Sample records for organic rankine cycle

  1. Economics of Organic Rankine Cycle

    E-Print Network [OSTI]

    O'Brien, W. J.

    Flow Diagram of Rankine Cycle the power recovery. Thus, mechanical simplicity, good efficiency, small size and an inherent reliability make the Organic Rankine Cycle particularly suitable for extraction of power from low temperature waste heat... for recovering waste heat. Based on the waste heat temperature, electricity cost and quantity of heat available, Figure 3 can be used to determine whether a potential project has greater than 20% DCF (discounted cash flow) return (above the line) or less...

  2. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  3. Cascaded organic rankine cycles for waste heat utilization

    DOE Patents [OSTI]

    Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

    2011-05-17T23:59:59.000Z

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  4. Organic rankine cycle waste heat applications

    DOE Patents [OSTI]

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13T23:59:59.000Z

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  5. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    to examine a specific application of the use of an ORC heat recovery system and compare it to a stear), Rankine cycle heat recovery system. The particular application ~ssumed is heat recovery from diesel engine exhaust gas at a temPErature of 700F. Figure...,vaporized and superheated ina flue gas heat recovery su bsystem. he super heated fluid is expanded through a turbine for power p oduction, condensed in a water cooled condenser and return d to the vaporizer via feed pu mps. In the steam cycle, a port n of the Figure 1...

  6. Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant

    E-Print Network [OSTI]

    DiGenova, Kevin (Kevin J.)

    2011-01-01T23:59:59.000Z

    Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

  7. Organic rankine cycle system for use with a reciprocating engine

    DOE Patents [OSTI]

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17T23:59:59.000Z

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  8. Energy recovery system using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C

    2013-10-01T23:59:59.000Z

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  9. The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat

    E-Print Network [OSTI]

    Sawyer, R. H.; Ichikawa, S.

    1980-01-01T23:59:59.000Z

    in a Rankine Cycle to extract The theoretical Rankine Cycle efficiency (~R) is energy from low temperature waste heat. By 1968, a defined as: 3.8 megawatt unit using R-11 refrigerant was placed in commercial operation in Japan (2) and currently ?ZR.... Figure 2 compares the theo The basic Organic Rankine Cycle may be described retical Rankine efficiency for several hydrocarbons, using the Pressure-Enthalpy Diagram of a typical fluorocarbons and water within the evaporating working fluid (R-11). (See...

  10. Organic Rankine Cycles for the Petro-Chemical Industry 

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    Under a cooperatively funded DOE/MTI program, a packaged organic Rankine power recovery system is being developed specifically to meet the needs of the petroleum refining and chemical industries. Program objectives include an actual in...

  11. Emissions-critical charge cooling using an organic rankine cycle

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15T23:59:59.000Z

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  12. Rankine and Brayton Cycle Cogeneration for Glass Melting 

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Sheth, P. R.

    1981-01-01T23:59:59.000Z

    Rankine cycle, b) an organic Rankine cycle, c) an indirectly heated positive pressure Brayton cycle and d) a directly heated subatmospheric Brayton cycle. For the specified flue gas temperatures considered, the organic Rankine cycle produced the most...

  13. Application and Operation of a 2-MW Organic Rankine Cycle System on a Refinery FCC Unit

    E-Print Network [OSTI]

    Drake, R. L.

    The nation's largest organic Rankine cycle (ORC) waste heat recovery system was started up in July 1984 at a West Coast oil refinery. The system includes two hermetically sealed turbine-generator units, each rated at 1070 kW. Each turbine...

  14. Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle

    E-Print Network [OSTI]

    Ireland, Melissa Kara

    2014-01-01T23:59:59.000Z

    Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

  15. Selection of Working Fluids for the Organic Rankine Cycle

    E-Print Network [OSTI]

    West, H. H.; Patton, J. M.; Starling, K. E.

    1979-01-01T23:59:59.000Z

    The subject of selecting working fluid and process operating conditions for the waste heat binary power cycle is addressed herein. The waste heat temperature range from 300 F to 500 F was considered the economic resource range. The available...

  16. Power Generation From Waste Heat Using Organic Rankine Cycle Systems

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01T23:59:59.000Z

    universal bottoming cycle that can convert the energy in waste heat streams into usable shaft power. The nominal rating of the unit is 600 KWe or 900 SHP. The basic bottoming cycle concept is shown in Figure I. GAS TURBINE -, Y. DIESEL PROCESS HEAT... in Figure 2. The diverter valve directs the waste heat stream through the vaporizer. The working fluid is boiled and slightly superheated in the vaporizer. The superheated vapor expands through the turbine, generating mechanical power. This expansion...

  17. Optimized nuclear and solar dynamic organic Rankine cycles for Space Station applications

    E-Print Network [OSTI]

    Eubanks, Dana Len

    1988-01-01T23:59:59.000Z

    the power conver- sion scheme without a regenerative heat exchanger). In the process of finding the state points, a set of property data lookup functions are called. Around this framework of a thermodynamic cycle, with or without a regen- erator... regenerative heat exchanger state 9 state 6 feed ump Fig. 7. Organic Rankine Cycle Schematic including Numbered State Points. 1000 900 800 700 600 500 I dc 400 Cd CL E 300 Cp 200 12PP -1000 -800 -600 -400 -200 0 200 400 600 800 relative...

  18. RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine. Final report

    SciTech Connect (OSTI)

    DiNanno, L.R.; DiBella, F.A.; Koplow, M.D.

    1983-12-01T23:59:59.000Z

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air-cooled condenser-regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged (TC) diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound (TCPD) diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy-duty trnsport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene (PFB) and 40 mole percent hexafluorobenzene (HFB). Included in these 1983 work efforts was the thermal stability testing of the RC-1 organic fluid in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900/sup 0/F. This report describes the work performed for one of the multiple contracts awarded under the Department of Energy's Heavy-Duty Transport Technology Program.

  19. Organic Rankine Cycle for Light Duty Passenger Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics

  20. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  1. Organic fluids in a supercritical Rankine cycle for low temperature power generation

    SciTech Connect (OSTI)

    Vidhi, Rachana [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Sabau, Adrian S [ORNL

    2013-01-01T23:59:59.000Z

    This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 C and 200 C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 C source temperature and 10 C cooling water temperature considered in this study. For medium source temperatures (125 150 C), thermal efficiencies higher than 12% are obtained.

  2. Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from a Heavy-Duty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving the Control Performance of an Organic Rankine Cycle System for Waste Heat Recovery from, Antonio Sciarretta, Luc Voise, Pascal Dufour, Madiha Nadri Abstract-- In recent years, waste heat recovery waste heat from a heavy- duty diesel engine. For this system, a hierarchical and modular control

  3. Rankine cycle system and method

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09T23:59:59.000Z

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  4. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect (OSTI)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01T23:59:59.000Z

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  5. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power 

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    performance and economic on system performance, reliability, and overall considerations (rate of return on investment economics have impeded widespread development and [ROI]), six organic fluids were identified to deployment of organic Rankine-cycle power... included with the GC unit inte grates the peaks and produc s a report consisting of retention time, peak area, and area percent. The detector's analog output is connected via an A/D converter to a Perkin Elmer (PE) Sigma 15 chromatography data station...

  6. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen; Jalal Zia

    2013-09-01T23:59:59.000Z

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.

  7. Rankine cycle waste heat recovery system

    DOE Patents [OSTI]

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12T23:59:59.000Z

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  8. Organic Rankine Cycle Turbine for Exhaust Energy Recovery in a Heavy Truck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8Organic Photovoltaics ResearchEngine

  9. Method for processing LNG for rankine cycle

    SciTech Connect (OSTI)

    Aoki, I.; Matsumoto, O.

    1983-06-14T23:59:59.000Z

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  10. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery...

  11. Rankine and Brayton Cycle Cogeneration for Glass Melting

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Sheth, P. R.

    1981-01-01T23:59:59.000Z

    Comparisons are made of the performance and installation costs of Rankine and Brayton power cycles when applied to waste heat recovery from a 350 ton/day container glass furnace. The power cycles investigation included: a) a conventional steam...

  12. Waste Heat-to-Power Using Scroll Expander for Organic Rankine...

    Energy Savers [EERE]

    Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Green Mountain Coffee (field test site) July 1, 2013 - January 30, 2017 This presentation does not contain any...

  13. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect (OSTI)

    Donna Post Guillen

    2013-09-01T23:59:59.000Z

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  14. Reduced gravity rankine cycle design and optimization with passive vortex phase separation 

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2009-05-15T23:59:59.000Z

    Interphase Transport Phenomena kW(e) Kilowatts-Electric MVS Microgravity Vortex Separator ORNL Oak Ridge National Laboratory SNAP Systems For Nuclear Auxiliary Power MPRE Medium Power Reactor Experiment RFMD Rotary Fluid Management Device RPM...............................................................................................3 History of Space Rankine Cycle Development .....................................6 ORNL Rankine Cycle Design..............................................................10 Space Rankine Cycle Components...

  15. Reduced gravity Rankine cycle system design and optimization study with passive vortex phase separation 

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2008-10-10T23:59:59.000Z

    Interphase Transport Phenomena kW(e) Kilowatts-Electric MVS Microgravity Vortex Separator ORNL Oak Ridge National Laboratory SNAP Systems For Nuclear Auxiliary Power MPRE Medium Power Reactor Experiment RFMD Rotary Fluid Management Device RPM...............................................................................................3 History of Space Rankine Cycle Development .....................................6 ORNL Rankine Cycle Design..............................................................10 Space Rankine Cycle Components...

  16. Method of optimizing performance of Rankine cycle power plants

    DOE Patents [OSTI]

    Pope, William L. (Walnut Creek, CA); Pines, Howard S. (El Cerrito, CA); Doyle, Padraic A. (Oakland, CA); Silvester, Lenard F. (Richmond, CA)

    1982-01-01T23:59:59.000Z

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  17. Economics of Organic Rankine Cycle 

    E-Print Network [OSTI]

    O'Brien, W. J.

    1988-01-01T23:59:59.000Z

    P9int where the composite T-Q curves for a unIt, sys em, or plant have their closest approach) causes increased cooling and increased heating for th total system. Thus heat pumps only make sense when they pump heat from below to above the pi...

  18. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  19. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01T23:59:59.000Z

    of Electricity from Geothermal Energy," Brown University,Simulation of Geothermal Energy Cycles), LBL publication-Manager), Economics "Geothermal Energy Conversion and Case

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    organic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-power cycle driven by renewable energy sources," Energy,geothermal resources," Renewable Energy, vol. 37, pp. 364-

  1. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

    2011-01-01T23:59:59.000Z

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  2. The Design of an Open Rankine-Cycle Industrial Heat Pump 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Chaudoir, D. W.

    1981-01-01T23:59:59.000Z

    An open Rankine-cycle heat pump is ideally suited for producing low-pressure industrial process steam. Because steam serves as both the heat pump motive fluid and process fluid, the system achieves a unique simplicity and versatility...

  3. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOE Patents [OSTI]

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23T23:59:59.000Z

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  4. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect (OSTI)

    Hoffman, M.A.; Campbell, R.; Logan, B.G. (California Univ., Davis, CA (USA); Lawrence Livermore National Lab., CA (USA))

    1988-10-01T23:59:59.000Z

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  5. The Carnot efficiencybetween these temperatures is: This provides an absolute upper limit to the Rankine cycle effi-

    E-Print Network [OSTI]

    Liu, Y. A.

    to the Rankine cycle effi- ciency. Heat Absorbed from Stream 3 Power Produced by Steam Turbine Required Power a steam cycle alongsidethe gas turbine cycle. LITERATURE CITED Christodoulou,K., Diploma Thesis, N Output of Gas Turbine For the Gas Turbine Cycle Calculated for Case 2, Upper Exhaust Temperature T6

  6. advanced potassium rankine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery CiteSeer Summary: AbstractThis paper describes the experimental...

  7. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect (OSTI)

    Holcomb, R.S.

    1992-07-01T23:59:59.000Z

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  8. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOE Patents [OSTI]

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01T23:59:59.000Z

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  9. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  10. Waste Heat Recovery by Organic Fluid Rankine Cycle

    E-Print Network [OSTI]

    Verneau, A.

    1979-01-01T23:59:59.000Z

    powers of a few megawatts and medium temperatures, about 500 C/600 C, for flue gas. The very simple technology of turbines is shown. Three examples are presented. The first one is a test loop of 300 thermal kW built in BERTIN & Cie laboratory...

  11. Organic Rankine Cycles for the Petro-Chemical Industry

    E-Print Network [OSTI]

    Rose, R. K.; Colosimo, D. D.

    1979-01-01T23:59:59.000Z

    and economically convert this type of heat flow into useful power. The system under development by MTI is one based on a conventional fluorocarbon refrigerant to generate a nominal 1000 kW from typical liquid and vapor streams in the process plant. The 220 F...

  12. Modifications and Optimization of the Organic Rankine Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts | Departmentof Energy Modernizing

  13. Modifications and Optimization of the Organic Rankine Cycle | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriorityof Energy Poneman ||ProgramsEnergy

  14. Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam Rankine cycle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Supervision and control prototyping for an engine exhaust gas heat recovery system based on a steam of a practical supervi- sion and control system for a pilot Rankine steam process for exhaust gas heat recovery Rankine steam process for exhaust gas heat recovery from a spark-ignition (SI) engine, from a prototyping

  15. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    of low-grade heat," Renewable and Sustainable Energyof various applications," Renewable and Sustainable Energyorganic Rankine cycle," Renewable Energy, vol. 4, pp. 1196-

  16. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Optimization," in ASME International Joint Power Generationfor Solar Rankine Power Generation," ASME Journal of SolarBrayton-Cycle Solar Power Towers," ASME Journal of Solar

  17. accelerated thermal cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power Texas A&M University - TxSpace Summary: investigation undertaken...

  18. Modeling, design and analysis of micro-scale Rankine-based systems

    E-Print Network [OSTI]

    Cui, Ling, 1978-

    2004-01-01T23:59:59.000Z

    This thesis presents the modeling and design of two major types of micro Rankine-cycle-based machines: a single-Rankine-based power system and a waste-heat-driven cooler. As part of the Massachusetts Institute of Technology ...

  19. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect (OSTI)

    Yoder, JR.G.L.

    2006-03-08T23:59:59.000Z

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  20. Cost Effective Waste Heat Organic Rankine Cycle Applications and Systems Designs

    E-Print Network [OSTI]

    Rohrer, J. W.; Bronicki, L. Y.

    1980-01-01T23:59:59.000Z

    ~ eluding equipment, installation, and both consumer, and vendor engineering; 2) the most likely future power savings, Predicting the likely power savings of a prot posed ORC system involves substantial uncertainty!. One can be assured, however..., the effect of source temperature and condenser temperature on output can be approximated by the fo 11 OI"i nr:: C3~t ~ Base Source Temp 350?F - Base Condenser Tem ( lO03F, AdJus tment t~ew Source Temp -t~e\\, oondenser emp Normally air cooled condensers...

  1. Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants

    E-Print Network [OSTI]

    Meacher, J. S.

    1981-01-01T23:59:59.000Z

    and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented...

  2. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFT - PRE-DECISIONAL -

  3. Performance of an Organic Rankine Cycle Waste Heat Recovery System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the pathPeople'sTransientFleet inFatIron:

  4. Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles

    E-Print Network [OSTI]

    Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles John Pye, Keith of the technical feasibility a solarised combined-cycle gas turbines with a dish concentrator, with several, optimised for the new SG4 collector. This study aims to determine whether a combined-cycle gas turbine (CCGT

  5. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Methodology iii Life-Cycle Assessment (LCA) . . . . . . .Results 6.1 Life-Cycle Assessment (LCA) . . . . . 6.1.1Analysis (LCEA) 4. Life-Cycle Assessment (LCA) 5. Exergetic

  6. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report |toVEHICLEof EnergyPerformance

  7. Problem 6-6: The ideal Rankine cycle uses saturated steam, so it can't be at 1000 o F, since the critical

    E-Print Network [OSTI]

    , and the thermodynamic cycle calculation for the steam is p1 = 1000 psia T1 = Tsat = 544:75 o F h1 = hg = 1192:4 BTU/lbm s1 = sg = 1:3903 BTU/lbm- o R s2 = s1 = 1:3903 BTU/lbm- o R p2 = 1 psia T2 = Tsat = 101:70 o F 2 = 1:3903 0:1327 1:8453 = 0:6815 = 68% h2 = 69:74 + 0:6815 1036:0 = 775:8 BTU/lbm w1!2 = 1192:4 775:8 = 416

  8. annual cycle energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiencies such that high temperature solar thermal can become more costcombined ammoniawater Rankine power cycle and absorption refrigeration cycle that utilized...

  9. THE TRANSPOSED CRITICAL TEMPERATURE RANKINE THERMODYNAMIC CYCLE

    E-Print Network [OSTI]

    Pope, William L.

    2012-01-01T23:59:59.000Z

    Conversion and Case Studies," EPRI ER-301, Project 580,at Heber, California," EPRI ER-670, Project 580, prepared byProject Manager-EPRI), "Heber Geothermal Demonstration Power

  10. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power

    E-Print Network [OSTI]

    Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

    1984-01-01T23:59:59.000Z

    Intersociety Energy ConJersion Engineering ConL, Paper No. 689054, ppl. 398 406 (1968). 678 ESL-IE-84-04-118 Proceedings from the Sixth Annual Industrial Energy Technology Conference Volume II, Houston, TX, April 15-18, 1984 Table 1 Working-Fluid Parameters...

  12. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and Green Mountain Coffee (field test site)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director ofDepartmentDRAFT - PRE-DECISIONAL

  13. Hidden cycle of dissolved organic carbon in the deep ocean

    E-Print Network [OSTI]

    Repeta, Daniel J.

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content ...

  14. Rankin CSD 98 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGSRadiumRandsburg,Rankin CSD 98

  15. Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine...

  16. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    micro-turbines, Sterling engines (external combustionas the Sterling and Organic Rankin Cycle engines and fuel

  17. advanced rankine cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage...

  18. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    SciTech Connect (OSTI)

    Bharathan, D.

    2011-03-01T23:59:59.000Z

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  19. Rankine Cycle Working Fluids for CC-OTEC

    E-Print Network [OSTI]

    2 CC-OTEC plant Boiler, condenser, turbine Initial cost Size of the equipment Working fluids al., Seoul, Korea 6 Efficiency #12;Dongsoo Jung et al., Seoul, Korea 7 Equipment size #12;Dongsoo Jung et al., Seoul, Korea 8 R32/R290 Similar efficiency High pressure Smaller volume Good size

  20. Simulation of an Industrial Rankine Cycle Cogeneration Plant

    E-Print Network [OSTI]

    Carattie, G.; Wepfer, W. J.

    1984-01-01T23:59:59.000Z

    Sophisticated designs of thermal systems may be evaluated, quickly and inexpensively, with the support of computer based system simulation techniques; i.e. CAD for thermal systems. Furthermore, the response of a thermal system to predicted periodic...

  1. Rankine cycle load limiting through use of a recuperator bypass

    DOE Patents [OSTI]

    Ernst, Timothy C.

    2011-08-16T23:59:59.000Z

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  2. M. Bahrami ENSC 461 (S 11) Tutorial Rankine Cycle 1 ENSC 461 Tutorial, Week#10 -Rankine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    1) How efficiently the energy stored in the coal can be converted into a heat input to the boilerJ/kg. Assuming that 75 percent of this energy is transferred to the steam in the boiler and that the electric generator has an efficiency of 96 percent, determine: a) the overall plant efficiency (the ratio of net

  3. UNIVERSITA' DEL SALENTO Dipartimento di Ingegneria dell'Innovazione

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    OF DENSE GAS FLOWS: APPLICATION TO ORGANIC RANKINE CYCLES TURBINES Coordinatore del Ph.D. Ch.mo Prof. Ing FLOWS: APPLICATION TO ORGANIC RANKINE CYCLES TURBINES by Pietro Marco Congedo (ABSTRACT) This thesis as working fluids in Organic Rankine Cycles (ORCs). The ORCs are similar to a steam Rankine Cycle where

  4. ammonia-water trilateral rankine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems University of California eScholarship Repository Summary: combined cycle concept...

  5. Novel Power Cycle for Combined-Cycle Systems and Utility Power Plants

    E-Print Network [OSTI]

    Kalina, A. L.

    for the advanced gas turbine 700lF, manufactured by the General Electric Company. According to data provided by EPRI, the most advanced Rankine bottoming cycle, with a double pressure boiler and reheating, can produce, using the heat exhaust of this turbine..., 169.2 megawatts. If a triple pressure Rankine Cycle is used as a bottoming cycle, the gross output can reach, according to EPRI, 182.6 MW. This performance has been taken as a baseline for comparison with the performance of System 6, which has...

  6. Towards model-based control of a steam Rankine process for engine waste heat recovery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez a critical role in enabling good per- formance of Rankine processes for waste heat recovery from prime movers. INTRODUCTION In the last few years, engine waste heat recovery (WHR) systems based on the Rankine thermodynamic

  7. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    c,e Low-Intermediate Gas turbine exhaust, boiler exhaust,cycles for micro-gas turbines," Applied Thermal Engineering,Tiba, "Optimization of gas-turbine combined cycles for solar

  8. Dissolved Organic Matter Cycling on the Louisiana Shelf: Implications for the Formation of Hypoxia

    E-Print Network [OSTI]

    Shen, Li

    2012-02-14T23:59:59.000Z

    sources of dissolved organic matter (DOM). Moreover, even less is known about the importance of dissolved organic nitrogen (DON), a critical component of DOM (along with DOC) in supporting hypoxia in this region. Most nitrogen in marine organisms exists...

  9. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    SciTech Connect (OSTI)

    Benzine, Jason; Shelobolina, Evgenya S.; Xiong, Mai Yia; Kennedy, David W.; McKinley, James P.; Lin, Xueju; Roden, Eric E.

    2013-01-01T23:59:59.000Z

    Microorganisms capable of reducing or oxidizing structural iron (Fe) in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ "i-chip" enrichment strategies were employed. One Fe(III)-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria) and six Fe(II) phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8), Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5), and Actinobacteria (Nocardioides sp. strain in31) were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II)-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II)-oxidizing Nocardioides, and to date only one other Fe(II)-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  10. Ichno-sedimentological record of short-term climate-controlled redox events and cycles in organic-rich strata

    SciTech Connect (OSTI)

    Savrda, C.E. (Auburn Univ., AL (USA)); Bottjher, D.J. (Univ. of Southern California, Los Angeles (USA)); Ozalas, K. (Auburn Univ., AL (USA))

    1990-05-01T23:59:59.000Z

    Reduced rates of biochemical degradation of organic matter in oxygen-depleted marine settings generally result in the accumulation of laminated strata with high hydrocarbon source potential. Periods of improved oxygenation, during which the quantity and quality of organic matter are effectively reduced, are reflected by interbedded bioturbated intervals. Such benthic redox excursions may reflect variable paleooceanographic responses to climatic events or cycles. The potential role of climate in the short-term modulation of source rock potential is exemplified by bioturbated intervals within three predominantly laminated organic-rich units. The Jurassic Posidonia Shale (Germany) contains bioturbated beds whose ichnologic characteristics reflect a spectrum from short, low-magnitude redox events to longer episodes of greater magnitude. The character and distribution of these event beds appear to be controlled by sea level mediated variations in the frequency and intensity of storm-induced basin turnover. Bioturbated beds of the Upper Cretaceous Niobrara Formation (Colorado) are characterized by four oxygen-related ichnocoenoses, the distribution of which reflects cyclic variations in redox conditions. Relationships between paleooxygenation and organic-carbon and carbonate contents, and estimated cycle periodicities, suggest that redox variations were controlled by wet-dry climatic cycles modulated by the Milankovitch cycle of axial precession. Bioturbated beds within slope and basinal facies of the Miocene Monterey Formation (California) are variable in character, reflecting differences in duration and magnitude of associated oxygenation episodes, and may be in response to short-term variations in wind-stress-induced upwelling and/or ice-volume-controlled eustatic sea level changes.

  11. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast

    SciTech Connect (OSTI)

    Warnken, Kent W.; Santschi, Peter H.; Roberts, Kimberly A.; Gill, Gary A.

    2007-08-08T23:59:59.000Z

    The cycling and oxidation pathways of organic carbon were investigated at a single shallow water estuarine site in Trinity Bay, Texas, the uppermost lobe of Galveston Bay, during November 2000. Radio-isotopes were used to estimate sediment mixing and accumulation rates, and benthic chamber and pore water measurements were used to determine sediment-water exchange fluxes of oxygen, nutrients and metals, and infer carbon oxidation rates.

  12. A Lipid Biomarker Investigation of Organic Matter Sources and Methane Cycling in Alaskan Thaw Lake Sediments

    E-Print Network [OSTI]

    Williams, Mark

    2012-01-01T23:59:59.000Z

    the most recalcitrant. The diagenesis of organic matter isorganisms and, during diagenesis, are reduced in chemicalskeleton to survive through diagenesis and catagenesis while

  13. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    E-Print Network [OSTI]

    Siegel, David A.

    of the ocean, ultraviolet light penetration, and photochemical reactions that influence the cycling) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found encompass all three ocean basins transecting the subtropics where satelliteretrieved surface ocean CDOM

  14. Rankin County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2Rangely, Colorado: EnergyRankin

  15. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03T23:59:59.000Z

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  16. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect (OSTI)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01T23:59:59.000Z

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  17. Organic Carbon Cycling in East China Sea Shelf Sediments: Linkages with Hypoxia

    E-Print Network [OSTI]

    Li, Xinxin

    2013-01-03T23:59:59.000Z

    The Changjiang River provides the main source of sediment and terrestrial derived organic carbon (OC) to the Changjiang large delta-front estuary (LDE) in the East China Sea (ECS). This study analyzed bulk OC, biomarkers including lignin and plant...

  18. Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology

    E-Print Network [OSTI]

    Quan, Tracy M. (Tracy Michelle), 1977-

    2005-01-01T23:59:59.000Z

    The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

  19. Improving environmental performances of organic spreading technologies through the use of life cycle

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving environmental performances of organic spreading technologies through the use of life) is generally used to assess environmental performances of a product or a system. Some agricultural LCA were carried out to assess environmental performances of fertilisation processes, but they barely take

  20. Rankine-Hugoniot Relations in Relativistic Combustion Waves

    E-Print Network [OSTI]

    Gao, Yang

    2012-01-01T23:59:59.000Z

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highlyrelativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves are also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index \\Gamma < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevanc...

  1. Examining the coupling of carbon and nitrogen cycles in Southern Appalachian streams: Understanding the role of dissolved organic nitrogen

    SciTech Connect (OSTI)

    Lutz, Brian D [Duke University; Bernhardt, Emily [Duke University; Roberts, Brian [Louisiana Universities Marine Consortium; Mulholland, Patrick J [ORNL

    2011-01-01T23:59:59.000Z

    Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon:nitrogen (C:N) molar ratios ({approx}25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO{sub 3}{sup -}] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high.

  2. Rankin-Selberg methods for closed string amplitudes

    E-Print Network [OSTI]

    Boris Pioline

    2014-07-10T23:59:59.000Z

    After integrating over supermoduli and vertex operator positions, scattering amplitudes in superstring theory at genus $h\\leq 3$ are reduced to an integral of a Siegel modular function of degree $h$ on a fundamental domain of the Siegel upper half plane. A direct computation is in general unwieldy, but becomes feasible if the integrand can be expressed as a sum over images under a suitable subgroup of the Siegel modular group: if so, the integration domain can be extended to a simpler domain at the expense of keeping a single term in each orbit -- a technique known as the Rankin-Selberg method. Motivated by applications to BPS-saturated amplitudes, Angelantonj, Florakis and I have applied this technique to one-loop modular integrals where the integrand is the product of a Siegel-Narain theta function times a weakly, almost holomorphic modular form. I survey our main results, and take some steps in extending this method to genus greater than one.

  3. Reduced gravity Rankine cycle system design and optimization study with passive vortex phase separation

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2008-10-10T23:59:59.000Z

    environments.1,2,3) This phase separator has been flight tested on thousands of parabolas aboard NASA reduced gravity aircraft and has achieved a NASA technology readiness level (TRL) of 6. Along with its ability to separate liquid and vapor...

  4. Reduced gravity rankine cycle design and optimization with passive vortex phase separation

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2009-05-15T23:59:59.000Z

    environments.1,2,3) This phase separator has been flight tested on thousands of parabolas aboard NASA reduced gravity aircraft and has achieved a NASA technology readiness level (TRL) of 6. Along with its ability to separate liquid and vapor...

  5. The Design of an Open Rankine-Cycle Industrial Heat Pump

    E-Print Network [OSTI]

    Leibowitz, H. M.; Chaudoir, D. W.

    1981-01-01T23:59:59.000Z

    by an electric-motor-driven, multistage compressor train. This strategy permits the heat pump to accommodate upsets such as sudden changes in the waste stream flow and/or temperature, as well as fluctuation within the process stream....

  6. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGenerationEducational OpportunitiesEngineRecovery:

  7. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRanchoTemperature

  8. Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    the longitude distribution of solar energetic particles. J.shocks in deter- mining solar energetic particle abundances.J.E. , Dwyer, J.R. : 2006a, Solar cycle variations in the

  9. Emergence of Fusion/Fission Cycling and Self-Organized Criticality from a Simulation Model of Early Complex Polities

    E-Print Network [OSTI]

    Griffin, Arthur F

    2011-01-01T23:59:59.000Z

    H. 1999, Chiefdoms and the Fission-Fusion Process, AmericanEmergence of Fusion/Fission Cycling and Self-Organizedliterature to describe the fusion and subsequent fission of

  10. APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS

    E-Print Network [OSTI]

    Leech, J.

    2010-01-01T23:59:59.000Z

    F. , jr. S. B. , S. M. Steam Turbines. Second Edition, Tenththe solar-assisted cycle. Steam turbines have been used forin Figure 5. Steam entering the turbine expends a portion of

  11. APPLICATION OF TURBOMACHINERY IN SOLAR-ASSISTED RANKINE COOLING SYSTEMS

    E-Print Network [OSTI]

    Leech, J.

    2010-01-01T23:59:59.000Z

    F. , jr. S. B. , S. M. Steam Turbines. Second Edition, Tenththe solar-assisted cycle. Steam turbines have been used foras drag or terry turbines, in which the steam is directed

  12. One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability

    SciTech Connect (OSTI)

    Gou, Lei, E-mail: Leigou@chd.edu.cn; Hao, Li-Min; Shi, Yong-Xin; Ma, Shou-Long; Fan, Xiao-Yong; Xu, Lei; Li, Dong-Lin, E-mail: dlli@chd.edu.cn; Wang, Kang

    2014-02-15T23:59:59.000Z

    Metal–organic framework is a kind of novel electrode materials for lithium ion batteries. Here, a 3D metal–organic framework Co{sub 2}(OH){sub 2}BDC (BDC=1,4-benzenedicarboxylate) was synthesized for the first time by the reaction of Co{sup 2+} with a bio-inspired renewable organic ligand 1,4-benzenedicarboxylic acid through a solvothermal method. As an anode material for lithium ion batteries, this material exhibited an excellent cyclic stability as well as a large reversible capacity of ca. 650 mA h g{sup ?1} at a current density of 50 mA g{sup ?1} after 100 cycles within the voltage range of 0.02–3.0 V, higher than that of other BDC based anode. - Graphical abstract: The PXRD pattern and the cycleability curves (inset) of Co{sub 2}(OH){sub 2}BDC. Display Omitted - Highlights: • Co{sub 2}(OH){sub 2}BDC was synthesized through a one pot solvothermal process. • The solvent had a great effect on the purity of this material. • This material was used as anode material for lithium ion batteries for the first time. • Co{sub 2}(OH){sub 2}BDC showed improved capacity and cycling stability.

  13. Advanced heat pump for the recovery of volatile organic compounds. Phase 1, Conceptual design of an advanced Brayton cycle heat pump for the recovery of volatile organic compounds: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total US VOC emissions. The ``Toxic-Release Inventory`` of The US Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing,refrigerant production, and wood products production. The US Department of Energy`s (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase I report documents 3M`s work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient and economically priced.

  14. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect (OSTI)

    BD Middleton; J Buongiorno

    2007-04-25T23:59:59.000Z

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump and pipes were modeled with realistic assumptions using the PEACE module of Thermoflex. A three-dimensional layout of the plant was also generated with the SolidEdge software. The results of the engineering design are as follows: (i) The cycle achieves a net thermal efficiency of 24.13% with 350/460 C reactor inlet/outlet temperatures, {approx}250 bar reactor pressure and 0.75 bar condenser pressure. The steam quality at the turbine outlet is 90% and the total electric consumption of the pumps is about 2500 kWe at nominal conditions. (ii) The overall size of the plant is attractively compact and can be further reduced if a printed-circuit-heat-exchanger (vs shell-and-tube) design is used for the feedwater heater, which is currently the largest component by far. Finally, an analysis of the plant performance at off-nominal conditions has revealed good robustness of the design in handling large changes of thermal power and seawater temperature.

  15. AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES

    SciTech Connect (OSTI)

    Aschwanden, Markus J.; Freeland, Samuel L., E-mail: aschwanden@lmsal.com [Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Org. ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States)

    2012-08-01T23:59:59.000Z

    We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to Almost-Equal-To 5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of {alpha}{sub F} = 1.98 {+-} 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction {alpha}{sub F} = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of {alpha}{sub T} = 2.02 {+-} 0.04 during solar cycle minima years, which is also consistent with the prediction {alpha}{sub T} = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of {alpha}{sub T} Almost-Equal-To 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of {alpha}{sub E} = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

  16. The effect of a large resuspension event in Southern Lake Michigan on the short-term cycling of organic contaminants

    E-Print Network [OSTI]

    NOAA Great Lakes Environmental Research Laboratory, Episodic Events

    on the particle settling fluxes and air/water exchange fluxes of persistent organic pollutants (POPs) was investigated. We used a two-pronged sampling strategy of 1) discrete air and water samples collected during of dissolved phase PCB (sum of 89 congener peaks) and PAHs (sum of 31 compounds) declined significantly ( = 0

  17. Microsoft Word - INL_EXT-13-30173 simulation of air-cooled ORC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-30173 Simulation of Air-Cooled Organic Rankine Cycle Geothermal Power Plant Performance Daniel S. Wendt Gregory L. Mines September 2013 DISCLAIMER This information was prepared...

  18. application african energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting...

  19. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    a) Schematic of Sterling engine (b) P-V plot of the SterlingSterling engines. Organic Rankine Cycle or Sterling Engines. On the one hand,

  20. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    SciTech Connect (OSTI)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Scheutz, C., E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2012-01-15T23:59:59.000Z

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

  1. EXPERIMENTAL AND THEORETICAL INVESTIGATIONS OF NEW POWER CYCLES AND ADVANCED FALLING FILM HEAT EXCHANGERS

    SciTech Connect (OSTI)

    Arsalan Razani; Kwang J. Kim

    2001-12-01T23:59:59.000Z

    The final report for the DOE/UNM grant number DE-FG26-98FT40148 discusses the accomplishments of both the theoretical analysis of advanced power cycles and experimental investigation of advanced falling film heat exchangers. This final report also includes the progress report for the third year (period of October 1, 2000 to September 30, 2001). Four new cycles were studied and two cycles were analyzed in detail based on the second law of thermodynamics. The first cycle uses a triple combined cycle, which consists of a topping cycle (Brayton/gas), an intermediate cycle (Rankine/steam), and a bottoming cycle (Rankine/ammonia). This cycle can produce high efficiency and reduces the irreversibility of the Heat Recovery Steam Generator (HRSC) of conventional combined power cycles. The effect of important system parameters on the irreversibility distribution of all components in the cycle under reasonable practical constraints was evaluated. The second cycle is a combined cycle, which consists of a topping cycle (Brayton/gas) and a bottoming cycle (Rankine/ammonia) with integrated compressor inlet air cooling. This innovative cycle can produce high power and efficiency. This cycle is also analyzed and optimized based on the second the second law to obtain the irreversibility distribution of all components in the cycle. The results of the studies have been published in peer reviewed journals and ASME conference proceeding. Experimental investigation of advanced falling film heat exchangers was conducted to find effective additives for steam condensation. Four additives have been selected and tested in a horizontal tube steam condensation facility. It has been observed that heat transfer additives have been shown to be an effective way to increase the efficiency of conventional tube bundle condenser heat exchangers. This increased condensation rate is due to the creation of a disturbance in the liquid condensate surround the film. The heat transfer through such a film has increased due to the onset of Maranogni convection as well as the population of ''dropwise-like'' condensation increased. The results have been published in peer reviewed journals.

  2. Modeling of a second-generation solar-driven Rankine air conditioner. Final report

    SciTech Connect (OSTI)

    Denius, M.W.; Batton, W.D.

    1984-07-01T23:59:59.000Z

    Ten configurations of a second-generation (2G), solar-powered, Rankine-driven air conditioner were simulated and the data presented for use in companion studies. The results of the analysis show that the boiling-in-collector (BIC) configuration generates more power per collector area than the other configurations. The models used to simulate the configuration are presented in this report. The generated data are also presented. Experimental work was done under this study to both improve a novel refrigerant and oil lubrication system for the centrifugal compressor and investigate the aerodynamic unloading characteristics of the centrifugal compressor. The information generated was used to define possible turbo-gearbox configurations for use in the second generation computer simulation.

  3. General syllabus for third-cycle studies in Organic Chemistry TEKOKF00 This syllabus has been adopted by the Board of LTH, 11 October 2010

    E-Print Network [OSTI]

    education leading to a PhD or licentiate in the fields of LTH's professional degrees. The programmes for third-cycle studies are given in the Higher Education Ordinance. 3.1 Licentiate Knowledge and understanding For a Licentiate the third-cycle student shall: - demonstrate knowledge and understanding

  4. Development of Pillared M(IV) Phosphate Phosphonate Inorganic Organic Hybrid Ion Exchange Materials for Applications in Separations found in the Nuclear Fuel Cycle

    E-Print Network [OSTI]

    Burns, Jonathan

    2012-10-02T23:59:59.000Z

    This dissertation focuses on key intergroup and intragroup separations found in the back end of the nuclear fuel cycle, specifically americium from lanthanides and americium from other actinides, most importantly americium from curium. Our goal...

  5. Ecosystem element cycling Introduction

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Ecosystem element cycling Introduction An ecosystem consists of all the biological organisms and the physical environments they occupy together within a defined area [1]. The actual boundaries of an ecosystem are generally defined by researchers studying the ecosystem, who are usually interested in understanding

  6. Low Temperature Waste Energy Recovery at Chemical Plants and Refineries

    E-Print Network [OSTI]

    Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

    2013-01-01T23:59:59.000Z

    candidates of waste heat recovery technologies that might have an application in these industries. Four technologies that met the criteria of the Advisory Committee included: organic rankine cycle (ORC), absorption refrigeration and chilling, Kalina cycle...

  7. Software and Information Life Cycle (SILC) for the Integrated Information Services Organization. Analysis and implementation phase adaptations of the Sandia software guidelines: Issue A, April 18, 1995

    SciTech Connect (OSTI)

    Eaton, D.; Cassidy, A.; Cuyler, D. [and others

    1995-07-01T23:59:59.000Z

    This document describes the processes to be used for creating corporate information systems within the scope of the Integrated information Services (IIS) Center. This issue A describes the Analysis and Implementation phases within the context of the entire life cycle. Appendix A includes a full set of examples of the analysis set deliverables. Subsequent issues will describe the other life cycle processes as we move toward enterprise-level management of information assets, including information meta-models and an integrated corporate information model. The analysis phase as described here, when combined with a specifications repository, will provide the basis for future reusable components and improve traceability of information system specifications to enterprise business rules.

  8. Dynamics of a relativistic Rankine vortex for a two-constituent superfluid in a weak perturbation of cylindrical symmetry

    E-Print Network [OSTI]

    B. Boisseau

    1999-01-18T23:59:59.000Z

    From a recent study of a stationary cylindrical solution for a relativistic two-constituent superfluid at low temperature limit, we propose to specify this solution under the form of a relativistic generalisation of a Rankine vortex (Potential vortex whose the core has a solid body rotation).Then we establish the dynamics of the central line of this vortex by supposing that the deviation from the cylindrical configuration is weak in the neighbourhood of the core of the vortex. In "stiff" material the Nambu-Goto equations are obtained.

  9. A review of "Secrets and Knowledge in Medicine and Science, 1500-1800" edited by Elaine Leong and Alisha Rankin

    E-Print Network [OSTI]

    Kelter, Irving A.

    2012-01-01T23:59:59.000Z

    of the view of musicians in the seventeenth and eighteenth centuries that do not necessarily re#24; ect a historical development. Elaine Leong and Alisha Rankin, eds. Secrets and Knowledge in Medicine and Science, 1500-1800. Farnham, England and Burlington... is by Michelle DiMeo who contends that the London-based Hartlib circle was not totally in favor of openness and against secrecy in natural philosophy and medicine. Part #22; ree moves into the dangerous world of illicit secrets. Tara Nummedal peers...

  10. Automatic Control Strategy Development for the Supercritical CO{sub 2} Brayton Cycle for LFR Autonomous Load Following

    SciTech Connect (OSTI)

    Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439 (United States)

    2006-07-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is a promising advanced alternative to the Rankine saturated steam cycle and ideal gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to develop an automatic control strategy for the whole plant in response to changes in the demand from the electrical grid. The specific features of the S-CO{sub 2} Brayton cycle that result in limitations on the control range and speed of specific control mechanisms are discussed. Calculations of whole-plant responses to plant operational transients involving step and continuous changes in grid demand are demonstrated. (authors)

  11. In-flight thermal control of molten metal droplet streams B. Matthew Michaelis *, Derek Dunn-Rankin, Robert F. Smith Jr., James E. Bobrow

    E-Print Network [OSTI]

    Bobrow, James E.

    -Rankin, Robert F. Smith Jr., James E. Bobrow Department of Mechanical and Aerospace Engineering, University could be controlled by super- heating the reservoir of molten metal but many metal alloys have for desired droplet arrival temperature. This ``holding" temperature varies for each alloy as a result

  12. Control system options and strategies for supercritical CO2 cycles.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18T23:59:59.000Z

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as well as the benefits in expanding the range over which individual control mechanisms are effective for cycle control. However, a combination of mechanisms is still required for control of the S-CO{sub 2} Brayton Cycle between 0 and 100 % load. An effort is underway to partially validate the Argonne models and codes by means of comparison with data from tests carried out using the small-scale Sandia Brayton Loop (SBL) recuperated gas closed Brayton cycle facility. The centrifugal compressor model has been compared with data from the SBL operating with nitrogen gas and good agreement is obtained between calculations and the measured data for the compressor outlet pressure versus flow rate, although it is necessary to assume values for certain model parameters which require information about the configuration or dimensions of the compressor components that is unavailable. Unfortunately, the compressor efficiency cannot be compared with experiment data due to the lack of outlet temperature data. A radial inflow turbine model has been developed to enable further comparison of calculations with data from the SBL which incorporates both a radial inflow turbine as well as a radial compressor. Preliminary calculations of pressure ratio and efficiency versus flow rate have been carried out using the radial inflow turbine model.

  13. www.landesbioscience.com Cell Cycle 1989 Cell Cycle 12:13, 19891990; July 1, 2013; 2013 Landes Bioscience

    E-Print Network [OSTI]

    Sheen, Jen

    . However, the mechanisms underlying responses of TOR to glucose as a universal fuel remained enigmaticwww.landesbioscience.com Cell Cycle 1989 Cell Cycle 12:13, 1989­1990; July 1, 2013; © 2013 Landes Bioscience EditoriaLs: CELL CyCLE FEaturEs EditoriaLs: CELL CyCLE FEaturEs All living organisms must

  14. air bottoming cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Memb e... Holley, James Andrew 1978-01-01 2 Combined-cycle solarised gas turbine with steam, organic and CO2 bottoming cycles Renewable Energy Websites Summary: mounted at the...

  15. Please cite this article in press as: Hallegatte, S. et al., Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics, Journal of Economic Behavior and Organization (2007), doi:10.1016/j.jebo.2007.05.001

    E-Print Network [OSTI]

    Ghil, Michael

    B.V. All rights reserved. Keywords: Macroeconomic dynamics; Non-equilibrium modeling; BusinessPlease cite this article in press as: Hallegatte, S. et al., Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics, Journal of Economic Behavior and Organization

  16. CX-002111: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Optimization of Hybrid-WaterAir-Cooled Condenser In an Enhanced Turbine Geothermal Organic Rankine Cycle System CX(s) Applied: B3.6, A9 Date: 05052010...

  17. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  18. Cycle Track Lessons Learned

    E-Print Network [OSTI]

    Bertini, Robert L.

    Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing

  19. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  20. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-01-01T23:59:59.000Z

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  1. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Global warming potential of different methods of electricityThe global warming potential of electricity generation inaverage global warming potential of electricity from PG&E.

  2. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    zones for more efficient data center energy management”. In:Joshi. Energy Efficient Thermal Management of Data Centers.

  3. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    t have to guess at future IT cooling needs. A mismatch inFuture work could analyze the effect of the cooling tower as

  4. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    entire data center system, the electricity used by coolingdata center is slightly more efficient than average due to the stated omissions in the HVAC system, namely the cooling

  5. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    amongst lower powered racks”. In: ASME 2002 Internationallow power data center test cell”. In: Proceedings of ASME

  6. Expeditious Data Center Sustainability, Flow, and Temperature Modeling: Life-Cycle Exergy Consumption Combined with a Potential Flow Based, Rankine Vortex Superposed, Predictive Method

    E-Print Network [OSTI]

    Lettieri, David

    2012-01-01T23:59:59.000Z

    Conference on Energy Sustainability. Jacksonville, Florida,tional Conference on Energy Sustainability (InterPACK2009).Need for Sustainability Indicators Energy, pollution, and

  7. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating between the turbine stages. Analyses carried out as part of the current investigation confirm the possibilities of improving the cycle efficiency that have been identified in previous investigations. The options in this group include: increasing the heat exchanger and turbomachinery sizes, raising of the cycle high end pressure (although the improvement potential of this option is very limited), and optimization of the low end temperature and/or pressure to operate as close to the (pseudo) critical point as possible. Analyses carried out for the present investigation show that significant cycle performance improvement can sometimes be realized if the cycle operates below the critical temperature at its low end. Such operation, however, requires the availability of a heat sink with a temperature lower than 30 C for which applicability of this configuration is dependent upon the climate conditions where the plant is constructed (i.e., potential performance improvements are site specific). Overall, it is shown that the S-CO{sub 2} Brayton cycle efficiency can potentially be increased to 45 %, if a low temperature heat sink is available and incorporation of larger components (e.g.., heat exchangers or turbomachinery) having greater component efficiencies does not significantly increase the overall plant cost.

  8. Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.

    E-Print Network [OSTI]

    Carrington, Emily

    Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one is without carbon. Where else is carbon on our Earth? In rocks, living organisms, the atmosphere, oceans Does carbon stay in one place? What processes include moving carbon? Introduce residence time: How long does

  9. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Rankine Cycle and Stirling Cycle engines for commercial use.1, HEAT ENGINE HWY VEHICLE SYSTEM (DEVELOP STIRLING CYCLE

  10. Edgeworth cycles revisited

    E-Print Network [OSTI]

    Doyle, Joseph J.

    Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend ...

  11. Biomass Gasification Combined Cycle

    SciTech Connect (OSTI)

    Judith A. Kieffer

    2000-07-01T23:59:59.000Z

    Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

  12. Life-Cycle Water Impacts of U.S. Transportation Fuels

    E-Print Network [OSTI]

    Scown, Corinne Donahue

    2010-01-01T23:59:59.000Z

    Cycle Water Consumption for WECC NERC Region ElectricityCycle Water Withdrawals for WECC NERC Region ElectricityTRE TS&D USDA USGS VC W WECC WSI International Organization

  13. Cycle to Cycle Manufacturing Process Control

    E-Print Network [OSTI]

    Hardt, David E.

    Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

  14. The nitrogen cycle and ecohydrology of seasonally dry grasslands

    E-Print Network [OSTI]

    Parolari, Anthony Joseph

    2013-01-01T23:59:59.000Z

    This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

  15. THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor

    E-Print Network [OSTI]

    THE SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) Shirley Radack, Editor Computer Security Division the maintenance and disposal of the system, is called the System Development Life Cycle (SDLC). The Information general guide that helps organizations plan for and implement security throughout the SDLC. The revised

  16. Stirling-cycle refrigerator

    SciTech Connect (OSTI)

    Nakamura, K.

    1985-06-11T23:59:59.000Z

    A Stirling-cycle refrigerator comprises a plurality of Stirling-cycle refrigerator units each having a displacer defining an expansion chamber, a piston defining a compression chamber, and a circuit including a heater and a cooler and interconnecting the expansion chamber and the compression chamber, and a heat exchanger shared by the circuits and disposed between the coolers and the heaters for effecting heat exchange between working gases in the circuits. The heat exchanger may comprise a countercurrent heat exchanger, and the Stirling-cycle refrigerator units are operated in cycles which are 180/sup 0/ out of phase with each other.

  17. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  18. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  19. Power Plant Cycling Costs

    SciTech Connect (OSTI)

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01T23:59:59.000Z

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  20. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  1. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Bergander, Mark J [Magnetic Development, Inc.; Butrymowicz, Dariusz [Polish Academy of Scinces

    2010-01-26T23:59:59.000Z

    This project was a continuation of Category 1 project, completed in August 2005. Following the successful bench model demonstration of the technical feasibility and economic viability, the main objective in this stage was to fabricate the prototype of the heat pump, working on the new thermodynamic cycle. This required further research to increase the system efficiency to the level consistent with theoretical analysis of the cycle. Another group of objectives was to provide the foundation for commercialization and included documentation of the manufacturing process, preparing the business plan, organizing sales network and raising the private capital necessary to acquire production facilities.

  2. The Anderson Quin Cycle

    SciTech Connect (OSTI)

    Anderson, J.H.; Bilbow, W.M.

    1993-03-18T23:59:59.000Z

    The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

  3. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  4. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  5. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Page 19 of 28...

  6. Sandia National Laboratories: SAND 2011-4654W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  7. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Page 9 of 12...

  8. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  9. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  10. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  11. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliability. To date, research has been conducted both on externally heated Stirling, organic Rankine, and steam Rankine engines and on the ... Rotating Platform On...

  12. Cycle isolation monitoring

    SciTech Connect (OSTI)

    Svensen, L.M. III; Zeigler, J.R.; Todd, F.D.; Alder, G.C. [Santee Copper, Moncks Corner, SC (United States)

    2009-07-15T23:59:59.000Z

    There are many factors to monitor in power plants, but one that is frequently overlooked is cycle isolation. Often this is an area where plant personnel can find 'low hanging fruit' with great return on investment, especially high energy valve leakage. This type of leakage leads to increased heat rate, potential valve damage and lost generation. The fundamental question to ask is 'What is 100 Btu/kW-hr of heat rate worth to your plant? On a 600 MW coal-fired power plant, a 1% leakage can lead to an 81 Btu/kW-hr impact on the main steam cycle and a 64 Btu/kW-hr impact on the hot reheat cycle. The article gives advice on methods to assist in detecting leaking valves and to monitor cycle isolation. A software product, TP. Plus-CIM was designed to estimate flow rates of potentially leaking valves.

  13. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States)); Lineberry, M.J.; Phipps, R.D. (Argonne National Lab., Idaho Falls, ID (United States))

    1992-01-01T23:59:59.000Z

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  14. IFR fuel cycle

    SciTech Connect (OSTI)

    Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States); Lineberry, M.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-04-01T23:59:59.000Z

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation.

  15. Phase I-B development of kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, September 1983-December 1985

    SciTech Connect (OSTI)

    Monahan, R.E.

    1986-07-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-ton, and a COP (heating) of 1.8 and COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1989. In this phase, an HVAC systems manufacturer (Borg-Warner) is working with SPS to develop a prototype gas-heat-pump system. To date, a piston-type open-shaft refrigeration compressor was selected as the best match for the engine. Both the engine and compressor have been tested and characterized by performance maps, and the experimental heat-pump systems designed, built, and preliminary testing performed. Close agreement with computer model output has been achieved. SPS has continued to focus on improving the Stirling-engine performance and reliability for the gas-heat-pump application.

  16. Phase 1-supplemental development of a kinematic Stirling/Rankine commercial gas-fired heat-pump system. Final report, January 1989-June 1989

    SciTech Connect (OSTI)

    Monahan, R.

    1989-06-01T23:59:59.000Z

    The kinematic Stirling/Rankine gas heat pump concept is based on the application of a Stirling engine that has been under development for over a decade. The engine has been converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial size Stirling engine-driven gas heat pump with a cooling capacity of 10 tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for the mid-1990's. In previous phases, an HVAC-systems manufacturer (York International) had been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Under the program, a number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described. The adaptation and operation of a computer optimization code was accomplished under the program and is reported herein.

  17. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon...

  18. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2008-08-12T23:59:59.000Z

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  19. Helium process cycle

    DOE Patents [OSTI]

    Ganni, Venkatarao (Yorktown, VA)

    2007-10-09T23:59:59.000Z

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  20. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22T23:59:59.000Z

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  1. Superfluid thermodynamic cycle refrigerator

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Kotsubo, Vincent Y. (La Canada, CA)

    1992-01-01T23:59:59.000Z

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  2. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    with Brayton-cycle gas turbine topping . • , • . . • , , • -Effect of Brayton Cycle. Gas Turbine Topping on the Grossof either Brayton-cycle gas turbines or Rankine-cycle steam

  3. Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor

    SciTech Connect (OSTI)

    Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2006-07-01T23:59:59.000Z

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising advanced alternative to the Rankine saturated steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous, natural circulation Lead-Cooled Fast Reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios. (authors)

  4. Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-08-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is a promising advanced alternative to the Rankine steam cycle and recuperated gas Brayton cycle for the energy converters of specific reactor concepts belonging to the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. A new plant dynamics analysis computer code has been developed for simulation of the S-CO{sub 2} Brayton cycle coupled to an autonomous, natural circulation lead-cooled fast reactor (LFR). The plant dynamics code was used to simulate the whole-plant response to accident conditions. The specific design features of the reactor concept influencing passive safety are discussed and accident scenarios are identified for analysis. Results of calculations of the whole-plant response to loss-of-heat sink, loss-of-load, and pipe break accidents are demonstrated. The passive safety performance of the reactor concept is confirmed by the results of the plant dynamics code calculations for the selected accident scenarios.

  5. GENERAL CIRCULATION Energy Cycle

    E-Print Network [OSTI]

    Grotjahn, Richard

    process. PE is useful for global energy balance. Solar radiant energy does not reach the Earth equally everywhere. On average, the tropics receive and absorb far more solar energy annually than the polar regionsGENERAL CIRCULATION Contents Energy Cycle Mean Characteristics Momentum Budget Overview Energy

  6. Life cycle assessment

    SciTech Connect (OSTI)

    Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

  7. Combined Cycle Combustion Turbines

    E-Print Network [OSTI]

    Combined Cycle Combustion Turbines Steven Simmons February 27 2014 1 #12;CCCT Today's Discussion 1 Meeting Pricing of 4 advanced units using information from Gas Turbine World Other cost estimates from E E3 EIA Gas Turbine World California Energy Commission Date 2010 Oct 2012, Dec 2013 Apr 2013 2013 Apr

  8. Stirling cycle engine

    DOE Patents [OSTI]

    Lundholm, Gunnar (Lund, SE)

    1983-01-01T23:59:59.000Z

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  9. Geochemical Cycling of Iodine Species in Soils

    SciTech Connect (OSTI)

    Hu, Q; Moran, J E; Blackwood, V

    2007-08-23T23:59:59.000Z

    Iodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine in soils is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. In this study, we applied new analytical techniques to study the content and speciation of stable iodine in representative surface soils, and sorption and transport behavior of iodine species (iodide, iodate, and 4-iodoaniline) in sediments collected at numerous nuclear facilities in the United States, where anthropogenic {sup 129}I from prior nuclear fuel processing activities poses an environmental risk. The surface soil samples were chosen for their geographic locations (e.g., near the ocean or nuclear facilities) and for their differing physico-chemical characteristics (organic matter, texture, etc). Extracted solutions were analyzed by IC and ICP-MS methods to determine iodine concentrations and to examine iodine speciation (iodide, iodate, and organic iodine). In natural soils, iodine is mostly (nearly 90% of total iodine) present as organic species, while inorganic iodine becomes important (up to 50%) only in sediments with low organic matter. Results from laboratory column studies, aimed at examining transport of different iodine species, showed much greater retardation of 4-iodoaniline than iodide or iodate. Careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment. In addition to speciation, input concentration and residence time effects will influence the biogeochemical cycling of anthropogenic 129I deposited on surface soils.

  10. Organic Flash Cycles for Intermediate and High Temperature Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and Biofuels Biomass and Biofuels FindReclamation - Energy

  11. Leadership, Organizations

    E-Print Network [OSTI]

    Palmeri, Thomas

    Leadership, Policy & Organizations #12;2 At Peabody students have the opportunity to develop new College, in the Department of Leadership, Policy and Organizations (LPO). The faculty believes Patricia and Rodes Hart Chair, and Professor of Education Policy and Leadership, Ellen Goldring also serves

  12. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  13. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

    2001-06-08T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  14. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Quantum thermodynamic cooling cycle

    E-Print Network [OSTI]

    Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

    2001-01-01T23:59:59.000Z

    The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

  16. Water Cycle Pilot Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrateEnergy Watch1 Water Cycle

  17. Carbon isotope ratios of organic compound fractions in oceanic suspended particles

    E-Print Network [OSTI]

    Hwang, Jeomshik; Druffel, Ellen R. M

    2006-01-01T23:59:59.000Z

    Radiocarbon evidence of fossil-carbon cycling in sediments1968), Metabolic fractionation of carbon isotopes in marineof particulate organic carbon using bomb 14 C, Nature,

  18. Kouchoul cycle implication in the Tailer engine cycle

    SciTech Connect (OSTI)

    Arques, P.

    1996-12-31T23:59:59.000Z

    The author presents here the study of the Tailer engine modified cycle using the concept of load transfer for the Kouchoul cycle. Theoretical equations and numerical simulation of the Tailer engine modified cycle implicating the Kouchoul cycle are developed. The Tailer engine modified cycle can be improved by approaching cycles of spark plug engines by the addition of a phase of cooling of gases to the bottom dead center (bdc). This is possible only by putting a reservoir of cooled gas in communication with the cylinder to the bottom dead center. So as not to complicate the kinematic of the engine, the communication between cylinder and cooled reservoir is executed by some holes of 1 mm distributed on the whole periphery of the cylinder at the bdc.

  19. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  20. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27T23:59:59.000Z

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  1. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    of an ORC (Organic Rankine Cycle) plant having a net power capacity of 1,5MWe. Surface equipments (turbine fluid geochemistry, the temperature field and the hydraulic properties of the deep crystalline basement). The geothermal wells were hydraulically and chemically stimulated between 2000 and 2007 in order to enhance

  2. Feasibility of using power steering pumps in small-scale solar thermal electric power systems

    E-Print Network [OSTI]

    Lin, Cynthia, S.B. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The goal of this study was to determine performance curves for a variety of positive displacement pumps in order to select an efficient and low cost option for use as a boiler feed pump in a 1-kWe organic Rankine cycle ...

  3. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28T23:59:59.000Z

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  4. What drives glacial cycles

    SciTech Connect (OSTI)

    Broecker, W.S.; Denton, G.H.

    1990-01-01T23:59:59.000Z

    The Milankovitch theory advocates that the glacial cycles have three components: the tilt of the earth's spin axis; the shape of the earth's orbit; and the interaction between the tilt and the eccentricity effects. These three factors work together to vary the amount of sunshine reaching the high northern latitudes in summer and allow the great ice sheets to grow during intervals of cool summers and mild winters. Evidence is presented which indicates that the circulation pattern of the Atlantic ocean was shifted dramatically about 14,000 years ago, at the same time that glaciers in both hemispheres started to retreat. The authors believe that massive reorganizations of the ocean-atmosphere system are the key events that link cyclic changes in the earth's orbit to the advance and retreat of ice sheet.

  5. Open cycle thermoacoustics

    SciTech Connect (OSTI)

    Reid, Robert Stowers

    2000-01-01T23:59:59.000Z

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  6. Advanced regenerative absorption refrigeration cycles

    DOE Patents [OSTI]

    Dao, Kim (14 Nace Ave., Piedmont, CA 94611)

    1990-01-01T23:59:59.000Z

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  7. Recycling and Life Cycle Issues

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2010-01-01T23:59:59.000Z

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  8. Glacial cycles and astronomical forcing

    SciTech Connect (OSTI)

    Muller, R.A. [Lawrence Berkeley Lab., CA (United States)] [Lawrence Berkeley Lab., CA (United States); MacDonald, G.J. [International Institute for Applied Systems Analysis, Laxenburg (Austria)] [International Institute for Applied Systems Analysis, Laxenburg (Austria)

    1997-07-11T23:59:59.000Z

    Narrow spectral features in ocean sediment records offer strong evidence that the cycles of glaciation were driven by astronomical forces. Two million years ago, the cycles match the 41,000-year period of Earth`s obliquity. This supports the Croll/Milankovitch theory, which attributes the cycles to variations in insolation. But for the past million years, the spectrum is dominated by a single 100,000-year feature and is a poor match to the predictions of insolation models. The spectrum can be accounted for by a theory that derives the cycles of glaciation from variations in the inclination of Earth`s orbital plane.

  9. Organic carbon flux at the mangrove soil-water column interface in the Florida Coastal Everglades 

    E-Print Network [OSTI]

    Romigh, Melissa Marie

    2006-08-16T23:59:59.000Z

    Coastal outwelling of organic carbon from mangrove wetlands contributes to near-shore productivity and influences biogeochemical cycling of elements. I used a flume to measure fluxes of dissolved organic carbon (DOC) between ...

  10. Multivariable cycle-to-cycle of an injection molding process

    E-Print Network [OSTI]

    Vanderpuije, Curtis N

    2005-01-01T23:59:59.000Z

    Cycle-to-Cycle (CtC) feedback control has been studied extensively with increasing demands on the precision and quality of manufactured parts. Single input-Single output has been studied as the basis of CtC feedback control. ...

  11. MODELING HORMONAL CONTROL MENSTRUAL CYCLE

    E-Print Network [OSTI]

    MODELING HORMONAL CONTROL OF THE MENSTRUAL CYCLE James F. Selgrade Department of Mathematics of five hormones important for regulation and maintenance of the menstrual cycle. Models which correctly@math.ncsu.edu Abstract This study presents a strategy for developing a mathematical model describing the concentrations

  12. Nuclear fuel cycle information workshop

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

  13. Orbital Resonance and Solar Cycles

    E-Print Network [OSTI]

    P. A. Semi

    2009-03-29T23:59:59.000Z

    We present an analysis of planetary moves, encoded in DE406 ephemerides. We show resonance cycles between most planets in Solar System, of differing quality. The most precise resonance - between Earth and Venus, which not only stabilizes orbits of both planets, locks planet Venus rotation in tidal locking, but also affects the Sun: This resonance group (E+V) also influences Sunspot cycles - the position of syzygy between Earth and Venus, when the barycenter of the resonance group most closely approaches the Sun and stops for some time, relative to Jupiter planet, well matches the Sunspot cycle of 11 years, not only for the last 400 years of measured Sunspot cycles, but also in 1000 years of historical record of "severe winters". We show, how cycles in angular momentum of Earth and Venus planets match with the Sunspot cycle and how the main cycle in angular momentum of the whole Solar system (854-year cycle of Jupiter/Saturn) matches with climatologic data, assumed to show connection with Solar output power and insolation. We show the possible connections between E+V events and Solar global p-Mode frequency changes. We futher show angular momentum tables and charts for individual planets, as encoded in DE405 and DE406 ephemerides. We show, that inner planets orbit on heliocentric trajectories whereas outer planets orbit on barycentric trajectories.

  14. Life Cycle Asset Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-10-14T23:59:59.000Z

    (The following directives are deleted or consolidated into this Order and shall be phased out as noted in Paragraph 2: DOE 1332.1A; DOE 4010.1A; DOE 4300.1C; DOE 4320.1B; DOE 4320.2A; DOE 4330.4B; DOE 4330.5; DOE 4540.1C; DOE 4700.1). This Order supersedes specific project management provisions within DOE O 430.1A, LIFE CYCLE ASSET MANAGEMENT. The specific paragraphs canceled by this Order are 6e(7); 7a(3); 7b(11) and (14); 7c(4),(6),(7),(11), and (16); 7d(4) and (8); 7e(3),(10), and (17); Attachment 1, Definitions (item 30 - Line Item Project, item 42 - Project, item 48 - Strategic System); and Attachment 2, Contractor Requirements Document (paragraph 1d regarding a project management system). The remainder of DOE O 430.1A remains in effect. Cancels DOE O 430.1. Canceled by DOE O 413.3.

  15. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  16. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01T23:59:59.000Z

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe “lessons learned” from dynamic simulations but attempt to answer the “so what” question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  17. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  18. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  19. Cycle-to-cycle control of reconfigurable die sheet metal forming

    E-Print Network [OSTI]

    Vaughan, Chester Dewey

    2004-01-01T23:59:59.000Z

    This research addresses cycle to cycle control as applied to a sheet metal stretch forming process. More specifically, it attempts to validate the use of cycle to cycle (CtC) control for a multiple input-multiple output ...

  20. Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR

    SciTech Connect (OSTI)

    Ahn, Y.; Lee, J. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Lee, J. I. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Dept. of Nuclear Engineering, Khalifa Univ. of Science, Technology and Research (KUSTAR), P.O.Box 127788, Abu Dhabi (United Arab Emirates)

    2012-07-01T23:59:59.000Z

    For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

  1. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    Reichl, H. “Life cycle inventory analysis and identificationAllen, D.T. ; “Life cycle inventory development for waferLife Cycle Inventory of a CMOS Chip Sarah Boyd and David

  2. Sustainability Features of Nuclear Fuel Cycle Options

    E-Print Network [OSTI]

    Passerini, Stefano

    The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an ...

  3. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    yield. A hybrid life cycle assessment (LCA) model is used;more accurate life-cycle assessment (LCA) of electronicthe purposes of life-cycle assessment (LCA). While it may be

  4. Optimization of Air Conditioning Cycling

    E-Print Network [OSTI]

    Seshadri, Swarooph

    2012-10-19T23:59:59.000Z

    on a 3-ton residential air conditioner are then presented to intuitively understand the effect of expansion valve and evaporator fan cycling in a real system. A real time optimization method is explored and the feasibility, recommendations for a...

  5. Fuel cycle code, "FUELMOVE III"

    E-Print Network [OSTI]

    Sovka, Jerry Alois

    1963-01-01T23:59:59.000Z

    Further modifications to the fuel cycle code FUELMOVE are described which were made in an attempt to obtain results for reflected reactors operated under batch, outin, and bidirectional fueling schemes. Numerical methods ...

  6. M. Bahrami ENSC 461 (S 11) Stirling Cycle 1 Stirling Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Stirling Cycle 1 Stirling Cycle In Stirling cycle, Carnot cycle). The regenerator is assumed to be reversible heat transfer device. Fig. 3-2: T-s and P-v diagrams for Stirling The Stirling cycle was invented by Robert Stirling in 1816. The execution of the Stirling cycle requires

  7. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  8. 15th International Conference Ramiran, May 3-6, 2013, Versailles Assessing fertilising practices with organic residues in agriculture: a life

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cycle Assessment. Life Cycle Assessment (LCA) is a common tool to assess environmental impacts with organic residues in agriculture: a life cycle assessment perspective Pradel Marilys1* (1) Irstea, UR TSCF of a product or a system. The process or product life cycle is assessed from raw material acquisition through

  9. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Luigi Lella; Ignazio Licata

    2007-05-08T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  10. A New Model for the Organizational Knowledge Life Cycle

    E-Print Network [OSTI]

    Lella, Luigi

    2010-01-01T23:59:59.000Z

    Actual organizations, in particular the ones which operate in evolving and distributed environments, need advanced frameworks for the management of the knowledge life cycle. These systems have to be based on the social relations which constitute the pattern of collaboration ties of the organization. We demonstrate here, with the aid of a model taken from the theory of graphs, that it is possible to provide the conditions for an effective knowledge management. A right way could be to involve the actors with the highest betweeness centrality in the generation of discussion groups. This solution allows the externalization of tacit knowledge, the preservation of knowledge and the raise of innovation processes.

  11. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbon AboutOrganizing Committee

  12. Protection of Mesopore-Adsorbed Organic Matter from Enzymatic

    E-Print Network [OSTI]

    Chorover, Jon

    ). Direct correlations between organic carbon and specific surface area in many soils and sediments (3, 4 are not well understood. Cycling of organic carbon in sediments and soils has been characterized by complex in the sequestration and preservation of sedimentary OM (19, 21). This may occur by physical occlusion of OM within

  13. From association to organization

    E-Print Network [OSTI]

    Mandler, George

    2011-01-01T23:59:59.000Z

    S.M. (1978). Organization theory and memory for prose: Aand summarize organization theory and relevant empiricalexplained in terms of organization theory. The hierarchical

  14. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  15. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    Environmental Impacts . . . . . . . . . . . . . . . . . . . . . .Abatement Environmental impactLife-cycle Environmental Impacts . . . . . . . LCA of

  16. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    SemiconductorThe Semiconductor Industry: Size, Growth andSemiconductor Life-cycle Environmental Impacts . . . . . . .

  17. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Broader source: Energy.gov (indexed) [DOE]

    turbocharger 2200 bar Common Rail 2-stage EGR cooling DPF Bottoming Cycles Electric Turbo-compound Rankine Cycle, Thermo-electrics Variable Valve Actuation High Efficiency...

  18. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Turbocharging Optimum CR and VVA Compression Ratio Bottoming Cycles Rankine Cycle Turbo Compounding Base engine development Parasitic Losses Aftertreatment Management 2009...

  19. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  20. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01T23:59:59.000Z

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  1. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12T23:59:59.000Z

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  2. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  3. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance P of Sony 18650 Li-ion cells increases with increase in temperature. After 800 cycles, the cells cycled the capacity fade of commercial Li-ion cells cycled at high temperatures. We choose Sony 18650 cells with Li

  4. Phases I-C, I-D and I-E development of Kinematic Stirling/Rankine commercial gas-fired heat pump system. Final report, January 1986-September 1988

    SciTech Connect (OSTI)

    Monahan, R.E.

    1988-10-01T23:59:59.000Z

    The Kinematic Stirling/Rankine gas-heat-pump concept is based on the application of a Stirling engine under development for over a decade. The engine was converted to natural gas and is characterized with many thousand hours of operating experience. The goal of the project is to develop a commercial-size Stirling engine-driven gas heat pump with a cooling capacity of 10-tons, a COP (heating) of 1.8 and a COP (cooling) of 1.1. The project is a multi-phase development with commercialization planned for 1990. In these phases, an HVAC systems manufacturer (York International) has been working with SPS to develop a prototype gas-heat-pump system. To date, two generations of prototype GHP systems have been built and tested and have demonstrated significant operating cost savings over the conventional electric heat pump. Data are presented for environmental laboratory testing of both prototype gas heat pumps as well as durability, reliability, performance, and emission testing of the V160 Stirling engine. A number of design and manufacturing process changes were made to the engine to reduce costs and improve endurance and shaft efficiency and are described.

  5. Edinburgh Research Explorer Money Cycles

    E-Print Network [OSTI]

    Millar, Andrew J.

    Andrew Clausen (University of Edinburgh) Carlo Strub (University of St. Gallen) Date September 2014)131 650 8361 http://edin.ac/16ja6A6 #12;Money Cycles* Andrew Clausen University of Edinburgh Carlo Strub Nakajima, Borghan Narajabad, Peter Norman, Stanislav Rabinovich, Xavier Ragot, Andrei Shevchenko, Robert

  6. Single-cycle nonlinear optics

    E-Print Network [OSTI]

    Goulielmakis, E.; Max-Planck-Institut fur Quantenoptik

    2008-01-01T23:59:59.000Z

    g l e - C y c l e Nonlinear Optics E. G o u l i e l m a k iSingle-Cycle Nonlinear Optics E. Goulielmakis *, M.D-85748 Garching. Center for X-Ray Optics, Lawrence Berkeley

  7. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

    2010-08-01T23:59:59.000Z

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  8. Prediction of future fifteen solar cycles

    E-Print Network [OSTI]

    K. M. Hiremath

    2007-04-11T23:59:59.000Z

    In the previous study (Hiremath 2006a), the solar cycle is modeled as a forced and damped harmonic oscillator and from all the 22 cycles (1755-1996), long-term amplitudes, frequencies, phases and decay factor are obtained. Using these physical parameters of the previous 22 solar cycles and by an {\\em autoregressive model}, we predict the amplitude and period of the future fifteen solar cycles. Predicted amplitude of the present solar cycle (23) matches very well with the observations. The period of the present cycle is found to be 11.73 years. With these encouraging results, we also predict the profiles of future 15 solar cycles. Important predictions are : (i) the period and amplitude of the cycle 24 are 9.34 years and 110 ($\\pm 11$), (ii) the period and amplitude of the cycle 25 are 12.49 years and 110 ($\\pm$ 11), (iii) during the cycles 26 (2030-2042 AD), 27 (2042-2054 AD), 34 (2118-2127 AD), 37 (2152-2163 AD) and 38 (2163-2176 AD), the sun might experience a very high sunspot activity, (iv) the sun might also experience a very low (around 60) sunspot activity during cycle 31 (2089-2100 AD) and, (v) length of the solar cycles vary from 8.65 yrs for the cycle 33 to maximum of 13.07 yrs for the cycle 35.

  9. Multiple Input-Multiple Output Cycle-to-Cycle Control of Manufacturing Processes

    E-Print Network [OSTI]

    Rzepniewski, Adam K.

    Cycle-to-cycle control is a method for using feedback to improve product quality for processes that are inaccessible within a single processing cycle. This limitation stems from the impossibility or the prohibitively high ...

  10. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  11. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I. [University of Tennessee, 311 Pasqua Engineering Building, Knoxville, TN 37996-2300 (United States)

    2013-07-01T23:59:59.000Z

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  12. Carnot cycle for an oscillator

    E-Print Network [OSTI]

    Arnaud, J; Philippe, F

    2002-01-01T23:59:59.000Z

    Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature Th and a cold bath at temperature Tc cannot exceed 1-Tc/Th. This result implies the existence of an entropy function S(U) with the property that d^2S/dU^2 less equal 0, where U denotes the average energy. Linear single-mode systems alternately in contact with hot and cold baths obey these principles. A specific expression of the work done per cycle by an oscillator is derived from a prescription established by Einstein in 1906: heat baths may exchange energy with oscillators at angular frequency omega only by amounts hbar *omega, where 2*pi*hbar denotes the Planck constant. Non-reversible cycles are illustrated. The paper is essentially self-contained.

  13. Single-cycle nonlinear optics

    SciTech Connect (OSTI)

    Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

    2008-11-05T23:59:59.000Z

    Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).

  14. Profit cycle dynamics by Kawika Pierson.

    E-Print Network [OSTI]

    Pierson, Kawika (Kawika Paul)

    2011-01-01T23:59:59.000Z

    My thesis consists of three essays investigating the existence, causes, and mitigation of profit cycles at an industry level. The first essay examines profit cycles by proposing that the industry-specific features of how ...

  15. Rethinking the light water reactor fuel cycle

    E-Print Network [OSTI]

    Shwageraus, Evgeni, 1973-

    2004-01-01T23:59:59.000Z

    The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

  16. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  17. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  18. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  19. Search for relationship between duration of the extended solar cycles and amplitude of sunspot cycle

    E-Print Network [OSTI]

    Tlatov, A G

    2007-01-01T23:59:59.000Z

    Duration of the extended solar cycles is taken into the consideration. The beginning of cycles is counted from the moment of polarity reversal of large-scale magnetic field in high latitudes, occurring in the sunspot cycle n till the minimum of the cycle n+2. The connection between cycle duration and its amplitude is established. Duration of the "latent" period of evolution of extended cycle between reversals and a minimum of the current sunspot cycle is entered. It is shown, that the latent period of cycles evolution is connected with the next sunspot cycle amplitude and can be used for the prognosis of a level and time of a sunspot maximum. The 24-th activity cycle prognosis is done. Long-term behavior of extended cycle's lengths is considered.

  20. Search for relationship between duration of the extended solar cycles and amplitude of sunspot cycle

    E-Print Network [OSTI]

    A. G. Tlatov

    2007-03-27T23:59:59.000Z

    Duration of the extended solar cycles is taken into the consideration. The beginning of cycles is counted from the moment of polarity reversal of large-scale magnetic field in high latitudes, occurring in the sunspot cycle n till the minimum of the cycle n+2. The connection between cycle duration and its amplitude is established. Duration of the "latent" period of evolution of extended cycle between reversals and a minimum of the current sunspot cycle is entered. It is shown, that the latent period of cycles evolution is connected with the next sunspot cycle amplitude and can be used for the prognosis of a level and time of a sunspot maximum. The 24-th activity cycle prognosis is done. Long-term behavior of extended cycle's lengths is considered.

  1. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01T23:59:59.000Z

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  2. Generating Resources Combined Cycle Combustion Turbine

    E-Print Network [OSTI]

    11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine #12;11/17/2014 4 Combined Cycle Combustion Turbine Background Primary Components Gas-fired combustion

  3. EQUIVALENCE RELATIONS ON ALGEBRAIC CYCLES UWE JANNSEN

    E-Print Network [OSTI]

    EQUIVALENCE RELATIONS ON ALGEBRAIC CYCLES UWE JANNSEN Mathematisches Institut Universit¨at zu K, and it is common to study the groups of algebraic cycles via so­called adequate equivalence relations. For example, the basic Chow groups are defined by considering cycles modulo rational equivalence. Rational, algebraic

  4. Cycling Losses During Screw Air Compressor Operation

    E-Print Network [OSTI]

    Maxwell, J. B.; Wheeler, G.; Bushnell, D.

    , the study revealed compressors with cycling controls require as much as 10-25 % more power than is normally assumed when cycle times decrease below 2 minutes. This short cycle time is common in industrial environments. The study also found that combined...

  5. Life Cycle Assessment of Reclaimed Asphalt Pavement

    E-Print Network [OSTI]

    Minnesota, University of

    Life Cycle Assessment of Reclaimed Asphalt Pavement to Improve Asphalt Pavement Sustainability By Pavement (RAP) Courtesy of http://myconstructionphotos.smugmug.com/ RAP #12;Transport Back to the Plant-melt old binder on the RAP #12;Life Cycle Assessment (LCA) · #12;Asphalt Pavement Life Cycle Road

  6. Utilization of geopressured resources in the oxidation of organic waste in supercritical water. Phase I, Final report

    SciTech Connect (OSTI)

    Diaz, Alexander F.; Herzog, Howard J.; Tester, Jefferson W.

    1992-11-01T23:59:59.000Z

    Geopressured resources are geothermal reservoirs containing dissolved methane in hot brine at pressures well in excess of their in situ hydrostatic pressure. In the US, geopressured resources are primarily located in the Gulf (of Mexico) Coast. The wells in this area are characterized by typical bottomhole temperatures of 120-180 C (250-360 F) (Negus-de Wys, 1991a) and bottomhole pressures of 675-1275 bar (9,800-18,500 psia) (Negus-de Wys, 1991b). Supercritical water oxidation (SCWO) is an emerging technology for the destruction of hazardous organic waste in which oxidation is carried out in a water medium above the critical point of pure water (374 C/705 F, 221 bar/3208 psia) (Tester et al., 1992). Geopressured resources are particularly suitable as an input stream to a SCWO waste treatment process due to the near critical conditions of their hot brine. By using a Rankine-type power cycle, electric power can be generated by capturing the available thermal and hydraulic energy from the geothermal resource and the chemical energy of the dissolved methane released by the oxidation process. In addition to oxidizing the methane to convert the chemical energy to thermal energy, auxiliary fuel in the form of an organic waste can be co-oxidized to increase the energy output to commercially sustainable levels. Coupling the treatment of geopressured brine with an organic waste in a SCWO process synergistically improves power production while providing a means for treating hazardous waste. The objective of this study is to assess the feasibility of using geopressured resources to simultaneously detoxify hazardous waste and generate electric power. Our ultimate aim is to develop conceptual process designs for above-ground and fully or modified in situ approaches to co-processing organic waste with geopressured brine in supercritical water. As a preparatory step for investigating in situ approaches, a realistic above-ground conceptual design was developed in this study. In that concept, the waste, brine and oxidant (air or oxygen) are introduced into the SCWO reactor at the system pressure of 234 bar (3400 psia). The heat of oxidation raises the temperature of the system to about 600 C (1100 F). Due to the low solubility of inorganic salts in supercritical water (about 200 ppm or less) (Armellini and Tester, 1990, 1991a, 1991b), solid salt forms and falls to the lower section of the reactor, where it is cooled and quenched with water, creating a concentrated (organic-free) brine that would be mixed with brackish water and reinjected back to the geopressured well. Power is generated by the expansion of the products of the SCWO process through a series of multi-stage turboexpanden. A processing capacity of 100,000 gallons per day (gpd) was initially taken as the design basis, following some investigations carried out at the Idaho National Engineering Laboratory (Propp et al., 1990). The process was modeled using the ASPEN PLUS{trademark} process flowsheet simulator and material and energy balances were determined. Both the cases of using air and oxygen as oxidant were investigated. Toluene was chosen as the model compound to represent the organic waste. Turbine design calculations based on the volumetric flowrates obtained for a 100,000 gpd capacity resulted in unrealistically high rotor rotational speeds and small wheel pitch diameters to achieve optimum efficiencies. Higher SCWO effluent flowrates would lower rotor rotational speeds and increase wheel pitch diameters to more practical levels. Thus, a 42-fold larger design capacity of 100,000 barrels per day (bpd) was adopted as the basis for an above-ground base case. The results for the material and energy balances for a processing capacity of 100,000 bpd using air and oxygen as oxidant scale up linearly from the results for the 100,000 gpd case. The best case flowsheet corresponding to a 100,000 bpi case using oxygen as oxidant is given in Figure 1. Our conceptual design study suggests that simultaneous detoxification of hazardous waste and production of power is possible by co-pr

  7. D-Cycle - 4-Differential -Stroke Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,Crafty Gifts|Energy CybersecurityCyrusD-Cycle -

  8. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect (OSTI)

    Cornet, S.M. [OECD Nuclear Energy Agency, 12 Boulevard des Iles, 92130 Issy-les-Moulineaux (France); McCarthy, K. [Idaho Nat. Lab. - P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Chauvin, N. [CEA Saclay, Nuclear Energy Division, 91191 Gif/Yvette (France)

    2013-07-01T23:59:59.000Z

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  9. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    indicators in life-cycle assessment (LCA). Human Ecologicalindicators in life-cycle assessment (LCA). Human EcologicalI explore how life-cycle assessment (LCA) results can

  10. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms. Environmental Health Perspectives

    E-Print Network [OSTI]

    John W. Farrington

    1991-01-01T23:59:59.000Z

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussng chemkal and geochemical aspects ofbiogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuckar aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food meb transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a nt source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly.

  11. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01T23:59:59.000Z

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  12. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01T23:59:59.000Z

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  13. Biomass combustion as a source of terrigenous organic matter to the coastal ocean 

    E-Print Network [OSTI]

    Peirce, Kayce

    2012-04-12T23:59:59.000Z

    Natural and anthropogenic combustion processes are major sources of organic carbon into the environment. Biomarkers of biomass combustion can be used to monitor the impact of combustion on carbon cycling at multiple scales, particularly in natural...

  14. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    E-Print Network [OSTI]

    Kroll, Jesse

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

  15. Carnot cycle for an oscillator

    E-Print Network [OSTI]

    J. Arnaud; L. Chusseau; F. Philippe

    2001-11-20T23:59:59.000Z

    Carnot established in 1824 that the efficiency of cyclic engines operating between a hot bath at absolute temperature $T_{hot}$ and a bath at a lower temperature $T_{cold}$ cannot exceed $1-T_{cold}/T_{hot}$. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as in the classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The paper begins with historical considerations and is essentially self-contained.

  16. Importance of life cycle assessment

    SciTech Connect (OSTI)

    Bridges, J.S.

    1994-06-16T23:59:59.000Z

    The paper presents Life Cycle Assessment (LCA) as a tool to assist the waste professional with integrated waste management. LCA can be the connection between the waste professional and designer/producer to permit the waste professional to encourage the design of products so material recovery is most efficient and markets can be better predicted. The waste professional can better monitor the involvement of the consumer in waste management by using LCA and looking upstream at how the consumer actually reacts to products and packaging. LCA can also help the waste professional better understand the waste stream.

  17. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  18. Use of life-cycle costing in the development of standards. Master's thesis

    SciTech Connect (OSTI)

    Underwood, J.M.

    1988-12-01T23:59:59.000Z

    This thesis set out to determine how, and to what extent, life-cycle costing is used in the development of voluntary consensus standards. It explains how several organizations in the commercial sector develop voluntary standards. Among these organizations was ASHRAE, who is currently developing a standard based on life-cycle costing. Standard 90.2 Energy Efficient Design of New Low-Rise Residential Buildings prescribes the insulation values for the envelope of a building. The economic methodology was based on marginal analysis by considering an upgraded construction component and then determining the incremental energy-cost savings to the incremental modification costs over a specified life-cycle period. Questions arose concerning the economic assumptions used in developing the standard. It is recommended that an impact study be performed to evaluate the cost-estimating techniques and the basic economic assumptions.

  19. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  20. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  1. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  2. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  3. Organic Photovoltaics Philip Schulz

    E-Print Network [OSTI]

    Firestone, Jeremy

    Field Effect Transistors Organic Light Emitting Diodes Organic Solar Cells .OFET, OTFT .RF-ID tag 1977 ­ Conductivity in polymers 1986 ­ First heterojunction OPV 1987 ­ First organic light emitting diode (OLED) 1993 ­ First OPV from solution processing 2001 ­ First certified organic solar cell with 2

  4. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10T23:59:59.000Z

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  5. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we plan for? · Should we separate uranium? · If we separate uranium, should we recycle it, store it or dispose of it? · Is it practical to plan to fabricate and handle “hot” fuel? · Which transuranic elements (TRU) should be separated and transmuted? · Of those TRU separated, which should be transmuted together? · Should we separate and/or transmute Cs and Sr isotopes that dominate near-term repository heating? · Should we separate and/or transmute very long-lived Tc and I isotopes? · Which separation technology? · What mix of transmutation technologies? · What fuel technology best supports the above decisions?

  6. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01T23:59:59.000Z

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.

  7. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  8. Short Time Cycles of Purely Quantum Refrigerators

    E-Print Network [OSTI]

    Tova Feldmann; Ronnie Kosloff

    2012-04-18T23:59:59.000Z

    Four stroke Otto refrigerator cycles with no classical analogue are studied. Extremely short cycle times with respect to the internal time scale of the working medium characterize these refrigerators. Therefore these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle which is the invariant of the global cycle propagator. During their operation the state of the working medium possesses significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.

  9. Proceedings: 1990 fossil plant cycling conference

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities, vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.

  10. A Coupled Quantum Otto Cycle

    E-Print Network [OSTI]

    George Thomas; Ramandeep S. Johal

    2010-11-03T23:59:59.000Z

    We study the 1-d isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine. The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher than the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A new domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each spin seems to effect the flow of heat in a direction opposite to the global temperature gradient. This seeming contradiction to the second law can be resolved in terms of local effective temperature of the spins.

  11. Business cycles in oil economies

    SciTech Connect (OSTI)

    Al-Mutairi, N.H.

    1991-01-01T23:59:59.000Z

    This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

  12. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  13. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    The Pennsylvania State Univeristy: Serguei Lvov, Mike Chung, Mark Fedkin, Victor Balashov, Elena, Chalkova, Nikolay Akinfiev; University of South Carolina: Carol Stork, Thomas Davis, Francis Gadala-Maria, Thomas Stanford, John Weidner; Tulane University: Victor Law, John Prindle; Lewis, ANL: Michele

    2011-01-06T23:59:59.000Z

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world�s hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements - around 530 oC and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  14. Optimal operation of simple vapour compression cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    is the air-conditioner (A/C). In colder regions a cycle operating in the opposite direction, the "heat pump. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined as COPh = Qh Ws = h1 - h2 h1 - h4 and COPc = Qc Ws = h4 - h3 h1 - h4 (1.1) respectively. Heat pumps

  15. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect (OSTI)

    Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Liebner, Susanne [University of Tromso, Norway; Wilhelm, Ronald [McGill University, Montreal, Quebec; Wagner, Dirk [Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

    2011-01-01T23:59:59.000Z

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  16. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    , Batavia IL (USA) Prof. Dr. F. Krausz BESSY GmbH, Berlin Prof. Dr. B. Naroska Universität Hamburg Prof. Dr. F. Pauss European Organization for Particle Physics CERN, Geneva (CH) Dr. N. Roe Lawrence Berkeley Organization for Particle Physics CERN, Geneva (CH) Dr. A. Wrulich Paul Scherrer Institut, Villigen (CH) 14 #12

  17. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Medizinische Forschung, Heidelberg Prof. Dr. E. Jaeschke BESSY GmbH, Berlin Prof. Dr. W. Jentschke Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. W. Sandner Max-Born-Institut, Berlin Dr. M

  18. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    Kassel Prof. Dr. S. Großmann Fachbereich Physik, Universität Marburg Prof. Dr. E. Jaeschke BESSY Gmb Organization for Particle Physics CERN, Genf (CH) Prof. Dr. V. Metag Gesellschaft für Schwerionenforschung GSI, Darmstadt Dr. D. Möhl European Organization for Particle Physics CERN, Genf (CH) Prof. Dr. J. Stachel

  19. Organe und Gremien Organe der Stiftung

    E-Print Network [OSTI]

    BESSY GmbH, Berlin Prof. Dr. W. Jentschke II. Institut für Experimentalphysik, Universität Hamburg (Ehrenmitglied) Dr. K.-H. Kissler European Organization for Particle Physics CERN, Geneva (CH) Prof. Dr. K. Königsmann Albert-Ludwigs-Universität Freiburg Dr. J. May European Organization for Particle Physics CERN

  20. Variable pressure power cycle and control system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1984-11-27T23:59:59.000Z

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  1. Seeing the Forest of Secular Cycles

    E-Print Network [OSTI]

    Sirag, Jr., David J

    2012-01-01T23:59:59.000Z

    imperial cycles (The Old and Middle Kingdoms of Egypt).In the case of Egypt, the mapping thatproduced separated ancient Egypt into two adjacent imperial

  2. Intrinsic chirp of single-cycle pulses

    SciTech Connect (OSTI)

    Lin Qiang; Zheng Jian [Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Dai Jianming; Ho, I-Chen; Zhang, X.-C. [Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2010-04-15T23:59:59.000Z

    The Fourier transform-limited electromagnetic pulse has been regarded to be free of chirps for a long time. This is no longer true if the pulse duration goes down to or less than one optical cycle. We report the experimental observation of intrinsic chirps in such pulses with the sub-single-cycle terahertz (THz) waveforms obtained with a standard THz time-domain spectroscopy system. The results confirm the break down of the carrier-envelope (CE) expression for single-cycle optical pulses, and may influence the experimental measurements and theoretical modeling with single-cycle pulses.

  3. Chlorinated hydrocarbon cycling in the benthic nepheloid layer of Lake Superior

    SciTech Connect (OSTI)

    Baker, J.E.; Elsenreich, S.J.; Johnson, T.C.; Halfman, B.M.

    1985-09-01T23:59:59.000Z

    The dynamics and composition of the benthic nepheloid layer (BNL) in western Lake Superior were studied with respect to the cycling of trace hydrophobic organic compounds. The BNL was enriched in t-PCB, p,p'-DDE, and hexachlorobenzene (HCB) but deficient in dissolved organic carbon relative to surface waters. Resuspension events in midsummer resulted in a 50% increase in the PCB burden in the water column. Seasonal cycling of PCB congeners was strongly dependent on their degree of chlorination, with heavier chlorinated congeners lost from the water column (t/sub 1/2/ = 17-28 days at two sites). Steady-state t-PCB concentrations in the BNL were maintained over the summer by transport of lighter chlorinated congeners from the underlying sediments. DDE is an effective tracer of sediment resuspension in Lake Superior. Recycling of trace organic pollutants in the BNL serves to increase their resident times in the lake.

  4. Moving toward multilateral mechanisms for the fuel cycle

    SciTech Connect (OSTI)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    2009-04-17T23:59:59.000Z

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEA safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.

  5. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16T23:59:59.000Z

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  6. Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1

    E-Print Network [OSTI]

    California at Berkeley, University of

    Solar cycle changes in coronal holes and space weather cycles J. G. Luhmann,1 Y. Li,1 C. N. Arge,2-heliolatitude solar wind over approximately the last three solar cycles. Related key parameters like interplanetary explain solar magnetic field control of long-term interplanetary variations. In particular, the enduring

  7. ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ASSESSING A RECLAIMED CONCRETE UP-CYCLING SCHEME THROUGH LIFE-CYCLE ANALYSIS Sylvain Guignot1 Concrete, aggregate, electro-fragmentation, recycling, life-cycle analysis Abstract The present study evaluates the environmental impacts of a recycling scheme for gravels from building concretes wastes

  8. M. Bahrami ENSC 461 (S 11) Carnot Cycle 1 Power Cycles

    E-Print Network [OSTI]

    Bahrami, Majid

    adiabatically through the turbine and work is developed. The steam temperature decreases from TH to TL 2-3: Two represent the net work of the idealized cycle. Remember that an ideal power cycle does not involve any a simple vapor power plant. Fig. 2-2: Carnot vapor cycle. 1-2: The steam exiting the boiler expands

  9. Organic photovoltaics and concentrators

    E-Print Network [OSTI]

    Mapel, Jonathan King

    2008-01-01T23:59:59.000Z

    The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

  10. Assessment 101: The Assessment Cycle, Clear and

    E-Print Network [OSTI]

    Su, Xiao

    Assessment 101: The Assessment Cycle, Clear and Simple October 1, 2014 Kellogg West Conference Center, Pomona, CA Resource Binder #12;2014-2015 WASC Senior College and University Commission is pleased expectations. Assessment 101: The Assessment Cycle, Clear and Simple October 1, 2014. Kellogg West, Pomona, CA

  11. C-26 and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Trahey, N.M.; Platt, A.M.

    1983-03-01T23:59:59.000Z

    The activities of Committee C-26 on the nuclear fuel cycle are discussed. To date, Committee C-26 has issued some 35 standards with 12 more in various stages of development at the working group and sub-committee levels. C-26 has undertaken standards responsibility for all fuel and related materials represented in the nuclear fuels cycle.

  12. Fuel cycles for the 80's

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

  13. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01T23:59:59.000Z

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  14. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12T23:59:59.000Z

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  15. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-Print Network [OSTI]

    Schmittner, Andreas

    properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that pos, human activities have emitted large amounts of carbon dioxide (CO2) into the atmosphere (490 PgC fromNonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling

  16. Organizing and Personalizing Intelligence

    E-Print Network [OSTI]

    Tan, Ah-Hwee

    Vista). More sophis- ticated ones, such as Northern Light, BullsEye and Copernic go a step further organize

  17. MHD Integrated Topping Cycle Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  18. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26T23:59:59.000Z

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  19. CCPPolicyBriefing Organization

    E-Print Network [OSTI]

    Feigon, Brooke

    . METHODOLOGY · The author incorporates the economic theory of organizations into the framework of public law to establish the theory of cartel organization, and calls for further studies to disclose the sophisticatedCCPPolicyBriefing September 2008 Cartel Organization and Antitrust Enforcement W: www

  20. Ethylene-Dependent and -Independent Processes Associated with Floral Organ Abscission in Arabidopsis1

    E-Print Network [OSTI]

    Wurtele, Eve Syrkin

    in the life cycle of the plant, regulating the detachment of organs from the main body of the plant by three independent loci. Scanning electron microscopy shows delayed development of the flattened fracture organ abscission in Arabidopsis may be used as a model system to study abscission (Bleecker

  1. Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2

    E-Print Network [OSTI]

    Pittendrigh, Barry

    Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

  2. Pipeline bottoming cycle study. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle working fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.

  3. Light duty vehicle full fuel cycle emissions analysis. Topical report, April 1993-April 1994

    SciTech Connect (OSTI)

    Darrow, K.G.

    1994-04-01T23:59:59.000Z

    The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of California and two time frames, current and year 2000.

  4. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    Figures A typical wet steam Rankine cycle on a temperature-A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributed

  5. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    with conventional steam turbine powered electric generation.used to boil water for steam turbine generation as a secondturbine) and Rankine (steam turbine) cycles, as illustrated

  6. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    of Brayton (gas turbine) and Rankine (steam turbine) cycles,exhaust to drive a steam turbine, the exhaust vapor iswith conventional steam turbine powered electric generation.

  7. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    Rankine cycles and Stirling engines have been utilized to14, 15]. Particularly, Stirling engines have been used in a18]. Theoret- ically, Stirling engines can achieve Carnot e?

  8. Development and Demonstration of a Fuel-Efficient HD Engine

    Broader source: Energy.gov (indexed) [DOE]

    Turbocompounding Rankine Cycle Low Friction components Lube system Cooling system VVA + turbo match VVA Turbo optimization 2900bar capability Comb match Increased PCP Optimum...

  9. Project Profile: High-Temperature Thermal Array for Next-Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cycles driven through the use of latent heat (Rankine) and isothermal heat sources (Stirling). The system has the potential to be broadly applicable in many CSP and heliostat...

  10. asm montreal chapter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASME Proceedings of IMECE'03 2003 ASME International Mechanical Engineering RANKINE CYCLE STEAM TURBINE FOR POWER GENERATION Luc G. Frchette* , Changgu Lee, Selin Arslan, and...

  11. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect (OSTI)

    Nash, C.; Duignan, M.

    2010-02-23T23:59:59.000Z

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first work to quantify mercury on sRF resin. Resin mercury content is important in plans for the disposition of used sRF resin. Mercury speciation in high level waste (HLW) is unknown. It may be partly organic, one example being methyl mercury cation. Further study of the resin's affinity for mercury is recommended.

  12. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials

    SciTech Connect (OSTI)

    Xu, Wu; Read, Adam L.; Koech, Phillip K.; Hu, Dehong; Wang, Chong M.; Xiao, Jie; Padmaperuma, Asanga B.; Graff, Gordon L.; Liu, Jun; Zhang, Jiguang

    2012-02-01T23:59:59.000Z

    Two organic cathode materials based on poly(anthraquinonyl sulfide) structure with different substitution positions were synthesized and their electrochemical behavior and battery performances were investigated. The substitution positions on the anthraquinone structure, binders for electrode preparation and electrolyte formulations have been found to have significant effects on the battery performances of such organic cathode materials. The substitution position with less steric stress has higher capacity, longer cycle life and better high-rate capability. Polyvinylidene fluoride binder and ether-based electrolytes are favorable for the high capacity and long cycle life of the quinonyl organic cathodes.

  13. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01T23:59:59.000Z

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  14. Process system optimization for life cycle improvement

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.

    1999-12-31T23:59:59.000Z

    Life Cycle Assessment (LCA) is an analytic tool for quantifying the environmental impacts of all processes used in converting raw materials into a final product. The LCA consists of three parts. Life cycle inventory quantifies all material and energy use, and environmental emissions for the entire product life cycle, while impact assessment evaluates actual and potential environmental and human health consequences of the activities identified in the inventory phase. Most importantly, life cycle improvement aims at reducing the risk of these consequences occurring to make the product more benign. when the LCA is performed in conjunction with a technoeconomic analysis, the total economic and environmental benefits and shortcomings of a product or process can be quantified. A methodology has been developed incorporating process performance, economics, and life cycle inventory data to synthesize process systems, which meet life cycle impact-improvement targets at least cost. The method relies on a systematic description of the product life cycle and utilizes successive Linear Programming to formulate and optimize the non-linear, constrained problem which results. The practicality and power of this approach have been demonstrated by examining options for the reduction of emissions of the greenhouse gas CO{sub 2} from petroleum-based fuels.

  15. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  16. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13T23:59:59.000Z

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  17. The Anderson Quin Cycle. Final report

    SciTech Connect (OSTI)

    Anderson, J.H.; Bilbow, W.M.

    1993-03-18T23:59:59.000Z

    The objective of this study was to make a more refined evaluation of the Anderson Quin Cycle based on most recent information on the performance of various elements that will be used in the Anderson Quin Cycle. My original estimate of the work plan for evaluating and optimizing the Anderson Quin Cycle called for 7000 man hours of work. Since this grant was limited to 2150 man hours, we could not expect to achieve all the objectives within the allotted period of work. However, the most relevant program objectives have been completed as reported here. The analysis generally confirms the results originally estimated in my paper on the subject. (Ref. 2) Further optimizations should show even higher efficiencies. The Anderson Quin Cycle (US Patent applied for) basically consists of 5 elements in the power cycle: A refrigeration system to cool and clean the inlet air before it enters the compressor that supplies air for the gas turbine; a gas turbine consisting of a compressor, combustor, and turbine; a steam boiler and steam turbine system using the heat from the exhaust gas out of the gas turbine; a vapor turbine cycle, which utilizes the condensed heat from the exhaust of the steam turbine and the exhaust gas heat leaving the steam boiler to operate a vapor turbine cycle which utilizes another fluid than water, in this case isobutane; and the fifth element consists of a gas cooler and heat pump system, which removes the heat from the exhaust gas to lower its temperature essentially to atmospheric temperature, and at the same time permits treatment of the exhaust gas to remove acid components such as sulfur dioxide and nitrogen oxides. Current industry accepted component characteristics were incorporated in the performance analysis of the overall cycle, ensuring accurate and meaningful operating predictions. The characteristics and performance of each of the elements are described. The thermal efficiency of the optimized calculated Anderson Quin Cycle is 62 percent.

  18. From Population to Organization Thinking

    E-Print Network [OSTI]

    Lane, David; Maxfield, Robert; Read, Dwight W; van der Leeuw, Sander E

    2009-01-01T23:59:59.000Z

    Herbert Simon developed a theory of organization for complexin need of a theory of organization. As we have alreadya deeper theory of organization: complex networks,

  19. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31T23:59:59.000Z

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  20. Evaluating the origins and transformations of organic matter and dissolved inorganic nitrogen in two contrasting North Sea estuaries 

    E-Print Network [OSTI]

    Ahad, Jason Michael Elias

    In order to delineate the potential sources and to understand the main controls on the biogeochemical cycling of dissolved and particulate organic matter (DOM, POM) and dissolved inorganic nitrogen (DIN) during estuarine ...

  1. Spatial and temporal dynamics of biogeochemical processes in the Fraser River, Canada : a coupled organic-inorganic perspective

    E-Print Network [OSTI]

    Voss, Britta Marie

    2014-01-01T23:59:59.000Z

    The great geologic and climatic diversity of the Fraser River basin in southwestern Canada render it an excellent location for understanding biogeochemical cycling of sediments and terrigenous organic carbon in a relatively ...

  2. Determining Sources of Dissolved Organic Carbon and Nutrients in an Urban Basin Using Novel and Traditional Methods

    E-Print Network [OSTI]

    Govil, Krittika

    2014-01-03T23:59:59.000Z

    Water quality in urban ecosystems is sensitive to localized disturbances potentially affecting those mechanisms which influence nutrient cycles. The Carters Creek Basin has been reported to have elevated concentrations of dissolved organic carbon...

  3. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea

    E-Print Network [OSTI]

    McCarren, Jay

    Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with ...

  4. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  5. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Hongsuk Kang; Young-Gui Yoon; D. Thirumalai; Changbong Hyeon

    2015-06-03T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yeast ($N\\approx 1.2\\times 10^7$, $\\phi<\\phi_c^{\\infty}$) are equilibrated with no clear signature of such organization.

  6. Sociology: Computational Organization Theory Sociology: Computational Organization Theory

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Sociology: Computational Organization Theory Sociology: Computational Organization Theory Kathleen; organization theory; organizational learning; social networks; expert systems Citation: Kathleen Carley, 1994, "Sociology: Computational Organization Theory." Social Science Computer Review, 12(4): 611-624. #12;Sociology

  7. Theory of Organic Magnetoresistance in Disordered Organic Semiconductors

    E-Print Network [OSTI]

    Flatte, Michael E.

    Theory of Organic Magnetoresistance in Disordered Organic Semiconductors Nicholas J. Harmon semiconductors, disordered semiconductors, organic magnetoresistance, percolation theory, spin transport organic semiconductors. The theory proposed here maps the complex phenomena of spin-dependent hopping onto

  8. CURRICULUM VITAE DEREK DUNN-RANKIN

    E-Print Network [OSTI]

    Mease, Kenneth D.

    laser radiation; thermophoretic transport in a heated turbulent boundary layer; June 1985­November 1985

  9. Compaction of Norphlet sandstones, Rankin County, Mississippi

    SciTech Connect (OSTI)

    McBride, E.F.

    1987-09-01T23:59:59.000Z

    Fabric and porosity changes resulting from compaction were studied in sandstones from three cores sampled at depths between 15,900 and 22,500 ft. Point counts of 30 thin sections indicate that 0.4% of the rock volume was lost by ductile grain deformation and 3% by pressure solution at both grain contacts and at widely spaced stylolites. Pre-cement porosities of eolian sandstone range from 27 to 35% (mean = 29%), indicating that a total of from 10 to 18% porosity (mean = 16%) was lost by compaction (assuming 45% initial porosity). The difference between the total porosity loss and the sum of the other two processes is assumed to be the porosity lost by grain rearrangement (mean = 12.6%). The amount of pressure solution at grain contacts for each well is independent of depth, temperature, and amount of both quartz cement and total cement. Stylolites transect both grains and cements, which indicates they formed late in the diagenetic sequence. Silica released by pressure solution at quartz grain contacts could not be the sole source and was probably not even the major source of quartz cement in the formation, because cementation by quartz preceded the episode of strong pressure solution. In addition, the volume of silica released by pressure solution appears to have been inadequate to provide the volume of quartz cement present.

  10. Rankin, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2Rangely, Colorado:

  11. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01T23:59:59.000Z

    A Mathematical Analysis of Full Fuel Cycle Energy Use. ”of Policy for Adopting Full-Fuel-Cycle Analyses Into Energyof Policy for Adopting Full-Fuel-Cycle Analyses Into Energy

  12. Useful Cycles in Probabilistic Roadmap Dennis Nieuwenhuisen Mark H. Overmars

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Useful Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars institute; Useful Cycles in Probabilistic Roadmap Graphs Dennis Nieuwenhuisen Mark H. Overmars December 2004 useful cycles to the roadmap graph. 1 Introduction Automated motion planning has become important

  13. Life cycle evolution and systematics of Campanulariid hydrozoans

    E-Print Network [OSTI]

    Govindarajan, Annette Frese, 1970-

    2004-01-01T23:59:59.000Z

    The purpose of this thesis is to study campanulariid life cycle evolution and systematics. The Campanulariidae is a hydrozoan family with many life cycle variations, and provide an excellent model system to study life cycle ...

  14. Nuclear fuel cycles for mid-century development

    E-Print Network [OSTI]

    Parent, Etienne, 1977-

    2003-01-01T23:59:59.000Z

    A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

  15. Life-cycle assessment of NAND flash memory

    E-Print Network [OSTI]

    Boyd, Sarah; Horvath, A; Dornfeld, David

    2010-01-01T23:59:59.000Z

    this possibility, a life-cycle assessment (LCA) of NAND ?ashstudy presents a life-cycle assessment (LCA) of ?ash memoryInput- Output Life Cycle Assessment (EIO-LCA), US 1997

  16. Evalua&ng Forest Biomaterials with Environmental Life Cycle Assessment

    E-Print Network [OSTI]

    : Environmental Life cycle assessment (LCA) to understand impacts of forest productsEvalua&ng Forest Biomaterials with Environmental Life Cycle Assessment Hosted in the industrial sphere, with addiKonal effects 6 #12;Life Cycle Assessment Method

  17. Feasibility of Organizations -A Refinement of Chemical Organization Theory

    E-Print Network [OSTI]

    Hinze, Thomas

    Feasibility of Organizations - A Refinement of Chemical Organization Theory with Application to P a theorem providing a criteria for an unfeasible organization. This is a refinement of organization theory organization. Key words: reaction networks, constructive dynamical systems, chem- ical organization theory

  18. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  19. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    global warming intensity of electricity (at the locations of productionproduction as a result of the high global warming intensity of electricityelectricity mix at the production site on total life-cycle global warming

  20. Combined Cycle Cogeneration at NALCO Chemical 

    E-Print Network [OSTI]

    Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

    1985-01-01T23:59:59.000Z

    included in the evaluation. In addition, absorption chilling and electrical centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is outlined. Bid evaluation procedure involved a life cycle cost...

  1. Menstrual cycle effects on spatial location tasks

    E-Print Network [OSTI]

    Andrew, Sarah

    2013-02-22T23:59:59.000Z

    The relationship between menstrual cycle hormones and performance on gender-linked spatial tasks was examined in college women. Healthy women and men over the age of 18 and not taking hormonal preparations completed tasks that typically show a male...

  2. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  3. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11T23:59:59.000Z

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  4. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01T23:59:59.000Z

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  5. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10T23:59:59.000Z

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  6. Insurance and Taxation over the Life Cycle

    E-Print Network [OSTI]

    Werning, Ivan

    We consider a dynamic Mirrlees economy in a life-cycle context and study the optimal insurance arrangement. Individual productivity evolves as a Markov process and is private information. We use a first-order approach in ...

  7. Coupling between the Carbon Cycle and

    E-Print Network [OSTI]

    Zeeman, Mary Lou

    variation in carbon dioxide Coupling between the Carbon Cycle and Physical Processes on multiple scales in the past and present: "chap01" -- 2005/6/2 -- 10:43 -- page 4 -- #4 is difficult to measure global cloud properties

  8. Analysis of a supercritical hydrogen liquefaction cycle

    E-Print Network [OSTI]

    Staats, Wayne Lawrence

    2008-01-01T23:59:59.000Z

    In this work, a supercritical hydrogen liquefaction cycle is proposed and analyzed numerically. If hydrogen is to be used as an energy carrier, the efficiency of liquefaction will become increasingly important. By examining ...

  9. Predicting solar cycle 24 with a solar dynamo model

    E-Print Network [OSTI]

    Arnab Rai Choudhuri; Piyali Chatterjee; Jie Jiang

    2007-01-18T23:59:59.000Z

    Whether the upcoming cycle 24 of solar activity will be strong or not is being hotly debated. The solar cycle is produced by a complex dynamo mechanism. We model the last few solar cycles by `feeding' observational data of the Sun's polar magnetic field into our solar dynamo model. Our results fit the observed sunspot numbers of cycles 21-23 extremely well and predict that cycle~24 will be about 35% weaker than cycle~23.

  10. Food Exemption Request Organization Information

    E-Print Network [OSTI]

    Food Exemption Request Organization Information Organization Received ______ Organizations are permitted one food exemption per semester. Requests must be submitted): ___________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________ Only homemade food may be provided by your organization. Initial ______ No prepared food may

  11. Combined Cycle Cogeneration at NALCO Chemical

    E-Print Network [OSTI]

    Thunem, C. B.; Jacobs, K. W.; Hanzel, W.

    centrifugal chilling capacity expansion were integrated into the model. The gas turbine selection procedure is out lined. Bid evaulation procedure involved a life cycle cost comparison wherein the bid specification responses for each model turbine were... ~ STEAM USE - LB/HR Figure 1 ? NALCO CHEMICAL COMPANY, NAPERVILLE FACILITIES STEAM USE PROFILE Cogeneration Approach Three modes of cogeneration are typically available. These are steam cycle, gas turbine, and reciprocating engine. Preliminary...

  12. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08T23:59:59.000Z

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  13. The Waldmeier Effect in Sunspot Cycles

    E-Print Network [OSTI]

    Karak, B B; 10.1007/978-3-642-02859-5_40

    2010-01-01T23:59:59.000Z

    We discuss two aspects of the Waldmeier Effect, namely (1) the rise times of sunspot cycles are anti-correlated to their strengths (WE1) and (2) the rates of rise of the cycles are correlated to their strengths (WE2). From analysis of four different data sets we conclude that both WE1 and WE2 exist in all the data sets. We study these effects theoretically by introducing suitable stochastic fluctuations in our regular solar dynamo model.

  14. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02T23:59:59.000Z

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  15. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results and Findings Life Cycle Greenhouse Gas Emissions from Electricity Generation (Factsheet) Cover of the Life Cycle Greenhouse Gas Emissions from Electricity...

  16. annual training cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    46 Patterns of multiple paternity within and between annual reproduction cycles of the fire salamander (Salamandra Biology and Medicine Websites Summary: reproductive cycles....

  17. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated...

    Energy Savers [EERE]

    Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used...

  18. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air...

  19. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This...

  20. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  1. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  2. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

  3. Biotic and abiotic pathways of phosphorus cycling in minerals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotopes in phosphate. Biotic and abiotic pathways of phosphorus cycling in minerals...

  4. Federal Register Notice for Life Cycle Greenhouse Gas Perspective...

    Energy Savers [EERE]

    Federal Register Notice for Life Cycle Greenhouse Gas Perspective on Exporting Liquefied Natural Gas from the United States Federal Register Notice for Life Cycle Greenhouse Gas...

  5. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, D.M.

    1983-03-22T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

  6. Economizer refrigeration cycle space heating and cooling system and process

    DOE Patents [OSTI]

    Jardine, Douglas M. (Colorado Springs, CO)

    1983-01-01T23:59:59.000Z

    This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

  7. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  8. Glassy dynamics distinguishes chromosome organization across organisms

    E-Print Network [OSTI]

    Kang, Hongsuk; Thirumalai, D; Hyeon, Changbong

    2015-01-01T23:59:59.000Z

    Recent experiments showing scaling of the intrachromosomal contact probability, $P(s)\\sim s^{-1}$ with the genomic distance $s$, are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of $P(s)$ varies across organisms, requiring an explanation. We illustrate that dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosome inside a nucleus as a self-avoiding homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction ($\\phi$) inside the confinement approaches a critical value $\\phi_c$. Using finite size scaling analysis, we determine $\\phi_c^{\\infty}\\approx 0.44$ for a sufficiently long polymer ($N\\gg 1$). Our study shows that the onset of glassy dynamics is the reason for the formation of segregated organization in human chromosomes ($N\\approx 3\\times 10^9$, $\\phi\\gtrsim\\phi_c^{\\infty}$), whereas chromosomes of budding yea...

  9. Wetlands, Microbes, and the Carbon Cycle: Behind the Scenes @ Berkeley Lab

    ScienceCinema (OSTI)

    Tringe, Susannah

    2013-05-29T23:59:59.000Z

    Susannah Tringe, who leads the Metagenome Program at the Department of Energy's Joint Genome Institute (JGI), a collaboration in which Berkeley Lab plays a leading role, takes us behind the scenes to show how DNA from unknown wild microbes is extracted and analyzed to see what role they play in the carbon cycle. Tringe collects samples of microbial communities living in the wetland muck of the Sacramento-San Joaquin River Delta, organisms that can determine how these wetlands store or release carbon.

  10. Effective Presentations Organization

    E-Print Network [OSTI]

    Shull, David H.

    1 Pericles Effective Presentations · Content · Organization · Delivery · Visual aids and graphics Be brave Graphics · KISS · Powerpoint: ­ Font · Bigger than you'd expect · San serif ­ Lines · Thicker than · Organization · Energy · Clarity · Poise Key: Practice Web Resources · http

  11. Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling

    E-Print Network [OSTI]

    Sparks, Donald L.

    42 Shedding light on carbon-mineral complexation in the soil environment: impacts on C sequestration and cycling Sparks, D.L. & C. Chen Department of Plant and Soil Sciences and Delaware@udel.edu) Abstract Organic matter (OM)-mineral complexation plays a critical role in soil carbon (C) stabilization

  12. Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

    SciTech Connect (OSTI)

    Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

    2002-06-21T23:59:59.000Z

    Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

  13. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01T23:59:59.000Z

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  14. Open cycle heat pump development: Phase II, District heating case study analysis: Progress report, October 1988--December 31, 1988

    SciTech Connect (OSTI)

    DiBella, F.; Becker, F.E.; Glick, J.

    1989-04-01T23:59:59.000Z

    A district heating system is proposed that uses low-level waste-energy sources, and a quasi open-cycle steam heat pump as a means of upgrading the energy in the form of hot water to use as a transport medium in the system. The use of a water-based, open-cycle heat pump appears to be extremely well suited in terms of its potential thermodynamic performance, cost, and environmental safety compared to more typical organic gased closed cycle systems. The Phase II case study provides a detailed analysis of a district heating system that utilizes the open cycle steam heat pump concept developed in Phase I. This quarterly report describes the energy audit performed on the heat source and heat sink.

  15. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect (OSTI)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05T23:59:59.000Z

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  16. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  17. Thermodynamic Cycle Analysis for Wave Rotor Combustor Based Combined Cycle Jessica Collins1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Thermodynamic Cycle Analysis for Wave Rotor Combustor Based Combined Cycle Jessica Collins1 , Brian of Engineering and Technology The conventional combustor that exists in today's market is a constant pressure device; whereas, the wave rotor combustor investigated in the present research is a constant volume

  18. Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)

    E-Print Network [OSTI]

    Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project of accounting for real-world driving performance within heavy truck analyses. The Program is being led by Oak to collect 104 channels of information at 100Hz. Another industry partner, Michelin Tires, was interested

  19. M. Bahrami ENSC 461 (S 11) Refrigeration Cycle 1 Refrigeration Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Refrigeration Cycle 1 Refrigeration Cycle Heat flows in direction a low-temperature to high-temperature requires a refrigerator and/or heat pump. Refrigerators and heat of refrigerators and heat pumps is expressed in terms of coefficient of performance (COP): innet H HP innet L R W Q

  20. M. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle

    E-Print Network [OSTI]

    Bahrami, Majid

    hr for steam-propulsion systems High back work ratio (ratio of compressor work to the turbine workM. Bahrami ENSC 461 (S 11) Brayton Cycle 1 Open GasTurbine Cycle Fig.1: Schematic for an open gas-turbine at constant pressure. The high temperature (and pressure) gas enters the turbine where it expands to ambient

  1. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22T23:59:59.000Z

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  2. Highly efficient 6-stroke engine cycle with water injection

    DOE Patents [OSTI]

    Szybist, James P; Conklin, James C

    2012-10-23T23:59:59.000Z

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  3. ReCycle: Pipeline Adaptation to Tolerate Process Variation

    E-Print Network [OSTI]

    Torrellas, Josep

    ReCycle: Pipeline Adaptation to Tolerate Process Variation Abhishek Tiwari, Smruti R. Sarangi, Josep Torrellasg 1 #12;OutlineOutline · MotivationMotivation · ReCycle Idea U i R C l· Using ReCycle · ReCycle System overview · Results 2 #12;MotivationMotivation V i ti k t l th· Variation makes some

  4. Departmental Organization Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-27T23:59:59.000Z

    Public Law 95-91, 42 United States Code 7101, Department of Energy Organization Act, Section 642 gives to the Secretary of the Department of Energy the responsibility to approve organization changes affecting the number, designation, or mission of Departmental Elements and to approve the addition, deletion, or transfer of missions and/or functions of or between Departmental Elements. In order to streamline the organizational change process, the Secretary has delegate to the Heads of Departmental Headquarters and Field Elements the authority to approve organization changes. No cancellations.

  5. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  6. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  7. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  8. Recombinant microorganisms for increased production of organic acids

    DOE Patents [OSTI]

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30T23:59:59.000Z

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  9. Recombinant microorganisms for increased production of organic acids

    DOE Patents [OSTI]

    Yi, Jian (East Lansing, MI); Kleff, Susanne (East Lansing, MI); Guettler, Michael V. (Holt, MI)

    2012-02-21T23:59:59.000Z

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  10. Anaerobic Redox Cycling of Iron by Freshwater Sediment Microorganisms

    SciTech Connect (OSTI)

    Weber, Karrie A.; Urrutia, Matilde M.; Churchill, Perry F.; Kukkadapu, Ravi K.; Roden, Eric E.

    2006-01-01T23:59:59.000Z

    The potential for microbially-mediated anaerobic redox cycling of iron (Fe) was examined in a first-generation enrichment culture of freshwater wetland sediment microorganisms. MPN enumerations revealed the presence of significant populations of Fe(III)-reducing (ca. 108 cells mL-1) and Fe(II)-oxidizing, nitrate-reducing organisms (ca. 105 cells mL-1) in the sediment used to inoculate the enrichment cultures. Nitrate reduction commenced immediately following inoculation of acetate-containing (ca. 1 mM) medium with a small quantity (1% vol/vol) of wetland sediment, and resulted in the transient accumulation of NO2- and production of a mixture of end-products including NH4+. Fe(III) oxide (high surface area goethite) reduction took place - after NO3- was depleted and continued until all the acetate was utilized. Addition of NO3 after Fe(III) reduction ceased resulted in the immediate oxidation of Fe(II) coupled to reduction of + NO3-to NH4 . No significant NO2- accumulation was observed during nitrate-dependent Fe(II) oxidation. No Fe(II) oxidation occurred in pasteurized controls. Microbial community structure in the enrichment was monitored by DGGE analysis of PCR amplified 16s rDNA and RT-PCR amplified 16S rRNA, as well as by construction of 16S rDNA clone libraries for four different time points during the experiment. Strong similarities in dominant members of the microbial community were observed in the Fe(III) reduction and nitrate-dependent Fe(II) oxidation phases of the experiment, specifically the common presence of organisms closely related (= 95% sequence similarity) to the genera Geobacter and Dechloromonas. These results indicate that the wetland sediments contained organisms such as Geobacter sp. which are capable of both + dissimilatory Fe(III) reduction and oxidation of Fe(II) with reduction of NO3-reduction to NH4 . Our findings suggest that microbially-catalyzed nitrate-dependent Fe(II) oxidation has the potential to contribute to a dynamic anaerobic Fe redox cycle in freshwater sediments.

  11. Global Impacts (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Gadgil, Ashok [EETD and UC Berkeley

    2011-06-08T23:59:59.000Z

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  12. DESCRIPTION OF CYCLES Both a simple cycle and a regenerative cycle were examined; these are described in Fig 1.

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    conditions, some of the water vapor will condense in the indoor coil. It was assumed that the condensate OF ANALYSIS. The principal challenge in the analysis of air cycle with water injection was to devise a simple) which is valid for an ideal gas. To approximate the entropy change of the water vapor, the following

  13. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28T23:59:59.000Z

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  14. The Epsomitic Phototrophic Microbial Mat of Hot Lake, Washington: Community Structural Responses to Seasonal Cycling

    SciTech Connect (OSTI)

    Lindemann, Stephen R.; Moran, James J.; Stegen, James C.; Renslow, Ryan S.; Hutchison, Janine R.; Cole, Jessica K.; Dohnalkova, Alice; Tremblay, Julien; Singh, Kanwar; Malfatti, Stephanie; Chen, Feng; Tringe, Susannah; Beyenal, Haluk; Fredrickson, Jim K.

    2013-11-13T23:59:59.000Z

    Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg2+ and SO2?4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.

  15. Modelling cycle to cycle variations in an SI engine with detailed chemical kinetics

    SciTech Connect (OSTI)

    Etheridge, Jonathan; Mosbach, Sebastian; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge (United Kingdom); Wu, Hao; Collings, Nick [Department of Engineering, University of Cambridge (United Kingdom)

    2011-01-15T23:59:59.000Z

    This paper presents experimental results and a new computational model that investigate cycle to cycle variations (CCV) in a spark ignition (SI) engine. An established stochastic reactor model (SRM) previously used to examine homogeneous charge compression ignition (HCCI) combustion has been extended by spark initiation, flame propagation and flame termination sub-models in order to simulate combustion in SI engines. The model contains a detailed chemical mechanism but relatively short computation times are achieved. The flame front is assumed to be spherical and centred at the spark location, and a pent roof and piston bowl geometry are accounted for. The model is validated by simulating the pressure profile and emissions from an iso-octane fuelled single cylinder research engine that showed low CCV. The effects of key parameters are investigated. Experimental results that show cycle to cycle fluctuations in a four-cylinder naturally aspirated gasoline fuelled SI engine are presented. The model is then coupled with GT-Power, a one-dimensional engine simulation tool, which is used to simulate the breathing events during a multi-cycle simulation. This allows an investigation of the cyclic fluctuations in peak pressure. The source and magnitude of nitric oxide (NO) emissions produced by different cycles are then investigated. It was found that faster burning cycles result in increased NO emissions compared with cycles that have a slower rate of combustion and that more is produced in the early stages of combustion compared with later in the cycle. The majority of NO was produced via the thermal mechanism just after combustion begins. (author)

  16. Life Cycle Assessment of microalgal basedbiofuel

    E-Print Network [OSTI]

    Boyer, Edmond

    Antipolis Cedex, France Abstract Fossil fuel depletion and attempts of global warming mitigation have motivated the development of biofuels. Several feedstock and transformation pathways into biofuel have been, several Life Cycle Assessments have been realised to evaluate the energetic benefit and Global Warming

  17. MID-CYCLE CHANGES IN ETA CARINAE

    SciTech Connect (OSTI)

    Martin, John C. [Physics and Astronomy Department, University of Illinois, Springfield, IL 62703 (United States); Davidson, Kris; Humphreys, Roberta M.; Mehner, Andrea [Astronomy Department, University of Minnesota, Minneapolis, MN 55455 (United States)

    2010-05-15T23:59:59.000Z

    In late 2006, ground-based photometry of {eta} Car plus the Homunculus showed an unexpected decrease in its integrated apparent brightness, an apparent reversal of its long-term brightening. Subsequent Hubble Space Telescope (HST)/WFPC2 photometry of the central star in the near-UV showed that this was not a simple reversal. This multi-wavelength photometry did not support increased extinction by dust as the explanation for the decrease in brightness. A spectrum obtained with the Gemini Multi-Object Spectrograph on the Gemini-South telescope revealed subtle changes mid-way in {eta} Car's 5.5 yr spectroscopic cycle when compared with HST/Space Telescope Imaging Spectrograph (STIS) spectra at the same phase in the cycle. At mid-cycle the secondary star is 20-30 AU from the primary. We suggest that the spectroscopic changes are consistent with fluctuations in the density and velocity of the primary star's wind, unrelated to the 5.5 yr cycle but possibly related to its latitude-dependent morphology. We also discuss subtle effects that must be taken into account when comparing ground-based and HST/STIS spectra.

  18. Chasing megawatts in combined cycle plants

    SciTech Connect (OSTI)

    Koch, J. [Power Plant Performance Specialist, Lansdowne, PA (United States); DeGeeter, S. [Ocean State Power, Harrisville, RI (United States); Haynes, C.J. [New England Power Co., Somerset, MA (United States)

    1996-05-01T23:59:59.000Z

    Combined cycle owners do not have to accept that combined cycle performance must degrade over time. Through low cost testing using existing instrumentation, a method is presented to identify causes for lost generation. A 500 MW combined cycle plant, with two STAG 207EA units, had lost 17 MW since initial operation, and found that: Gas side fouling on A four HRSG`s accounted for 8 MW of the total loss LP steam turbine efficiency was below design on one unit, contributing 3 MW Condenser air removal was poor on both units, a loss of an additional 2 MW Compressor and turbine section efficiency losses on 2 of 4 GT`s cost over 4 MW The test also revealed that the other two GT`s, both cooling towers, and one of the two steam turbines, were performing at or near design. Thus far 3 MW has been recovered, with planning underway for recovery of another 3 MW. The remaining 11 MW, though not immediately recoverable, will be the focus of planning for the next major outage. This simple method can be used at any combined cycle using existing instrumentation, with minimal intrusion on daily operations. The use of redundant measurements and uncertainty analysis assures valid and useful results.

  19. Polymer Expansions for Cycle LDPC Codes

    E-Print Network [OSTI]

    Nicolas Macris; Marc Vuffray

    2012-02-13T23:59:59.000Z

    We prove that the Bethe expression for the conditional input-output entropy of cycle LDPC codes on binary symmetric channels above the MAP threshold is exact in the large block length limit. The analysis relies on methods from statistical physics. The finite size corrections to the Bethe expression are expressed through a polymer expansion which is controlled thanks to expander and counting arguments.

  20. Life Cycle Cost Housing Need and Sustainability

    E-Print Network [OSTI]

    Life Cycle Cost Housing Need and Sustainability Abstract: Jordan is actually facing a rapid urban became difficult to sustain especially concerning the slum areas and the environmental pollution due which could contribute to increase the productivity and sustainability taking into consideration

  1. Life cycle cost report of VHLW cask

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This document, the Life Cycle Cost Report (LCCR) for the VHLW Cask, presents the life cycle costs for acquiring, using, and disposing of the VHLW casks. The VHLW cask consists of a ductile iron cask body, called the shielding insert, which is used for storage and transportation, and ultimately for disposal of Defense High Level Waste which has been vitrified and placed into VHLW canisters. Each ductile iron VHLW shielding insert holds one VHLW canister. For transportation, the shielding insert is placed into a containment overpack. The VHLW cask as configured for transportation is a legal weight truck cask which will be licensed by NRC. The purpose of this LCCR is to present the development of the life cycle costs for using the VHLW cask to transport VHLW canisters from the generating sites to a disposal site. Life cycle costs include the cost of acquiring, operating, maintaining, and ultimately dispositioning the VHLW cask and its associated hardware. This report summarizes costs associated with transportation of the VHLW casks. Costs are developed on the basis of expected usage, anticipated source and destination locations, and expected quantities of VHLW which must be transported. DOE overhead costs, such as the costs associated with source and destination facility handling of the VHLW, are not included. Also not included are costs exclusive to storage or disposal of the VHLW waste.

  2. Farinon microwave end of life cycle

    SciTech Connect (OSTI)

    Poe, R.C.

    1996-06-24T23:59:59.000Z

    This engineering report evaluates alternatives for the replacement of the Farinon microwave radio system. The system is beyond its expected life cycle and has decreasing maintainability. Principal applications supported by the Farinon system are two electrical utility monitor and control systems, the Integrated Transfer Trip System (ITTS), and the Supervisory Control and Data Acquisition (SCADA) system.

  3. Brayton Cycle Heat Pump for VOC Control

    E-Print Network [OSTI]

    Kovach, J. L.

    The first full size continuous operation Brayton Cycle Heat Pump (1)(2)(3) application for VOC recovery occurred in 1988. The mixed solvent recovery system was designed and supplied by NUCON for the 3M facility in Weatherford, OK (4). This first...

  4. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01T23:59:59.000Z

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  5. Preferences and pollution cycles Stefano BOSI

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Preferences and pollution cycles Stefano BOSI EPEE, University of Evry David DESMARCHELIER EQUIPPE In a recent empirical work, Hanna and Oliva (2011) have found a negative impact of pollution on labor supply on the effects of pollution on consumption demand (Michel and Rotillon, 1995) neglecting those on labor supply

  6. Wood Burning Combined Cycle Power Plant 

    E-Print Network [OSTI]

    Culley, J. W.; Bourgeois, H. S.

    1984-01-01T23:59:59.000Z

    A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas...

  7. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    SciTech Connect (OSTI)

    Hao Juan; Zhang Mei, E-mail: haojuan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatory, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China)

    2011-06-01T23:59:59.000Z

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the {Sigma}-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  8. Combined cycle power plant incorporating coal gasification

    DOE Patents [OSTI]

    Liljedahl, Gregory N. (Tariffville, CT); Moffat, Bruce K. (Simsbury, CT)

    1981-01-01T23:59:59.000Z

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  9. Steam Sterilization Cycles for Lab Applications

    E-Print Network [OSTI]

    Farritor, Shane

    Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 #12;Early Steam Sterilizers Koch Upright Sterilizer · First Pressurized Sterilizer · First OPERATING END (NO PRINTER) PRIMARY OPERATING END WITH PRINTER SAFETY VALVE CHAMBER PRESSURE GAUGE Steam

  10. Wavelet Analysis of Cycle-to-Cycle Pressure Variations in an Internal Combustion Engine

    E-Print Network [OSTI]

    Asok K. Sen; Grzegorz Litak; Rodolfo Taccani; Robert Radu

    2006-07-19T23:59:59.000Z

    Using a continuous wavelet transform we have analyzed the cycle-to-cycle variations of pressure in an internal combustion engine. The time series of maximum pressure variations are examined for different loading and their wavelet power spectrum is calculated for each load. From the wavelet power spectrum we detected the presence of long, intermediate and short-term periodicities in the pressure signal. It is found that depending on the load, the long and intermediate-term periodicities may span several cycles, whereas the short-period oscillations tend to appear intermittently. Knowledge of these periodicities may be useful to develop effective control strategies for efficient combustion.

  11. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23T23:59:59.000Z

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  12. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and higher efficiency photovoltaic systems. However, forphotovoltaic system such that reasonable solar-to-electric conversion efficienciesphotovoltaic co-generation scheme could have potentially very high solar-to-electric efficiency.

  13. Locality-oblivious cache organization leveraging single-cycle multi-hop NoCs

    E-Print Network [OSTI]

    Krishna, Tushar

    Locality has always been a critical factor in on-chip data placement on CMPs as accessing further-away caches has in the past been more costly than accessing nearby ones. Substantial research on locality-aware designs have ...

  14. Sampling Throughout The Hydrologic Cycle To Characterize Sources Of Volatile Organic

    E-Print Network [OSTI]

    Torgersen, Christian

    ether (MTBE) are sufficiently high to cause detection in ground water, whereas atmospheric that point sources of MTBE, such as spills or infiltration of urban runoff, are also prevalent are widespread. MTBE is detected less frequently in observation wells that tap 10- to 15-year-old ground water

  15. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    solar power towers [169]; also introducing more heliostats often requires increasing the field density

  16. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    steam turbines, expensive reinforcing material is necessaryof the turbine or special reinforcing material is necessaryrequiring reinforcing material for the turbine blades while

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Casten. Update on US Steam Turbine technology. Presented toIn reality large steam turbines often have isentropicstill require special wet steam turbines that have expensive

  18. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    beverage, and oil refining industries [128], process heatthe refrigeration and oil refining industries. Replacing theoil and natural gas refining process and refrigeration industry

  19. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    waste heat reclamation and solar thermal energy," Energy [K Lovegrove and M Dennis, "Solar thermal energy systems inK Lovegrove and M Dennis, "Solar thermal energy systems in

  20. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    128] V Minea, "Using Geothermal Energy and Industrial Wastesuch as solar thermal and geothermal energy will become ansolar field, and geothermal energy, where energy is obtained

  2. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    large tanks of hot molten salt are stored in containments soreceiver and the liquid molten salt coolant being heated;system; for example, high molten salt temperatures increases

  3. Microbial iron cycling on Trichodesmium colonies : laboratory culture studies of Trichodesmium and associated model organisms

    E-Print Network [OSTI]

    Roe, Kelly Lynn

    2012-01-01T23:59:59.000Z

    Barbeau, K. , Rue, E.L. , Bruland, K.W. , and Butler, A. (Buck, K.N. , and Bruland, K.W. (2007) The physicochemicalBarbeau, K. , Rue, E.L. , Bruland, K.W. , and Butler, A. (

  4. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    temperature solar thermal electric generation with Organicthermal- photovoltaic co-generation scheme could have potentially very high solar-to-electric

  5. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    such as in solar energy and geothermal energy [183]. Solar128] V Minea, "Using Geothermal Energy and Industrial Wastegrade waste heat and geothermal energy. Similar to results

  6. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    low and mid temperature solar collectors," Journal of SolarSA Kalogirou, "Solar thermal collectors and applications,"analysis of the solar collector system is presented. Results

  7. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    Casten. Update on US Steam Turbine technology. Presented toThe low pressure steam turbine may also become impracticallygeneration above 10MW, steam turbines are able to achieve ~

  8. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    National Labs, "Solar Thermal Energy Research," in Sandiareclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  9. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    reclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"and M Dennis, "Solar thermal energy systems in Australia,"

  10. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer) which employs a natural gas fired Stirling engine to drive a Rankine cycle vapor compressor is presently by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  11. 1 Copyright 2003 by ASME Proceedings of IMECE'03

    E-Print Network [OSTI]

    Frechette, Luc G.

    RANKINE CYCLE STEAM TURBINE FOR POWER GENERATION Luc G. Fréchette* , Changgu Lee, Selin Arslan, and Yuan-level and component design of a micro steam turbine power plant-on-a-chip which implements the Rankine cycle for micro power generation. The microfabricated device consists of a steam turbine that drives an integrated

  12. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01T23:59:59.000Z

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  13. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect (OSTI)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31T23:59:59.000Z

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  14. Carbon Cycling and Biosequestration Integrating Biology and Climate Through Systems Science Report from the March 2008 Workshop

    SciTech Connect (OSTI)

    Graber, J.; Amthor, J.; Dahlman, R.; Drell, D.; Weatherwax, S.

    2008-12-01T23:59:59.000Z

    One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biological components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.

  15. Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors

    E-Print Network [OSTI]

    Ludington, Alexander R. (Alexander Rockwell)

    2009-01-01T23:59:59.000Z

    The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

  16. Systems Analyses of Advanced Brayton Cycles

    SciTech Connect (OSTI)

    A.D. Rao; D.J. Francuz; J.D. Maclay; J. Brouwer; A. Verma; M. Li; G.S. Samuelsen

    2008-09-30T23:59:59.000Z

    The main objective is to identify and assess advanced improvements to the Brayton Cycle (such as but not limited to firing temperature, pressure ratio, combustion techniques, intercooling, fuel or combustion air augmentation, enhanced blade cooling schemes) that will lead to significant performance improvements in coal based power systems. This assessment is conducted in the context of conceptual design studies (systems studies) that advance state-of-art Brayton cycles and result in coal based efficiencies equivalent to 65% + on natural gas basis (LHV), or approximately an 8% reduction in heat rate of an IGCC plant utilizing the H class steam cooled gas turbine. H class gas turbines are commercially offered by General Electric and Mitsubishi for natural gas based combined cycle applications with 60% efficiency (LHV) and it is expected that such machine will be offered for syngas applications within the next 10 years. The studies are being sufficiently detailed so that third parties will be able to validate portions or all of the studies. The designs and system studies are based on plants for near zero emissions (including CO{sub 2}). Also included in this program is the performance evaluation of other advanced technologies such as advanced compression concepts and the fuel cell based combined cycle. The objective of the fuel cell based combined cycle task is to identify the desired performance characteristics and design basis for a gas turbine that will be integrated with an SOFC in Integrated Gasification Fuel Cell (IGFC) applications. The goal is the conceptualization of near zero emission (including CO{sub 2} capture) integrated gasification power plants producing electricity as the principle product. The capability of such plants to coproduce H{sub 2} is qualitatively addressed. Since a total systems solution is critical to establishing a plant configuration worthy of a comprehensive market interest, a baseline IGCC plant scheme is developed and used to study how alternative process schemes and power cycles might be used and integrated to achieve higher systems efficiency. To achieve these design results, the total systems approach is taken requiring creative integration of the various process units within the plant. Advanced gas turbine based cycles for Integrated gasification Combined cycle (IGCC) applications are identified by a screening analysis and the more promising cycles recommended for detailed systems analysis. In the case of the IGFC task, the main objective is met by developing a steady-state simulation of the entire plant and then using dynamic simulations of the hybrid Solid Oxide Fuel Cell (SOFC)/Gas Turbine sub-system to investigate the turbo-machinery performance. From these investigations the desired performance characteristics and a basis for design of turbo-machinery for use in a fuel cell gas turbine power block is developed.

  17. Supercritical carbon dioxide cycle control analysis.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J. (Nuclear Engineering Division)

    2011-04-11T23:59:59.000Z

    This report documents work carried out during FY 2008 on further investigation of control strategies for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle energy converters. The main focus of the present work has been on investigation of the S-CO{sub 2} cycle control and behavior under conditions not covered by previous work. An important scenario which has not been previously calculated involves cycle operation for a Sodium-Cooled Fast Reactor (SFR) following a reactor scram event and the transition to the primary coolant natural circulation and decay heat removal. The Argonne National Laboratory (ANL) Plant Dynamics Code has been applied to investigate the dynamic behavior of the 96 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) S-CO{sub 2} Brayton cycle following scram. The timescale for the primary sodium flowrate to coast down and the transition to natural circulation to occur was calculated with the SAS4A/SASSYS-1 computer code and found to be about 400 seconds. It is assumed that after this time, decay heat is removed by the normal ABTR shutdown heat removal system incorporating a dedicated shutdown heat removal S-CO{sub 2} pump and cooler. The ANL Plant Dynamics Code configured for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) was utilized to model the S-CO{sub 2} Brayton cycle with a decaying liquid metal coolant flow to the Pb-to-CO{sub 2} heat exchangers and temperatures reflecting the decaying core power and heat removal by the cycle. The results obtained in this manner are approximate but indicative of the cycle transient performance. The ANL Plant Dynamics Code calculations show that the S-CO{sub 2} cycle can operate for about 400 seconds following the reactor scram driven by the thermal energy stored in the reactor structures and coolant such that heat removal from the reactor exceeds the decay heat generation. Based on the results, requirements for the shutdown heat removal system may be defined. In particular, the peak heat removal capacity of the shutdown heat removal loop may be specified to be 1.1 % of the nominal reactor power. An investigation of the oscillating cycle behavior calculated by the ANL Plant Dynamics Code under specific conditions has been carried out. It has been found that the calculation of unstable operation of the cycle during power reduction to 0 % may be attributed to the modeling of main compressor operation. The most probable reason for such instabilities is the limit of applicability of the currently used one-dimensional compressor performance subroutines which are based on empirical loss coefficients. A development of more detailed compressor design and performance models is required and is recommended for future work in order to better investigate and possibly eliminate the calculated instabilities. Also, as part of such model development, more reliable surge criteria should be developed for compressor operation close to the critical point. It is expected that more detailed compressor models will be developed as a part of validation of the Plant Dynamics Code through model comparison with the experiment data generated in the small S-CO{sub 2} loops being constructed at Barber-Nichols Inc. and Sandia National Laboratories (SNL). Although such a comparison activity had been planned to be initiated in FY 2008, data from the SNL compression loop currently in operation at Barber Nichols Inc. has not yet become available by the due date of this report. To enable the transient S-CO{sub 2} cycle investigations to be carried out, the ANL Plant Dynamics Code for the S-CO{sub 2} Brayton cycle was further developed and improved. The improvements include further optimization and tuning of the control mechanisms as well as an adaptation of the code for reactor systems other than the Lead-Cooled Fast Reactor (LFR). Since the focus of the ANL work on S-CO{sub 2} cycle development for the majority of the current year has been on the applicability of the cycle to SFRs, work has started on modification of the ANL Plant Dynamics Code to allow

  18. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kong, Fung-Ming (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  19. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01T23:59:59.000Z

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  20. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01T23:59:59.000Z

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members appointed by the state governor, county governments, and city governments. This structure (1) enables state and local governments to work together to maximize job and tax benefits to local communities and the state, (2) provides a mechanism to address local concerns such as airport noise, and (3) creates an institutional structure with large incentives to maximize the value of the common asset, the runway. A repository site authority would have a similar structure and be the local interface to any national waste management authority. (authors)

  1. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2011-06-03T23:59:59.000Z

    Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  2. administration combined power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: incentive (W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cyclewaste heat capture, pressure reduction turbines,...

  3. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01T23:59:59.000Z

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  4. US--EC fuel cycle study: Background document to the approach and issues

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    In February 1991, DOE and the Commission of the European Communities (EC), signed a joint statement regarding the external costs of fuel cycles. This 18-month agreement committed their respective organizations to ``develop a comparative analytical methodology and to develop the best range of estimates of external costs from secondary sources`` for eight fuel cycles and four conservation options. In our study, a fuel cycle is defined as the series of physical and chemical processes and activities that are required to generate electricity from a specific fuel or resource. This foundation phase of the study is primarily limited to developing and demonstrating methods for estimating impacts and their monetized value, what we term ``damages`` or ``benefits,`` leaving aside the extent to which such damages have been internalized. However, Appendix C provides the conceptual framework for evaluating the extent of internalization. This report is a background document to introduce the study approach and to discuss the major conceptual and practical issues entailed by the incremental damage problem. As a background document, the report seeks to communicate an overview of the study and the important methodological choices that were made to conduct the research. In successive sections of the report, the methodological tools used in the study are discussed; the ecological and health impacts are reviewed using the coal fuel cycle as a reference case; and, in the final chapter, the methods for valuing impacts are detailed.

  5. US--EC fuel cycle study: Background document to the approach and issues

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    In February 1991, DOE and the Commission of the European Communities (EC), signed a joint statement regarding the external costs of fuel cycles. This 18-month agreement committed their respective organizations to develop a comparative analytical methodology and to develop the best range of estimates of external costs from secondary sources'' for eight fuel cycles and four conservation options. In our study, a fuel cycle is defined as the series of physical and chemical processes and activities that are required to generate electricity from a specific fuel or resource. This foundation phase of the study is primarily limited to developing and demonstrating methods for estimating impacts and their monetized value, what we term damages'' or benefits,'' leaving aside the extent to which such damages have been internalized. However, Appendix C provides the conceptual framework for evaluating the extent of internalization. This report is a background document to introduce the study approach and to discuss the major conceptual and practical issues entailed by the incremental damage problem. As a background document, the report seeks to communicate an overview of the study and the important methodological choices that were made to conduct the research. In successive sections of the report, the methodological tools used in the study are discussed; the ecological and health impacts are reviewed using the coal fuel cycle as a reference case; and, in the final chapter, the methods for valuing impacts are detailed.

  6. GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology, development, use, and results.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1999-10-06T23:59:59.000Z

    This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of the analysis of fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks.

  7. Quantum Thermodynamic Cycles and quantum heat engines

    E-Print Network [OSTI]

    H. T. Quan; Yu-xi Liu; C. P. Sun; Franco Nori

    2007-04-03T23:59:59.000Z

    In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relations and mappings between these two quantum heat engines are also investigated by considering their respective quantum thermodynamic processes. In addition, we discuss the role of Maxwell's demon in quantum thermodynamic cycles. We find that there is no violation of the second law, even in the existence of such a demon, when the demon is included correctly as part of the working substance of the heat engine.

  8. Coherent regulation in yeast cell cycle network

    E-Print Network [OSTI]

    Nese Aral; Alkan Kabakcioglu

    2014-12-14T23:59:59.000Z

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the budding yeast, Saccharomyces cerevisiae, as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast's cell-cycle regulation is wired to yield and exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  9. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  10. Transportation implications of a closed fuel cycle.

    SciTech Connect (OSTI)

    Bullard, Tim (University of Nevada - Reno); Bays, Samuel (Idaho National Laboratory); Dennis, Matthew L.; Weiner, Ruth F.; Sorenson, Ken Bryce; Dixon, Brent (Idaho National Laboratory); Greiner, Miles (University of Nevada - Reno)

    2010-10-01T23:59:59.000Z

    Transportation for each step of a closed fuel cycle is analyzed in consideration of the availability of appropriate transportation infrastructure. The United States has both experience and certified casks for transportation that may be required by this cycle, except for the transport of fresh and used MOX fuel and fresh and used Advanced Burner Reactor (ABR) fuel. Packaging that had been used for other fuel with somewhat similar characteristics may be appropriate for these fuels, but would be inefficient. Therefore, the required neutron and gamma shielding, heat dissipation, and criticality were calculated for MOX and ABR fresh and spent fuel. Criticality would not be an issue, but the packaging design would need to balance neutron shielding and regulatory heat dissipation requirements.

  11. Heterogeneous reservoirs in the marine carbon cycle

    E-Print Network [OSTI]

    Follett, Christopher L

    2014-01-01T23:59:59.000Z

    Understanding the fate of primary production in the ocean is a challenging task because once produced, organic material is oxidized over timescales which range from minutes, to millions of years. This timescale diversity ...

  12. Protein localization during the cyanobacterial circadian cycle

    E-Print Network [OSTI]

    Luitel, Prashant

    2008-01-01T23:59:59.000Z

    Circadian clocks are ubiquitous throughout the living world. Of these circadian clocks, the simplest one is found in cyanobacteria - unicellular, photosynthetic marine organisms. Studies of the circadian clock of Synechococcus ...

  13. Overview of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Leuze, R.E.

    1981-01-01T23:59:59.000Z

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

  14. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30T23:59:59.000Z

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  15. [Page Intentionally Left Blank] Life Cycle Greenhouse Gas Emissions from

    E-Print Network [OSTI]

    Reuter, Martin

    ..........................................................................11 4.2 Conventional Jet Fuel from Crude Oil2 June #12;[Page Intentionally Left Blank] #12;Life Cycle Greenhouse Gas Emissions from Alternative .......................................5 3.1 Life cycle Greenhouse Gas Emissions

  16. U.S. Life Cycle Inventory Database Roadmap (Brochure)

    SciTech Connect (OSTI)

    Deru, M.

    2009-08-01T23:59:59.000Z

    Life cycle inventory data are the primary inputs for conducting life cycle assessment studies. Studies based on high-quality data that are consistent, accurate, and relevant allow for robust, defensible, and meaningful results.

  17. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012...

  18. ads fuel cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recycle schemes: plutonium ... Parent, Etienne, 1977- 2003-01-01 8 IAEA-TECDOC-1450 Thorium fuel cycle --Potential Physics Websites Summary: IAEA-TECDOC-1450 Thorium fuel cycle...

  19. advanced fuel cycle potential: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 IAEA-TECDOC-1450 Thorium fuel cycle --Potential Physics Websites Summary: IAEA-TECDOC-1450 Thorium fuel cycle --...

  20. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high-efficiency solar receiver that is compatible with s-CO2 cycles and modern thermal storage subsystems. Supercritical CO2 Brayton-cycle engines have the potential to...

  1. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01T23:59:59.000Z

    Life-cycle assessment of coal fly ash disposal: Influence ofto the case of coal fly ash disposal. The influence ofLife-cycle assessment of coal fly ash disposal: Influence of

  2. Life Cycle Greenhouse Gas Perspective on Exporting Liquefied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to inform its decisions regarding the life cycle greenhouse gas (GHG) emissions of U.S. LNG exports for use in electric power generation. The LCA GHG Report compares life cycle...

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Environmental Management (EM)

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A...

  4. Statistical Analysis of Transient Cycle Test Results in a 40...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Transient Cycle Test Results in a 40 CFR Part 1065 Engine Dynamometer Test Cell Statistical Analysis of Transient Cycle Test Results in a 40 CFR Part 1065 Engine...

  5. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity

    E-Print Network [OSTI]

    1 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity of Photovoltaic Electricity #12;IEA-PVPS-TASK 12 Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Methodology

  6. High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 High-Efficiency Receivers for Supercritical Carbon Dioxide Cycles - FY12 Q4 This document summarizes the progress of...

  7. Surface-cycling of rhenium and its isotopes

    E-Print Network [OSTI]

    Miller, Christian Alexander

    2009-01-01T23:59:59.000Z

    The application of elemental and isotopic metal palaeoredox tracers to the geologic past rests on an understanding of modern metal cycles. This study reevaluates the surface-cycling of Mo and Re in near-surface reservoirs. ...

  8. Edgeworth Cycles and Focal Prices: Computational Dynamic Markov Equilibria

    E-Print Network [OSTI]

    Noel, Michael D.

    2004-01-01T23:59:59.000Z

    1993). “Gas Wars: Retail Gasoline Price Fluctuations”,Price Cycles: Firm Interaction in the Toronto Retail GasolinePrice Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline

  9. SOFC combined cycle systems for distributed generation

    SciTech Connect (OSTI)

    Brown, R.A.

    1997-05-01T23:59:59.000Z

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  10. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect (OSTI)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01T23:59:59.000Z

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  11. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01T23:59:59.000Z

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  12. Cadence, power, and muscle activation in cycle ergometry

    E-Print Network [OSTI]

    on the perimeter of the flywheel) in cycle ergometry is similar in many ways to the relationship between force

  13. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18T23:59:59.000Z

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

  14. Sadi Carnot's Ingenious Reasoning of Ideal Heat Engine Reversible Cycles

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Sadi Carnot's Ingenious Reasoning of Ideal Heat Engine Reversible Cycles MILIVOJE M. KOSTIC and speculations flourished. Carnot's reasoning of reversible cycles is in many ways equal if not more significant was not noticed at his time, when his ingenious reasoning of ideal heat engine reversible cycles is not fully

  15. Bachelor Thesis Simulation of the Solar Cycle based on a

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    pattern of the release of magnetic energy during the solar cycle which could be simulated very accurately cycle, in particular the temporal pattern of energy release. German Dank fortschrittlicher AusrBachelor Thesis Simulation of the Solar Cycle based on a probabilistic Cellular Automaton Jens

  16. Control and optimal operation of simple heat pump cycles

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control and optimal operation of simple heat pump cycles Jørgen Bauck Jensen and Sigurd Skogestad in the opposite direction, the "heat pump", has recently become pop- ular. These two applications have also merged. The coefficients of performance for a heating cycle (heat pump) and a cooling cycle (refrigerator, A/C) are defined

  17. Cell cycle nucleic acids, polypeptides and uses thereof

    DOE Patents [OSTI]

    Gordon-Kamm, William J. (Urbandale, IA); Lowe, Keith S. (Johnston, IA); Larkins, Brian A. (Tucson, AZ); Dilkes, Brian R. (Tucson, AZ); Sun, Yuejin (Westfield, IN)

    2007-08-14T23:59:59.000Z

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  18. Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) recently led the Life Cycle Assessment (LCA) Harmonization Project, a study that helps to clarify inconsistent and conflicting life cycle GHG emission estimates in the published literature and provide more precise estimates of life cycle GHG emissions from PV systems.

  19. The Relationship between Inner Product and Counting Cycles Xiaoming Sun

    E-Print Network [OSTI]

    Tang, Pingzhong

    The Relationship between Inner Product and Counting Cycles Xiaoming Sun ITCS, IIIS, Tsinghua xiaomings@tsinghua.edu.cn Chengu Wang ITCS, IIIS, Tsinghua wangchengu@gmail.com Wei Yu ITCS, IIIS, Tsinghua and Bob each holds a permutation of size n with the promise that there will be either a cycles or b cycles

  20. Emerging approaches, challenges and opportunities in life cycle assessment

    E-Print Network [OSTI]

    Napp, Nils

    of goods--have global environmental impacts. Life Cycle Assessment (LCA) aims to track these impacts of Life Cycle Assessment (LCA), a method to quantitatively assess the environmental impacts of goodsREVIEW Emerging approaches, challenges and opportunities in life cycle assessment Stefanie Hellweg1