the design process, a set of governing equations of motion for the device was derived and simulated in order to understand the design implications of instrument selection and placement within the body of the device. The sensor package includes three rotation sensors, three acceleration sensors, a pressure sensor, and a temperature sensor with a sampling frequency of 2,000 Hz. Its housing is constructed of clear polycarbonate plastic. It is 24.5 mm in diameter and 90 mm in length, weighs about 43 grams, similar to the size and density of a yearling salmon smolt. The relative errors of both the linear acceleration and angular velocity measurements were determined to be less than 5% from laboratory acceptance tests. Since its development in 2005, the 6DOF Sensor Fish device has been successfully deployed at many major dams in the United States.

Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.

2007-12-19T23:59:59.000Z

262

Advanced Optical Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal AdvancedAdvanced

263

Instrument development continues in Oak Ridge  

SciTech Connect (OSTI)

Peer review panels composed of 80 external scientists recently visited Oak Ridge National Laboratory (ORNL) to review almost 700 proposals for experiments on 23 instruments at the Spallation Neutron Source (SNS) and High Flux Isotope Reactor (HFIR). These were proposed for the time period from January-June 2012. About 40% of the proposals were approved for beam time and 20% were placed on an alternate list if time becomes available. The Hybrid Spectrometer HYSPEC at SNS began its commissioning in September 2011. HYSPEC is otpimized for studying low energy dynamics in single-crystal samples using a broad variety of sample environments, and is equipped with a polarization analysis capability. It is expected to be available for users on a limited basis in the second half of 2012. The detector tank of CORELLI has been installed on beamline 9 at SNS. Now that the tank is in place, banks of neutron detectors and boron carbide shielding will be installed around the interior. CORELLI is optimized to probe complex disorder in crystalline materials through diffuse scattering from single-crystal samples. It will begin commissioning in 2014. CORELLI is one of four instruments being developed under the SING II (SNS Instruments Next Generation II) project. The others are the Macromolecular Neutron Diffractometer (MANDI), the Vibrational Spectrometer (VISION, scheduled to begin commissioning in 2012), and the Time of Flight Ultra Small Angle Neutron Scattering Instrument (TOF-USANS). The single crystal neutron diffractometer IMAGINE, was deliverd to HFIR in October 2011. Preliminary testing has been carried out. IMAGINE will provide atomic resolution information on chemical, organic, metallo-organic and protein single crystals that will enable their chemical, physical and biological structure and function to be understood. This instrument will benefit scientists with interests in pharmaceuticals, minerals and other inorganic crystals, small molecules, molecular organo-metallic crystals and metal-organic frameworks (MOFs) molecular crystal structures. The quasi-Laue geometry, combined with a large solid angle detector, will enable rapid data collection from crystals with volume < 1mm{sup 1} and unit cell < 100 {angstrom}. Construction and installation of the optical system is in progress. Commissioning is expected to start in April 2012.

Ekkebus, Allen E [ORNL

2012-01-01T23:59:59.000Z

264

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

265

Advances in compressible turbulent mixing  

SciTech Connect (OSTI)

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

266

Advanced Scientific Computing Research Network Requirements  

SciTech Connect (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

Dart, Eli; Tierney, Brian

2013-03-08T23:59:59.000Z

267

Instrumentation for multiaxial mechanical testing of inhomogeneous elastic membranes  

E-Print Network [OSTI]

This thesis presents the design, development, and construction of an instrument for biaxial mechanical testing of inhomogeneous elastic membranes. The instrument incorporates an arrangement of linear motion stages for ...

Herrmann, Ariel Marc

2006-01-01T23:59:59.000Z

268

CU-LASP Test Facilities ! and Instrument Calibration Capabilities"  

E-Print Network [OSTI]

­ Star tracker ­ Solar position sensors ­ Test & calibration applications ­ End-to-end instrument;Total Solar Irradiance Radiometer Facility (TRF) · Total Solar Irradiance (TSI) instrument calibrations

Mojzsis, Stephen J.

269

Arnold Schwarzenegger ADVANCEMENT OF  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor ADVANCEMENT OF ELECTROCHROMIC WINDOWS Prepared For: California the time to provide insightful technical and market-related input into the direction of this R&D: Carl Mechoshade Systems, Inc. Grant Brohard Pacific Gas & Electric Company Charles Hayes SAGE Electrochromics, Inc

270

Advanced fossil energy utilization  

SciTech Connect (OSTI)

This special issue of Fuel is a selection of papers presented at the symposium ‘Advanced Fossil Energy Utilization’ co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 26–30, 2009.

Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

2010-01-01T23:59:59.000Z

271

Standard version Advanced version  

E-Print Network [OSTI]

Minimum octane 8.5 7 4.5 To produce these products, Margaret purchases crude oil at a price of ÂŁ11 per version Margaret Oil - basic (2) Before crude can be used to produce products for sale, it must version Advanced version Margaret Oil - basic (3) Crude Distill Naphtha Gasoline Distilled 1 Jet fuel

Hall, Julian

272

Advanced Test Reactor Tour  

SciTech Connect (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2011-01-01T23:59:59.000Z

273

Advanced Test Reactor Tour  

ScienceCinema (OSTI)

The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

Miley, Don

2013-05-28T23:59:59.000Z

274

International for Advanced Studies  

E-Print Network [OSTI]

and Technology at the University of Ulm ICAS-Affiliations The International Center for Advanced Studies in Health in medical technology and pharma- ceutical industry. The International Advisory Panel of ICAS consists, transfer of state-of-the-art clinical technologies, and utilization of methodologies appropriate

Pfeifer, Holger

275

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 Annual Retreat 46 15th An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered from CABM laboratories have appeared in high impact international journals including Development, Genes

276

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Shatkin 41 Education, Training and Technology Transfer 43 Lectures and Seminars 44 CABM Lecture Series 45 An Advanced Technology Center of The New Jersey Commission on Science and Technology Jointly Administered for the improvement of human health. In 2002 peer-reviewed CABM studies were published in leading international

277

Advanced Biotechnology and Medicine  

E-Print Network [OSTI]

Vikas Nanda 63 Protein Crystallography Ann Stock 67 Education, Training and Technology Transfer 71 Report An Advanced Technology Center of the New Jersey Commission on Science and Technology Jointly, the CIPR will house the Rutgers-based Protein Data Bank (PDB), an international repository directed

278

Implementation of instruments and facilities at the SGP CART site  

SciTech Connect (OSTI)

This report discusses the installation of instruments and trailers at the southern Great Plains Clouds and Radiation Testbed site.

Sisterson, D.L.; Wesely, M.L.

1994-02-01T23:59:59.000Z

279

SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 15  

E-Print Network [OSTI]

SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 15 INSTRUCTION MANUAL Serial No._____________________ 8/94 World Precision Instruments, Inc. SP100i Syringe Pump Digital Infusion Syringe Pump #12;SP100i Syringe Pump WORLD PRECISION INSTRUMENTS 1 Contents GENERAL DESCRIPTION

Kleinfeld, David

280

Absolute instruments and perfect imaging in geometrical optics  

E-Print Network [OSTI]

Absolute instruments and perfect imaging in geometrical optics Tom´as Tyc, Lenka Herz symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically

Tyc, Tomas

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

MHD power plant instrumentation and control  

SciTech Connect (OSTI)

The Electric Power Research Institute (EPRI) has awarded a contract to the MHD Development Corporation (MDC) to develop instrumentation and control requirements and strategies for commercial MHD power plants. MDC subcontracted MSE to do the technical development required. MSE is being assisted by Montana State University (MSU) for the topping cycle development. A computer model of a stand-alone MHD/steam plant is being constructed. The plant is based on the plant design set forth in the MDC proposal to the Federal Clean Coal Technology 5 solicitation. It consists of an MHD topping plant, a Heat Recovery Seed Recovery (HRSR) plant, and a steam turbo-generator. The model is based on the computer code used for a study of the Corette plant retrofitted with an MHD plant. Additional control strategies, based on MHD testing results and current steam bottoming plant control data, will be incorporated. A model will be devised and implemented for automatic control of the plant. Requirements regarding instrumentation and actuators will be documented. Instrumentation and actuators that are not commercially available will be identified. The role and desired characteristics of an expert system in the automated control scheme is being investigated. Start-up and shutdown procedures will be studied and load change dynamic performance will be evaluated. System response to abnormal topping cycle and off-design system operation will be investigated. This includes use of MHD topping cycle models which couple gasdynamic and electrical behavior for the study of controlling of the MHD topping cycle. A curvefitter, which uses cubic Hermitian spline interpolation functions in as many as five dimensions, allows much more accurate reproduction of nonlinear, multidimensional functions. This project will be the first to investigate plant dynamics and control using as many as seven independent variables or control inputs to the MHD topping cycle.

Lofftus, D.; Rudberg, D. [MSE Inc., Butte, MT (United States); Johnson, R.; Hammerstrom, D. [Montana State Univ., Bozeman, MT (United States)

1993-12-31T23:59:59.000Z

282

Advanced Manufacture of Reflectors  

SciTech Connect (OSTI)

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

283

Beam instrumentation for the Tevatron Collider  

SciTech Connect (OSTI)

The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

2009-10-01T23:59:59.000Z

284

Curtis Instruments Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran, Illinois:Instruments Inc Jump to:

285

Licenses Available in Analytical Instrumentation | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE CAnalytical Instrumentation SHARE

286

ARM - Campaign Instrument - 5mm-mwr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARMFacilitiesCERAgovInstruments5mm-mwr

287

Chain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid  

E-Print Network [OSTI]

and the Combechem grid. The deeper integration supports the publication at source research objective of Combechem.g. the smart laboratory (smart- tea.org), grid-enabled instrumentation, data tracking for analysis, methodologyChain ReAKTing: Collaborative Advanced Knowledge Technologies in the Combechem Grid Michelle

Chen-Burger, Yun-Heh (Jessica)

288

Advancements in accuracy of the alanine EPR dosimetry Part III: Usefulness of an adjacent reference sample  

E-Print Network [OSTI]

Advancements in accuracy of the alanine EPR dosimetry system Part III: Usefulness of an adjacent Instruments, Inc, EPR Division, Billerica, MA 01821-3957, USA Received 26 January 2000; accepted 28 February Paramagnetic Resonance (EPR) spectral analysis. Small uncontrollable variations of the EPR spectrometer

289

MICROHOLE TECHNOLOGY PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT  

SciTech Connect (OSTI)

Microhole technology development is based on the premise that with advances in electronics and sensors, large conventional-diameter wells are no longer necessary for obtaining subsurface information. Furthermore, microholes offer an environment for improved substance measurement. The combination of deep microholes having diameters of 1-3/8 in. at their terminal depth and 7/8-in. diameter logging tools will comprise a very low cost alternative to currently available technology for deep subsurface characterization and monitoring.

J. ALBRIGHT

2000-09-01T23:59:59.000Z

290

THE Q/U IMAGING EXPERIMENT INSTRUMENT  

SciTech Connect (OSTI)

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales({approx}1 Degree-Sign ). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 {mu}Ks{sup 1/2}) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 {mu}Ks{sup 1/2} at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range l {approx} 25-975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument.

Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Smith, K. M.; Bogdan, M. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K.; Reeves, R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Dumoulin, R. N.; Newburgh, L. B. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Monsalve, R.; Bustos, R. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Naess, S. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Nixon, G. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Vanderlinde, K. [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Wehus, I. K. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Church, S. E. [Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Varian Physics Building, 382 Via Pueblo Mall, Stanford, CA 94305 (United States); Davis, R.; Dickinson, C., E-mail: newburgh@princeton.edu [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); and others

2013-05-01T23:59:59.000Z

291

Microfabricated instrument for tissue biopsy and analysis  

DOE Patents [OSTI]

A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate. For automation purposes, microvalves and micropumps may be incorporated. Also, specimens in parallel may be cut and treated with identical or varied chemicals. The instrument is disposable due to its low cost and thus could replace current expensive microtome and histology equipment.

Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

1999-01-01T23:59:59.000Z

292

Herty Advanced Materials Development Center  

Broader source: Energy.gov [DOE]

Session 1-B: Advancing Alternative Fuels for the Military and Aviation Sector Breakout Session 1: New Developments and Hot Topics Jill Stuckey, Acting Director, Herty Advanced Materials Development Center

293

Search Advanced Search Home > News  

E-Print Network [OSTI]

Search Advanced Search Home > News [-] Text [+] Email Print tweet 0 tweets RSS Feeds Newsletters with bodily tissues, "these approaches might have the potential to redefine design strategies for advanced

Rogers, John A.

294

Accommodating subject and instrument variations in spectroscopic determinations  

DOE Patents [OSTI]

A method and apparatus for measuring a biological attribute, such as the concentration of an analyte, particularly a blood analyte in tissue such as glucose. The method utilizes spectrographic techniques in conjunction with an improved instrument-tailored or subject-tailored calibration model. In a calibration phase, calibration model data is modified to reduce or eliminate instrument-specific attributes, resulting in a calibration data set modeling intra-instrument or intra-subject variation. In a prediction phase, the prediction process is tailored for each target instrument separately using a minimal number of spectral measurements from each instrument or subject.

Haas, Michael J. (Albuquerque, NM); Rowe, Robert K. (Corrales, NM); Thomas, Edward V. (Albuquerque, NM)

2006-08-29T23:59:59.000Z

295

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

296

Advanced Separation Consortium  

SciTech Connect (OSTI)

The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

NONE

2006-01-01T23:59:59.000Z

297

Advanced Photon Source Upgrade Project  

ScienceCinema (OSTI)

Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

2013-04-19T23:59:59.000Z

298

Advanced Polymer Processing Facility  

SciTech Connect (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

299

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

300

Advanced Materials Manufacturing | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced Material

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

302

Advanced Energy Design Guides | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Energy Design Guides Advanced Energy Design Guides EERE Building Technologies Program - This fact sheet discusses the Advanced Energy Design Guides (AEDGs) and how they...

303

CIWS-FW: a Customizable InstrumentWorkstation Software Framework for instrument-independent data handling  

E-Print Network [OSTI]

The CIWS-FW is aimed at providing a common and standard solution for the storage, processing and quick look at the data acquired from scientific instruments for astrophysics. The target system is the instrument workstation either in the context of the Electrical Ground Support Equipment for space-borne experiments, or in the context of the data acquisition system for instrumentation. The CIWS-FW core includes software developed by team members for previous experiments and provides new components and tools that improve the software reusability, configurability and extensibility attributes. The CIWS-FW mainly consists of two packages: the data processing system and the data access system. The former provides the software components and libraries to support the data acquisition, transformation, display and storage in near real time of either a data packet stream and/or a sequence of data files generated by the instrument. The latter is a meta-data and data management system, providing a reusable solution for the...

Conforti, Vito; Bulgarelli, Andrea; Gianotti, Fulvio; Franceschi, Enrico; Nicastro, Luciano; Zoli, Andrea; Dadina, Mauro; Smart, Ricky; Morbidelli, Roberto; Frailis, Marco; Sartor, Stefano; Zacchei, Andrea; Lodi, Marcello; Cirami, Roberto; Pasian, Fabio

2014-01-01T23:59:59.000Z

304

1) Start the Instrument and Software 2 1.1 Start the Instrument 2  

E-Print Network [OSTI]

adhesive film. ColorofLeftLED ColorofRightLED StatusofInstrument Orange *flashing* Orange *flashing on the computer workstation (if it is not already on). 2. Login to Windows. a. User name: operator b. Password: LC Window will appear. Click on New Ex- periment. 2. The software will open the New Experiment Window

Gruner, Daniel S.

305

Instrumentation Needs for Integral Primary System Reactors (IPSRs) - Task 1 Final Report  

SciTech Connect (OSTI)

This report presents the results of the Westinghouse work performed under Task 1 of this Financial Assistance Award and satisfies a Level 2 Milestone for the project. While most of the signals required for control of IPSRs are typical of other PWRs, the integral configuration poses some new challenges in the design or deployment of the sensors/instrumentation and, in some cases, requires completely new approaches. In response to this consideration, the overall objective of Task 1 was to establish the instrumentation needs for integral reactors, provide a review of the existing solutions where available, and, identify research and development needs to be addressed to enable successful deployment of IPSRs. The starting point for this study was to review and synthesize general characteristics of integral reactors, and then to focus on a specific design. Due to the maturity of its design and availability of design information to Westinghouse, IRIS (International Reactor Innovative and Secure) was selected for this purpose. The report is organized as follows. Section 1 is an overview. Section 2 provides background information on several representative IPSRs, including IRIS. A review of the IRIS safety features and its protection and control systems is used as a mechanism to ensure that all critical safety-related instrumentation needs are addressed in this study. Additionally, IRIS systems are compared against those of current advanced PWRs. The scope of this study is then limited to those systems where differences exist, since, otherwise, the current technology already provides an acceptable solution. Section 3 provides a detailed discussion on instrumentation needs for the representative IPSR (IRIS) with detailed qualitative and quantitative requirements summarized in the exhaustive table included as Appendix A. Section 3 also provides an evaluation of the current technology and the instrumentation used for measurement of required parameters in current PWRs. Section 4 examines those instrumentation/measurement needs where differences between IRIS and present PWRs exist and the current PWR implementation cannot be directly employed, and identifies two subcategories. In the first group, resolution can be readily identified, and is essentially an engineering solution (for example, modification of an existing approach, adaptation of existing instrument etc.). The second group presents true technological challenges as it may require new technology development. I n these cases, high level functional requirements have been identified together with relevant technical considerations to guide future development activities.

Gary D. Storrick; Bojan Petrovic; Luca Oriani; Lawrence E. Conway; Diego Conti

2005-09-30T23:59:59.000Z

306

Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative  

SciTech Connect (OSTI)

A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

2009-01-01T23:59:59.000Z

307

ORIGINAL ARTICLE Ambient Air Pollution  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ambient Air Pollution and Cardiovascular Emergency Department Visits Kristi Busico ambient air pollutants and cardiovascular disease (CVD), the roles of the physicochemical components the relation between ambient air pollution and cardiovascular conditions using ambient air quality data

Mulholland, James A.

308

Instrumental vetoes for transient gravitational-wave triggers using noise-coupling models: The bilinear-coupling veto  

E-Print Network [OSTI]

LIGO and Virgo recently completed searches for gravitational waves at their initial target sensitivities, and soon Advanced LIGO and Advanced Virgo will commence observations with even better capabilities. In the search for short duration signals, such as coalescing compact binary inspirals or "burst" events, noise transients can be problematic. Interferometric gravitational-wave detectors are highly complex instruments, and, based on the experience from the past, the data often contain a large number of noise transients that are not easily distinguishable from possible gravitational-wave signals. In order to perform a sensitive search for short-duration gravitational-wave signals it is important to identify these noise artifacts, and to "veto" them. Here we describe such a veto, the bilinear-coupling veto, that makes use of an empirical model of the coupling of instrumental noise to the output strain channel of the interferometric gravitational-wave detector. In this method, we check whether the data from the output strain channel at the time of an apparent signal is consistent with the data from a bilinear combination of auxiliary channels. We discuss the results of the application of this veto on recent LIGO data, and its possible utility when used with data from Advanced LIGO and Advanced Virgo.

Parameswaran Ajith; Tomoki Isogai; Nelson Christensen; Rana Adhikari; Aaron B. Pearlman; Alex Wein; Alan J. Weinstein; Ben Yuan

2014-05-27T23:59:59.000Z

309

Johnson Noise Thermometry for Advanced Small Modular Reactors  

SciTech Connect (OSTI)

Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurement due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.

Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.; Holcomb, D.E.; Wood, R.T.

2012-09-15T23:59:59.000Z

310

Future Vision for Instrumentation, Information and Control Modernization  

SciTech Connect (OSTI)

A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. II&C has been identified as a potential life-limiting issue for the domestic LWR fleet in addressing the reliability and aging concerns of the legacy systems in service today. The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. Pilot projects are being conducted as the means for industry to gain confidence in these new technologies for use in nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision. Initial project results confirm that the technologies can address provide substantial efficiency and human performance benefits while resolving the reliability and aging concerns.

Ken D. Thomas

2012-05-01T23:59:59.000Z

311

SRS delayed neutron instruments for safeguards measurements  

SciTech Connect (OSTI)

Six analytical systems measuring delayed neutrons have been used for safeguards measurements at the Savannah River Site (SRS). A predecessor, the 252Cf Activation Analysis Facility installed at the Savannah River Technology Center (formally SR Laboratory) has been used since 1974 to analyze small samples, measuring both delayed neutrons and gammas. The six shufflers, plus one currently being fabricated, were developed, designed and fabricated by the LANL N-1 group. These shufflers have provided safeguards measurements of product (2 each), in-process scrap (2 each plus a conceptual replacement) and process waste (2 each plus one being fabricated). One shuffler for scrap assay was the first shuffler to be installed (1978) in a process. Another (waste) was the first installed in a process capable of assaying barrels. A third (waste) is the first pass-through model and a fourth (product) is the most precise ({+-}.12%) and accurate NDA instrument yet produced.

Studley, R.V. [Westinghouse SRC, Aiken, SC (United States)

1993-12-31T23:59:59.000Z

312

Microfabricated instrument for tissue biopsy and analysis  

DOE Patents [OSTI]

A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate.

Krulevitch, Peter A. (Pleasanton, CA); Lee, Abraham P. (Walnut Creek, CA); Northrup, M. Allen (Berkeley, CA); Benett, William J. (Livermore, CA)

2001-01-01T23:59:59.000Z

313

Highly damped kinematic coupling for precision instruments  

DOE Patents [OSTI]

A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

Hale, Layton C. (Livermore, CA); Jensen, Steven A. (Livermore, CA)

2001-01-01T23:59:59.000Z

314

Assessing the local windfield with instrumentation  

SciTech Connect (OSTI)

This report concerns the development and testing of a technique for the initial screening and evaluation of potential sites for wind-energy conversion systems (WECS). The methodology was developed through a realistic siting exercise. The siting exercise involved measurements of winds along the surface and winds aloft using a relatively new instrument system, the Tethered Aerodynamic Lifting Anemometer (TALA) kite; notation of ecological factors such as vegetation flagging, soil erosion and site exposure, and verification of an area best suited for wind-energy development by establishing and maintaining a wind monitoring network. The siting exercise was carried out in an approximately 100-square-mile region of the Tehachapi Mountains of Southern California. The results showed that a comprehensive site survey involving field measurements, ecological survey, and wind-monitoring can be an effective tool for preliminary evaluation of WECS sites.

Zambrano, T.G.

1980-10-01T23:59:59.000Z

315

SUNRISE: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS  

SciTech Connect (OSTI)

The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.

Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmueller, T. L.; Schuessler, M. [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Bonet, J. A.; Pillet, V. MartInez [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, 38200 La Laguna, Tenerife (Spain); Del Toro Iniesta, J. C. [Instituto de Astrofisica de AndalucIa (CSIC), Apdo. de Correos 3004, E-18080, Granada (Spain); Domingo, V.; Palacios, J. [Grupo de AstronomIa y Ciencias del Espacio, Universidad de Valencia, E-46980, Paterna, Valencia (Spain); Knoelker, M. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gonzalez, N. Bello; Berkefeld, T.; Franz, M.; Schmidt, W. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstr. 6, 79104 Freiburg (Germany); Title, A. M., E-mail: solanki@mps.mpg.d [Lockheed-Martin Solar and Astrophysical Lab., Palo Alto, CA 94304 (United States)

2010-11-10T23:59:59.000Z

316

Advanced MR moisture sensor market feasibility analysis. Executive summary  

SciTech Connect (OSTI)

This paper briefly documents activities, background information, and results of marketing studies on the Magnetic Resonance Advanced Moisture Sensor (AMS). The main goals of the study are to identify industrial uses to guide development efforts, to become familiar with the industrial and magnetic resonance research capabilities/resources at the Southwest Research Institute (SwRI), and to develop a summary data sheet describing the AMS product for use with a broad mail survey of potential users. The studies are being performed through an alliance of Quantum Magnetics, US DOE, SwRI, The Townsend Agency, and PAI Partners. Efforts are being focused on NIR, Raman, and other optical spectroscopies as process measurement tools for onstream applications. Domestic and world markets for process analytical instrumentation, process moisture instrumentation, and nuclear magnetic resonance instrumentation are summarized. Three applications are identified as the most promising for magnetic resonance instrumentation: (1) polymer production, (2) pharmaceuticals preparation, and (3) prepared food processing. It is estimated that the process magnetic resonance market could reach $5 to $10 million annually by the end of this decade.

NONE

1995-02-01T23:59:59.000Z

317

New portable hand-held radiation instruments for measurements and monitoring  

SciTech Connect (OSTI)

Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification.

Fehlau, P.E.

1987-01-01T23:59:59.000Z

318

BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.  

SciTech Connect (OSTI)

To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

INSTRUMENTATION DIVISION STAFF

1999-06-01T23:59:59.000Z

319

ADVANCED SULFUR CONTROL CONCEPTS  

SciTech Connect (OSTI)

Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

2003-01-01T23:59:59.000Z

320

Horizontal Advanced Tensiometer  

DOE Patents [OSTI]

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Manufacture of Reflectors  

Broader source: Energy.gov [DOE]

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

322

Advanced Manufacturing Office Overview  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut)41AdamEnergyAdvanced DOE Workshop:

323

Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >Portal Advanced

324

Advanced Feedstock Supply System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvanced Feedstock

325

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling &NuclearNewsletter3

326

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling

327

Advanced Simulation Capability  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Report

328

Advanced Simulation Capability for  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout UsAdvanced Modeling2 Annual Reportfor

329

Geothermal: Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

330

Advanced Conversion Roadmap Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance Patent WaiverLeslie Pezzullo Office of the

331

Advanced Combustion FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T opAddress:AdolphusAdvanced

332

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group Members

333

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home Group

334

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day -

335

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day

336

Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethods Home GroupISM Day0

337

Advanced Rooftop Unit Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal AdvancedMethodsServices »

338

Advanced Studies Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of Signatures Advanced

339

Advanced Target Effects Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience of SignaturesAdvanced Target

340

Advanced Ultraviolet Spectroradiometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience ofTechnologyMoreAdvanced

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

AdvAnced  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator Referencesalkali metalsTiO2(110). | AdvAnced

342

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

343

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

344

SCR Performance Optimization Through Advancements in Aftertreatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Optimization Through Advancements in Aftertreatment Packaging SCR Performance Optimization Through Advancements in Aftertreatment Packaging The impact of improved urea...

345

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

346

Advanced exterior sensor project : final report, September 2004.  

SciTech Connect (OSTI)

This report (1) summarizes the overall design of the Advanced Exterior Sensor (AES) system to include detailed descriptions of system components, (2) describes the work accomplished throughout FY04 to evaluate the current health of the original prototype and to return it to operation, (3) describes the status of the AES and the AES project as of September 2004, and (4) details activities planned to complete modernization of the system to include development and testing of the second-generation AES prototype.

Ashby, M. Rodema

2004-12-01T23:59:59.000Z

347

Advanced thermochemical hydrogen cycles  

SciTech Connect (OSTI)

The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

Hollabaugh, C.M.; Bowman, M.G.

1981-01-01T23:59:59.000Z

348

HUMAN NEUROSCIENCE ORIGINAL RESEARCH ARTICLE  

E-Print Network [OSTI]

in response to inverted faces. In contrast, there was no N170 in the left hemisphere, where PS has a lesion the extensive research during the last decades has advanced our understanding of the neural mechanisms underlying face percep- tion, still little is known about the functional role of the brain areas involved

Henson, Rik

349

DOE Fundamentals Handbook: Instrumentation and Control, Volume 2  

SciTech Connect (OSTI)

The Instrumentation and Control Fundamentals Handbook personnel, and the technical staff facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

Not Available

1992-06-01T23:59:59.000Z

350

DOE Fundamentals Handbook: Instrumentation and Control, Volume 1  

SciTech Connect (OSTI)

The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

Not Available

1992-06-01T23:59:59.000Z

351

Radiation Protection Instrument Manual, Revision 1, PNL-MA-562  

SciTech Connect (OSTI)

PNL-MA-562 This manual provides specific information for operating and using portable radiological monitoring instruments available for use on the Hanford Site.

Johnson, Michelle Lynn

2009-09-23T23:59:59.000Z

352

automatic stapling instrument: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MUSICAL INSTRUMENT DETECTOR BY USING EVOLUTIONARY LEARNING METHOD Yoshiyuki Kobayashi SONY Corporation, Japan Yoshiyuki.Kobayashi@jp.sony.com ABSTRACT This paper presents a novel...

353

adaptive nonparametric instrumental: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

both selects Faraway, Julian 27 Spanish Version of the Sport Satisfaction Instrument (SSI) Adapted to Physical Education CiteSeer Summary: The objective of this research was to...

354

Tuesday, March 14, 2006 POSTER SESSION I: INSTRUMENT FACILITIES  

E-Print Network [OSTI]

-of-the-art instrument and the research that we will do with it. Kohout T. Elbra T. Pesonen L. J. Schnabl P. Slechta S

Rathbun, Julie A.

355

QAS 2.4 Instrument Calibration 5/26/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to evaluate the implementation of the contractor's program to routinely calibrate instruments, alarms, and sensors.  The Facility Representative observes...

356

activation instrumental analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

car electronics industry. There are currently many electronic systems improving the safety Wieringa, Roel 17 Runtime Instrumentation for Precise Flow-Sensitive Type Analysis...

357

Localization of gravitational wave sources with networks of advanced detectors  

SciTech Connect (OSTI)

Coincident observations with gravitational wave (GW) detectors and other astronomical instruments are among the main objectives of the experiments with the network of LIGO, Virgo, and GEO detectors. They will become a necessary part of the future GW astronomy as the next generation of advanced detectors comes online. The success of such joint observations directly depends on the source localization capabilities of the GW detectors. In this paper we present studies of the sky localization of transient GW sources with the future advanced detector networks and describe their fundamental properties. By reconstructing sky coordinates of ad hoc signals injected into simulated detector noise, we study the accuracy of the source localization and its dependence on the strength of injected signals, waveforms, and network configurations.

Klimenko, S.; Mitselmakher, G.; Pankow, C. [University of Florida, P.O. Box 118440, Gainesville, Florida, 32611 (United States); Vedovato, G. [INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Drago, M.; Prodi, G. [University of Trento, Physics Department and INFN, Gruppo Collegato di Trento, via Sommarive 14, 38123 Povo, Trento (Italy); Mazzolo, G.; Salemi, F. [Max Planck Institut fuer Gravitationsphysik, Callinstrasse 38, 30167 Hannover and Leibniz Universitaet Hannover, Hannover (Germany); Re, V. [INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Yakushin, I. [LIGO Livingston Observatory, Louisiana (United States)

2011-05-15T23:59:59.000Z

358

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing, combustion, cooling, materials, coatings and casting development. The market potential for the ATS gas turbine in the 2000-2014 timeframe was assessed for combined cycle, simple cycle and integrated gasification combined cycle, for three engine sizes. The total ATS market potential was forecasted to exceed 93 GW. Phase 3 and Phase 3 Extension involved further technology development, component testing and W501ATS engine detail design. The technology development efforts consisted of ultra low NO{sub x} combustion, catalytic combustion, sealing, heat transfer, advanced coating systems, advanced alloys, single crystal casting development and determining the effect of steam on turbine alloys. Included in this phase was full-load testing of the W501G engine at the McIntosh No. 5 site in Lakeland, Florida.

Gregory Gaul

2004-04-21T23:59:59.000Z

359

Calibration facility for environment dosimetry instruments  

SciTech Connect (OSTI)

In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (?10{sup ?9} - 10{sup ?8} Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin [Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului St, Magurele, Jud Ilfov, P.O.B. MG-6, RO-077125 (Romania)

2013-12-16T23:59:59.000Z

360

Ris Energy Report 2 Bioenergy is energy of biological and renewable origin,  

E-Print Network [OSTI]

2 Risø Energy Report 2 Bioenergy is energy of biological and renewable origin, normally derived of bioenergy resources are fuel wood, bagasse, organic waste, biogas and bioethanol. Bioenergy is the only action on climate change have all served to increase interest in bioenergy. Technological advances

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Challenges in recording and stimulation of living neural network based on Original Micro-Electrode Array  

E-Print Network [OSTI]

Challenges in recording and stimulation of living neural network based on Original Micro in bioelectronics can lead to neuroscience applications to explore the properties of neural networks. Micro properties of neural networks. Recent advances in micro and nano technology have opened the way to probe

Paris-Sud XI, Université de

362

Second generation PFB for advanced power generation  

SciTech Connect (OSTI)

Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

Robertson, A.; Van Hook, J.

1995-11-01T23:59:59.000Z

363

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

conditioning in buildings featuring integrated design withconditioning in buildings featuring integrated design withof a building with advanced integrated design involving one

2013-01-01T23:59:59.000Z

364

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

not finalized, AARF is considering: * 2 nd generation biofuels * Non-food sources * Jatropha * Algae * Lignocellulose * Other biomass-to-liquid * Advanced processing of edible...

365

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

Stanley Miller; Rich Gebert; William Swanson

1999-11-01T23:59:59.000Z

366

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

367

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2005-05-24T23:59:59.000Z

368

Advanced Containment System  

DOE Patents [OSTI]

An advanced containment system for containing buried waste and associated leachate. A trench is dug on either side of the zone of interest containing the buried waste so as to accommodate a micro tunnel boring machine. A series of small diameter tunnels are serially excavated underneath the buried waste. The tunnels are excavated by the micro tunnel boring machine at a consistent depth and are substantially parallel to each other. As tunneling progresses, steel casing sections are connected end to end in the excavated portion of the tunnel so that a steel tube is formed. Each casing section has complementary interlocking structure running its length that interlocks with complementary interlocking structure on the adjacent casing section. Thus, once the first tube is emplaced, placement of subsequent tubes is facilitated by the complementary interlocking structure on the adjacent, previously placed, casing sections.

Kostelnik, Kevin M. (Idaho Falls, ID); Kawamura, Hideki (Tokyo, JP); Richardson, John G. (Idaho Falls, ID); Noda, Masaru (Tokyo, JP)

2004-10-12T23:59:59.000Z

369

ORIGINAL ARTICLE Ambient Air Pollution  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ambient Air Pollution and Respiratory Emergency Department Visits Jennifer L. Peel pollution and respiratory outcomes. More refined assessment has been limited by study size and available air quality data. Methods: Measurements of 5 pollutants (particulate matter PM10 , ozone, nitrogen dioxide NO2

Mulholland, James A.

370

NEURAL CIRCUITS ORIGINAL RESEARCH ARTICLE  

E-Print Network [OSTI]

NEURAL CIRCUITS ORIGINAL RESEARCH ARTICLE published: 14 May 2010 doi: 10.3389/fncir.2010.00013 Frontiers in Neural Circuits www.frontiersin.org May 2010 | Volume 4 | Article 13 | 1 Signal processing a more holistic standpoint (Roberts, 1979; Bialek et al., 1991). For a continuously firing cell

Trauner, Dirk

371

Original article Effect of dehydration  

E-Print Network [OSTI]

Original article Effect of dehydration on ruminal degradability of lucerne José Luis REPETTO and a subsequent compression at high pressures on rumen degradability of lucerne were determined in 3 samples of effective degradability. lucerne / dehydration / high pressure compression / rumen degradability Résumé

Paris-Sud XI, Université de

372

Original article Predicted global warming  

E-Print Network [OSTI]

Original article Predicted global warming and Douglas-fir chilling requirements DD McCreary1 DP to predicted global warming. Douglas-fir / chilling / global warming / bud burst / reforestation Résumé offer evidence that mean global warming of 3-4 °C could occur within the next century, particularly

Boyer, Edmond

373

Hand-held pulse-train-analysis instrument  

SciTech Connect (OSTI)

A portable hand-held pulse-train-analysis instrument uses a number-oriented microprocessor sequenced by a single component microprocessor. The incorporation of new CMOS integrated circuits makes possible complex analysis in a small, easily operated, battery-powered unit. The instrument solves an immediate problem with threshold setting of plastic scintillators and promises numerous other applications.

Nixon, K.V.; Garcia, C.

1982-01-01T23:59:59.000Z

374

Brookhaven National Laboratory meteorological services instrument calibration plan and procedures  

SciTech Connect (OSTI)

This document describes the Meteorological Services (Met Services) Calibration and Maintenance Schedule and Procedures, The purpose is to establish the frequency and mechanism for the calibration and maintenance of the network of meteorological instrumentation operated by Met Services. The goal is to maintain the network in a manner that will result in accurate, precise and reliable readings from the instrumentation.

Heiser .

2013-02-16T23:59:59.000Z

375

New Sensors for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.

Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; Joshua E. Daw; Heng Ban; Brandon Fox; Gordon Kohse

2009-06-01T23:59:59.000Z

376

Advanced Hydrogen Turbine Development  

SciTech Connect (OSTI)

Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to maximize plant output is needed in order to address the DOE turbine goal for 20-30% reduction o

Joesph Fadok

2008-01-01T23:59:59.000Z

377

Advanced LBB methodology and considerations  

SciTech Connect (OSTI)

LBB applications have existed in many industries and more recently have been applied in the nuclear industry under limited circumstances. Research over the past 10 years has evolved the technology so that more advanced consideration of LBB can now be given. Some of the advanced considerations for nuclear plants subjected to seismic loading evaluations are summarized in this paper.

Olson, R.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)] [and others

1997-04-01T23:59:59.000Z

378

Systems Engineering Advancement Research Initiative  

E-Print Network [OSTI]

Systems Engineering Advancement Research Initiative RESEARCH PORTFOLIO Fall 2008 About SEAri http://seari.mit.edu The Systems Engineering Advancement Research Initiative brings together a set of sponsored research projects and a consortium of systems engineering leaders from industry, government, and academia. SEAri is positioned within

de Weck, Olivier L.

379

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

380

Epithermal Neutron Activation Analysis of Some Geological Samples of Different Origin  

SciTech Connect (OSTI)

Instrumental Epithermal Neutron Activation Analysis was used to investigate the distribution of six major elements and 34 trace elements in a set of eight igneous and metamorphic rocks collected from Carpathian and Macin Mountainsas well as unconsolidated sediments collected from anoxic zone of the Black Sea. All experimental data were interpreted within the Upper Continental Core and Mid Ocean Ridge Basalt model system that allowed getting more information concerning samples origin as well as the environmental peculiarities.

Duliu, O. G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125, Magurele (Ilfov) (Romania); Cristache, C. I. [National Institute of Research and Development for Physics and Nuclear Engineering Horia-Hulubei, P.O. Box MG-6, 077125, Magurele (Ilfov) (Romania); Oaie, G. [National Institute of Research and Development for Geology and Marine Geoecologylogy, 34 Dimitrie Onciul str., 024504 Bucharest (Romania); Ricman, C. [Geological Institute of Romania, 1 Caransebes Street, 012271 Bucharest (Romania); Culicov, O. A.; Frontasyeva, M. V. [Joint Institute for Nuclear Research, 6, Joliot-Curie str. 141980 Dubna (Russian Federation)

2010-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Origin of the Elements  

ScienceCinema (OSTI)

The world around us is made of atoms. Did you ever wonder where these atoms came from? How was the gold in our jewelry, the carbon in our bodies, and the iron in our cars made? In this lecture, we will trace the origin of a gold atom from the Big Bang to the present day, and beyond. You will learn how the elements were forged in the nuclear furnaces inside stars, and how, when they die, these massive stars spread the elements into space. You will learn about the origin of the building blocks of matter in the Big Bang, and we will speculate on the future of the atoms around us today.

Murphy, Edward

2014-08-06T23:59:59.000Z

382

Advanced robot locomotion.  

SciTech Connect (OSTI)

This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

2007-01-01T23:59:59.000Z

383

ADVANCED HYBRID PARTICULATE COLLECTOR  

SciTech Connect (OSTI)

A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and recollection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hour parametric tests and 100-hour proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency.

Stanley J. Miller; Grant L. Schelkoph; Grant E. Dunham

2000-12-01T23:59:59.000Z

384

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

385

Advanced hybrid gasification facility  

SciTech Connect (OSTI)

The objective of this procurement is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology for electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may react with aluminosilicates in the coal ash thereby minimizing their concentration in the hot raw coal gas passing through the system to the gas turbine. This paper describes a novel, staged, airblown, fixed-bed gasifier designed to solve both through the incorporation of pyrolysis (carbonization) with gasification. It employs a pyrolyzer (carbonizer) to avoid sticky coal agglomeration which occurs in a fixed-bed process when coal is gradually heated through the 400{degrees}F to 900{degrees}F range. In a pyrolyzer, the coal is rapidly heated such that coal tar is immediately vaporized. Gaseous tars are then thermally cracked prior to the completion of the gasification process. During the subsequent endothermic gasification reactions, volatilized alkali can be chemically bound to aluminosilicates in (or added to) the ash. To reduce NOx from fuel home nitrogen, moisture is minimized to control ammonia generation, and HCN in the upper gasifier region is partially oxidized to NO which reacts with NH3/HCN to form N2.

Sadowski, R.S.; Skinner, W.H. [CRS Sirrine, Inc., Greenville, SC (United States); Johnson, S.A. [PSI Technology Co., Andover, MA (United States); Dixit, V.B. [Riley Stoker Corp., Worcester, MA (United States). Riley Research Center

1993-08-01T23:59:59.000Z

386

Advanced Integrated Systems Technology Development  

E-Print Network [OSTI]

Underfloor Air Distribution Design Guide In May 2007,original Underfloor Air Distribution Design Guide publishedUnderfloor Air Distribution Design Guide, and special

2013-01-01T23:59:59.000Z

387

DEVELOPMENT OF AN ON-LINE, REAL-TIME ALPHA RADIATION MEASURING INSTRUMENT FOR LIQUID STREAMS  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has expressed a need for an on-line, real-time instrument for assaying alpha-emitting radionuclides (uranium and the transuranics) in effluent waters leaving DOE sites to ensure compliance with regulatory limits. Due to the short range of alpha particles in water ({approximately}40 Im), it is necessary now to intermittently collect samples of water and send them to a central laboratory for analysis. A lengthy and costly procedure is used to separate and measure the radionuclides from each sample. Large variations in radionuclide concentrations in the water may go undetected due to the sporadic sampling. Even when detected, the reading may not be representative of the actual stream concentration. To address these issues, the Advanced Technologies Group of Thermo Power Corporation (a Thermo Electron company) is developing a real-time, field-deployable alpha monitor based on a solid-state silicon wafer semiconductor (US Patent 5,652,013 and pending, assigned to the US Department of Energy). The Thermo Water Alpha Monitor will serve to monitor effluent water streams (Subsurface Contaminants Focus Area) and will be suitable for process control of remediation as well as decontamination and decommissioning (D and D) operations, such as monitoring scrubber or rinse water radioactivity levels (Mixed Waste, Plutonium, and D and D Focus Area). It would be applicable for assaying other liquids, such as oil, or solids after proper preconditioning. Rapid isotopic alpha air monitoring is also possible using this technology. This report details the program's accomplishments to date. Most significantly, the Alpha Monitoring Instrument was successfully field demonstrated on water 100X below the Environmental Protection Agency's proposed safe drinking water limit--down to under 1 pCi/1. During the Field Test, the Alpha Monitoring Instrument successfully analyzed isotopic uranium levels on a total of five different surface water, process water, and ground water streams (the primary water types of interest to the DOE). As an example of the user demand for such an analytical instrument, a portion of the Field Test for the Alpha Monitoring Instrument was on the DOE's Oak Ridge Reservation, at two test locations in the Y-12 Site's Bear Creek Valley.

Unknown

1999-03-14T23:59:59.000Z

388

Original Signature On File Original Signature On File  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeedingOptimizing I/O performance onAboutOrhan Kizilkaya,|Original

389

Evaluation of Instrumentation and Dynamic Thermal Ratings for Overhead Lines  

SciTech Connect (OSTI)

In 2010, a project was initiated through a partnership between the Department of Energy (DOE) and the New York Power Authority (NYPA) to evaluate EPRI?s rating technology and instrumentation that can be used to monitor the thermal states of transmission lines and provide the required real-time data for real-time rating calculations. The project included the installation and maintenance of various instruments at three 230 kV line sites in northern New York. The instruments were monitored, and data collection and rating calculations were performed for about a three year period.

Phillips, A.

2013-01-31T23:59:59.000Z

390

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

391

ADVANCED TURBINE SYSTEMS PROGRAM  

SciTech Connect (OSTI)

The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these technologies and the corresponding early adopters are likely to be located.

Sy Ali

2002-03-01T23:59:59.000Z

392

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation...  

Office of Environmental Management (EM)

Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Energy Solicitation Public Meeting Presentation Draft Advanced Nuclear Solicitation...

393

ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

Voyles, JW

2011-01-17T23:59:59.000Z

394

ACRF Instrumentation Status: New, Current, and Future November-December 2006  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JC Liljegren

2006-12-01T23:59:59.000Z

395

Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)  

SciTech Connect (OSTI)

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-01-30T23:59:59.000Z

396

PAPERWORK SUBMISSION TO BFS 1. Use FULL LEGAL NAME on PIR's, TER's, Travel Advances and Direct Payment Forms. DO NOT use  

E-Print Network [OSTI]

PAPERWORK SUBMISSION TO BFS CHECKLIST 1. Use FULL LEGAL NAME on PIR's, TER's, Travel Advances be documented on PIR's and the Employee / Independent Contractor Checklist must be attached. 5. An original W-9

Saldin, Dilano

397

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...  

Office of Legacy Management (LM)

Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

398

The localization of instrumental learning within the spinal cord  

E-Print Network [OSTI]

Spinal neurons of surgically transected rats can support a simple form of instrumental learning. Rats learn to maintain leg flexion as a response to shock. The present experiments localized the region of the spinal cord that mediates this learning...

Liu, Grace Alexandra Tsu-Chi

2013-02-22T23:59:59.000Z

399

Instrumenting Buildings to Determine Retrofit Savings: Murphy's Law Strikes Again  

E-Print Network [OSTI]

&M University. Metering typically includes monitoring for the whole-building electric load, chilled and hot water thermal loads and selected submetered electrical loads. The emphasis of the lessons learned was on the instrumentation used and installation...

O'Neal, D. L.; Bryant, J.; Carlson, K.

1998-01-01T23:59:59.000Z

400

Instant Profiling: Instrumentation Sampling for Profiling Datacenter Applications  

E-Print Network [OSTI]

Instant Profiling: Instrumentation Sampling for Profiling Datacenter Applications Hyoun Kyu Cho Profile-guided optimization possesses huge potential to save costs for datacenters. Hardware performance programmers find code regions to optimize by monitoring datacenter applications continuously on live traffic

Tomkins, Andrew

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hybrid percussion : extending physical instruments using sampled acoustics  

E-Print Network [OSTI]

This thesis presents a system architecture for creating hybrid digital-acoustic percussion instruments by combining extensions of existing signal processing techniques with specially-designed semi-acoustic physical ...

Aimi, Roberto Mario, 1973-

2007-01-01T23:59:59.000Z

402

PLC & DTAM Software Programs for Pumping Instrumentation & Control Skid P  

SciTech Connect (OSTI)

This document describes the software programs for the programmable logic controller and the datable access module for pumping instrumentation and control skid P. The appendices contains copies of the printouts of these software programs.

HORNER, T.M.

2001-07-19T23:59:59.000Z

403

Original Workshop Proposal and Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSD Logo AboutSignature OnOriginalNotes

404

advanced search Economist.com  

E-Print Network [OSTI]

SEARCH advanced search » Economist.com RESEARCH TOOLS Choose a research tool... Help their movements cause? A company is paying them to do a job, so why should it not read their e-mails when

Nissenbaum, Helen

405

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

406

SERI advanced wind turbine blades  

SciTech Connect (OSTI)

The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

Tangler, J.; Smith, B.; Jager, D.

1992-02-01T23:59:59.000Z

407

Ohio Advanced Energy Manufacturing Center  

SciTech Connect (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

408

February 2000 Advanced Technology Program  

E-Print Network [OSTI]

OF COMMERCE Economic Assessment Office Technology Administration Advanced Technology Program National .................................................................................................6 V. IIH Focused Program Project Selection Process information infrastructure in healthcare. A discussion of the ATP "white paper" process4 notes differences

409

Advanced Policy Practice Spring 2014  

E-Print Network [OSTI]

Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

Grissino-Mayer, Henri D.

410

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

411

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

412

SCANNING THE TECHNOLOGY Scanning Advanced  

E-Print Network [OSTI]

state of refinement. This has been made possible by advancements in a wide spec- trum of scientific economy, lower emissions and improved safety. The availability of computers on board the vehicle

413

Advancing Measurement of Family Leisure  

E-Print Network [OSTI]

This study advanced knowledge of the measurement properties of the Family Leisure Activity Profile (FLAP). The FLAP is a sixteen-item index based on the Core and Balance Model of Family Functioning. This study assessed three distinct scaling...

Melton, Karen

2014-08-06T23:59:59.000Z

414

Advanced Process Management and Implementation  

E-Print Network [OSTI]

Advanced Process Management is a method to achieve optimum process performance during the life cycle of a plant through proper design, effective automation, and adequate operator decision support. Developing a quality process model is an effective...

Robinson, J.

415

Tribal Renewable Energy Advanced Course: Project Development...  

Broader source: Energy.gov (indexed) [DOE]

Development and Financing Essentials Tribal Renewable Energy Advanced Course: Project Development and Financing Essentials Watch the DOE Office of Indian Energy advanced course...

416

Current trends in the Advanced Bioindustry  

Broader source: Energy.gov [DOE]

Afternoon Plenary Session: Current Trends in the Advanced Bioindustry State of Technology—Michael McAdams, President, Advanced Biofuels Association

417

Advancing Transportation Through Vehicle Electrification - PHEV...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

418

Funding Opportunity Webinar - Advancing Solutions To Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding Opportunity Webinar - Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings Funding Opportunity Webinar - Advancing Solutions To Improve the...

419

Advanced Hybrid Water Heater using Electrochemical Compressor...  

Energy Savers [EERE]

Advanced Hybrid Water Heater using Electrochemical Compressor Advanced Hybrid Water Heater using Electrochemical Compressor Xergy is using its Electro Chemical Compression (ECC)...

420

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Independent Oversight Review, Advanced Mixed Waste Treatment...  

Broader source: Energy.gov (indexed) [DOE]

Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection Program Implementation at the Advanced Mixed Waste Treatment Project of...

422

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

Phadke, Amol

2008-01-01T23:59:59.000Z

423

Advanced Ceramic Filter For Diesel Emission Control  

Broader source: Energy.gov (indexed) [DOE]

8 ACM Structure Overview Dow Automotive Advanced Ceramic Cordierite and Silicon carbide Advanced Ceramic Cordierite and Silicon carbide 9272004 DEER2004 9 ACM DPF Chemical...

424

A Prospective Target for Advanced Biofuel Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Prospective Target for Advanced Biofuel Production A Prospective Target for Advanced Biofuel Production Print Thursday, 02 February 2012 13:34 The sesquiterpene bisabolene was...

425

Advanced Materials for Proton Exchange Membranes | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

426

ALS Ceramics Materials Research Advances Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

427

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Caterpillar,...

428

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Presentation on Advanced Natural Gas Reciprocating Engines...

429

Advanced Natural Gas Reciprocating Engines (ARES) - Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dresser Waukesha, June 2011 Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Dresser Waukesha, June 2011 Presentation on Advanced Natural Gas Reciprocating...

430

Advanced Engine Development | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Engine Development High-performance computing accelerates advanced engine development July 11, 2014 Oak Ridge National Laboratory's (ORNL's) Dean Edwards and a...

431

Measuring Advances in HVAC Distribution System Design  

E-Print Network [OSTI]

Advances in HV AC Distribution System Design Ellen FranconiAdvances in HVAC Distribution System Design Ellen Franconisavings result from distribution system design improvements,

Franconi, E.

2011-01-01T23:59:59.000Z

432

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

Phadke, Amol

2008-01-01T23:59:59.000Z

433

Advances in understanding solar energy collection materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding solar energy collection materials Advances in understanding solar energy collection materials A LANL team and collaborators have made advances in the understanding of...

434

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

435

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

436

Advancing Energy Systems through Integration | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advancing Energy Systems through Integration Advancing Energy Systems through Integration This presentation was given by Ever-Green Energy's Ken Smith as part of the November 20,...

437

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical...

438

Application of advanced hydrocarbon characterization and its...  

Broader source: Energy.gov (indexed) [DOE]

advanced hydrocarbon characterization and its consequences on future fuel properties and advanced combustion research Rafal Gieleciak, Craig Fairbridge and Darcy Hager Poster...

439

Application of advanced hydrocarbon characterization and its...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on future fuel properties and advanced combustion research Research on future fuels chemistry and effects on combustion in advanced internal combustion engines p-14gieleciak.pdf...

440

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

- UW-ERC 1 "University Research in Advanced Combustion and Emissions Control" Optimization of Advanced Diesel Engine Combustion Strategies Profs. Rolf Reitz, D. Foster, J....

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

442

Nick Wright Named Advanced Technologies Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

443

Particulate Emissions Control by Advanced Filtration Systems...  

Broader source: Energy.gov (indexed) [DOE]

Particulate Emissions Control by Advanced Filtration Systems or GDI Engines Particulate Emissions Control by Advanced Filtration Systems or GDI Engines 2013 DOE Hydrogen and Fuel...

444

Advanced Computational Methods for Turbulence and Combustion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Computational Methods for Turbulence and Combustion Advanced Computational Methods for Turbulence and Combustion Bell.png Key Challenges: Development and application of...

445

Advanced Diesel Engine and Aftertreatment Technology Development...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions 2003...

446

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

447

Webinar: Systems Performance Advancement II Funding Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinar: Systems Performance Advancement II Funding Opportunity Announcement Webinar: Systems Performance Advancement II Funding Opportunity Announcement January 22, 2015 2:00PM to...

448

Advanced Low Temperature Absorption Chiller Module Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

449

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

450

Digital configurable instrument for emulation of signals from radiation detectors  

SciTech Connect (OSTI)

The paper presents a digital instrument characterized by a specially designed architecture that is able to emulate in real time signals from a generic radiation detection system. The instrument is not a pulse generator of recorded shapes but a synthesizer of random pulses compliant to programmable statistics for height and starting time of events. Completely programmable procedures for emulation of noise, disturbances, and reference level variation are implemented.

Abba, A.; Caponio, F.; Geraci, A. [Politecnico di Milano, Department of Electronics, Information and Bioengineering-DEIB, Milan 20133 (Italy)] [Politecnico di Milano, Department of Electronics, Information and Bioengineering-DEIB, Milan 20133 (Italy)

2014-01-15T23:59:59.000Z

451

Instrumentation and control for fossil-energy processes  

SciTech Connect (OSTI)

The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

Not Available

1982-09-01T23:59:59.000Z

452

Westinghouse advanced particle filter system  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

1995-11-01T23:59:59.000Z

453

Helicase Loading at Chromosomal Origins of Replication  

E-Print Network [OSTI]

Loading of the replicative DNA helicase at origins of replication is of central importance in DNA replication. As the first of the replication fork proteins assemble at chromosomal origins of replication, the loaded helicase ...

Bell, Stephen P.

454

The Origin of Cosmic Rays  

ScienceCinema (OSTI)

Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

Pasquale Blasi

2010-01-08T23:59:59.000Z

455

SIMS instrumentation and methodology for mapping of co-localized molecules  

SciTech Connect (OSTI)

We describe an innovative mode for localizing surface molecules. In this methodology, individual C{sub 60} impacts at 50 keV are localized using an electron emission microscope, EEM, synchronized with a time-of-flight mass spectrometer for the detection of the concurrently emitted secondary ions. The instrumentation and methodologies for generating ion maps are presented. The performance of the localization scheme depends on the characteristics of the electron emission, those of the EEM and of the software solutions for image analysis. Using 50 keV C{sub 60} projectiles, analyte specific maps and maps of co-emitted species have been obtained. The individual impact sites were localized within 1-2 ?m. A distinctive feature of recording individual impacts is the ability to identify co-emitted ions which originate from molecules co-located within ?10 nm.

Eller, M. J.; Verkhoturov, S. V.; Schweikert, E. A. [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3144 (United States)] [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3144 (United States); Della-Negra, S. [Institut de Physique Nucléaire d’Orsay, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)] [Institut de Physique Nucléaire d’Orsay, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)

2013-10-15T23:59:59.000Z

456

Institute for Advanced Materials at University of Louisville  

SciTech Connect (OSTI)

In this project, a university-wide, academic center has been established entitled ?Institute for Advanced Materials and Renewable Energy?. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostats and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established ?Institute for Advanced Materials? at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute?s efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to secure a successful EPSCoR cluster implementation grant by teaming with additional researchers from UK. In addition to research efforts, the project enabled several other outcomes: (a) helped recruit a junior faculty member (Dr. Moises Carreon) and establish a lab focused on meso-porous materials toward separation and catalysis; (b) enabled offering of three new, graduate level courses (Materials characterization using spectroscopy and microscopy; Electron and x-ray diffraction; and renewable energy systems); and (c) mentoring of a junior faculty members (Dr. Gerold Willing).

Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L; Willing, G A; Robert W, Cohn

2009-10-29T23:59:59.000Z

457

LSUHSC-NO Academy for the Advancement of Educational Scholarship Member Profile  

E-Print Network [OSTI]

LSUHSC-NO Academy for the Advancement of Educational Scholarship Member Profile T. Kirk Nelson, Ph.D. Academy Fellow Instructor Department of Physical Therapy School of Allied Health Professions Email: tnelso committee of the Academy for the SAHP and served on the original executive council when the Academy

458

Advances in data-driven analyses and modelling using EPR-MOGA  

E-Print Network [OSTI]

Advances in data-driven analyses and modelling using EPR-MOGA O. Giustolisi and D. A. Savic Regression (EPR) is a recently developed hybrid regression method that combines the best features. The original version of EPR works with formulae based on true or pseudo-polynomial expressions using a single

Fernandez, Thomas

459

Advanced Distillation Final Report  

SciTech Connect (OSTI)

The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the project were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.

Maddalena Fanelli; Ravi Arora; Annalee Tonkovich; Jennifer Marco; Ed Rode

2010-03-24T23:59:59.000Z

460

Advanced Integrated Traction System  

SciTech Connect (OSTI)

The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

Greg Smith; Charles Gough

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Microturbine Systems  

SciTech Connect (OSTI)

In July 2000, the United Technologies Research Center (UTRC) was one of five recipients of a US Department of Energy contract under the Advanced Microturbine System (AMS) program managed by the Office of Distributed Energy (DE). The AMS program resulted from several government-industry workshops that recognized that microturbine systems could play an important role in improving customer choice and value for electrical power. That is, the group believed that electrical power could be delivered to customers more efficiently and reliably than the grid if an effective distributed energy strategy was followed. Further, the production of this distributed power would be accomplished with less undesirable pollutants of nitric oxides (NOx) unburned hydrocarbons (UHC), and carbon monoxide (CO). In 2000, the electrical grid delivered energy to US customers at a national average of approximately 32% efficiency. This value reflects a wide range of powerplants, but is dominated by older, coal burning stations that provide approximately 50% of US electrical power. The grid efficiency is also affected by transmission and distribution (T&D) line losses that can be significant during peak power usage. In some locations this loss is estimated to be 15%. Load pockets can also be so constrained that sufficient power cannot be transmitted without requiring the installation of new wires. New T&D can be very expensive and challenging as it is often required in populated regions that do not want above ground wires. While historically grid reliability has satisfied most customers, increasing electronic transactions and the computer-controlled processes of the 'digital economy' demand higher reliability. For them, power outages can be very costly because of transaction, work-in-progress, or perishable commodity losses. Powerplants that produce the grid electrical power emit significant levels of undesirable NOx, UHC, and CO pollutants. The level of emission is quoted as either a technology metric or a system-output metric. A common form for the technology metric is in the units of PPM {at} 15% O2. In this case the metric reflects the molar fraction of the pollutant in the powerplant exhaust when corrected to a standard exhaust condition as containing 15% (molar) oxygen, assuring that the PPM concentrations are not altered by subsequent air addition or dilution. Since fuel combustion consumes oxygen, the output oxygen reference is equivalent to a fuel input reference. Hence, this technology metric reflects the moles of pollutant per mole of fuel input, but not the useful output of the powerplant-i.e. the power. The system-output metric does embrace the useful output and is often termed an output-based metric. A common form for the output-based metric is in the units of lb/MWh. This is a system metric relating the pounds of pollutant to output energy (e.g., MWh) of the powerplant.

Rosfjord, T; Tredway, W; Chen, A; Mulugeta, J; Bhatia, T

2008-12-31T23:59:59.000Z

462

A blind method to detrend instrumental systematics in exoplanetary light-curves  

E-Print Network [OSTI]

The study of the atmospheres of exoplanets requires a photometric precision, and repeatability, at the level of one part in ~10^4. This is beyond the original calibration plans of current observatories, hence the necessity to disentangle some of the instrumental systematics from the astrophysical signals in raw datasets. Most methods used in the literature are parametric, i.e. based on an approximate model of the instrument, and therefore they have many degrees of freedom, which are, most likely, the cause of several controversies in the literature. Non-parametric methods have been proposed to guarantee an higher degree of objectivity (Carter & Winn 2009; Thatte et al. 2010; Gibson et al. 2012; Waldmann 2012; Waldmann et al. 2013; Waldmann 2014). Recently, Morello et al. (2014, 2015) have developed a non-parametric detrending method that gave coherent and repeatable results when applied to Spitzer/IRAC datasets that were debated in the literature. Said method is based on Independent Component Analysis (IC...

Morello, Giuseppe

2015-01-01T23:59:59.000Z

463

Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification  

SciTech Connect (OSTI)

The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were tested/applied on the thermocouple cleaning according to the proposed approach. Different frequency, application time and power of the ultrasonic/subsonic output were tested. The results show that the ultrasonic approach is one of the best methods to clean the thermocouple tips during the routine operation of the gasifier. In addition, the real time data acquisition system was also designed and applied in the experiments. This advanced instrumentation provided the efficient and accurate data acquisition for this project. In summary, the accomplishment of the project provided useful information of the ultrasonic cleaning method applied in thermocouple tip cleaning. The temperature measurement could be much improved both in accuracy and duration provided that the proposed approach is widely used in the gasification facilities.

Seong W. Lee

2006-09-30T23:59:59.000Z

464

Origin of black string instability  

SciTech Connect (OSTI)

It is argued that many nonextremal black branes exhibit a classical Gregory-Laflamme (GL) instability. Why does the universal instability exist? To find an answer to this question and explore other possible instabilities, we study stability of black strings for all possible types of gravitational perturbation. The perturbations are classified into tensor-, vector-, and scalar-types, according to their behavior on the spherical section of the background metric. The vector and scalar perturbations have exceptional multipole moments, and we have paid particular attention to them. It is shown that for each type of perturbations there is no normalizable negative (unstable) modes, apart from the exceptional mode known as s-wave perturbation which is exactly the GL mode. We discuss the origin of instability and comment on the implication for the correlated-stability conjecture.

Kudoh, Hideaki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)

2006-05-15T23:59:59.000Z

465

New In-pile Instrumentation to Support Fuel Cycle Research and Development  

SciTech Connect (OSTI)

New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking these technologies. A preliminary ranking of candidate technologies is performed to illustrate the path forward for developing real-time instrumentation that could provide the required data for the FC R&D program. This draft document is a starting point for discussion with instrumentation experts and organizations. It is anticipated that the document will be used to stimulate discussions on a wide-range of sensor technologies and to gain consensus with respect to the path forward for accomplishing the goals of this research program.

J. Rempe; H. MacLean; R. Schley; D. Hurley; J. Daw; S. Taylor; J. Smith; J. Svoboda; D. Kotter; D. Knudson; M. Guers; S. C. Wilkins

2011-01-01T23:59:59.000Z

466

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Statistics & Safety  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #1(n) [modulating generating] sensor. #12;ECE 331 - Biomedical Instrumentation Department of Electrical & Computer

Pulfrey, David L.

467

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Limb Plethysmography & Flow  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #2 scale and flow (in L/ min). Compute linearity. #12;ECE 331 - Biomedical Instrumentation Department

Pulfrey, David L.

468

ECE 331 -Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Implant Design & Total Hip Arthroplasty  

E-Print Network [OSTI]

ECE 331 - Biomedical Instrumentation Department of Electrical & Computer Engineering, UBC Lab #6 screw from the implant once it is successfully implanted. #12;ECE 331 - Biomedical Instrumentation

Pulfrey, David L.

469

CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents  

E-Print Network [OSTI]

1 CONTENTDM ADVANCED SEARCH TUTORIAL Table of Contents 1. Accessing the Advanced Search Page 1 2. Navigating the Advanced Search Page 3 3. Selecting your collection to search Advanced Search from the right navigation menu. 2 This will take you into the CONTENTdm database

O'Laughlin, Jay

470

ABPDU - Advanced Biofuels Process Demonstration Unit  

SciTech Connect (OSTI)

Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

None

2011-01-01T23:59:59.000Z

471

Integrated head package for top mounted nuclear instrumentation  

DOE Patents [OSTI]

A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.

Malandra, Louis J. (McKeesport, PA); Hornak, Leonard P. (Forest Hills, PA); Meuschke, Robert E. (Monroeville, PA)

1993-01-01T23:59:59.000Z

472

Process for producing advanced ceramics  

DOE Patents [OSTI]

A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

Kwong, Kyei-Sing (Tuscaloosa, AL)

1996-01-01T23:59:59.000Z

473

11/02/2009 15:55Does Darwin's Home Deserve the Same Status as Egypt's Pyramids? -Origins Page 1 of 3http://blogs.sciencemag.org/origins/2009/02/does-darwins-home-deserve-the.html  

E-Print Network [OSTI]

11/02/2009 15:55Does Darwin's Home Deserve the Same Status as Egypt's Pyramids? - Origins Page 1 Darwin's Home Deserve the Same Status as Egypt's Pyramids? Daily News Advanced Extraterrestrial Evolution | Main FEBRUARY 10, 2009 Does Darwin's Home Deserve the Same Status as Egypt's Pyramids? Cleaned

West, Stuart

474

RefWorks for Business: Advanced Workshop Advanced Searching and Lookups  

E-Print Network [OSTI]

RefWorks for Business: Advanced Workshop Advanced Searching and Lookups Advanced Search There may Advanced Search is helpful. o Go to the Search menu > click Advanced Search Lookups Lookups be times when you want to do a detailed search for references stored in your RefWorks database. That's when

Haykin, Simon

475

Advanced Nuclear Fuel Cycle Options  

SciTech Connect (OSTI)

A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

2010-06-01T23:59:59.000Z

476

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterialsAdvanced

477

DAS: a data management system for instrument tests and operations  

E-Print Network [OSTI]

The Data Access System (DAS) is a metadata and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management Syste...

Frailis, Marco; Zacchei, Andrea; Lodi, Marcello; Cirami, Roberto; Pasian, Fabio; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Franceschi, Enrico; Nicastro, Luciano; Conforti, Vito; Zoli, Andrea; Smart, Ricky; Morbidelli, Roberto; Dadina, Mauro

2014-01-01T23:59:59.000Z

478

Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238  

SciTech Connect (OSTI)

Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E. [Oak Ridge National Lab., TN (United States); Dearth, M.A. [Ford Motor Co., Dearborn, MI (United States). Environmental Research Consortium

1997-09-01T23:59:59.000Z

479

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use advanced instrument and communication technology  

E-Print Network [OSTI]

NOAA's autonomous balloons, capable of crossing oceans and sampling at very low altitudes, use- grams. This paper traces the innovations in design and gains in capability of the autonomous Lagrangian

Businger, Steven

480

Microstructural Origins of Variability in the Tensile Ductility of Dual Phase Steels Claire Teresi, Clemson University, SURF Fellow  

E-Print Network [OSTI]

Microstructural Origins of Variability in the Tensile Ductility of Dual Phase Steels Claire Teresi Introduction: Dual phase (DP) steels are a class of advanced high strength structural steels that also have automotive applications. Generally composed of two primary phases- martensite and ferrite- these steels have

Li, Mo

Note: This page contains sample records for the topic "originating instrument advanced" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect (OSTI)

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

482

Characterisation of pulsed Carbon fiber illuminators for FIR instrument calibration  

E-Print Network [OSTI]

We manufactured pulsed illuminators emitting in the far infrared for the Planck-HFI bolometric instrument ground calibrations. Specific measurements have been conducted on these light sources, based on Carbon fibers, to understand and predict their properties. We present a modelisation of the temperature dependence of the thermal conductivity and the calorific capacitance of the fibers. A comparison between simulations and bolometer data is given, that shows the coherence of our model. Their small time constants, their stability and their emission spectrum pointing in the submm range make these illuminators a very usefull tool for calibrating FIR instruments.

S. Henrot-Versille; R. Cizeron; F. Couchot

2007-07-31T23:59:59.000Z

483

Characterisation of pulsed Carbon fiber illuminators for FIR instrument calibration  

E-Print Network [OSTI]

We manufactured pulsed illuminators emitting in the far infrared for the Planck-HFI bolometric instrument ground calibrations. Specific measurements have been conducted on these light sources, based on Carbon fibers, to understand and predict their properties. We present a modelisation of the temperature dependence of the thermal conductivity and the calorific capacitance of the fibers. A comparison between simulations and bolometer data is given, that shows the coherence of our model. Their small time constants, their stability and their emission spectrum pointing in the submm range make these illuminators a very usefull tool for calibrating FIR instruments.

Henrot-Versillé, S; Couchot, F

2007-01-01T23:59:59.000Z

484

Scientific opportunities with advanced facilities for neutron scattering  

SciTech Connect (OSTI)

The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

Lander, G.H.; Emery, V.J. (eds.)

1984-01-01T23:59:59.000Z

485

REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor  

SciTech Connect (OSTI)

With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and pressure measurements have been carried out. Preliminary calculations of the REMORA 3 experiments have been performed from these measurements, with the aim to determine free volume evolution as a function of linear heat rate history. - A tracer gas has been added to the filling gas in order to optimize the accuracy of the helium balance at the time of the post irradiation examination. The two phases of the REMORA 3 irradiation have been achieved at the end of 2010 in the OSIRIS reactor. Slight acoustic signal degradation, observed during the test under high neutron and gamma flux, has led to an efficiency optimization of the signal processing. The instrumentation ran smoothly and allowed to reach all the experimental objectives. After non destructive examination performed in the Osiris reactor pool, typically gamma spectrometry and neutron radiography, the instrumented rod and the device have been disassembled. Then the instrumented rod has been transported to the LECA facility in Cadarache Centre for post irradiation examination. The internal pressure and volume of the rodlet as well as precise gas composition measurements will be known after puncturing step performed in a hot cell of this facility. That will allow us to qualify the in-pile measurements and to finalize the data which will be used for the validation of the fuel behaviour computer codes. (authors)

Lambert, T.; Muller, E.; Federici, E. [CEA - Nuclear Energy Div., DEN - Fuel Research Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Rosenkrantz, E.; Ferrandis, J. Y. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Tiratay, X.; Silva, V. [CEA, Nuclear Energy Div., DEN, Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France); Machard, D. [EDF, SEPTEN, F-69628 Villeurbanne (France); Trillon, G. [AREVA-NP, F-69456 Lyon (France)

2011-07-01T23:59:59.000Z

486

Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source  

SciTech Connect (OSTI)

We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information is an important input to determining the best accelerator parameters. In addition, we find that in our simple guide systems, most neutrons reaching the sample originate from the central 3-5 cm of the moderator. This result can be used as an input in later optimization of the moderator design. We discuss the relevance and validity of defining a single figure-of-merit for a full facility and compare with evaluations of the individual instrument classes.

Lefmann, Kim; Kleno, Kaspar H.; Holm, Sonja L.; Sales, Morten [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Birk, Jonas Okkels [Nanoscience and eScience Centers, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen O (Denmark); Danish Workpackage for the ESS Design Update Phase, Universitetsparken 5, 2100 Copenhagen O (Denmark); Laboratory for Quantum Magnetism, Ecole Polytecnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Hansen, Britt R.; Knudsen, Erik; Willendrup, Peter K. [Institute of Physics, Technical University of Denmark, 2800 Lyngby (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Lieutenant, Klaus [Institute for Energy Technology, Instituttveien 18, 2007 Kjeller (Norway); Helmholtz Center for Energy and Materials, Hahn-Meitner Platz, 14109 Berlin (Germany); German Work Package for the ESS Design Update, Hahn-Meitner Platz, 14109 Berlin (Germany); Moos, Lars von [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Danish Workpackage for the ESS Design Update Phase, 2800 Lyngby (Denmark); Institute for Energy Conversion, Technical University of Denmark, 4000 Roskilde (Denmark); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden)

2013-05-15T23:59:59.000Z

487

Advanced Fuels Campaign 2012 Accomplishments  

SciTech Connect (OSTI)

The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

Not Listed

2012-11-01T23:59:59.000Z

488

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-04-01T23:59:59.000Z

489

Digital Tomosynthesis: Advanced Breast Cancer  

E-Print Network [OSTI]

creating an image. · A newer process, called full field digital mammography uses digital receptors. #12Digital Tomosynthesis: Advanced Breast Cancer Imaging Technique Max Wiedmann #12;Digital Bremsstrahlung, a process in which electrons are accelerated against an anode, causing photons to be fired off

Fygenson, Deborah Kuchnir

490

PEM Electrolyzer Incorporating an Advanced  

E-Print Network [OSTI]

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane Monjid Hamdan Giner Electrochemical (Academic)­ Membrane Development Collaborations 3M Fuel Cell Components Program­ NSTF Catalyst & Membrane Entegris ­ Carbon Cell Separators Tokuyama ­ Low-Cost Membrane Prof. R. Zalosh (WPI) ­ Hydrogen Safety

491

Advances in James P. Hartnett  

E-Print Network [OSTI]

P. HARTNETT AND MILIVOJE KOSTIC* Energy Resources Center, University of Illinois at Chicago, ChicagoAdvances in HEAT TRANSFER Edited by James P. Hartnett Energy Resources Center University of Illinois at Chicago Chicago, Illinois Volume 19 0AP Thomas F. Irvine, Jr. Department of Mechanical

Kostic, Milivoje M.

492

ADVANCED DECISION ANALYSIS Winter 2011  

E-Print Network [OSTI]

ADVANCED DECISION ANALYSIS PH 444 Winter 2011 Course Instructor: Gordon Hazen, Ph.D. Professor a factored cost-effectiveness model · Construct a stochastic tree transition diagram for a medical treatment problem. · Convert a stochastic tree diagram to a discrete-time Markov chain transition diagram

Chisholm, Rex L.

493

PAMPA II Advanced Charting System  

E-Print Network [OSTI]

where the project is heading, and if needed, then look into the finer level details by drilling down to locate and correct problems. The objective of this thesis is to build an Advanced Charting System (ACS), which would act as a companion to PAMPA 2...

Inbarajan, Prabhu Anand

2004-09-30T23:59:59.000Z

494

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2000-01-01T23:59:59.000Z

495

ADVANCED GAS TURBINE SYSTEMS RESEARCH  

SciTech Connect (OSTI)

The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

Unknown

2002-02-01T23:59:59.000Z

496

Gas fired Advanced Turbine System  

SciTech Connect (OSTI)

The primary objective of the first phase of the Advanced Gas Turbine System (ATS) program was the concept definition of an advanced engine system that meets efficiency and emission goals far exceeding those that can be provided with today`s equipment. The thermal efficiency goal for such an advanced industrial engine was set at 50% some 15 percentage points higher than current equipment levels. Exhaust emissions goals for oxides of nitrogen (NO{sub x}), carbon monoxide (CO), and unburned hydrocarbons (UH) were fixed at 8 parts per million by volume (ppmv), 20 ppmv, and 20 ppmv respectively, corrected to 15% oxygen (O{sub 2}) levels. Other goals had to be addressed; these involved reducing the cost of power produced by 10 percent and improving or maintaining the reliability, availability, and maintainability (RAM) at current levels. This advanced gas turbine was to be fueled with natural gas, and it had to embody features that would allow it bum coal or coal derived fuels.

LeCren, R.T.; White, D.J.

1993-01-01T23:59:59.000Z

497

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

498

Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation  

Broader source: Energy.gov [DOE]

Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C.

499

Effects of resonator losses on the sound production by clarinet-like instruments  

E-Print Network [OSTI]

for the prediction of the oscillation regimes is classical for musical instruments producing self-sustained

Boyer, Edmond

500

Efficiency, accuracy, and stability issues in discrete-time simulations of single reed wind instruments  

E-Print Network [OSTI]

the basic nonlinear mechanisms that generate self-sustained oscillations in a single reed instrument. Due

Avanzini, Federico