National Library of Energy BETA

Sample records for organization contacts general

  1. Organization Chart and Contacts | Department of Energy

    Office of Environmental Management (EM)

    About the Fuel Cell Technologies Office Organization Chart and Contacts Organization Chart and Contacts Organization Chart and Contacts Contact Information U.S. Department of...

  2. Contacts for the Deputy General Counsel for Litigation, Regulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Litigation, Regulation and Enforcement (GC-30) Contacts for the Deputy General Counsel for Litigation, Regulation and Enforcement (GC-30) Anne Harkavy, Deputy General Counsel for...

  3. Optimizing Carbon Nanotube Contacts for Use in Organic Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Barnes, T. M.; Blackburn, J. L.; Tenent, R. C.; Morfa, A.; Heben, M.; Coutts, T. J.

    2008-05-01

    This report describes research on optimizing carbon nanotube networks for use as transparent electrical contacts (TCs) in organic photovoltaics (OPV).

  4. ARM - AMF2 Organization and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'Organization and Contact Information AMF

  5. Digestive System general organization throughout

    E-Print Network [OSTI]

    Houde, Peter

    Digestive System general organization throughout: mucosa, submucosa, muscularis externa, serosa digestive glands salivary pancreas liver (lobes: right, left, caudate, quadrate, diaphragmatic surface, bare

  6. Contacts for the Assistant General Counsel for Technology Transfer...

    Office of Environmental Management (EM)

    Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

  7. Photochemical deterioration of the organic/metal contacts in organic optoelectronic devices

    SciTech Connect (OSTI)

    Wang Qi; Williams, Graeme; Aziz, Hany; Tsui Ting

    2012-09-15

    We study the effect of exposure to light on a wide range of organic/metal contacts that are commonly used in organic optoelectronic devices and found that irradiation by light in the visible and UV range results in a gradual deterioration in their electrical properties. This photo-induced contact degradation reduces both charge injection (i.e., from the metal to the organic layer) and charge extraction (i.e., from the organic layer to the metal). X-ray photoelectron spectroscopy (XPS) measurements reveal detectable changes in the interface characteristics after irradiation, indicating that the photo-degradation is chemical in nature. Changes in XPS characteristics after irradiation suggests a possible reduction in bonds associated with organic-metal complexes. Measurements of interfacial adhesion strength using the four-point flexure technique reveal a decrease in organic/metal adhesion in irradiated samples, consistent with a decrease in metal-organic bond density. The results shed the light on a new material degradation mechanism that appears to have a wide presence in organic/metal interfaces in general, and which likely plays a key role in limiting the stability of various organic optoelectronic devices such as organic light emitting devices, organic solar cells, and organic photo-detectors.

  8. Fermilab Office of General Counsel - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) | SciTech Connect Large AreaFermilabLegal OfficeContact

  9. ECE 3301: General Electrical Engineering Credit / Contact hours: 3 / 3

    E-Print Network [OSTI]

    Gelfond, Michael

    ECE 3301: General Electrical Engineering Credit / Contact hours: 3 / 3 Course coordinator: Mary Baker Textbook(s) and/or other required material: Hambley, Allan R., Electrical Engineering ­ Principles and Applications, fourth edition, Prentice Hall, 2007. Catalog description: Analysis of electric circuits

  10. Planning Organization & Logistics Deputy Director General

    E-Print Network [OSTI]

    Adin, Ron

    " Planning Organization & Logistics Deputy Director General Tel: 03 531 8553 : Fax: 03 535 4925 : P-O.Logistics@mail.biu.ac.il Bar-Ilan University, Ramat Gan 52900, Israel · www.6. , . , . #12; " Planning Organization & Logistics Deputy Director General Tel: 03 531 8553 : Fax: 03 535

  11. UNIVERSITY OF WASHINGTON BOTHELL GENERAL FACULTY ORGANIZATION

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON BOTHELL GENERAL FACULTY ORGANIZATION BYLAWS UNIVERSITY OF WASHINGTON of Washington Bothell (UWB) establishes herewith, under Faculty Code, Section 23-45A, its organization and rules of procedures. ARTICLE I PURPOSE AND FUNCTION Section 1. The purpose of the University of Washington Bothell

  12. The Generalized Nuclear Contact and its Application to the Photoabsorption Cross-Section

    E-Print Network [OSTI]

    Ronen Weiss; Betzalel Bazak; Nir Barnea

    2015-11-15

    Using the zero-range model, it was demonstrated recently that Levinger's quasi-deuteron model can be utilized to extract the nuclear neutron-proton contact. Going beyond the zero-range approximation and considering the full nuclear contact formalism, we rederive here the quasi-deuteron model for the nuclear photoabsorption cross-section and utilize it to establish relations and constrains for the general contact matrix. We also define and demonstrate the importance of the diagonalized nuclear contacts, which can be also relevant to further applications of the nuclear contacts.

  13. The Generalized Nuclear Contact and its Application to the Photoabsorption Cross-Section

    E-Print Network [OSTI]

    Weiss, Ronen; Barnea, Nir

    2015-01-01

    Using the zero-range model, it was demonstrated recently that Levinger's quasi-deuteron model can be utilized to extract the nuclear neutron-proton contact. Going beyond the zero-range approximation and considering the full nuclear contact formalism, we rederive here the quasi-deuteron model for the nuclear photoabsorption cross-section and utilize it to establish relations and constrains for the general contact matrix. We also define and demonstrate the importance of the diagonalized nuclear contacts, which can be also relevant to further applications of the nuclear contacts.

  14. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us -Contacts Contact UsContacts

  15. Contacts for the Deputy General Counsel for Transactions, Technology...

    Energy Savers [EERE]

    General Counsel for Transactions, Technology, & Contractor Human Resources 202-586-3426 gena.cadieux@hq.doe.gov Lisa N. Brown, Administrative Staff 202-586-5246 202-586-0325 (fax)...

  16. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact theContacts Contacts

  17. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us -Contacts Contact Us

  18. Elastomeric contact printing for sub-micron patterning of organic films

    E-Print Network [OSTI]

    Ramanan, Sulinya

    2012-01-01

    In this thesis, a novel diffusion-based contact-printing technology is investigated, by which a wide variety of low molecular weight organic materials can be patterned without added temperature, pressure, or chemical ...

  19. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact the GTTContactContacts

  20. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact To contact The

  1. General contact mechanics theory for randomly rough surfaces with application to rubber friction

    E-Print Network [OSTI]

    Michele Scaraggi; Bo N. J. Persson

    2015-06-23

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic or viscoelastic, and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interfacial separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases, and for typical sliding speeds involved in tire dynamics it can be neglected.

  2. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact the

  3. Artificial general intelligence: an organism and level based position

    E-Print Network [OSTI]

    Smith, Leslie S.

    Artificial general intelligence: an organism and level based position statement Leslie S. SMITH 1. Keywords. artificial general intelligence, brain model, paramecium, level interaction Introduction There are many views of what should be described as artificial general intelligence. Gen- eral intelligence

  4. CONTACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsForNorthfor Gas SeparationsRelevant|CONTACT

  5. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahomeAbout » ContactP-27 Group

  6. Organic light-emitting devices with laminated top contacts Daniel A. Bernards, Tomasz Biegala, Zachary A. Samuels, Jason D. Slinker,

    E-Print Network [OSTI]

    Rogers, John A.

    of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801 Received 12 January 2004 of metals on organic semiconductors top contacts .1 The formation of top contacts metallization of the or

  7. Organization of the Catalog General Campus Colleges

    E-Print Network [OSTI]

    , Program in Cybernetics Earth and Space Sciences East Asian Languages and Cultures EastAsian Studies Theater Arts General Campus Professional Schools School of Engineering and Applied Science Chemical Engineering Civil Engineering Computer Science Electrical Engineering Environmental Science and Engineering

  8. GENERAL CONDITIONS FOR ITER ORGANIZATION SERVICE CONTRACTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERAL ASSIGNMENT KNOW ALL MEN BY THESE1 GENERAL

  9. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780;For general University of Alberta Museums information please contact: Museums and Collections Services

  10. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780: ___ _______________________________________________________________________ __________________________________________________________________________ REQUESTTOESTABLISHANEWCOLLECTIONOFMUSEUMOBJECTS2013.04.18 #12;For general University of Alberta Museums information please contact: Museums

  11. Annex I ITER Organization Service Contract General Conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All property of the Contractor while at the ITER Organization premises shall be at the risk of the Contractor and the ITER Organization shall accept no liability for any loss or...

  12. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 OF ALBERTA Unit: _____________________________________________________________________________ Registered

  13. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780

  14. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780: ________________________________ Loan Number:___________________ #12;For general University of Alberta Museums information please

  15. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780.04.17 Loan Number:___________________ #12;For general University of Alberta Museums information please

  16. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 on a personal examination of the object or collection, condition reports prepared by the University of Alberta

  17. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 AGREEMENT FORM BETWEEN: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA, "BORROWER" Unit

  18. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 AGREEMENT FORM BETWEEN: THE GOVENORS OF THE UNIVERSITY OF ALBERTA, "LENDER" Unit

  19. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 ____________________________________ _______________________________________ Signature on behalf of the Unit Name (please print) Date (Authorized Officer of the University of Alberta

  20. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 of the said Work by the University of Alberta, do hereby agree to grant a non-exclusive license

  1. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 DECISION We regret to inform you that the University of Alberta is unable to accept your offer to donate

  2. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780: THE GOVENORS OF THE UNIVERSITY OF ALBERTA, "LENDER" Unit

  3. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780.492.6185 E: museums@ualberta.ca W: www.museums.ualberta.ca Page 1 of 2 DONATION OFFER UNIVERSITY OF ALBERTA

  4. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780: ___________________________________________________ ____________________________________ _______________________________________ Signature on behalf of the Unit Name (please print) Date (Authorized Officer of the University of Alberta

  5. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780/received by the University of Alberta This agreement does not transfer ownership or risk of loss of the Property

  6. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 herein, to the University of Alberta as an unrestricted and unconditional donation. Name(s) of Donor

  7. For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1

    E-Print Network [OSTI]

    Machel, Hans

    For general University of Alberta Museums information please contact: Museums and Collections Services Ring House 1 University of Alberta Edmonton, Alberta, Canada T6G 2E1 T: 780.492.5834 F: 780 BACKGROUND When the University of Alberta acquires objects from an individual for its collections, some

  8. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    SciTech Connect (OSTI)

    Tsai, Cheng-Chia Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis; Osgood, Richard M.; Englund, Dirk

    2014-07-14

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980?mA/cm{sup 2} for 30?nm and 45?nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30?nm thick cell, but only of 32% for a 45?nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  9. Self-organization and mismatch tolerance in protein folding: General theory and an application

    E-Print Network [OSTI]

    Berry, R. Stephen

    Self-organization and mismatch tolerance in protein folding: General theory and an application The folding of a protein is a process both expeditious and robust. The analysis of this process presented here of their discretized configuration space. The properties ``expeditious and robust'' imply that the folding protein must

  10. 5-23 Photonics MTL Annual Research Report 2008 Micro-patterning Organic Thin Films via Contact Stamp Lift-off for Organic Light-emitting

    E-Print Network [OSTI]

    in an ambient environment, although a nitrogen environment is preferred for organic light-emitting device (OLED Stamp Lift-off for Organic Light-emitting Device Arrays J Yu, V Bulovi Sponsor: CMSE, PECASE Patterning) fabrication. This technique is applied to pattern 13 micron-sized features of a two-color OLED structure

  11. A macroscopic description of a generalized self-organized criticality system: Astrophysical applications

    SciTech Connect (OSTI)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com [Lockheed Martin Solar and Astrophysics Laboratory, A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2014-02-10

    We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a nonlinear energy dissipation system that is slowly and continuously driven toward a critical value of a system-wide instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with power law-like size distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for the size distributions of SOC parameters (length scales L, time scales T, waiting times ?t, fluxes F, and fluences or energies E) are derived from first principles, using the scale-free probability conjecture, N(L)dL?L {sup –d}, for Euclidean space dimension d. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar glitches, soft gamma-ray repeaters, black-hole objects, blazars, and cosmic rays. The FD-SOC model predicts correctly the size distributions of 8 out of these 12 astrophysical phenomena, and indicates non-standard scaling laws and measurement biases for the others.

  12. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / ContactContactsContact

  13. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / ContactContacts CAMD

  14. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / ContactContacts

  15. Contact us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahomeAbout » Contact us Contact

  16. VPP Points of Contact web version 07092015

    Office of Environmental Management (EM)

    Updated 792015 VPP POINTS OF CONTACT Organization DOE POC Contractor DOE Federal POC Advanced Technologies and Laboratories International, Inc. (ATL)222-S Laboratory Analytical...

  17. Contacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContactServices

  18. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout UsContact-Us Sign In

  19. Contacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContactServicesNISACContacts

  20. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you! Send us agovInstrumentswrf-chem Comments?govPublicationsContacts

  1. PNNL: Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los A lamosTonyAirContacts Have a

  2. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae2 Publications6HomeroomARMgovAboutContacts About

  3. Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact ToContactdefault

  4. LANL Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps HeatTechnologies| Blandine Jerome KyuhoContacts

  5. Chemistry Major, Mathematics Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Advanced Analytical Chemistry Lab (2) CW CHEM 5710 Advanced Organic Chemistry Lab (2) CHEM 5720 AdvancedChemistry Major, Mathematics Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General

  6. Relationship of organizational communication methods and leaders' perceptions of the 2002 Farm Bill: a study of selected commodity-specific, general agricultural, and natural resources organizations 

    E-Print Network [OSTI]

    Catchings, Christa Leigh

    2005-11-01

    The purpose of this study was to determine perceptions of organizational communication methods used by selected commodity-specific, general agricultural and, conservation or natural resources organizations to disseminate ...

  7. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  8. For general inquiries, information, or questions, contact

    E-Print Network [OSTI]

    Linhardt, Robert J.

    in high performance computing, webscience,datascience,networkscience, cognitive computing, and immersive, parallel, and high performance computing. christopher carothers Massively parallel computing, parallel

  9. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  10. Electrical Contacts to Molecular Layers by Nanotransfer Printing

    E-Print Network [OSTI]

    Rogers, John A.

    Electrical Contacts to Molecular Layers by Nanotransfer Printing Yueh-Lin Loo, David V. Lang, John of electrical contact. Results show that the nTP method produces superior devices in which the electrical for making electrical contacts in molecular electronics. Organic molecules whose electronic properties can

  11. Contact Us | Department of Energy

    Energy Savers [EERE]

    Contact Us Contact Us Find the contact information for key members of the EERE Web and print teams. EERE Web Project Manager EERE Web Template Coordinator EERE Information...

  12. BISON Contact Improvements CASL FY14 Report

    SciTech Connect (OSTI)

    B. W. Spencer; J. D. Hales; D. R. Gaston; D. A. Karpeev; R. L. Williamson; S. R. Novascone; D. M. Perez; R. J. Gardner; K. A. Gamble

    2014-09-01

    The BISON code is the foundation for multiple fuel performance modeling efforts, and is cur- rently under heavy development. For a variety of fuel forms, the effects of heat conduction across a gap and mechanical contact between components of a fuel system are very significant. It is thus critical that BISON have robust capabilities for enforcement of thermal and mechanical contact. BISON’s solver robustness has generally been quite good before mechanical contact between the fuel and cladding occurs, but there have been significant challenges obtaining converged so- lutions once that contact occurs and the solver begins to enforce mechanical contact constraints. During the current year, significant development effort has been focused on the enforcement of mechanical contact to provide improved solution robustness. In addition to this work to improve mechanical contact robustness, an investigation into ques- tionable results attributable to thermal contact has been performed. This investigation found that the order of integration typically used on the surfaces involved in thermal contact was not suffi- ciently high. To address this problem, a new option was provided to permit the use of a different integration order for surfaces, and new usage recommendations were provided.

  13. FSU-ER15-2 Student Organization Conduct Code[EmergencyRegulation] (1) General Provisions and Hearing Procedures.

    E-Print Network [OSTI]

    Miller, Brian G.

    or firearm license and is in possession of a stun gun or non-lethal electric weapon or device designed solely but not limited to non- lethal weapons such as pellet guns, bb guns, paintball markers, slingshots, crossbows Organization Conduct Code. 1. - 5. No Change 6. Weapons. a. On-campus possession or use of firearms, antique

  14. Elastohydrodynamics of contact in adherent sheets

    E-Print Network [OSTI]

    Andreas Carlson; Shreyas Mandre; L. Mahadevan

    2015-08-25

    Adhesive contact between a thin elastic sheet and a substrate in a liquid environment arises in a range of biological, physical and technological applications. By considering the dynamics of this process that naturally couples fluid flow, long wavelength elastic deformations and microscopic adhesion, and solving the resulting partial differential equation numerically, we uncover the short-time dynamics of the onset of adhesion and the long-time dynamics of a steady propagating adhesion front. Simple scaling laws corroborate our results for characteristic waiting-time for adhesive contact, as well as the speed of the adhesion front. A similarity analysis of the governing partial differential equation further allows us to determine the shape of a fluid filled bump ahead of the adhesion zone. Finally, our analysis yields the boundary conditions for the apparent elastohydrodynamic contact line, generalizing the well known conditions for static elastic contact while highlighting how microscale physics regularizes the dynamics of contact.

  15. Adhesive rough contacts near complete contact

    E-Print Network [OSTI]

    M. Ciavarella

    2015-05-01

    Recently, there has been some debate over the effect of adhesion on the contact of rough surfaces. Classical asperity theories predict, in agreement with experimental observations, that adhesion is always destroyed by roughness except if the amplitude of the same is extremely small, and the materials are particularly soft. This happens for all fractal dimensions. However, these theories are limited due to the geometrical simplification, which may be particularly strong in conditions near full contact. We introduce therefore a simple model for adhesion, which aims at being rigorous near full contact, where we postulate there are only small isolated gaps between the two bodies. The gaps can be considered as "pressurized cracks" by using Ken Johnson's idea of searching a corrective solution to the full contact solution. The solution is an extension of the adhesive-less solution proposed recently by Xu, Jackson, and Marghitu (XJM model) (2014). This process seems to confirm recent theories using the JKR theory, namely that the effect of adhesion depends critically on the fractal dimension. For D2.5, seems for large enough magnifications that a full fractal roughness completely destroys adhesion. These results are partly paradoxical since strong adhesion is not observed in nature except in special cases. A possible way out of the paradox may be that the conclusion is relevant for the near full contact regime, where the strong role of flaws at the interfaces, and of gaps full of contaminant, trapped air or liquid in pressure, needs to be further explored. If conditions near full contact are not achieved on loading, probably the conclusions of classical asperity theories may be confirmed.

  16. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO ContactContacts for

  17. The contact angle in inviscid fluid mechanics

    E-Print Network [OSTI]

    P N Shankar; R Kidambi

    2005-08-17

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived; however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions' in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions'; they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  18. CAES Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  19. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO ContactContacts for theContacts

  20. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us -Contacts Contact

  1. Contact thermal lithography

    E-Print Network [OSTI]

    Schmidt, Aaron Jerome, 1979-

    2004-01-01

    Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

  2. Elastohydrodynamics of contact in adherent sheets

    E-Print Network [OSTI]

    Carlson, Andreas; Mahadevan, L

    2015-01-01

    Adhesive contact between a thin elastic sheet and a substrate in a liquid environment arises in a range of biological, physical and technological applications. By considering the dynamics of this process that naturally couples fluid flow, long wavelength elastic deformations and microscopic adhesion, and solving the resulting partial differential equation numerically, we uncover the short-time dynamics of the onset of adhesion and the long-time dynamics of a steady propagating adhesion front. Simple scaling laws corroborate our results for characteristic waiting-time for adhesive contact, as well as the speed of the adhesion front. A similarity analysis of the governing partial differential equation further allows us to determine the shape of a fluid filled bump ahead of the adhesion zone. Finally, our analysis yields the boundary conditions for the apparent elastohydrodynamic contact line, generalizing the well known conditions for static elastic contact while highlighting how microscale physics regularizes ...

  3. Contact | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact the GTT Contact the

  4. Contact Us - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact Us Contact Us

  5. Contact Us - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact Us Contact

  6. Contact Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /ContactContact Us Find

  7. Organic Tandem Solar Cells: Design and Formation

    E-Print Network [OSTI]

    Chen, Chun-Chao

    2015-01-01

    contacts for tandem organic solar cells,? Journal of AppliedITO-free flexible organic solar cells with printed currentC. de Mello, “ Efficient organic solar cells with solution-

  8. Secure Core Contact Information

    E-Print Network [OSTI]

    Secure Core Contact Information C. E. Irvine irvine@nps.edu 831-656-2461 Department of Computer for the secure management of local and/or remote information in multiple contexts. The SecureCore project Science Graduate School of Operations and Information Sciences www.cisr.nps.edu Project Description

  9. Technology Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

  10. CURRICULUM VITAE CONTACT INFORMATION

    E-Print Network [OSTI]

    Services, Human Well-Being, and Policies in Coupled Human and Natural Systems" (Major Advisor: Jianguo, remote sensing, and system modeling) to study ecosystem services, human well-being, their linkagesCURRICULUM VITAE Wu Yang CONTACT INFORMATION Center for Systems Integration & Sustainability

  11. Cylindrical thermal contact conductance 

    E-Print Network [OSTI]

    Ayers, George Harold

    2004-09-30

    calculation term LL interface pressure calculation term m asperity slope; least-squares slope MM interface pressure calculation term n expected number of contact spots xv Nuc joint conductance P pressure Pr Prandtl number Q heat rate q heat rate q? heat flux...

  12. UNDER REVIEW CONTACT ACCOUNTING

    E-Print Network [OSTI]

    UNDER REVIEW CONTACT ACCOUNTING UNIVERSITY OF CALIFORNIA, SANTA BARBARA Accounting Office ALIEN@ucsbuxa.ucsb.edu. Last Modified By: HMW, 5/21/97 Page 1 of 25145 Payments to Aliens (Attachment B) 9/17/2007http to Aliens (Attachment B) 9/17/2007http://www.policy.ucsb.edu/vcas/accounting/5145_attach_b.html #12;

  13. General Permit General Permit

    E-Print Network [OSTI]

    L General Permit Parking LOT A General Permit Parking LOT C General Permit Parking LOT R Reserved Parking LOT D Faculty/Staff Parking LOT K General Permit Parking LOT J Reserved Parking PV LOT General Parking after 3 p.m. WEST CAMPUS PARKING LOT O General Permit Parking LOT M General Permit Parking LOT P

  14. General Permit General Permit

    E-Print Network [OSTI]

    98 28 28 60 96 31 7 23 LOT L General Permit Parking LOT A General Permit Parking LOT C General Permit Parking LOT R Reserved Parking LOT D Faculty/Staff Parking LOT K General Permit Parking LOT J Reserved Parking PV LOT General Parking after 3 p.m. WEST CAMPUS PARKING LOT O General Permit Parking LOT M General

  15. Note on a Cohomological Theory of Contact-Instanton and Invariants of Contact Structures

    E-Print Network [OSTI]

    Yiwen Pan

    2015-05-29

    In the localization of 5-dimensional N = 1 super-Yang-Mills, contact-instantons arise as non-perturbative contributions. In this note, we revisit such configurations and discuss their generalizations. We propose for contact-instantons a cohomological theory whose BRST observables are invariants of the background contact geometry. To make the formalism more concrete, we study the moduli problem of contact- instanton, and we find that it is closely related to the eqiuivariant index of a canonical Dirac-Kohn operator associated to the geometry. An integral formula is given when the geometry is K-contact. We also discuss the relation to 5d N = 1 super-Yang- Mills, and by studying a contact-instanton solution canonical to the background geometry, we discuss a possible connection between N = 1 theory and contact homology. We also uplift the 5d theory a 6d cohomological theory which localizes to Donaldson-Uhlenbeck-Yau instantons when placed on special geometry.

  16. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    SciTech Connect (OSTI)

    Ulman, Kanchan; Narasimhan, Shobhana; Sheikh Saqr Laboratory, ICMS, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 ; Delin, Anna; Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala; SeRC , KTH, SE-10044 Stockholm

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ?5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ?400%.

  17. Dual contact pogo pin assembly

    SciTech Connect (OSTI)

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  18. Controlled Structure of Organic-Nanomaterial Solar Cells - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlled Structure of Organic-Nanomaterial Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryOrganic, polymer-based...

  19. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack (Oakland, CA)

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  20. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  1. Contacts / Hours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact

  2. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  3. Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContactServices »

  4. ARM - TWP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendarPressExtendedPre-WorkshopListStratosphereContacts TWP

  5. CAMD contact person

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6 Shares Craig Stevens is the CAMD contact

  6. Contacts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact UsInformationHelp &

  7. Sandia Energy - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |EducationChemicalContact Us Home

  8. ARM - ENA Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA Contacts ENA Related Links Facilities and Instruments ES&H

  9. PNNL: Contacts: Staff Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los A lamosTonyAirContacts Have aStaff

  10. Contact Us | DOEpatents

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01Technical Information-- Energy,research community --Contact

  11. Contact - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact To

  12. Fermilab | Contact Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies |FeatureFellows Fellows|-Contact

  13. Media Contact: Will Callicott

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement of Muon NeutrinoSecurity Contact: Will

  14. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar EnergyEffort FEMAAerialContacts

  15. Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistanceinformation to contact

  16. Contact electrification and the work of adhesion

    E-Print Network [OSTI]

    B. N. J. Persson; M. Scaraggi; A. I. Volokitin

    2013-05-13

    We present a general theory for the contribution from contact electrification to the work necessary to separate two solid bodies. The theory depends on the surface charge density correlation function, which we deduce from Kelvin Force Microscopy (KFM) maps of the surface electrostatic potential. For silicon rubber (polydimethylsiloxane, PDMS) we discuss in detail the relative importance of the different contributions to the observed work of adhesion.

  17. Contact mechanics with adhesion: Interfacial separation and contact area

    E-Print Network [OSTI]

    C. Yang; B. N. J. Persson; J. Israelachvili; K. Rosenberg

    2008-08-26

    We study the adhesive contact between elastic solids with randomly rough, self affine fractal surfaces. We present molecular dynamics (MD) simulation results for the interfacial stress distribution and the wall-wall separation. We compare the MD results for the relative contact area and the average interfacial separation, with the prediction of the contact mechanics theory of Persson. We find good agreement between theory and the simulation results. We apply the theory to the system studied by Benz et al. involving polymer in contact with polymer, but in this case the adhesion gives only a small modification of the interfacial separation as a function of the squeezing pressure.

  18. Staff Contacts | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hightowerjr1@ornl.gov 865.576.3767 Colin Cini Patent Agent cinicl@ornl.gov 865.574.4179 Marc Filigenzi IP Attorney, Office of General Counsel filigenzimt@ornl.gov 865.576.6883 Edna...

  19. Institutional Change for Sustainability Contacts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Change Institutional Change for Sustainability Contacts Institutional Change for Sustainability Contacts For more information about institutional change for...

  20. CONTACTS FOR INFORMATION MANAGEMENT: Forms, Privacy & Records...

    Energy Savers [EERE]

    CONTACTS FOR INFORMATION MANAGEMENT: Forms, Privacy & Records CONTACTS FOR INFORMATION MANAGEMENT: Forms, Privacy & Records Maria Levesque, Director Records & Privacy Management...

  1. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  2. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContact Us Contact

  3. Technology Licensing Contacts | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff SHARE Technology Licensing Contacts Name TitlePosition Email Address Phone Number Biography Mike Paulus Director, Technology Transfer paulusmj@ornl.gov (865) 574-1051...

  4. Outlook export contacts and groups Migrate Outlook Contacts to gmail

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Outlook export contacts and groups Migrate Outlook Contacts to gmail 1. In Outlook 2007 on the File menu, click Import and Export. 1a. For Outlook 2010 on the File menu, click Open, then Import 2. Click Export to a file, and then click Next. #12;3. Click Comma Separated Values (Windows), and then click Next

  5. Method of doping organic semiconductors

    DOE Patents [OSTI]

    Kloc, Christian Leo (Constance, DE); Ramirez, Arthur Penn (Summit, NJ); So, Woo-Young (New Providence, NJ)

    2010-10-26

    An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.

  6. Dossier de Presse Contact Presse

    E-Print Network [OSTI]

    Bordenave, Charles

    Dossier de Presse Contact Presse Fabienne PELTIER ­ Responsable communication de Toulouse Tech Transfer 05 62 25 50 98 ­ 06 18 01 88 17 ­ peltier@toulouse-tech-transfer.com CONFERENCE DE PRESSE TOULOUSE Capitulaire de l'Université de Toulouse 15 rue des Lois #12;Dossier de Presse Contact Presse Fabienne PELTIER

  7. ORISE: Contact Us | Worker Health Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISEandMaking aContact Us General

  8. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContact Contact

  9. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO ForContact Us

  10. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO ForContact

  11. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO ForContactUs »

  12. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO ForContactUs

  13. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContact UsContact

  14. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  15. Contacts for the Assistant General Counsel for Legislation, Regulation...

    Energy Savers [EERE]

    Efficiency and Conservation Block Grant Program State Energy Efficient Appliance Rebate Program Chris Calamita 202-586-1777 Kavita Patel 202-586-0669 Vehicle Technologies...

  16. Contacts for the Assistant General Counsel for International...

    Broader source: Energy.gov (indexed) [DOE]

    public) Elliot Oxman 202-586-1755 Janet Barsy 202-586-3429 International Energy Agency (IEA); energy emergency authorities Thomas Reilly 202-586-3417 JoAnn Williams 202-586-6899...

  17. Contacts for the Assistant General Counsel for Electricity and...

    Energy Savers [EERE]

    Energy Emergency Lot Cooke 202-586-0503 Critical Infrastructure Protection Becca Smith 202-586-6335 International Electricity Natural Gas Imports and Exports Strategic...

  18. Contacts for the Assistant General Counsel for Civilian Nuclear Programs

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional information

  19. Contacts for the Assistant General Counsel for Electricity and Fossil

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergy | Department

  20. Contacts for the Assistant General Counsel for Enforcement (GC-32) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergy |

  1. Contacts for the Assistant General Counsel for Environment (GC-51) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergy |Department of

  2. Contacts for the Assistant General Counsel for International and National

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergy |Department

  3. Contacts for the Assistant General Counsel for Legislation, Regulation, and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergyEnergy

  4. Contacts for the Assistant General Counsel for Litigation (GC-31) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional

  5. Contacts for the Assistant General Counsel for Procurement and Financial

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance | Department of

  6. Contacts for the Assistant General Counsel for Technology Transfer and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance | Department

  7. Contacts for the Deputy General Counsel for Litigation, Regulation and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance |

  8. Contacts for the Deputy General Counsel for Transactions, Technology, &

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance |Contractor Human

  9. Registered Student Organization Officer

    E-Print Network [OSTI]

    Raina, Ramesh

    website: gradorg.syr.edu #12;Important Information Registered Graduate Student Organization Handbook Fiscal Policy document provides additional fiscal guidelines and procedures ­ The Fiscal Policy can with Office of Student Activities If any of the required information changes, contact Internal VP

  10. ENERGY AND ENVIRONMENT DIVISION. INTERACTION OF ORGANIC SOLVENT WITH A SUBBITUMINOUS COAL BELOW PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Lindsey, D.

    2011-01-01

    the understanding of coal/organic liquid interactions. The1) contacting of the coal, organic liquid, and catalyst (ifis normally accomplished The coal derived liquid as filters,

  11. EMERGENCY CONTACT CAMPUS DIRECTORY INFORMATION

    E-Print Network [OSTI]

    Ma, Lena

    directory)? Yes No Employee Signature Date Work phone number #12;EMERGENCY CONTACT and CAMPUS DIRECTORY INFORMATION Please complete this form so that we have whether you wish to be included in the University of Florida Campus Directory. Submit completed form

  12. Protein folding using contact maps

    E-Print Network [OSTI]

    Michele Vendruscolo; Eytan Domany

    1999-01-21

    We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.

  13. Contact PPPO | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO For more

  14. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO

  15. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContact Us

  16. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContact

  17. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  18. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  19. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us »Contact Contact

  20. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us »Contact Contact

  1. Contact Us | Robotics Internship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContact

  2. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContact

  3. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin[NiFe]-hydrogenase models: ContactContact

  4. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - Working With Us ContactDon

  5. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - Working With UsContact Us

  6. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - Working With UsContact

  7. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - WorkingUsContact Us

  8. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact UsContact

  9. Contact | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahomeAbout » Contact usContact

  10. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

    2005-08-16

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  11. Property:RAPID/Contact/ID4/Organization | Open Energy Information

    Open Energy Info (EERE)

    + Alaska Department of Environmental Conservation + C Colorado Department of Public Health and Environment + Colorado Department of Public Health and Environment + I Idaho...

  12. Property:RAPID/Contact/ID1/Organization | Open Energy Information

    Open Energy Info (EERE)

    Lands Commission + California State Lands Commission + Colorado Department of Public Health and Environment + Colorado Department of Public Health and Environment + Colorado...

  13. Property:RAPID/Contact/ID3/Organization | Open Energy Information

    Open Energy Info (EERE)

    of Oil and Gas + Alaska Division of Oil and Gas + C Colorado Department of Public Health and Environment + Colorado Department of Public Health and Environment + Colorado...

  14. Property:RAPID/Contact/ID2/Organization | Open Energy Information

    Open Energy Info (EERE)

    Lands Commission + California State Lands Commission + Colorado Department of Public Health and Environment + Colorado Department of Public Health and Environment + Colorado...

  15. Property:RAPID/Contact/ID5/Organization | Open Energy Information

    Open Energy Info (EERE)

    Department of Environmental Conservation + M Montana Department of Environmental Quality + Montana Department of Environmental Quality + Montana Department of Natural...

  16. Fuel Cell Technologies Office Organization Chart and Contacts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities Financialof Energy Cell Technologies

  17. Vehicle Technologies Office: Organization and Contacts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopment |

  18. Water Power Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating WaterYou are

  19. Wind Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL's BioEnergyWildlifeYou areYou are

  20. Electrical contact tool set station

    DOE Patents [OSTI]

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  1. Advertising Contact Information Laura Langthorne

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Money Advertising Contact Information Laura Langthorne 02 8596 2957 llangthorne. Profile* Why Advertise* · Our audience have a combined total of $900 billion in investments · 388 Ratings October 2014, People 14+ only. WhyAdvertise = Print /Online/Mobile/Tablet combined as below

  2. Contact Symmetries and Hamiltonian Thermodynamics

    E-Print Network [OSTI]

    A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

    2015-02-22

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  3. MEDIA ADVISORY Marriott Library Contacts

    E-Print Network [OSTI]

    Clayton, Dale H.

    MEDIA ADVISORY Marriott Library Contacts: -- Heidi Brett, Public Relations Specialist Heidi 5, 2012, 12:00 p.m. Where: J. Willard Marriott Library, Gould Auditorium, level 1 Parking and Directions: Park in visitor lot west of library http://www.lib.utah.edu/info/directions.php Free and Open

  4. MEDIA ADVISORY Marriott Library Contacts

    E-Print Network [OSTI]

    Clayton, Dale H.

    MEDIA ADVISORY Marriott Library Contacts: -- Heidi Brett, Public Relations Specialist, Heidi.m. Location: J. Willard Marriott Library, Gould Auditorium, level 1 Parking and Directions: Park in visitor lot west of library http://www.lib.utah.edu/info/directions.php Book signings and refreshments

  5. MEDIA RELEASE Marriott Library Contacts

    E-Print Network [OSTI]

    Clayton, Dale H.

    MEDIA RELEASE Marriott Library Contacts: -- Heidi Brett, public relations specialist, Marriott Library, heidi.brett@utah.edu , 801-661-6764 -- Luise Poulton, rare books manager, Luise.c.thompson@utah.edu , 801-581- 8046 Downloadable Images: http://unews.utah.edu/news releases/lewis-carrolls-childrens-classics-on-display-at-marriott-library

  6. PROCEDURE CARDS EMERGENCY CONTACT INFORMATION

    E-Print Network [OSTI]

    Firestone, Jeremy

    /Wilmington Campus Phones 911 Georgetown/Lewes Campus Phones (9) 911 From a cell phone (302) 831-2222 Red Phones of the clean-up effort 5. Document spill and post- cleaning survey results in lab radiation notebook 6. Contact

  7. Contacts:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating Department of Energy's Critical Materials Institute

  8. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin[NiFe]-hydrogenase models: CAMD Safety

  9. Language Contact and Language Conflict: The Case of Yoruba-English Bilinguals

    E-Print Network [OSTI]

    Dada, S. A.

    2007-01-01

    . Generally, competitions and conflict, both in the individual and in the society as a whole, can be regarded as a natural concomitant of situations of languages in contact. The paper describes the linguistic situation in Nigeria with particular reference...

  10. Juvenile Justice and the Incarcerated Male Minority: A Qualitative Examination of Disproportionate Minority Contact 

    E-Print Network [OSTI]

    Feinstein, Rachel

    2012-07-16

    Racial inequality within the juvenile justice system has been cited by numerous studies. This racial inequality is generally referred to as disproportionate minority contact (DMC), and the causes have been debated in the literature for decades...

  11. Contact lines for fluid surface adhesion

    E-Print Network [OSTI]

    Markus Deserno; Martin M. Mueller; Jemal Guven

    2007-03-01

    When a fluid surface adheres to a substrate, the location of the contact line adjusts in order to minimize the overall energy. This adhesion balance implies boundary conditions which depend on the characteristic surface deformation energies. We develop a general geometrical framework within which these conditions can be systematically derived. We treat both adhesion to a rigid substrate as well as adhesion between two fluid surfaces, and illustrate our general results for several important Hamiltonians involving both curvature and curvature gradients. Some of these have previously been studied using very different techniques, others are to our knowledge new. What becomes clear in our approach is that, except for capillary phenomena, these boundary conditions are not the manifestation of a local force balance, even if the concept of surface stress is properly generalized. Hamiltonians containing higher order surface derivatives are not just sensitive to boundary translations but also notice changes in slope or even curvature. Both the necessity and the functional form of the corresponding additional contributions follow readily from our treatment.

  12. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  13. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  14. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  15. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » Contact

  16. Veteran's Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopment |ofVeteran's Contacts

  17. Contact processes in crowded environments

    E-Print Network [OSTI]

    S. -L. -Y. Xu; J. M. Schwarz

    2013-04-05

    Periodically sheared colloids at low densities demonstrate a dynamical phase transition from an inactive to active phase as the strain amplitude is increased. The inactive phase consists of no collisions/contacts between particles in the steady state limit, while in the active phase collisions persist. To investigate this system at higher densities, we construct and study a conserved-particle-number contact process with novel three-body interactions, which are potentially more likely than two-body interactions at higher densities. For example, consider one active (diffusing) particle colliding with two inactive (non-diffusing) particles such that they become active, in addition to spontaneous inactivation. In mean-field, this system exhibits a continuous dynamical phase transition belonging to the conserved directed percolation universality class. Simulations on square lattices support the mean field result. In contrast, the three-body interaction requiring two active particles to activate one inactive particle exhibits a discontinuous transition. Finally, inspired by kinetically-constrained models of the glass transition, we investigate the "caging effect" at even higher particle densities to look for a second dynamical phase transition back to an inactive phase. Square lattice simulations suggest a continuous transition with a new set of exponents differing from conserved directed percolation, i.e. a new universality class for contact processes with conserved particle number.

  18. Sub-discretized surface model with application to contact mechanics in multi-body simulation

    SciTech Connect (OSTI)

    Johnson, S; Williams, J

    2008-02-28

    The mechanics of contact between rough and imperfectly spherical adhesive powder grains are often complicated by a variety of factors, including several which vary over sub-grain length scales. These include several traction factors that vary spatially over the surface of the individual grains, including high energy electron and acceptor sites (electrostatic), hydrophobic and hydrophilic sites (electrostatic and capillary), surface energy (general adhesion), geometry (van der Waals and mechanical), and elasto-plastic deformation (mechanical). For mechanical deformation and reaction, coupled motions, such as twisting with bending and sliding, as well as surface roughness add an asymmetry to the contact force which invalidates assumptions for popular models of contact, such as the Hertzian and its derivatives, for the non-adhesive case, and the JKR and DMT models for adhesive contacts. Though several contact laws have been offered to ameliorate these drawbacks, they are often constrained to particular loading paths (most often normal loading) and are relatively complicated for computational implementation. This paper offers a simple and general computational method for augmenting contact law predictions in multi-body simulations through characterization of the contact surfaces using a hierarchically-defined surface sub-discretization. For the case of adhesive contact between powder grains in low stress regimes, this technique can allow a variety of existing contact laws to be resolved across scales, allowing for moments and torques about the contact area as well as normal and tangential tractions to be resolved. This is especially useful for multi-body simulation applications where the modeler desires statistical distributions and calibration for parameters in contact laws commonly used for resolving near-surface contact mechanics. The approach is verified against analytical results for the case of rough, elastic spheres.

  19. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  20. ORGANIZATIONS Wisconsin Foundation &

    E-Print Network [OSTI]

    Turner, Monica G.

    AFFILIATED ORGANIZATIONS Wisconsin Foundation & Alumni Association UW Medical Foundation The Wisconsin State Lab of Hygiene Wisconsin Veterinary Diagnostic Laboratory Organizational Chart Vice Management Division Faculty and Staff Programs General Library System HIPAA Quality Improvement, Office

  1. Electrical Contacts to Individual Colloidal Semiconductor Nanorods

    E-Print Network [OSTI]

    Trudeau, Paul-Emile

    2008-01-01

    stable nanostructured electrical devices with interestingElectrical Contacts to Individual Colloidal Semiconductorand its effect on electrical properties has important

  2. Contact for the Assistant General Counsel for General Law (GC-56) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional information about

  3. Contact EPSCI | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us » Contact

  4. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us »Contact

  5. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us »Contact

  6. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout UsContact-Us Sign

  7. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout UsContact-Us

  8. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princeton PlasmaZhihongOn-Site Research Contacts

  9. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefaultin[NiFe]-hydrogenase models: Contact

  10. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - Working With Us

  11. Contact Us | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01Technical Information-- Energy,research communityContact Us

  12. Contacts | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C |AdministrationOurContacts |

  13. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion Measurement of Muon NeutrinoSecurityMedia Contacts

  14. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » Contact Us

  15. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » ContactUs »

  16. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » ContactUs »Us

  17. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » ContactUs

  18. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of Energy ProgramsAbout » ContactUsUs

  19. GENERAL CONDITIONS FOR ITER ORGANIZATION SERVICE CONTRACTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all legal obligations incumbent on him, notably those resulting from employment, tax and social legislation. Page 4 of 21 4.3 The Contractor shall have sole responsibility for...

  20. Organization of the Catalog General Campus Colleges

    E-Print Network [OSTI]

    Literature Cybernetics EarthandSpaceSciences EastAsianStudies Economics Economics/Business Economics/System Science English EnvironmentalScience and Engineering(see School of Public Health) EthnicArts(seeCollegeof Fine Professional Schools School of Engineering and Applied Science Chemical Engineering Computer Science Electrical

  1. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Hongsuk Kang; Young-Gui Yoon; D. Thirumalai; Changbong Hyeon

    2015-06-03

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yeast ($N\\approx 1.2\\times 10^7$, $\\phi<\\phi_c^{\\infty}$) are equilibrated with no clear signature of such organization.

  2. Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Biological Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  3. Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Business Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  4. Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Professional Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225 General Chemistry Lab I, II (1

  5. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  6. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  7. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  8. Contact the Sustainability Performance Office | Department of...

    Office of Environmental Management (EM)

    Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability...

  9. Methods of contacting substances and microsystem contactors

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Rassat, Scot D [Benton City, WA; Stenkamp, Victoria S [Richland, WA

    2005-05-22

    A microchannel contactor and methods of contacting substances in microchannel apparatus are described. Some preferred embodiments are combined with microchannel heat exchange.

  10. Alternative Breaks Emergency Contact & Verification of Medical

    E-Print Network [OSTI]

    Tipple, Brett

    Alternative Breaks Emergency Contact & Verification of Medical Insurance Form Participant Name is STRONGLY RECCOMENDED, it is not required for participation in Alternative Breaks. *Please note: All

  11. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Haj?asz, M., E-mail: m.hajlasz@m2i.nl [Materials innovation institute (M2i), Mekelweg 2, 2628 CD, Delft (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Rietveld, F. J. R. [NXP Semiconductors, Gerstweg 2, 6534 AE, Nijmegen (Netherlands); Schmitz, J. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands)

    2014-06-16

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  12. Contact Information Engineering Professional Practice

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Pont Eastman Chemical Eaton Corp. Emerson Process Management EMJ Corp. ExxonMobil FedEx Garmin General Dynamics · Apply classroom knowledge to real work situations · Earn money toward education costs · Evaluate career student Rebekah Patton working at the Dow Chemical Company in Midland, Michigan. Navigating Nuclear Carlos

  13. Modeling International Relationships in Applied General Equilibrium...

    Open Energy Info (EERE)

    in Applied General Equilibrium (MIRAGE) AgencyCompany Organization: International Food Policy Research Institute, Centre d'Etudes Prospectives et d'Informations...

  14. Date: _____________ Page ______ of ______ (if known) Name / Organization Mailing Address / Organization Contact Person

    E-Print Network [OSTI]

    Karsai, Istvan

    : ____________________________________________ City/St/Zip: ____________________________________________ Deposit Transmittal for ETSU Foundation Funds I certify that these funds should be deposited in the ETSU Foundation account listed: ___________________________ Fax: _______________ East Tennessee State University--Advancement Services ETSU Advancement Services

  15. Contact details: School of Architecture, BCU

    E-Print Network [OSTI]

    Birmingham, University of

    Contact details: School of Architecture, BCU Dr. Richard Coles, Co investigator Richard Economic Fabric This work package investigated opportunities and barriers to achieving sustainable is to be sustainable in the widest sense. Contact details: Centre for Urban and Regional Studies, U0B Dr. Austin Barber

  16. Contact micromechanics in granular media with clay

    SciTech Connect (OSTI)

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  17. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  18. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2005-03-01

    Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

  19. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    SciTech Connect (OSTI)

    Celano, Umberto E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried; Hantschel, Thomas; Giammaria, Guido; Conard, Thierry; Bender, Hugo

    2015-06-07

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10?nm{sup 2}) of the physical contact (?100?nm{sup 2}) is effectively contributing to the transport phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10?nm electrical resolution observed in C-AFM measurements.

  20. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect (OSTI)

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)] [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany); Dietrich, Cornelia, E-mail: cdietric@uni-mainz.de [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)] [Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131 Mainz (Germany)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  1. General Engineer

    Broader source: Energy.gov [DOE]

    This position may be located in either the Office of Energy Statistics or the Office of Energy Analysis of EIA. This position is established to provide a professional general engineer to perform...

  2. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContactContact

  3. Contact Us | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - WorkingUs ContactContact

  4. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - WorkingUsContact UsContact

  5. Contact Us | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact UsContactContact

  6. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /ContactContactContact Us

  7. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /ContactContactContact

  8. Contact Technology Transitions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPO For moreContact

  9. Contact the GTT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContactContact the

  10. General Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERALProblemsGeneral Information General

  11. Mining Protein Contact Maps Jingjing Hu

    E-Print Network [OSTI]

    Bystroff, Chris

    -local (fre- quent) dense patterns in their contact maps, and compile a library of such non-local interactions methods like clustering, classification, association rules, hidden Markov models, etc. The ability

  12. 2015 EMPLOYEE BENEFIT INSURANCE PLAN CONTACTS

    E-Print Network [OSTI]

    2015 EMPLOYEE BENEFIT INSURANCE PLAN CONTACTS Health Insurance Anthem Blue Cross and Blue Shield ......................................................................................................................................................1-800-542-9402 Provider Directories for Health and Dental www.anthem.com HMO Landmark Healthcare www

  13. Louise Guy, Administrative Contact College of Education

    E-Print Network [OSTI]

    Education (with emphasis areas in Mild/Moderate Disabilities, Early Childhood Special Education, Visual, and Vocational Special Education). · Certificate programs offered in Early Childhood Special Education, AutismLouise Guy, Administrative Contact College of Education Department of Special Education 1600

  14. Nanoparticle derived contacts for photovoltaic cells

    SciTech Connect (OSTI)

    Ginley, D.S.

    1999-10-20

    Contacts are becoming increasingly important as PV devices move to higher efficiency and lower cost. The authors present an approach to developing contacts using nanoparticle-based precursors. Both elemental, alloy and compound nanoparticles can be employed for contacts. Ink based approaches can be utilized at low temperatures and utilize direct write techniques such as ink jet and screen printing. The ability to control the composition of the nanoparticle allows improved control of the contact metallurgy and the potential for thermodynamically stable interfaces. A key requirement is the ability to control the interface between particles and between particles and the substrate. The authors illustrate some of these principals with recent results on Al, Cu and (Hg,Cu)Te. They show that for the elemental materials control of the surface can prevent oxide formation and act as glue to control the reactivity of the nanoparticles.

  15. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  16. Contact fatigue : life prediction and palliatives

    E-Print Network [OSTI]

    Conner, Brett P. (Brett Page), 1975-

    2002-01-01

    Fretting fatigue is defined as damage resulting from small magnitude (0.5-50 microns) displacement between contacting bodies where at least one of the bodies has an applied bulk stress. The applicability and limits of a ...

  17. Front contact solar cell with formed emitter

    SciTech Connect (OSTI)

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  18. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John (Menlo Park, CA)

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  19. Sun-Herald Sport Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Sun-Herald Sport Advertising Contact Information NSW: Liam O'Meara 02 9282 4192 l years. Readership* Last 4 Weeks Net: 650,000* Last Week: 398,000** Overview Printed in The Sun

  20. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  1. Contacts for Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment of EnergyContacts for Services Contacts

  2. Elastic–Plastic Spherical Contact Modeling Including Roughness Effects

    E-Print Network [OSTI]

    Li, L.; Etsion, I.; Talke, F. E.

    2010-01-01

    A multilevel model for elastic–plastic contact between ajunction growth of an elastic–plastic spherical contact. J.nite element based elastic–plastic model for the contact of

  3. General Relativity

    E-Print Network [OSTI]

    Canuto, V

    2015-01-01

    This is an English translation of the Italian version of an encyclopedia chapter that appeared in the Italian Encyclopedia of the Physical Sciences, edited by Bruno Bertotti (1994). Following requests from colleagues we have decided to make it available to a more general readership. We present the motivation for constructing General Relativity, provide a short discussion of tensor algebra, and follow the set up of Einstein equations. We discuss briefly the initial value problem, the linear approximation and how should non gravitational physics be described in curved spacetime.

  4. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities NuclearlongGeneral Tables The General Tables for

  5. Contact-Handled Transuranic Waste Authorized Methods for Payload...

    Office of Environmental Management (EM)

    Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) This...

  6. Property:RAPID/Contact/ID2/Position | Open Energy Information

    Open Energy Info (EERE)

    Division of Environmental Protection + NPDES Permitting Contact + Nevada Division of Water Resources + Groundwater Usage and Nonpoint Source Pollution Contact + New Mexico...

  7. AN AUGMENTED LAGRANGIAN CONTACT ALGORITHM EMPLOYING A VERTEX-BASED FINITE

    E-Print Network [OSTI]

    Taylor, Gary

    (FV) methods to problems in Computational Solid Mechanics (CSM) 8]. Generally, these investigations boundaries 10]. In this paper a vertex-based FV method is presented for the computational solution of quasi-static solid mechanics problems involving linear elastic materials undergoing deformable-deformable contact

  8. Fermilab | About | Organization | Fermilab Organization | Explanation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Symbols Line Organization: sectors, divisions, sections Line Organization Matrix Organization: centers, projects and programs utilizing resources spanning the entire...

  9. Electric Field and Humidity Trigger Contact Electrification

    E-Print Network [OSTI]

    Yanzhen Zhang; Thomas Pähtz; Yonghong Liu; Xiaolong Wang; Rui Zhang; Yang Shen; Renjie Ji; Baoping Cai

    2015-01-14

    Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

  10. Contacts for Integrating Renewable Energy into Federal Construction Projects

    Broader source: Energy.gov [DOE]

    Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

  11. Proportional Contact Representations of Planar Graphs Md. J. Alam1

    E-Print Network [OSTI]

    Kobourov, Stephen G.

    Proportional Contact Representations of Planar Graphs Md. J. Alam1 , T. Biedl2 , S. Felsner3 , M-contact between the corresponding polygons. Specifically, we consider proportional contact representations, where, the cartographic error, and the unused area. We describe construc- tive algorithms for proportional contact

  12. Contact Information Systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout Us » ContactContact

  13. Contact Us | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContact Us Tel:

  14. Contact Us | Mickey Leland Energy Fellowship (MLEF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAboutContactContact Us

  15. Contact Us - Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - Working With Us Contact us

  16. Contact Us-About-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - WorkingUsContact

  17. Contact CEFRC - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact ToContact

  18. Contact Us | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact UsContact Us

  19. Contact Us | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /ContactContact Us

  20. General Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclearlong version)shortGateGeneralMotors

  1. General Recommendations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclearlong version)shortGateGeneralMotors»

  2. GENERAL ASSIGNMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)ForthcomingGENERAL ASSIGNMENT KNOW ALL MEN BY THESE

  3. Curriculum Vitae, Paul A. Cassak CONTACT INFORMATION

    E-Print Network [OSTI]

    Cassak, Paul

    Curriculum Vitae, Paul A. Cassak CONTACT INFORMATION Department of Physics Office: (304) 293 Physics senior to further scientific studies, September 1997 Curriculum Vitae - Page !1 #12;Curriculum 2014 Curriculum Vitae - Page !2 #12;Curriculum Vitae, Paul A. Cassak · Associate Editor, Journal

  4. LUBRICATION APPROXIMATION WITH PRESCRIBED NONZERO CONTACT ANGLE

    E-Print Network [OSTI]

    Otto, Felix

    LUBRICATION APPROXIMATION WITH PRESCRIBED NONZERO CONTACT ANGLE Felix Otto Department--time existence for a weak solution s(t; x) â?? 0 of the lubrication approximation @ t s + @ x (s @ 3 x s) = 0 in fs will later motivate the way we construct approximate solutions for the lubrication approximation we are going

  5. Contact Anosov flows and the FBI transform

    E-Print Network [OSTI]

    Tsujii, Masato

    2010-01-01

    This paper is about spectral properties of transfer operators for contact Anosov flows. The main result gives the essential spectral radius of the transfer operators acting on the so-called anisotropic Sobolev space exactly in terms of dynamical exponents. Also we provide a simplified proof by using the FBI transform.

  6. Jenshan Lin Affiliation and Contact Information

    E-Print Network [OSTI]

    Roy, Subrata

    1 Jenshan Lin Affiliation and Contact Information Department of Electrical and Computer Engineering University of Florida 1064 Center Drive, 559 Engineering Building Gainesville, FL 32611-6130 Phone: +1D, Electrical Engineering, University of California at Los Angeles 1991 MS, Electrical Engineering, University

  7. Thermodynamics of nuclei in thermal contact

    E-Print Network [OSTI]

    Karl-Heinz Schmidt; Beatriz Jurado

    2010-10-05

    The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

  8. MEDIA RELEASE J. Willard Marriott Library Contacts

    E-Print Network [OSTI]

    Clayton, Dale H.

    MEDIA RELEASE J. Willard Marriott Library Contacts: Walter Jones, Head of Western Americana, 801.rogers@utah.edu Heidi Brett, Public Relations Specialist, 801-661-6764, heidi.brett@utah.edu Veterans Exhibits on Display at U of U Library November 9, 2011 ­ Beginning on Veteran's Day, the J. Willard Marriott Library

  9. Contact Details Journeying Beyond Breast Cancer

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Home About Contact Details Facebook Search Journeying Beyond Breast Cancer making sense of the cancer experience Feeds: Posts Comments Cancer-fighting fountain pen May 20, 2009 by JBBC A research team be used both as a research tool in the development of next-generation cancer treatments

  10. www.rem.sfu.ca Contact us

    E-Print Network [OSTI]

    and Sustainable Environments REM/ENV 321 (3) Ecological Economics REM 350 (4) Sustainable Energy and Materialswww.rem.sfu.ca Contact us: School of Resource and Environmental Management Faculty of Environment/SCD 301 (4) Sustainable Community Development theory and Practice REM 311 (3) Applied Ecology

  11. For More Information Contact the Math Center

    E-Print Network [OSTI]

    Maier, Robert S.

    For More Information Contact the Math Center: mcenter@math.arizona.edu http://math given here apply to the 2015­2016 catalog. For other catalog years, please consult the archive (http://math, advising, and other services and activities supportive of the undergraduate math programs, e.g., what

  12. Contacts Integration into functional nanoscale devices

    E-Print Network [OSTI]

    Metlushko, Vitali

    from the very beginning of the design process. While the properties of nano-scale magnetic devices by magnetoresistive random- access memory (MRAM). The design challenges faced by CMOS and MRAM are very similar of this, the topographical influence of contacts on the overlying magnetic device must be taken account

  13. Post-Adoption Contact Reform: Compounding the State-Ordered Termination of Parenthood?

    E-Print Network [OSTI]

    Sloan, Brian

    2014-05-23

    in providing a clear answer to the compatibility question. II. ADOPTION LAW & POLICY IN ENGLAND & WALES Adoption policy in England and Wales is dominated by the notion that the stability provided by swift adoption is generally beneficial for children... such contact, and Marshall has sought to defend a mother’s right to privacy and anonymity in relation to adoption following a concealed birth.128 That said, it would be odd if birth parents were to be given the near-veto on post-adoption contact that I have...

  14. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizingOrganizing

  15. R&D activities on RF contacts for the ITER ion cyclotron resonance heating launcher

    E-Print Network [OSTI]

    Hillairet, Julien; Bamber, Rob; Beaumont, Bertrand; Bernard, Jean-Michel; Delaplanche, Jean-Marc; Durodié, Frédéric; Lamalle, Philippe; Lombard, Gilles; Nicholls, Keith; Shannon, Mark; Vulliez, Karl; Cantone, Vincent; Hatchressian, Jean-Claude; Lebourg, Philippe; Martinez, André; Mollard, Patrick; Mouyon, David; Pagano, Marco; Patterlini, Jean-Claude; Soler, Bernard; Thouvenin, Didier; Toulouse, Lionel; Verger, Jean-Marc; Vigne, Terence; Volpe, Robert

    2015-01-01

    Embedded RF contacts are integrated within the ITER ICRH launcher to allow assembling, sliding and to lower the thermo-mechanical stress. They have to withstand a peak RF current up to 2.5 kA at 55 MHz in steady-state conditions, in the vacuum environment of themachine.The contacts have to sustain a temperature up to 250{\\textdegree}Cduring several days in baking operations and have to be reliable during the whole life of the launcher without degradation. The RF contacts are critical components for the launcher performance and intensive R&D is therefore required, since no RF contactshave so far been qualified at these specifications. In order to test and validate the anticipated RF contacts in operational conditions, CEA has prepared a test platform consisting of a steady-state vacuum pumped RF resonator. In collaboration with ITER Organization and the CYCLE consortium (CYclotronCLuster for Europe), an R&D program has been conducted to develop RF contacts that meet the ITER ICRH launcher specification...

  16. Our Organization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mission StatementThe Office of Inspector General promotes the effective, efficient, and economical operation of the Department of Energy's programs and operations through audits, inspections,...

  17. DOE technical standards list: Directory of points of contact for the DOE Technical Standards Program

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31). This TSL is approved for use by all DOE Components (i.e., all DOE Headquarters and field organizations, management and operating contractors, and laboratories). This TSL supplements DOE manuals, directives, orders, and standards. It provides basic and fundamental information for DOE Component personnel involved in identifying standardization documents. It also provides listings of points of contact within DOE and identifies links to points of contact within the Department of Defense (DoD) for coordination of standardization activities. This TSL will be updated to reflect changes in organizations, addresses, and responsibilities as necessary.

  18. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  19. EXECUTIVE VICE CHANCELLOR -ACADEMIC AFFAIRS ORGANIZATION CHART

    E-Print Network [OSTI]

    Aluwihare, Lihini

    EXECUTIVE VICE CHANCELLOR - ACADEMIC AFFAIRS ORGANIZATION CHART *Acts for the Executive Vice of organized research units. University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093 Updated (1) Organized Research Units & Multicampus Research Units General Campus Non-Faculty Research

  20. A multiscale Molecular Dynamics approach to Contact Mechanics

    E-Print Network [OSTI]

    C. Yang; U. Tartaglino; B. N. J. Persson

    2006-01-05

    The friction and adhesion between elastic bodies are strongly influenced by the roughness of the surfaces in contact. Here we develop a multiscale molecular dynamics approach to contact mechanics, which can be used also when the surfaces have roughness on many different length-scales, e.g., for self affine fractal surfaces. As an illustration we consider the contact between randomly rough surfaces, and show that the contact area varies linearly with the load for small load. We also analyze the contact morphology and the pressure distribution at different magnification, both with and without adhesion. The calculations are compared with analytical contact mechanics models based on continuum mechanics.

  1. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  2. Electrical contact arrangement for a coating process

    SciTech Connect (OSTI)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  3. Total Energy Management in General Motors 

    E-Print Network [OSTI]

    DeKoker, N.

    1979-01-01

    This paper presents an overview of General Motors' energy management program with special emphasis on energy conservation. Included is a description of the total program organization, plant guidelines, communication and motivation techniques...

  4. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/SiteWater Quality <Contact <

  5. National Laboratory Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimediaLaboratory Contacts National

  6. EERE Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicleDepartment ofGraphics »DepartmentEERE Website Contact

  7. Regulation of ERK1/2 activity upon contact inhibition in fibroblasts

    SciTech Connect (OSTI)

    Kueppers, Monika; Faust, Dagmar; Linz, Berenike [Institute of Toxicology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55131 Mainz (Germany)] [Institute of Toxicology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55131 Mainz (Germany); Dietrich, Cornelia, E-mail: cdietric@uni-mainz.de [Institute of Toxicology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55131 Mainz (Germany)] [Institute of Toxicology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55131 Mainz (Germany)

    2011-03-18

    Research highlights: {yields} Regulation of ERK1/2 activity upon contact inhibition was investigated. {yields} Upstream activation of ERK is attenuated upon contact inhibition. {yields} ERK phosphatases are probably not involved in ERK1/2 dephosphorylation. {yields} Signaling of the EGFR and PDGFR is differentially inhibited upon contact inhibition. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Despite its generally accepted importance for maintaining tissue homeostasis knowledge about the underlying molecular mechanisms of contact inhibition is still scarce. Since the MAPK ERK1/2 plays a pivotal role in the control of proliferation, we investigated regulation of ERK1/2 phosphorylation which is downregulated in confluent NIH3T3 cultures. We found a decrease in upstream signaling including phosphorylation of the growth factor receptor adaptor protein ShcA and the MAPK kinase MEK1/2 in confluent compared to exponentially growing cultures whereas involvement of ERK1/2 phosphatases in ERK1/2 inactivation is unlikely. Treatment of confluent, serum-deprived cultures with PDGF-B resulted in similar phosphorylation of ERK1/2 and induction of DNA-synthesis as detected in sparse, serum-deprived cultures. In contrast, ERK1/2 phosphorylation and DNA-synthesis could not be stimulated in confluent, serum-deprived cultures exposed to EGF. Our data indicate that PDGFR- and EGFR signaling are differentially inhibited in confluent cultures of NIH3T3 cells.

  8. Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions

    E-Print Network [OSTI]

    Svensen, Henrik

    ) sills have a gas production potential of several gigatons of methane (CH4) if emplaced over a N1000 km2 to quantify fluid production from both inorganic and organic reactions during contact metamorphism influence on the gas generation potential. When two sills are emplaced with a vertical spacing of ~7 times

  9. Protein folding using contact maps Michele Vendruscolo and Eytan Domany

    E-Print Network [OSTI]

    Domany, Eytan

    Protein folding using contact maps Michele Vendruscolo and Eytan Domany Department of Physics 26 I. INTRODUCTION Computational approaches to protein folding are divided into two main categories protein fold prediction. Contact maps are a particularly manageable representation of protein structure

  10. Influence of contact conditions on thermal responses of the hand

    E-Print Network [OSTI]

    Jones, Lynette A.

    A series of experiments was conducted to evaluate how contact pressure and surface roughness influence the heat flux conducted out of the skin or object during contact. Changes in skin temperature assist in identifying ...

  11. Liquid metal contact as possible element for thermotunneling

    E-Print Network [OSTI]

    Avto Tavkhelidze; Zaza Taliashvili; Leri Tsakadze; Larissa Jangidze; Nodari Ushveridze

    2008-07-21

    We investigated a possibility of application of liquid metal contacts for devices based on thermotunneling. Electric and thermal characteristics of low wetting contact Hg/Si, and high wetting contacts Hg/Cu were determined and compared. We got tunneling I-V characteristics for Hg/Si, while for Hg/Cu, I-V characteristics were ohmic. We explained tunneling I-V characteristics by presence of nanogap between the contact materials. Heat conductance of high wetting and low wetting contacts were compared, using calorimeter measurements. Heat conductance of high wetting contact was 3-4 times more than of low wetting contact. Both electric and thermal characteristics of liquid metal contact indicated that it could be used for thermotunneling devices. We solved liquid Cs in liquid Hg to reduce work function and make liquid metal more suitable for room temperature cooling. Work function as low as 2.6 eV was obtained.

  12. Areas of contact and pressure distribution in bolted joints

    E-Print Network [OSTI]

    Gould, Herbert Hirsch

    1970-01-01

    When two plates are bolted (or riveted) together these will be in contact in the immediate vicinity of the bolt heads and separated beyond it. The pressure distribution and size of the contact zone is of considerable ...

  13. Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganization Chart Organization Charts

  14. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout EventsOrganizing

  15. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizing Committee

  16. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAboutOrganizing

  17. MIT Plasma Science & Fusion Center: research>alcator>contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction Facility Information Tokamak Data & Real-Time Information Computer & Data Systems Research Program Information Publications & News Meetings & Seminars Contact...

  18. Property:RAPID/Contact/ID1/Position | Open Energy Information

    Open Energy Info (EERE)

    State Lands Commission + Lead Geothermal Negotiator + Colorado Department of Public Health and Environment + Construction Storm Water Discharge Permitting Contact + Colorado...

  19. Superanalogs of symplectic and contact geometry and their applications to quantum field theory

    E-Print Network [OSTI]

    Albert Schwarz

    1994-06-17

    The paper contains a short review of the theory of symplectic and contact manifolds and of the generalization of this theory to the case of supermanifolds. It is shown that this generalization can be used to obtain some important results in quantum field theory. In particular, regarding $N$-superconformal geometry as particular case of contact complex geometry, one can better understand $N=2$ superconformal field theory and its connection to topological conformal field theory. The odd symplectic geometry constitutes a mathematical basis of Batalin-Vilkovisky procedure of quantization of gauge theories. The exposition is based mostly on published papers. However, the paper contains also a review of some unpublished results (in the section devoted to the axiomatics of $N=2$ superconformal theory and topological quantum field theory). The paper will be published in Berezin memorial volume.

  20. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Rand, Barry P. (Princeton, NJ); Forrest, Stephen R. (Princeton, NJ)

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  1. Three-phase contact line and line tension of electrolyte solutions in contact with charged substrates

    E-Print Network [OSTI]

    Ingrid Ibagon; Markus Bier; S. Dietrich

    2015-11-16

    The three-phase contact line formed by the intersection of a liquid-vapor interface of an electrolyte solution with a charged planar substrate is studied in terms of classical density functional theory applied to a lattice model. The influence of the substrate charge density and of the ionic strength of the solution on the intrinsic structure of the three-phase contact line and on the corresponding line tension is analyzed. We find a negative line tension for all values of the surface charge density and of the ionic strength considered. The strength of the line tension decreases upon decreasing the contact angle via varying either the temperature or the substrate charge density.

  2. THIS DOCUMENT IS FOR EDUCATIONAL PURPOSES ONLY. EACH LEGAL SITUATION IS VERY FACT SPECIFIC AND UNIQUE TO EACH INDIVIDUAL ORGANIZATION. THUS, WHILE THIS DOCUMENT WAS PREPARED BY

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ,000 the organization takes in. See the following chart for more details: For organizations that have gross receipts AND UNIQUE TO EACH INDIVIDUAL ORGANIZATION. THUS, WHILE THIS DOCUMENT WAS PREPARED BY AN ATTORNEY ORGANIZATION SHOULD CONTACT AN ATTORNEY. Q: Does my Registered Student Organization need to pay taxes? A

  3. Federal NEPA Contacts | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSof 2005FAQS5 Summary of Rules FACRabel,AwardsNEPA Contacts Federal

  4. Precision non-contact polishing tool

    DOE Patents [OSTI]

    Taylor, J.S.

    1997-01-07

    A non-contact polishing tool is disclosed that combines two orthogonal slurry flow geometries to provide flexibility in altering the shape of the removal footprint. By varying the relative contributions of the two flow geometries, the footprint shape can be varied between the characteristic shapes corresponding to the two independent flow regimes. In addition, the tool can include a pressure activated means by which the shape of the brim of the tool can be varied. The tool can be utilized in various applications, such as x-ray optical surfaces, x-ray lithography, lenses, etc., where stringent shape and finish tolerances are required. 5 figs.

  5. The double contact nature of TT Herculis

    SciTech Connect (OSTI)

    Terrell, Dirk; Nelson, Robert H. E-mail: bob.nelson@shaw.ca

    2014-03-01

    We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with a rapidly rotating primary that fills its limiting lobe.

  6. Contact Us - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstruction ReviewAbout UsContact-Us Sign

  7. Property:Geothermal/Contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, search This is aAnnualGenGwhYr JumpContact Jump to:

  8. NEWS MEDIA CONTACT: FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert4 FLCNETL-ORD4NEVIS-NEWS MEDIA

  9. Microsoft Word - Current Contact Information2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal March 3, 2015CMMarch 3, 2009 InContact

  10. PBL Customer Service Centers (pbl/contact)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumptionPoweredE Contract No.No. 330Contact Power

  11. LEDSGP/contact | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(Redirected fromAvoid <LEDSGP/contact <

  12. Contact Information | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact

  13. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahomeAbout » Contact us

  14. ORISE Science Education Programs: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHow toContact Us Dean M. Evasius

  15. NREL: Energy Systems Integration Facility - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working with Us ...Your teamAwards TheContact Us

  16. Laboratory Equipment Donation Program - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley Lablooks toAboutContact

  17. Method of forming contacts for a back-contact solar cell

    DOE Patents [OSTI]

    Manning, Jane

    2013-07-23

    Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.

  18. Role of chemical termination in edge contact to graphene

    SciTech Connect (OSTI)

    Gao, Qun; Guo, Jing, E-mail: guoj@ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-05-01

    Edge contacts to graphene can offer excellent contact properties. Role of different chemical terminations is examined by using ab initio density functional theory and quantum transport simulations. It is found that edge termination by group VI elements O and S offers considerably lower contact resistance compared to H and group VII element F. The results can be understood by significantly larger binding energy and shorter binding distance between the metal contact and these group VI elements, which results in considerably lower interface potential barrier and larger transmission. The qualitative conclusion applies to a variety of contact metal materials.

  19. Adhesive contact of elastomers: effective adhesion energy and creep function

    E-Print Network [OSTI]

    Etienne Barthel; Christian Frétigny

    2009-06-11

    For the adhesive contact of elastomers, we propose expressions to quantify the impact of viscoelastic response on effective adhesion energy as a function of contact edge velocity. The expressions we propose are simple analytical functionals of the creep response and should be suitable for experimental data analysis in terms of measured rheologies. We also emphasize the role of the coupling between local stress field at the contact edge and the macroscopic remote loading (far field). We show that the contrast between growing and receding contact originates from the impact of viscoelastic response on coupling, while the separation process at the contact edge is similarly affected by viscoelasticity in both cases.

  20. Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact

    E-Print Network [OSTI]

    Simons, Jack

    Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact the chemistry advisor (advisor@chem.utah.edu) Chemistry Core Courses (required of all majors): CHEM 1210, 1220 General Chemistry I, II (4, 4) both SF (or 1211/1221 honors versions) CHEM 1215, 1225

  1. Similarity Relationships in Creep Contacts and Applications in Nanoindentation Tests Y.F. Gao,1,2

    E-Print Network [OSTI]

    Gao, Yanfei

    Similarity Relationships in Creep Contacts and Applications in Nanoindentation Tests J.H. Lee,1 C-dependent (viscoplastic or creeping) solids has generally focused on the relationship between indentation hardness. Theoretical predictions agree well with real nanoindentation measurements on amorphous selenium when tested

  2. Contact For The Deputy General Counsel for Environment & Compliance (GC-50)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,FresnoSky)Nuclear8Under| Department of|

  3. Contacts for the Assistant General Counsel for Labor and Pension Law |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June Additional informationEnergy

  4. Contacts for the Deputy General Counsel for Energy Policy (GC-70) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance | DepartmentCounsel

  5. Contacts for the Office of the General Counsel (GC-1) | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June AdditionalAssistance |ContractorEnergy

  6. Directed spatial organization of zinc oxide nanostructures

    DOE Patents [OSTI]

    Hsu, Julia (Albuquerque, NM); Liu, Jun (Richland, WA)

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  7. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout Events

  8. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams for Large-scaleOrganizationAbout

  9. Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons

    SciTech Connect (OSTI)

    Bory, Benjamin F.; Janssen, René A. J.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-09-22

    Thin LiF interlayers are typically used in organic light-emitting diodes to enhance the electron injection. Here, we show that the effective work function of a contact with a LiF interlayer can be either raised or lowered depending on the history of the applied bias. Formation of quasi-Ohmic contacts for both electrons and holes is demonstrated by electroluminescence from symmetric LiF/polymer/LiF diodes in both bias polarities. The origin of the dynamic switching is charging of electrically induced Frenkel defects. The current density–electroluminescence–voltage characteristics can qualitatively be explained. The interpretation is corroborated by unipolar memristive switching and by bias dependent reflection measurements.

  10. contact-us | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL Maps & Directions Tours Reporting Waste, Fraud or Abuse Please report any concerns to the Department of Energy's Inspector General (ighotline@hq.doe.gov, 1.800.541.1625)...

  11. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D

    2010-03-22

    This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid interface loads in embedded systems over tens of thousands of load cycles. Unlike all other interface load sensors, the CS sensor is extremely thin (< 150 {micro}m), provides accurate, high-speed measurements, and exhibits good stability over time with no loss of calibration with load cycling. The silicon CS sensor, 5 mm{sup 2} and 65 {micro}m thick, has piezoresistive traces doped within a load-sensitive diaphragm. The novel package utilizes several layers of flexible polyimide to mechanically and electrically isolate the sensor from the environment, transmit normal applied loads to the diaphragm, and maintain uniform thickness. The CS sensors have a highly linear output in the load range tested (0-2.4 MPa) with an average accuracy of {+-} 1.5%.

  12. Moving contact line of a volatile fluid

    E-Print Network [OSTI]

    V. Janecek; B. Andreotti; D. Prazak; T. Barta; V. S. Nikolayev

    2012-12-15

    Interfacial flows close to a moving contact line are inherently multi-scale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both called after Voinov, from the dynamical processes at work at the microscopic level. Here, we solve this inner problem in the case of a volatile fluid at equilibrium with its vapor. The evaporative/condensation flux is then controlled by the dependence of the saturation temperature on interface curvature -- the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the substrate temperature. The relevance of the predictions for experimental problems is finally discussed.

  13. Moving contact line of a volatile fluid

    E-Print Network [OSTI]

    Janecek, V; Prazak, D; Barta, T; Nikolayev, V S

    2012-01-01

    Interfacial flows close to a moving contact line are inherently multi-scale. The shape of the interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and a regularization length, both called after Voinov, from the dynamical processes at work at the microscopic level. Here, we solve this inner problem in the case of a volatile fluid at equilibrium with its vapor. The evaporative/condensation flux is then controlled by the dependence of the saturation temperature on interface curvature -- the so-called Kelvin effect. We derive the dependencies of the Voinov angle and of the Voinov length as functions of the substrate temperature. The relevance of the predictions for experimental problems is finally discussed.

  14. Lithium-drifted silicon detector with segmented contacts

    DOE Patents [OSTI]

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  15. Universal contact-line dynamics at the nanoscale

    E-Print Network [OSTI]

    Marco Rivetti; Thomas Salez; Michael Benzaquen; Elie Raphaël; Oliver Bäumchen

    2015-07-31

    The relaxation dynamics of the contact angle between a viscous liquid and a smooth substrate is studied at the nanoscale. Through atomic force microscopy measurements of polystyrene nanostripes we monitor simultaneously the temporal evolution of the liquid-air interface as well as the position of the contact line. The initial configuration exhibits high curvature gradients and a non-equilibrium contact angle that drive liquid flow. Both these conditions are relaxed to achieve the final state, leading to three successive regimes along time: i) stationary-contact-line levelling; ii) receding-contact-line dewetting; iii) collapse of the two fronts. For the first regime, we reveal the existence of a self-similar evolution of the liquid interface, which is in excellent agreement with numerical calculations from a lubrication model. For different liquid viscosities and film thicknesses we provide evidence for a transition to dewetting featuring a universal critical contact angle and dimensionless time.

  16. Organizational images : towards a model of organizations

    E-Print Network [OSTI]

    Krishnan, Neel

    2012-01-01

    This study develops a general theoretical framework for the analysis of organizational behavior by focusing on the notion that organizations develop unique information-processing frameworks, which it labels "organizational ...

  17. Contacts for Federal Energy Savings Performance Contract Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact PPPOContactContact

  18. State of technology of direct contact heat exchanging

    SciTech Connect (OSTI)

    Vallario, R.W.; DeBellis, D.E.

    1984-05-01

    Specific objectives of this study were to assess the state of technology development and to identify and evaluate the constraints to wider use of direct contact heat exchanger (DCHE) technology in the U.S. The scope of this study is relatively broad; it includes many types of generic systems and end-use applications, both current and future. Domestic and foreign experience with DCHE technology are compared, although the primary focus is on domestic experience. Twenty-two distinct applications of DCHE technology were identified in this study and are examined in this report. The general format is to describe each system, explore its potential applications, discuss current and past research activities and identify major implementation barriers. Finally, as a result of discussions with principal users of DCHE systems and with other knowledgeable sources, generic and specific R and D needs to overcome specific implementation barriers have been identified. The following list of DCHE systems/concepts has been classified into four major end-uses; there is also a category for specialized (other) applications.

  19. Au-free Ohmic Contacts to Gallium Nitride and Graphene 

    E-Print Network [OSTI]

    Ravikirthi, Pradhyumna

    2014-08-10

    -sputtered contact. 20 3. AU-FREE SCHEME FOR GALLIUM NITRIDE 3.1. Survey of Au-free contacts in literature and scope for improvement For n-type GaN, it was observed that aluminium and gold form poor ohmic contacts (resistances in the order of 10-3 ?/cm2...] used Ti/Al and found better results for ohmic resistance compared to GaN[17]. However, Ti/Al contacts lost its stability at high temperatures due to formation of aluminium lumps on the surface, increasing its roughness and resistance. Fan et al [20...

  20. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information...

  1. Robust metal contact and capacitive mini-MEMS switches

    E-Print Network [OSTI]

    Sedaghat Pisheh, Hojr

    2013-01-01

    on Stress-Gradient Robust SPST Switch Design . . . . . . .2.2.1 Switch Design . . . . . . . . . . . . . .of SPST Circular Metal-Contact Switch . . . . . . . . . .

  2. Property:RAPID/Contact/ID3/Position | Open Energy Information

    Open Energy Info (EERE)

    - Construction Permitting + U Utah Department of Environmental Quality + Nonpoint Source Pollution Contact + Utah Department of Natural Resources + Geothermal Resource and Steam...

  3. Exploring new physics through contact interactions in lepton...

    Office of Scientific and Technical Information (OSTI)

    Conference: Exploring new physics through contact interactions in lepton pair production at a linear collider Citation Details In-Document Search Title: Exploring new physics...

  4. Librarian contact for College of Nursing: Barbara Quintiliano x95207

    E-Print Network [OSTI]

    Frey, Jesse C.

    to Promote Healthy Nutrition and Physical Activity for Their Preschool Children Journal of Pediatric Nursing1 Librarian contact for College of Nursing: Barbara Quintiliano ­ x95207 barbara

  5. Robust metal contact and capacitive mini-MEMS switches

    E-Print Network [OSTI]

    Sedaghat Pisheh, Hojr

    2013-01-01

    Mini-MEMS MechanicalSpring Constant, High Contact Force RF MEMS Switch 3.1First Generation of Miniature MEMS Capacitive Switch . . 4.3

  6. Thin Silicon MEMS Contact-Stress Sensor Kotovksy, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    A; Horsley, D 42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  7. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    ACCURACY; ACTUATORS; CALIBRATION; DIAPHRAGM; SILICON; STABILITY; THICKNESS This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid...

  8. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    LIFETIME; PACKAGING; PERFORMANCE; SILICON; THICKNESS This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  9. Property:RAPID/Contact/ID5/Position | Open Energy Information

    Open Energy Info (EERE)

    (State Lands Contact) + N Nevada Division of Environmental Protection + Bureau of Waste Management SW Branch Supervisor + R Railroad Commission of Texas + Discharge Permitting...

  10. MIT Plasma Science & Fusion Center: research>alcator>contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Information Tokamak Data & Real-Time Information Computer & Data Systems Research Program Information Publications & News Meetings & Seminars Contact Information Physics...

  11. Thermoelectric Contact Resistances Professor HoSung Lee

    E-Print Network [OSTI]

    Lee, Ho Sung

    Thermoelectric Contact Resistances Professor HoSung Lee Contents Thermoelectrics....................................................................................................................1 Ideal Formulas for Thermoelectric generators.................................................................1 Realistic Formulas for Thermoelectric generators

  12. In situ Formation of Highly Conducting Covalent Au-C Contacts for Single-Molecule Junctions

    SciTech Connect (OSTI)

    Cheng, Z.L.; Hybertsen, M.; Skouta, R.; Vazquez, H.; Widawsky, J.R.; Schneebeli, S.; Chen, W.; Breslow, R.; Venkataraman, L.

    2011-06-01

    Charge transport across metal-molecule interfaces has an important role in organic electronics. Typically, chemical link groups such as thiols or amines are used to bind organic molecules to metal electrodes in single-molecule circuits, with these groups controlling both the physical structure and the electronic coupling at the interface. Direct metal-carbon coupling has been shown through C60, benzene and {pi}-stacked benzene but ideally the carbon backbone of the molecule should be covalently bonded to the electrode without intervening link groups. Here, we demonstrate a method to create junctions with such contacts. Trimethyl tin (SnMe{sub 3})-terminated polymethylene chains are used to form single-molecule junctions with a break-junction technique. Gold atoms at the electrode displace the SnMe{sub 3} linkers, leading to the formation of direct Au-C bonded single-molecule junctions with a conductance that is {approx}100 times larger than analogous alkanes with most other terminations. The conductance of these Au-C bonded alkanes decreases exponentially with molecular length, with a decay constant of 0.97 per methylene, consistent with a non-resonant transport mechanism. Control experiments and ab initio calculations show that high conductances are achieved because a covalent Au-C sigma ({sigma}) bond is formed. This offers a new method for making reproducible and highly conducting metal-organic contacts.

  13. Brain Organization and Computation Andreas Schierwagen

    E-Print Network [OSTI]

    Schierwagen, Andreas

    Brain Organization and Computation Andreas Schierwagen Institute for Computer Science, Intelligent://www.informatik.uni-leipzig.de/~schierwa Abstract. Theories of how the brain computes can be differentiated in three general conceptions systems approach. The discussion of key features of brain organization (i.e. structure with function

  14. Physics 171. General Relativity. Professor Michael Dine Fall, 2009. Syllabus

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Physics 171. General Relativity. Professor Michael Dine Fall, 2009. Syllabus Contact Information to Physics 171 or go to http : //scipp.ucsc.edu/~dine Homework and solutions and handouts will be posted here of twentieth century physics. As we enter the twenty first century, it is at the forefront of research

  15. Organic light emitting device architecture for reducing the number of organic materials

    DOE Patents [OSTI]

    D'Andrade, Brian (Westampton, NJ); Esler, James (Levittown, PA)

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  16. Outlook Web App User Guide Frequently contacted individuals can be saved in an address book in Outlook known as a Contact Card. The

    E-Print Network [OSTI]

    Calgary, University of

    Contacts Outlook Web App User Guide Frequently contacted individuals can be saved in an address book in Outlook known as a Contact Card. The following instructions will aid you in creating

  17. Contact voltage-induced softening of RF microelectromechanical system gold-on-gold contacts at cryogenic temperatures

    SciTech Connect (OSTI)

    Berman, D.; Krim, J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 26795 (United States); Walker, M. J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 26795 (United States)

    2010-08-15

    A series of experiments were performed in vacuum environments to investigate the impact of rf micromechanical system switch contact voltage versus resistance for gold-on-gold contacts at cryogenic temperatures. The purpose of this work was twofold as follows: (1) to examine whether asperity heating models already validated for high temperature contacts were also applicable at cryogenic temperatures and (2) to explore the implications and validity of prior suggestions that contact temperatures between 338 and 373 K are high enough to dissociate adsorbed film and/or push them aside but low enough to prevent asperities from becoming soft and adherent. Measurements on two distinct switch types, fabricated at independent laboratories, were performed in the temperature range 79-293 K and for contact voltages ranging from 0.01 to 0.13 V. Contact resistance values at all temperatures were observed to be lower for higher contact voltages, consistent with the aforementioned asperity heating models, whereby increased contact currents are associated with increased heating and softening effects. In situ removal of adsorbed species by oxygen plasma cleaning resulted in switch adhesive failure. Switches that had not been cleaned meanwhile exhibited distinct reductions in resistance at contact temperatures close to 338 K, consistent with suggestions that films begin to desorb, disassociate, and/or be pushed aside at that temperature.

  18. Contact Information IODP Proposal Cover Sheet

    E-Print Network [OSTI]

    ocean at the Last Glacial Maximum (LGM) is a crucial piece of the puzzle to understand past variations in CO2 and glacial-to-interglacial cycles more generally. In the modern ocean, we use the patterns, sampling deep ocean sediments for their interstitial fluids, and then measuring 18O and [Cl] on the water

  19. Questions On......? Contact Assistance for unaffiliated units

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    projects) John Price Office of University General Counsel 405.744.3941 (john.price@okstate.edu) or College sponsored projects) College Research Offices: Division of Agricultural Sciences & Natural Resources 405 Transfer Agreements Patents Copyrights Licensing Steve Price or Cindy Malayer Technology Development Center

  20. Bivariate Generalized Exponential Distribution

    E-Print Network [OSTI]

    Kundu, Debasis

    Bivariate Generalized Exponential Distribution Debasis Kundu and Rameshwar D. Gupta Abstract Recently it is observed that the generalized exponential distribution can be used quite effectively exponential distribution so that the marginals have generalized exponential distributions. It is observed

  1. Process for reducing organic compounds with calcium, amine, and alcohol

    DOE Patents [OSTI]

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  2. Process for reducing organic compounds with calcium, amine, and alcohol

    DOE Patents [OSTI]

    Benkeser, Robert A. (West Lafayette, IN); Laugal, James A. (Lostant, IL); Rappa, Angela (Baltimore, MD)

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  3. Eye Contact Reminder System for People with Autism

    E-Print Network [OSTI]

    Gnawali, Omprakash

    Eye Contact Reminder System for People with Autism Xi Wang1, Nicholas Desalvo1, Xi Zhao1, Tao Feng1 of Houston1 The Autism Research Laboratory, The University of Texas Health Science Center2 Email: {xiwang--Avoiding eye contact behavior has been character- istic of individuals with autism. Such behavior prevents

  4. The Moving Contact Line in a Shallow Water Model

    E-Print Network [OSTI]

    Bridson, Robert

    The Moving Contact Line in a Shallow Water Model by Albert C. Wong B.Sc., The University of British with a shallow water model allowing us to track the contact line of the fluid in the shallow water model equation approach. ii #12;Table of Contents Abstract

  5. RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT The large electromagnetic field generated physics research--for example, for investigating nuclear structure, hadronic structure, atomic physics Berkeley Laboratory--it became clear that heavy-ion physics without nuclear contact could be very useful

  6. Ohmic contacts for high-temperature GaP devices 

    E-Print Network [OSTI]

    Van der Hoeven, Willem Bernard

    1981-01-01

    in Table II, heat treatments have also been made by laser. One of the earliest papers that describe laser annealing to obtain ohmic contacts to GaP appeared in 1974 (20] . In this paper, Pounds, Saifi, and Hahm reported to have obtained ohmic contacts...

  7. SPIN Funding Database Instruction Book Useful Links & Contacts................................................................................................................................1

    E-Print Network [OSTI]

    Hill, Wendell T.

    SPIN Funding Database Instruction Book Contents Useful Links & Contacts .....................................................................................................................................23 InfoEd SPIN Funding Database Useful Links & Contacts To Create an Account - http are on the University of Maryland network, you do not need an account to search the database ­ only if you want

  8. Challenges in computational nanoscale contact Roger A. Sauer

    E-Print Network [OSTI]

    and we discussed my doctoral research on computational nanoscale contact me- chanics (Sauer, 2006). After for the future. Abstract This paper outlines the differences between nanoscale and macroscale contact it becomes necessary to integrate the fundamental physical phenomena (Israelachvili, 1991; Persson, 2000

  9. Login | Become a Member | Contact Us News Updates

    E-Print Network [OSTI]

    Elster, Charlotte

    Archives Announcements Contact APS News Physics Physics Today Capitol Hill Quarterly Other APS PublicationsLogin | Become a Member | Contact Us Journals APS News News Updates Issue Archives Features Email Print Share Physicists/Scientists This Month in Physics History Photo: Smithsonian Institution

  10. Linear-Time Algorithms for Proportional Contact Graph Representations

    E-Print Network [OSTI]

    Kobourov, Stephen G.

    Linear-Time Algorithms for Proportional Contact Graph Representations Technical Report CS-2011. In a proportional contact representation of a planar graph, each vertex is represented by a simple polygon with area proportional to a given weight, and edges are represented by adjacencies between the corresponding pairs

  11. Thermal effects in adhesive contact: modelling and analysis Elena Bonetti

    E-Print Network [OSTI]

    Rossi, Riccarda

    Thermal effects in adhesive contact: modelling and analysis Elena Bonetti , Giovanna Bonfanti , Riccarda Rossi Abstract In this paper, we consider a contact problem with adhesion between a viscoelastic equations, describing the evolution of the temperatures of the body and of the adhesive material. Our main

  12. Adhesive contact delaminating at mixed mode, its thermodynamics and analysis

    E-Print Network [OSTI]

    Rossi, Riccarda

    Adhesive contact delaminating at mixed mode, its thermodynamics and analysis Riccarda Rossi.roubicek@mff.cuni.cz Abstract An adhesive unilateral contact problem between visco-elastic heat-conductive bodies in lin- ear Kelvin-Voigt rheology is scrutinised. The flow-rule for debonding the adhesive is considered rate

  13. Short Communication Similarity considerations in adhesive contact problems

    E-Print Network [OSTI]

    Awtar, Shorya

    Short Communication Similarity considerations in adhesive contact problems J.R. Barber n Department online 4 July 2013 Keywords: Adhesion van der Waal's forces Similarity JKR theory a b s t r a c of the adhesive force law. & 2013 Elsevier Ltd. All rights reserved. 1. Introduction Contact problems involving

  14. Stress field at a sliding frictional contact: Experiments and calculations

    E-Print Network [OSTI]

    Adda-Bedia, Mokhtar

    Stress field at a sliding frictional contact: Experiments and calculations J. Scheibert Ã,1 , A and tangential stress fields at the base of a rough elastomer film in contact with a smooth glass cylinder in steady sliding. This geometry allows for a direct comparison between the stress profiles measured along

  15. RF MEMS DC CONTACT SWTCHES FOR RECONFIGURABLE Presented to the

    E-Print Network [OSTI]

    Kassegne, Samuel Kinde

    RF MEMS DC CONTACT SWTCHES FOR RECONFIGURABLE ANTENNAS _______________ A Thesis Presented STATE UNIVERSITY The Undersigned Faculty Committee Approves the Thesis of Lei Zhou: RF DC Contact MEMS rock and water, water, through persistence, eventually wins. #12;vi ABSTRACT OF THE THESIS RF MEMS DC

  16. Contact stiffness of layered materials for ultrasonic atomic force microscopy

    E-Print Network [OSTI]

    Contact stiffness of layered materials for ultrasonic atomic force microscopy G. G. Yaralioglu,a) F the contact stiffness between a layered material and an ultrasonic atomic force microscope UAFM tip of the method for modeling defects and power loss due to radiation in layered materials. © 2000 American

  17. Management 4093/5093 Business and Nonprofit Organizations

    E-Print Network [OSTI]

    Management 4093/5093 Business and Nonprofit Organizations Spring 2015 Instructors: Dr. Scott Johnson, Professor of Management Dr. Julie Bubolz-Tikalsky (Dr. Tikalsky), Lecturer in Management Contact.g.johnson@okstate.edu Phone: 405-744-5107 Office Hours: Please make an appointment Online: Desire2Learn (Online Classroom

  18. Management 4313.583 Organizing for Action (Spring 2015)

    E-Print Network [OSTI]

    Management 4313.583 ­ Organizing for Action (Spring 2015) Spears School of Business Oklahoma State University Instructor: Dr. Dennis L. Mott, Professor of Management Contact Information: Office: OSULearn (Online Classroom) Wednesday 10- 11:30 a.m. Course administration Information: EMAIL

  19. Dynamics of social contagions with limited contact capacity

    E-Print Network [OSTI]

    Wang, Wei; Zhu, Yu-Xiao; Tang, Ming; Zhang, Yi-Cheng

    2015-01-01

    Individuals are always limited by some inelastic resources, such as time and energy, which restrict them to dedicate to social interaction and limit their contact capacity. Contact capacity plays an important role in dynamics of social contagions, which so far has eluded theoretical analysis. In this paper, we first propose a non-Markovian model to understand the effects of contact capacity on social contagions, in which each individual can only contact and transmit the information to a finite number of neighbors. We then develop a heterogeneous edge-based compartmental theory for this model, and a remarkable agreement with simulations is obtained. Through theory and simulations, we find that enlarging the contact capacity makes the network more fragile to behavior spreading. Interestingly, we find that both the continuous and discontinuous dependence of the final adoption size on the information transmission probability can arise. And there is a crossover phenomenon between the two types of dependence. More ...

  20. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  1. Method and apparatus for high-efficiency direct contact condensation

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Parent, Yves (Golden, CO); Hassani, A. Vahab (Golden, CO)

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  2. Center for Advanced Solar Photophysics | Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,Center Organization People People Scientific

  3. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'Organization and

  4. Office of the General Counsel Organization Chart | Department...

    Energy Savers [EERE]

    Counsel. The office is separated into four major departmental groups: Litigation, Regulation and Enforcement (GC-30) Environment and Compliance (GC-50) Transactions, Technology...

  5. University of Washington Company/Organization Name Website General Description

    E-Print Network [OSTI]

    .fehrandpeers.com Transportation Planning & Traffic Engineering Gray & Osborne, Inc. www.go.com Consulting Engineers Harder.hntb.com Engineering, Architecture, and Planning Design and Consulting KBA, Inc www.kbacm.com Construction Management.aspx Natural Resources, Utilities 9th Annual Civil & Environmental Engineering Career Fair January 21, 2015 1

  6. Annex I ITER Organization Service Contract General Conditions (2014)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn319 12 BONNEVILLEa n d i a N

  7. Office of the General Counsel Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014DepartmentCouncilOffice of the Chief FinancialOffice of

  8. Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions

    E-Print Network [OSTI]

    Mueser, Martin

    or numerically at a moderate amount of computing effort. While solving numerically the full elastic or plastoElastic contact between self-affine surfaces: Comparison of numerical stress and contact Department of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A 5B7 and 3 Department

  9. Method of forming contacts for a back-contact solar cell

    DOE Patents [OSTI]

    Manning, Jane

    2015-10-20

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  10. Method of forming contacts for a back-contact solar cell

    DOE Patents [OSTI]

    Manning, Jane

    2014-07-15

    Methods of forming contacts for solar cells are described. In one embodiment, a method includes forming a silicon layer above a substrate, forming and patterning a solid-state p-type dopant source on the silicon layer, forming an n-type dopant source layer over exposed regions of the silicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped silicon regions among a plurality of p-type doped silicon regions.

  11. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects to animal populations could occur directly (e.g., from strike mortality of individuals) or indirectly (e.g., if the loss of prey species to strike reduces food for predators). Although actively swimming or passively drifting animals may collide with any of the physical structures associated with hydrokinetic devices, turbine rotors are the most likely sources for risk of strike or significant collision (DOE 2009). It is also possible that during a close encounter with a HK device no physical contact will be made between the device and the organism, either because the animal avoids the device by successfully changing its direction of movement, or by successfully evading any moving parts of the device. Oak Ridge National Laboratory (ORNL) has been funded by the US Department of Energy (DOE) Waterpower Program to evaluate strike potential and consequences for Marine and Hydrokinetic (MHK) technologies in rivers and estuaries of the United States. We will use both predictive models and laboratory/field experiments to evaluate the likelihood and consequences of strike at HK projects in rivers. Efforts undertaken at ORNL address three objectives: (1) Assess strike risk for marine and freshwater organisms; (2) Develop experimental procedures to assess the risk and consequences of strike; and (3) Conduct strike studies in experimental flumes and field installations of hydrokinetic devices. During the first year of the study ORNL collected information from the Federal Energy Regulatory Commission (FERC) MHK database about geographical distribution of proposed hydrokinetic projects (what rivers or other types of systems), HK turbine design (horizontal axis, vertical axis, other), description of proposed axial turbine (number of blades, size of blades, rotation rate, mitigation measures), and number of units per project. Where site specific information was available, we compared the location of proposed projects rotors within the channel (e.g., along cutting edge bank, middle of thalweg, near bottom or in midwater) to the general locations of fish in the river (shoreline,

  12. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOE Patents [OSTI]

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen

    2015-08-18

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.

  13. Supercritical separation process for complex organic mixtures

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Filardo, Giuseppe (Palermo, IT)

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  14. Supercritical separation process for complex organic mixtures

    DOE Patents [OSTI]

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  15. Dry Lithography of Large-Area, Thin-Film Organic Semiconductors Using Frozen CO[subscript 2] Resists

    E-Print Network [OSTI]

    Mendoza, Hiroshi A.

    To address the incompatibility of organic semiconductors with traditional photolithography, an inert, frozen CO[subscript 2] resist is demonstrated that forms an in situ shadow mask. Contact with a room-temperature ...

  16. Studies of a contact zone among three chromosome races of Geomys bursarius in Eastern Texas 

    E-Print Network [OSTI]

    Tucker, Priscilla Kate

    1980-01-01

    : Dr. David J. Schmidly A zone of contact among three chromosome races of ~Geom s bursarius designated. as races E(2N=74, FN=72), F(2N=70, FN=74), and. G(2N=70, FN=72), was located in Burleson County, Texas. Interactions between race E and rs. ces F-G... be unrecognized backcross and F2 individuals). No karyotypcially detectable beckcross or F individuals are known to occur except in the fetal state. Norphologically race E and. races F-G could. not be separated definitively, although two general groupings were...

  17. Self-contact and instabilities in the anisotropic growth of elastic membranes

    E-Print Network [OSTI]

    Norbert Stoop; Falk K. Wittel; Martine Ben Amar; Martin Michael Müller; Hans J. Herrmann

    2010-09-20

    We investigate the morphology of thin discs and rings growing in the circumferential direction. Recent analytical results suggest that this growth produces symmetric excess cones (e-cones). We study the stability of such solutions considering self-contact and bending stress. We show that, contrary to what was assumed in previous analytical solutions, beyond a critical growth factor, no symmetric \\textit{e}-cone solution is energetically minimal any more. Instead, we obtain skewed e-cone solutions having lower energy, characterized by a skewness angle and repetitive spiral winding with increasing growth. These results are generalized to discs with varying thickness and rings with holes of different radii.

  18. Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices

    DOE Patents [OSTI]

    Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

    2013-06-11

    Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

  19. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOE Patents [OSTI]

    Marks, Iobin J. (Evanston, IL); Hains, Alexander W. (Evanston, IL)

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  20. Mechanical contact by constraints and split-based preconditioning

    SciTech Connect (OSTI)

    Dmitry Karpeyev; Derek Gaston; Jason Hales; Steven Novascone

    2014-03-01

    An accurate implementation of glued mechanical contact was developed in MOOSE based on its Constraint system. This approach results in a superior convergence of elastic structure problems, in particular in BISON. Adaptation of this technique to frictionless and frictional contact models is under way. Additionally, the improved convergence of elastic problems results from the application of the split-based preconditioners to constraint-based systems. This yields a substantial increase in the robustness of elastic solvers when the number of nodes in contact is increased and/or the mesh is refined.

  1. Influence of frozen capillary waves on contact mechanics

    E-Print Network [OSTI]

    B. N. J. Persson

    2005-12-23

    Free surfaces of liquids exhibit thermally excited (capillary) surface waves. We show that the surface roughness which results from capillary waves when a glassy material is cooled below the glass transition temperature can have a large influence on the contact mechanics between the solids. The theory suggest a new explanation for puzzling experimental results [L. Bureau, T. Baumberger and C. Caroli, arXiv:cond-mat/0510232] about the dependence of the frictional shear stress on the load for contact between a glassy polymer lens and flat substrates. It also lend support for a recently developed contact mechanics theory.

  2. Contact information for the Cyclotron Institute REU Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformation AdministrationContact Us - WorkingUsContactContact

  3. Contacts for the Advanced Manufacturing Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO ContactContacts for the

  4. Ordered organic-organic multilayer growth

    DOE Patents [OSTI]

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  5. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    4 Chemistry Option CHEM 321, 322, 323, 324 Physical Chemistry Lecture and Labs CHEM 411 Analytical Chemistry II 8 3 CHEM 431, 432 Biochemistry I and Lab OR CHEM 211, 212 Analytical Chemistry I and Lab CHEM, 112L General Chemistry I and II with Labs CHEM 307, 308, 309, 310 Organic Chemistry and Labs 8 8

  6. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    & II with Labs CHEM 211, 212 Analytical Chemistry I and Lab CHEM 307, 308-309, 310 Organic Chemistry I Chemistry CHEM 411 Analytical Chemistry II CHEM 412 Analytical Chemistry Laboratory II 3 3 2 One or more by specific courses included in the major requirements below. CHEM 111, 111L-112, 112L General Chemistry I

  7. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    & II with Labs CHEM 211, 212 Analytical Chemistry I and Lab CHEM 307, 308-309, 310 Organic Chemistry I Chemistry CHEM 411 Analytical Chemistry II CHEM 431, 432, 433 Biochemistry I, II and Lab 3 3 8 Electives by specific courses included in the major requirements below. CHEM 111, 111L-112, 112L General Chemistry I

  8. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    , 111L-112, 112L General Chemistry I & II with Labs CHEM 211, 212 Analytical Chemistry I and Lab CHEM in Chemistry CHEM 401 Advanced Inorganic Chemistry CHEM 411 Analytical Chemistry II CHEM 412 Analytical 307, 308-309, 310 Organic Chemistry I & II with Labs CHEM 321, 322 Physical Chemistry Lecture CHEM 431

  9. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    & II with Labs CHEM 211, 212 Analytical Chemistry I and Lab CHEM 307, 308-309, 310 Organic Chemistry I Inorganic Chemistry CHEM 411 Analytical Chemistry II CHEM 412 Analytical Chemistry Laboratory II CHEM 431 by specific courses included in the major require- ments below. CHEM 111, 111L-112, 112L General Chemistry I

  10. Name ID# Date General Degree Credit Requirements

    E-Print Network [OSTI]

    Barrash, Warren

    & II with Labs CHEM 211, 212 Analytical Chemistry I and Lab CHEM 307, 308-309, 310 Organic Chemistry I Inorganic Chemistry CHEM 411 Analytical Chemistry II 3 3 GEOS 100 Fundamentals of Geology GEOS 300 Earth by specific courses included in the major requirements below. CHEM 111, 111L-112, 112L General Chemistry I

  11. UNIVERSITY ORGANIZATION I. The Organization of the University of North Carolina

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    . Administrative Policy University Organization I. The Organization of the University of North Carolina In North of The University of North Carolina. East Carolina University is one of seventeen constituent institutions of the multi-campus state university. The University of North Carolina, chartered by the NC General Assembly

  12. Local contact stress measurements at a rough interface

    E-Print Network [OSTI]

    J. Scheibert; A. Prevost; J. Frelat; P. Rey; G. Debrégeas

    2007-11-07

    An original MEMS-based force sensing device is designed which allows to measure spatially resolved normal and tangential stress fields at the base of an elastomeric film. This device is used for the study of the contact stress between a rough film and a smooth glass sphere under normal load. The measured profiles are compared to Finite Elements Method calculations for a smooth contact with boundary conditions obeying Amontons-Coulomb's friction law. The accuracy of the measurements allows to discriminate between dry and lubricated contact conditions and to evidence load-dependent deviations from Amontons-Coulomb's profiles. These deviations are qualitatively interpreted by taking into account the finite compliance of the micro-contact population.

  13. Thermal contact conductance of a paper handsheet/metal interface 

    E-Print Network [OSTI]

    Ng, Kin Hung

    1990-01-01

    ) to determine the thermal contact conductance and effective thermal conductivity of anodized coatings. One chemically polished Aluminium 6061-T6 test specimen and seven specimens with anodized coatings varying in thickness from 60. 9 pm to 163. 8 pm were...

  14. Influence of surface roughness and waviness upon thermal contact resistance

    E-Print Network [OSTI]

    Yovanovich, M. Michael

    1967-01-01

    This work deals with the phenomenon of thermal resistance between contacting solids. Attention is directed towards contiguous solids possessing both surface roughness and waviness. When two such surfaces are brought together ...

  15. After domestic abuse: children's perspectives on contact with fathers 

    E-Print Network [OSTI]

    Morrison, Fiona

    Contact between children and their fathers following parental separation is a sensitive and controversial subject. This is especially so where there has been a history of domestic abuse before parental separation. This ...

  16. Ohmic contacts for solar cells by arc plasma spraying

    DOE Patents [OSTI]

    Narasimhan, Mandayam C. (Seekonk, MA); Roessler, Barton (Barrington, RI); Loferski, Joseph J. (Providence, RI)

    1982-01-01

    The method of applying ohmic contacts to a semiconductor, such as a silicon body or wafer used in solar cells, by the use of arc plasma spraying, and solar cells resulting therefrom.

  17. Thermal contact resistance in a non-ideal joint

    E-Print Network [OSTI]

    Roca, Richard T.

    1971-01-01

    The contact conductance at an interface can be determined by knowing the material and surface properties and the interfacial pressure distribution. This pressure distribution can be influenced strongly by the roughness of ...

  18. Influence of contact conditions on thermal responses of the hand

    E-Print Network [OSTI]

    Galie, Jessica Anne

    2009-01-01

    The objective of the research conducted for this thesis was to evaluate the influence of contact conditions on the thermal responses of the finger pad and their perceptual effects. A series of experiments investigated the ...

  19. Projection-based model reduction for contact problems

    E-Print Network [OSTI]

    Balajewicz, Maciej; Farhat, Charbel

    2015-01-01

    Large scale finite element analysis requires model order reduction for computationally expensive applications such as optimization, parametric studies and control design. Although model reduction for nonlinear problems is an active area of research, a major hurdle is modeling and approximating contact problems. This manuscript introduces a projection-based model reduction approach for static and dynamic contact problems. In this approach, non-negative matrix factorization is utilized to optimally compress and strongly enforce positivity of contact forces in training simulation snapshots. Moreover, a greedy algorithm coupled with an error indicator is developed to efficiently construct parametrically robust low-order models. The proposed approach is successfully demonstrated for the model reduction of several two-dimensional elliptic and hyperbolic obstacle and self contact problems.

  20. DEAN'S OFFICE CONTACT INFORMATION University of Connecticut School of Medicine

    E-Print Network [OSTI]

    Page 8 DEAN'S OFFICE CONTACT INFORMATION University of Connecticut School of Medicine 263@uchc.edu ______________________________________________________________________________ University of Connecticut School of Medicine 263 Farmington Avenue, AG050 Farmington, CT 06030-1912 Phone

  1. Images in Emergency Medicine: Irritant Contact Dermatitis from Jet Fuel

    E-Print Network [OSTI]

    Trigger, Christopher C; Eilbert, Wesley

    2009-01-01

    and penetration of JP-8 jet fuel and its components. ToxicolContact Dermatitis from Jet Fuel Christopher C. Trigger, MDday. He reported spilling jet fuel on his right lower leg at

  2. Contact angle hysteresis: a review of fundamentals and applications

    E-Print Network [OSTI]

    ’t Mannetje, D. J. C. M.

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate ...

  3. Images in Emergency Medicine: Irritant Contact Dermatitis from Jet Fuel

    E-Print Network [OSTI]

    Trigger, Christopher C; Eilbert, Wesley

    2009-01-01

    and penetration of JP-8 jet fuel and its components. Toxicoland other kerosene-based fuels have been shown to cause skinContact Dermatitis from Jet Fuel Christopher C. Trigger, MD

  4. Electronic Non-Contacting Linear Position Measuring System

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    2005-06-14

    A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.

  5. The Last First Contact: An Eco-Cultural Interpretation

    E-Print Network [OSTI]

    Cushman, Gregory T.

    2007-01-01

    KU ScholarWorks | http://kuscholarworks.ku.edu The Last First Contact: An Eco-Cultural Interpretation 2007 by Gregory T. Cushman This work has been made available by the University of Kansas Libraries’ Office of Scholarly Communication...): 304-307. Special forum on environmental films. Available at http://www.jstor.org/stable/25473075 The Last First Contact: An Eco-Cultural Interpretation by Gregory T. Cushman In 1336, a group of indigenous farmers and herders watched as an Iberian...

  6. Contacts for Federal Utility Energy Service Contracts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us » Contact PPPO Contact

  7. Effects of mechanical properties and surface friction on elasto-plastic sliding contact

    E-Print Network [OSTI]

    Dao, Ming

    Effects of mechanical properties and surface friction on elasto-plastic sliding contact S functions, for various contact conditions, that relate elasto-plastic properties (Young's modulus, yield reserved. Keywords: Frictional sliding; Scratch test; Elasto-plastic properties; Contact mechanics

  8. A multi-scale iterative approach for finite element modeling of thermal contact resistance

    E-Print Network [OSTI]

    Thompson, Mary Kathryn, 1980-

    2007-01-01

    Surface topography has long been considered a key factor in the performance of many contact applications including thermal contact resistance. However, essentially all analytical and numerical models of thermal contact ...

  9. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Yan, D.; Wan, Y.; Cuevas, A.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-04-28

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  10. Contact angle of sessile drops in Lennard-Jones systems

    E-Print Network [OSTI]

    Stefan Becker; Herbert M. Urbassek; Martin Horsch; Hans Hasse

    2015-07-25

    Molecular dynamics simulation is used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid--fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150 000 particles. For particle numbers below 10 000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of 90 degrees is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed which describes the contact angle as a function of the dispersive interaction, the temperature and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  11. OLEDS FOR GENERAL LIGHTING

    SciTech Connect (OSTI)

    Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

    2004-02-29

    The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

  12. Asperity-scale surface mechanics - Implications to adhesive contacts and microscale deformation behavior of rough surfaces

    E-Print Network [OSTI]

    Xu, Huaming

    2012-01-01

    tip-sample wear under adhesive contact,” Tribol. Int. , 33,Kramer, E. J. , 1996, “Adhesive contact of cylindrical lensof an Elastic–Plastic Adhesive Spherical Microcontact,” J.

  13. A contact model for sticking of adhesive mesoscopic particles

    E-Print Network [OSTI]

    A. Singh; V. Magnanimo; S. Luding

    2015-03-12

    The interaction between realistic visco-elasto-plastic and adhesive meso-particles is the subject of this study. The final goal is to define a simple, flexible and useful interaction model that allows to describe the multi-contact bulk behavior of assemblies of non-homogeneous/non-spherical particles, e.g. with internal structures of the scale of their contact deformation. We attempt to categorize previous approaches and propose a simplified mesoscale normal contact model that contains the essential ingredients to describe an ensemble of particles, while it is not aimed to include all details of every single contact, i.e. the mechanics of constituent elementary, primary particles is not explicitly taken into account. The model combines short-ranged, non-contact adhesive interactions with an elaborate, piece-wise linear visco-elasto-plastic adhesive contact law. Using energy conservation arguments, the special case of binary collisions is studied and an analytical expression for the coefficient of restitution in terms of impact velocity is derived. The assemblies (particles or meso-particles) stick to each other at very low impact velocity, while they rebound less dissipatively with increasing velocity, in agreement with experimental/theoretical/numerical findings for elasto-plastic spherical particles. For larger impact velocities we observe an interesting second sticking regime. While the first sticking is attributed to dominating non-contact adhesive forces, while the high velocity sticking is due to a balance between the non-linearly increasing history dependent adhesion and plastic dissipation. The model allows for a stiff, elastic core material, which produces a new rebound regime at even higher velocities.

  14. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  15. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  16. GENERAL INFORMATION The City College offers the following

    E-Print Network [OSTI]

    Sun, Yi

    Environmental Chemistry Inorganic Chemistry Organic Chemistry Physical Chemistry The M.A. curriculum is flexible: Environmental Chemistry (3 cr.) A1101: Environmental Chemistry Lab (2 cr.) A1200: Environmental Organic42 GENERAL INFORMATION The City College offers the following master's degree in Chemistry: M

  17. If you have any questions about your financing options, please contact the Office of Student Services at 800-294-0294 or studentservices@bc.edu. FINANCING OPTIONS

    E-Print Network [OSTI]

    Huang, Jianyu

    Compare rates and terms of private lenders. Interest rates for student private loans are generally higher worthy borrower. Contact private lenders for more details. If you are denied for a federal Parent PLUS and terms of private lenders. www.bc.edu/paymentoptions #12;

  18. REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT

    SciTech Connect (OSTI)

    Gary L. Burkhardt; Alfred E. Crouch; Jay L. Fisher

    2004-04-01

    Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes a technology assessment, development of an IACC model to predict performance and assist with selection of signal operating parameters, and experimental measurements on a buried pipe at a test site. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

  19. DEM-PM Contact Model with Multi-Step Tangential Contact Displacement History

    E-Print Network [OSTI]

    Negrut, Dan

    of accurately reproducing results from physical tests typical of the field of geomechanics. In the appendices- lems in granular flow dynamics and quasi-static geomechanics applications. The so-called Constraint-called Penalty Method (PM) or soft-body ap- proach, generally favored within the geomechanics community [4], can

  20. General Service LED Lamps

    Broader source: Energy.gov [DOE]

    A U.S. DOE SSL technology fact sheet that compares general service LED light bulbs with incandescent and CFL bulbs.

  1. Generalizations of quantum statistics

    E-Print Network [OSTI]

    O. W. Greenberg

    2008-05-02

    We review generalizations of quantum statistics, including parabose, parafermi, and quon statistics, but not including anyon statistics, which is special to two dimensions.

  2. Surface Tension regularizes the Crack Singularity of Adhesive Contacts

    E-Print Network [OSTI]

    Stefan Karpitschka; Leen van Wijngaarden; Jacco H. Snoeijer

    2015-08-14

    The elastic and adhesive properties of a solid surface can be quantified by indenting it with a rigid sphere. Indentation tests are classically described by the JKR-law when the solid is very stiff, while recent work highlights the importance of surface tension for exceedingly soft materials. Here we show that surface tension plays a crucial role even for stiff solids: it regularizes the crack-like singularity at the edge of the contact. We find that the edge region exhibits a universal, self-similar structure that emerges from the balance of surface tension and elasticity. The similarity theory provides a complete description for adhesive contacts, reconciling the global adhesion laws and local contact mechanics.

  3. OUTLOOK CONTACTS QUICK REFERENCE GUIDE 1 Copyright Swinburne University of Technology Updated 20

    E-Print Network [OSTI]

    Liley, David

    OUTLOOK CONTACTS QUICK REFERENCE GUIDE 1 Copyright ©Swinburne University of Technology Updated 20 and are available in Outlook View Contacts Click on the Contacts icon: Got to the File Tab > Options if you wish details for, then select Add to Outlook Contacts : Add any additional information you wish to include

  4. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  5. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  6. An energy-momentum-conserving temporal discretization scheme for adhesive contact problems

    E-Print Network [OSTI]

    An energy-momentum-conserving temporal discretization scheme for adhesive contact problems Sachin S' knowledge, none have been proposed for adhesive contact problems. In this work, an energy-momentum-conserving temporal discretization scheme for adhesive contact problems is proposed. A contact criterion is also

  7. BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS

    E-Print Network [OSTI]

    BACK CONTACT MONOCRYSTALLINE THIN-FILM SILICON SOLAR CELLS FROM THE POROUS SILICON PROCESS F. Haase contact cells. Kraiem et al [7] made a back contact thin film monocrystalline solar cell with cell), Am Ohrberg 1, D-31860 Emmerthal, Germany ABSTRACT We develop a back contact monocrystalline thin-film

  8. WebC-Contacts -Gesto Colaborativa de Contactos Raul Lus Almeida Mesquita

    E-Print Network [OSTI]

    da Silva, Alberto Rodrigues

    family members and friends. Within companies there is also a need to share lists of contacts with some problems of these contacts, and only a few can import contacts from social networks. Users may wish company or team members. Most of the contact management systems are not prepared to allow users to share

  9. Laminated photovoltaic modules using back-contact solar cells

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  10. Collapse transition of flexible homopolymers with adhesive contacts

    E-Print Network [OSTI]

    Sid Ahmed Sabeur; Mounira Bouarkat; Friederike Schmid

    2011-06-26

    The presence of ordered structures such as helices in collapsed states of polymer chains is still an open question challenging physics and biology. In this work, we present a potential model for polymer chains with monomers that are not strictly attractive, but that can make adhesive contacts with other monomers. We find that the chain develop helical order during the process of collapsing from an initially stretched conformation. It seems in this case that the adhesive contacts help the polymer chain to stay trapped in the helix state.

  11. Contacts - Madison Dynamo Experiment - Cary Forest Group - UW Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact theContacts

  12. Contacts - Plasma Couette Experiment - Cary Forest Group - UW Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentrating SolarConstructionContact theContactsPhysics

  13. Contact - Center for Solar and Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact To contact

  14. Contact > Us > The Energy Materials Center at Cornell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome / Contact ToContact In

  15. Contact Us | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocial mediahome /Contact UsContact Us Home

  16. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6Aerosols | U.S. DOE OfficeContact CommunityContact DOE

  17. Contact | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6Aerosols | U.S. DOE OfficeContact CommunityContact

  18. ORISE University Radioactive Ion Beam (UNIRIB) Consortium: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHow toContact Us DeanContact Us

  19. ORISE: Contacts for Environmental Assessments and Health Physics staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014Capabilities ORISEandMaking aContact UsContact

  20. CHM 1050, Section 02 Honors General Chemistry I

    E-Print Network [OSTI]

    Zakarian, Armen

    CHM 1050, Section 02 Honors General Chemistry I Fall 2006 HTL 219, MWF 10:15 - 11:00 a.m. The name "General Chemistry" implies that it is not specialized into Organic, Inorganic, Physical, or Biochemistry to get familiar with various aspects of chemistry in broad terms, it may stimulate to think about

  1. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  2. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  3. Volatile organic compound sensor system

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Laramie, WY); Sorini-Wong, Susan S. (Laramie, WY)

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  4. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  5. Embeddings for General Relativity

    E-Print Network [OSTI]

    J. Ponce de Leon

    2015-09-01

    We present a systematic approach to embed $n$-dimensional vacuum general relativity in an $(n + 1)$-dimensional pseudo-Riemannian spacetime whose source is either a (non)zero cosmological constant or a scalar field minimally-coupled to Einstein gravity. Our approach allows us to generalize a number of results discussed in the literature. We construct {\\it all} the possible (physically distinct) embeddings in Einstein spaces, including the Ricci-flat ones widely discussed in the literature. We examine in detail their generalization, which - in the framework under consideration - are higher-dimensional spacetimes sourced by a scalar field with flat (constant $\

  6. FOR MORE INFORMATION, CONTACT: TP Straatsma, Initiative Lead

    E-Print Network [OSTI]

    FOR MORE INFORMATION, CONTACT: TP Straatsma, Initiative Lead 509-375-2802 tps@pnl.gov www.pnl.gov e Development of Exascale Algorithms for Molecular Modeling Lead investigator: Dr. Karol Kowalski Researchers Optimizations for Extreme Scale Systems Lead investigator: Dr. Daniel Chavarria Exascale systems will provide

  7. Contact UVM Greenhouse Facilities personnel Call: 656-0465

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Contact UVM Greenhouse Facilities personnel Call: 656-0465 e-mail: greenhouses@uvm.edu Start Your Plants in the UVM Greenhouse Facilities Get a jump on spring by starting your own seedlings for your home garden in our greenhouses. We provide soil, containers, and labels. We water, fertilize, and protect your

  8. Low-level waste vitrification contact maintenance viability study

    SciTech Connect (OSTI)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  9. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts

    E-Print Network [OSTI]

    Mahadevan, L.

    Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts J. M. Skotheim 13 May 2005; published online 2 September 2005 We study the lubrication of fluid-immersed soft reduced friction, further reductions were possible upon the introduction of a viscous lubricating fluid

  10. Impedance Control of a Pneumatic Actuator for Contact Tasks

    E-Print Network [OSTI]

    Barth, Eric J.

    force than motion. Typical industrial robot actuators (hydraulic and motor/gearhead systems, pressure tracking, proportional spool valve. I. INTRODUCTION Industrial robots are good at tasks like and stable force control, less damage during inadvertent contact, and the potential for energy storage." [1

  11. A new coexistence result for competing contact processes

    E-Print Network [OSTI]

    Durrett, Richard

    of blocks due to "forest fires." 1 Introduction In this paper we consider a two-type contact process, but in addition there are deaths to blocks of size F × F due to forest fires. Neuhauser (1992) studied the model show that it is possible for two species to coexist in a model with forest fires if the weaker

  12. Hearing Material 1 Perception of Material from Contact Sounds

    E-Print Network [OSTI]

    Pai, Dinesh

    parameters associated with each category were estimated and found to correlate with physical measures but audition and touch. Multimodal information is particularly important for simulated contact with objects is our lack of knowledge about how the human auditory system processes such information. Although

  13. Test method Evaluating the influence of contacting fluids on polyethylene

    E-Print Network [OSTI]

    Thompson, Michael

    Test method Evaluating the influence of contacting fluids on polyethylene using acoustic emissions emissions Polyethylene Penetrant Toluene Aqueous detergent a b s t r a c t Identifying microstructural) on the structure of a semi-crystalline polymer (high density polyethylene, HDPE) over different periods of exposure

  14. Back-contacted back-junction silicon solar cells

    E-Print Network [OSTI]

    Johansen, Tom Henning

    electricity from BC-BJ silicon solar cells cost-competitive with electBack-contacted back-junction silicon solar cells Krister Mangersnes THESIS submitted in partial nearly four years as a Ph.D. student at the Institute for Energy Technology (IFE), Department of Solar

  15. Section 1: Contact Information Section 2: Employment History

    E-Print Network [OSTI]

    Section 1: Contact Information Section 2: Employment History Section 3: Educational History Section 4: Additional Required Information Employment Application The Ernest Orlando Lawrence Berkeley! Specific information about current job opportunities at LBNL may be found at http://cjo.lbl.gov/. Please

  16. For additional information, contact: Department of Chemistry & Biochemistry

    E-Print Network [OSTI]

    Lawrence, Rick L.

    For additional information, contact: Department of Chemistry & Biochemistry Montana State University 103 Chemistry & Biochemistry Building P.O. Box 173400 Bozeman, MT 59717-3400 Tel: 406-994-4801 Fax of the American Association for the Advancement of Science CHEMISTRY & BIOCHEMISTRY 1 2 KELLY GORHAM 3 MSSE

  17. Method and apparatus for producing co-current fluid contact

    DOE Patents [OSTI]

    Trutna, W.R.

    1997-12-09

    An improved packing system and method are disclosed wherein a packing section includes a liquid distributor and a separator placed above the distributor so that gas rising through the liquid distributor contacts liquid in the distributor, forming a gas-liquid combination which rises in co-current flow to the separator. Liquid is collected in the separator, from which gas rises. 13 figs.

  18. Ohmic contact metallization on p-type indium phosphide 

    E-Print Network [OSTI]

    Park, Moonho

    1993-01-01

    . However, the strong reactions between Au and InP result in deep penetration of Au into the InP layer. This deep penetration is not desirable for most device application In this study, I report a new approach to form shallow contacts on p-InP by utilizing...

  19. ITDS tech contacts ip-requests@sfu.ca

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Desktop printer? ITDS tech contacts ip-requests@sfu.ca for static IP address from NS ITDS tech functionality Y N HCS Printer? N MFD?Y Obtain second static IP from ip-requests@sfu.ca for scanning Y ITDS tech questions such as the following of their clients when they request to purchase a new printer: · Why do you

  20. For Immediate release: 10/05/11 Contact: Ingrid Wright

    E-Print Network [OSTI]

    Ward, Karen

    For Immediate release: 10/05/11 Contact: Ingrid Wright UTEP to Oversee Push for 'Green' Engineers develop new alternative energy sources and ways to increase energy efficiency. Heidi A. Taboada, Ph of the BuildinG a Regional Energy and Educational Network (BGREEN) project. The USDA announced the award Tuesday