National Library of Energy BETA

Sample records for organic non-fossil material

  1. Role of non-fossil energy in meeting China's energy and climate target for 2020

    SciTech Connect (OSTI)

    Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

    2012-12-01

    China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

  2. Plutonium recovery from organic materials

    DOE Patents [OSTI]

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  3. Heavy Isotopes Lead Materials Management Organization (LMMO)...

    Office of Scientific and Technical Information (OSTI)

    Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update ...

  4. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  5. Method for catalytic destruction of organic materials

    DOE Patents [OSTI]

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  6. Purification of metal-organic framework materials

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  7. Purification of metal-organic framework materials

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  8. Apparatus and method for oxidizing organic materials

    DOE Patents [OSTI]

    Surma, J.E.; Bryan, G.H.; Geeting, J.G.H.; Butner, R.S.

    1998-01-13

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. 6 figs.

  9. Apparatus and method for oxidizing organic materials

    DOE Patents [OSTI]

    Surma, Jeffrey E. (Kennewick, WA); Bryan, Garry H. (Kennewick, WA); Geeting, John G. H. (West Richland, WA); Butner, R. Scott (Port Orchard, WA)

    1998-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell.

  10. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  11. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  12. Organic materials with nonlinear optical properties

    DOE Patents [OSTI]

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  13. Organic materials with nonlinear optical properties

    DOE Patents [OSTI]

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  14. Biomimicry in metal-organic materials

    SciTech Connect (OSTI)

    Zhang, MW; Gu, ZY; Bosch, M; Perry, Z; Zhou, HC

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimetic features. Published by Elsevier B.V.

  15. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Nonaqueous Redox Flow Batteries - Joint Center for Energy Storage Research 30, 2015, Research Highlights Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries Images for Organic Anolyte Materials Scientific Achievement All-organic anolyte materials for nonaqueous redox flow batteries with high stability at all redox states were designed through an iterative study. Anolyte materials exhibit two chemically

  16. Metal-organic framework materials with ultrahigh surface areas

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  17. Apparatus and method for constant flow oxidizing of organic materials

    DOE Patents [OSTI]

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  18. Directed Organization of Functional Materials at Inorganic-Macromolecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfaces Alex Noy is the Principal Investigator for Directed Organization of Functional Materials at Inorganic-Macromolecular Interfaces. Directed Organization of Functional Materials at Inorganic-Macromolecular Interfaces Research The purpose of this project is to develop a quantitative physical picture of macromolecular organization and its relationship to function, and to use macromolecular organization to derive new functionality. The project has several major subtasks in addition to

  19. Elastomeric organic material for switching application

    SciTech Connect (OSTI)

    Shiju, K. E-mail: pravymon@gmail.com Praveen, T. E-mail: pravymon@gmail.com Preedep, P. E-mail: pravymon@gmail.com

    2014-10-15

    Organic Electronic devices like OLED, Organic Solar Cells etc are promising as, cost effective alternatives to their inorganic counterparts due to various reasons. However the organic semiconductors currently available are not attractive with respect to their high cost and intricate synthesis protocols. Here we demonstrate that Natural Rubber has the potential to become a cost effective solution to this. Here an attempt has been made to fabricate iodine doped poly isoprene based switching device. In this work Poly methyl methacrylate is used as dielectric layer and Aluminium are employed as electrodes.

  20. X-ray characterization of solid small molecule organic materials

    SciTech Connect (OSTI)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  1. Design and Synthesis of Catalytic Metal-Organic Framework Materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Design and Synthesis of Catalytic Metal-Organic Framework Materials May 17, 2016 11:00AM to 12:00PM Presenter Omar Farha, Northwestern University Location Building 200 Type Seminar Series CSE Seminar Abstract: Metal-organic frameworks (MOFs) are an emerging class of solid-state materials built up from metal-based nodes and organic linkers. They exhibit permanent porosity and unprecedented surface areas that can readily be tuned through coordination chemistry at

  2. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  3. Photoconversion of gasified organic materials into biologically-degradable plastics

    DOE Patents [OSTI]

    Weaver, Paul F.; Maness, Pin-Ching

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  4. Organic Photovoltaics | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics As an overarching goal, the CEEM OPV group seeks to understand conjugated polymer and small molecule semiconductor blends that function as the active layer in solar cell devices. The effort brings together a cohesive and mutually complementary set of experts to understand what may appear at first sight to be unrelated phenomena. Indeed, the collective CEEM OPV effort very recently led to the design, processing, structural characterization, theoretical understanding and

  5. Dynamics of excitons and charges in organic materials and semiconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanocrystals for optoelectronics | MIT-Harvard Center for Excitonics excitons and charges in organic materials and semiconductor nanocrystals for optoelectronics December 5, 2014 at 3pm/RLE Haus 36-428 Laurens D.A. Siebbeles Department of Chemical Engineering, Delft University of Technology Siebbeles01 Abstract: The seminar will report studies on excitons and charge carriers in conjugated polymers, covalent organic frameworks and semiconductor nanocrystals. These materials have fascinating

  6. Establishment of the Heavy Isotopes Lead Materials Management Organization

    Office of Scientific and Technical Information (OSTI)

    (LMMO) (Conference) | SciTech Connect Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] + Show Author Affiliations ORNL [ORNL Publication Date: 2013-01-01 OSTI Identifier: 1110926 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource

  7. Heavy Isotopes Lead Materials Management Organization (LMMO) Update

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Heavy Isotopes Lead Materials Management Organization (LMMO) Update Citation Details In-Document Search Title: Heavy Isotopes Lead Materials Management Organization (LMMO) Update Authors: Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sherman, Steven R [1] ; Bone, Sherri [2] + Show Author Affiliations ORNL U.S. Department of Energy, NA Publication Date: 2014-01-01 OSTI Identifier: 1156744

  8. High mobility high efficiency organic films based on pure organic materials

    DOE Patents [OSTI]

    Salzman, Rhonda F.; Forrest, Stephen R.

    2009-01-27

    A method of purifying small molecule organic material, performed as a series of operations beginning with a first sample of the organic small molecule material. The first step is to purify the organic small molecule material by thermal gradient sublimation. The second step is to test the purity of at least one sample from the purified organic small molecule material by spectroscopy. The third step is to repeat the first through third steps on the purified small molecule material if the spectroscopic testing reveals any peaks exceeding a threshold percentage of a magnitude of a characteristic peak of a target organic small molecule. The steps are performed at least twice. The threshold percentage is at most 10%. Preferably the threshold percentage is 5% and more preferably 2%. The threshold percentage may be selected based on the spectra of past samples that achieved target performance characteristics in finished devices.

  9. Organic light emitting device architecture for reducing the number of organic materials

    DOE Patents [OSTI]

    D'Andrade, Brian; Esler, James

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  10. Photoconversion of organic materials into single-cell protein

    DOE Patents [OSTI]

    Weaver, Paul F.

    2001-01-01

    A process is described for converting organic materials (such as biomass wastes) into sterile, high-grade bacterial protein suitable for use an animal feed or human food supplements. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide, hydrogen and nitrogen products, followed by photosynthetic bacterial assimilation of the gases into cell material, which can be as high as 65% protein. The process is ideally suited for waste recycling and for food production under zero-gravity or extra-terrestrial conditions.

  11. Organic materials and devices for detecting ionizing radiation

    DOE Patents [OSTI]

    Doty, F. Patrick; Chinn, Douglas A.

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  12. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOE Patents [OSTI]

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  13. Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report

    SciTech Connect (OSTI)

    Turner, D.A.; Miron, Y.

    1994-01-01

    To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

  14. A high liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, T.T.

    1988-07-26

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

  15. High liquid yield process for retorting various organic materials including oil shale

    DOE Patents [OSTI]

    Coburn, Thomas T.

    1990-01-01

    This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

  16. Structured organic materials and devices using low-energy particle beams

    DOE Patents [OSTI]

    Vardeny, Z. Valy; Li, Sergey; Delong, Matthew C.; Jiang, Xiaomei

    2005-09-13

    Organic materials exposed to an electron beam for patterning a substrate (1) to make an optoelectronic organic device which includes a source, a drain, gate dielectric layer (4), and a substrate for emitting light.

  17. High Performance Organic Photovoltaics via Novel Materials Combinations

    SciTech Connect (OSTI)

    Laird, Dr Darin; McGuiness, Dr Christine; Storch, Mark

    2011-01-20

    OPV cell efficiencies have increased significantly over the last decade and verified champion efficiencies are currently at 8.3% for both single and multi-junction device types. These increases in efficiency have been driven through the development and optimization of the donor and acceptor materials in bulk heterojunction active layers. Plextronics and Solarmer Energy Inc. are two of the world leading developers of these donor and acceptor materials. Solarmer Energy has reported NREL certified 6.77% efficiencies using optimized low band gap donor materials in combination with PC61BM and PC71BM acceptors and recently reported a champion NREL certified efficiency of 8.1%. Plextronics has reported Newport certified efficiencies of 6.7% using PC71BM acceptors with low band gap materials. In addition, Plextronics has also demonstrated that OPV efficiency of P3HT based materials can be improved by 50% by improving the Voc using alternative acceptors (indene substituted C60 and C70) to PC61BM and PC71BM. However, performance of these alternative acceptors in combination with low band gap materials has not been investigated and the potential for efficiency improvement is evident. In this collaboration, four low band gap donor materials from Solarmer Energy Inc were combined with Plextronics’ indene-class acceptors Plextronics’ indene substituted C60 and C70 acceptors to demonstrate OPV performance greater than 7%. Two main indene class C60 acceptors (codenamed Mono-indene[C60] Mono-indene[C60] , Bis-indene[C60] ) were screened with the Solarmer polymers. These four polymers were screened and optimized with the indene class acceptors at both Plextronics and Solarmer. A combination was identified which produced 6.7% (internal measurement) with a Solarmer polymer and a Plextronics fullerene acceptor. This was accomplished primarily by improving the Voc as well as improving the current (Jsc) and FF.

  18. Hybrid metal organic scintillator materials system and particle detector

    DOE Patents [OSTI]

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  19. Biomimicry in metal-organic materials | Center for GasSeparationsRele...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimicry in metal-organic materials Previous Next List Muwei Zhang, Zhi-Yuan Gu, Mathieu Bosch, Zachary Perry, Hong-Cai Zhou, Coordination Chemistry Reviews, (2014) DOI: 10.1016...

  20. Purchasing and Materials Management Organization, Sandia National Laboratories annual report, fiscal year 1993

    SciTech Connect (OSTI)

    Martin, D.R.

    1994-02-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1993. Activities for both the New Mexico and California locations are included.

  1. Metal-organic framework materials based on icosahedral boranes and carboranes

    DOE Patents [OSTI]

    Mirkin, Chad A.; Hupp, Joseph T.; Farha, Omar K.; Spokoyny, Alexander M.; Mulfort, Karen L.

    2010-11-02

    Disclosed herein are metal-organic frameworks of metals and boron rich ligands, such as carboranes and icosahedral boranes. Methods of synthesizing and using these materials in gas uptake are disclosed.

  2. 3D Covalent Organic Framework Materials database (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Dataset: 3D Covalent Organic Framework Materials database Citation Details In-Document Search Title: 3D Covalent Organic Framework Materials database Authors: Haranczyk, Maciej [1] + Show Author Affiliations Lawrence Berkeley National Laboratory Publication Date: 2014-09-11 OSTI Identifier: 1155071 Report Number(s): 1 DOE Contract Number: AC02-05CH11231 Resource Type: Dataset Data Type: Numeric Data Resource Relation: Related Information: R.L. Martin et al Journal of Physical

  3. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOE Patents [OSTI]

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  4. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  5. Method for monitoring the crystallization of an organic material from a liquid

    DOE Patents [OSTI]

    Asay, Blaine W.; Henson, Bryan F.; Sander, Robert K.; Robinson, Jeanne M.; Son, Steven F.; Dickson, Peter M.

    2004-10-05

    Method for monitoring the crystallization of at least one organic material from a liquid. According to the method, a liquid having at least one organic material capable of existing in at least one non-centrosymmetric phase is prepared. The liquid is interrogated with a laser beam at a chosen wavelength. As at least a portion of the at least one organic material crystallizes from the liquid, the intensity of any light scattered by the crystallized material at a wavelength equal to one-half the chosen wavelength of the interrogating laser beam is monitored. If the intensity of this scattered light, increases, then the crystals that form include at least one non-cetrosymmetric phase.

  6. Method for the catalytic conversion of organic materials into a product gas

    DOE Patents [OSTI]

    Elliott, Douglas C.; Sealock, Jr., L. John; Baker, Eddie G.

    1997-01-01

    A method for converting organic material into a product gas includes: a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300.degree. C. to about 450.degree. C.; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen.

  7. Method for the catalytic conversion of organic materials into a product gas

    DOE Patents [OSTI]

    Elliott, D.C.; Sealock, L.J. Jr.; Baker, E.G.

    1997-04-01

    A method for converting organic material into a product gas includes: (a) providing a liquid reactant mixture containing liquid water and liquid organic material within a pressure reactor; (b) providing an effective amount of a reduced metal catalyst selected from the group consisting of ruthenium, rhodium, osmium and iridium or mixtures thereof within the pressure reactor; and (c) maintaining the liquid reactant mixture and effective amount of reduced metal catalyst in the pressure reactor at temperature and pressure conditions of from about 300 C to about 450 C; and at least 130 atmospheres for a period of time, the temperature and pressure conditions being effective to maintain the reactant mixture substantially as liquid, the effective amount of reduced metal catalyst and the period of time being sufficient to catalyze a reaction of the liquid organic material to produce a product gas composed primarily of methane, carbon dioxide and hydrogen. 5 figs.

  8. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  9. Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses

    SciTech Connect (OSTI)

    Whitfield, Pamela S

    2014-01-01

    In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have an Australian connection, the materials ranging from organics to battery materials.

  10. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Water Adsorption in Porous Metal-Organic Frameworks and Related Materials Previous Next List Hiroyasu Furukawa, Felipe Gándara, Yue-Biao Zhang, Juncong Jiang, Wendy L. Queen, Matthew R. Hudson, and Omar M. Yaghi, J. Am. Chem. Soc., 136, 4369-4381 (2014) DOI: 10.1021/ja500330a Abstract Image Abstract: Water adsorption in porous materials is important for many applications such as dehumidification, thermal

  11. Effects of surfactants on the desorption of organic contaminants from aquifer materials. Doctoral thesis

    SciTech Connect (OSTI)

    Brickell, J.L.

    1989-08-01

    The efficiency of removing organic contaminants from groundwater aquifers by the pump and treat process is adversely affected by the retardation of the contaminant's mobility due to adsorption onto aquifer material. The use of surfactants in conjunction with the pump and treat process has the potential for improving contaminant mobility by solubilizing the adsorbed contaminant.

  12. Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review

    SciTech Connect (OSTI)

    Clauss, S.A.; Bean, R.M.

    1993-02-01

    Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

  13. U.S. Energy Information Administration | State Energy Data 2013...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Organic non-fossil material of biological origin constituting a re- newable energy source. ... Note: EIA biomass waste data also include energy crops grown specifically for energy ...

  14. Certification of a Standard Reference Material for organics in crude oil

    SciTech Connect (OSTI)

    Not Available

    1983-06-20

    The objective of this program was to provide a complex matrix Standard Reference Material (SRM) certified for the concentrations of selected toxic organic compounds. This SRM will be useful in the chemical characterization and quality assurance efforts and methods development research of laboratories involved in the organic compound characterization of fuels. A petroleum crude oil (Wilmington crude) was selected as the matrix to be used in this effort. This material, when certified, will serve as a companion to SRM 1580, Organics in Shale Oil, that was certified in 1980 with Department of Energy support. The use of both SRM's will provide researchers with two points of calibration for analyses of compounds that are certified in both materials. In general, the certification of SRM's is accomplished through utilization of at least two totally independent techniques of analysis. In order for a parameter to be certified, the results of analyses by these independent methods must agree. The degree of agreement is specified as the uncertainty on the Certificate of Analysis. We have determined the concentrations of dibenzothiophene, phenol, o-cresol, and six polycyclic aromatic hydrocarbons by two independent analytical procedures each. Carbazole and benzo(e)pyrene were determined by electron impact gas chromatography/mass spectrometry (GC/MS) only. A summary of all results to date appears in the table appended to this report.

  15. Neural network system and methods for analysis of organic materials and structures using spectral data

    DOE Patents [OSTI]

    Meyer, Bernd J.; Sellers, Jeffrey P.; Thomsen, Jan U.

    1993-01-01

    Apparatus and processes for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.

  16. Neural network system and methods for analysis of organic materials and structures using spectral data

    DOE Patents [OSTI]

    Meyer, B.J.; Sellers, J.P.; Thomsen, J.U.

    1993-06-08

    Apparatus and processes are described for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.

  17. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Simmons, Blake

    2008-09-01

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and %22flexible%22 force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing %242.75 M in funding from outside agencies to continue the research. 3

  18. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials

    SciTech Connect (OSTI)

    Furukawa, H; Gandara, F; Zhang, YB; Jiang, JC; Queen, WL; Hudson, MR; Yaghi, OM

    2014-03-19

    Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)(4)(-CO2)(n) secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

  19. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    SciTech Connect (OSTI)

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high-efficiency OLED demonstrated in 1987. Thus, we expect to see exciting advances in the science, technology and commercialization in the coming years. We hope that this book helps to advance the field in some small way. Contributors to this monograph are experts from top academic institutions, industry and national laboratories who provide comprehensive and up-to-date coverage of the rapidly evolving field of OLEDs. Furthermore, this monograph collects in one place, for the first time, key topics across the field of OLEDs, from fundamental chemistry and physics, to practical materials science and engineering topics, to aspects of design and manufacturing. The monograph synthesizes and puts into context information scattered throughout the literature for easy review in one book. The scope of the monograph reflects the necessity to focus on new technological challenges brought about by the transition to manufacturing. In the Section 1, all materials of construction of the OLED device are covered, from substrate to encapsulation. In Section 2, for the first time, additional challenges in devices and processing are addressed. This book is geared towards a broad audience, including materials scientists, device physicists, synthetic chemists and electrical engineers. Furthermore, this book makes a great introduction to scientists in industry and academia, as well as graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films. This book is a comprehensive source for OLED R&D professionals from all backgrounds and institutions.

  20. Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform

    SciTech Connect (OSTI)

    Banerjee, Debasis; Liu, Jun; Thallapally, Praveen K.

    2014-12-22

    The effective separation of small hydrocarbon molecules (C1 – C4) is an important process for petroleum industry, determining the end price of many essential commodities in our daily lives. Current technologies for separation of these molecules rely on energy intensive fractional distillation processes at cryogenic temperature, which is particularly difficult because of their similar volatility. In retrospect, adsorptive separation using solid state adsorbents might be a cost effective alternative. Several types of solid state adsorbents (e.g. zeolite molecular sieves) were tested for separation of small hydrocarbon molecules as a function of pressure, temperature or vacuum. Among different types of plausible adsorbents, metal organic frameworks (MOFs), a class of porous, crystalline, inorganic-organic hybrid materials, is particularly promising. In this brief comment article, we discuss the separation properties of different types of solid state adsorbents, with a particular emphasis on MOF based adsorbents for separation of C2 hydrocarbon molecules.

  1. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOE Patents [OSTI]

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  2. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect (OSTI)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  3. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect (OSTI)

    Meerheim, Rico Körner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  4. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect (OSTI)

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (?{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and ?{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  5. Annual report: Purchasing and Materials Management Organization, Sandia National Laboratories, fiscal year 1992

    SciTech Connect (OSTI)

    Zaeh, R.A.

    1993-04-01

    This report summarizes the purchasing and transportation activities of the Purchasing and Materials Management Organization for Fiscal Year 1992. Activities for both the New Mexico and California locations are included. Topics covered in this report include highlights for fiscal year 1992, personnel, procurements (small business procurements, disadvantaged business procurements, woman-owned business procurements, New Mexico commercial business procurements, Bay area commercial business procurements), commitments by states and foreign countries, and transportation activities. Also listed are the twenty-five commercial contractors receiving the largest dollar commitments, commercial contractors receiving commitments of $1,000 or more, integrated contractor and federal agency commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California, and transportation commitments of $1,000 or more from Sandia National Laboratories/New Mexico and California.

  6. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, R.M.; Hirschon, A.S.; Wilson, R.B. Jr.

    1987-12-29

    A process is described for the preparation of a multimetallic catalyst for the hydrodenitrogenation of an organic feedstock, which process comprises: (a) forming a precatalyst itself comprising: (1) a first metal compound selected from compounds of nickel, cobalt or mixtures thereof; (2) a second metal compound selected from compounds of chromium, molybdenum, tungsten, or mixtures thereof; and (3) an inorganic support; (b) heating the precatalyst of step (a) with a source of sulfide in a first non-oxidizing gas at a temperature and for a time effective to presulfide the precatalyst; (c) adding in a second non-oxidizing gas to the sulfided precatalyst of step (b) an organometallic transition metal moiety selected from compounds of iridium, rhodium, iron, ruthenium, tungsten or mixtures thereof for a time and at a temperature effective to chemically combine the metal components; and (d) optionally heating the chemically combined catalyst of step (b) in vacuum at a temperature and for a time effective to remove residual volatile organic materials. 12 figs.

  7. Silver-halide/organic-composite structures: Toward materials with multiple photographic functionalities

    SciTech Connect (OSTI)

    Bringley, Joseph F. . E-mail: joseph.bringley@kodak.com; Rajeswaran, Manju; Olson, Leif P.; Liebert, Nancy M.

    2005-10-15

    We report the synthesis and structure of the novel silver-halide-based organic-inorganic hybrids Ag{sub 2}Br{sub 6}(PPD){sub 2}, Ag{sub 2}Br{sub 6}(CD-2){sub 2}.H{sub 2}O, Ag{sub 2}Br{sub 4}(TMBD), and Ag{sub 2}I{sub 6}(CD-2){sub 2}.H{sub 2}O. 1,4-phenylenediammonium hexabromodiargentate(I) [Ag{sub 2}Br{sub 6}(PPD){sub 2}] crystals are monoclinic (P2{sub 1}/n), with unit-cell dimensions, a=10.1915(3)A, b=7.7562(2)A, c=12.4340(5)A and {beta}=93.109(1){sup o}. N,N-diethyl-2-methyl-1,4-benzenediammonium hexabromodiargentate(I) monohydrate [Ag{sub 2}Br{sub 6}(CD-2){sub 2}.H{sub 2}O] crystals are monoclinic (space group P2{sub 1}/c) with a=10.8434(2)A, b=11.4293(2)A, c=14.3729(1)A, and {beta}=96.153(1){sup o}. N,N,N',N'-tetramethyl-1,4-benzenediammonium tetrabromodiargentate(I) [Ag{sub 2}Br{sub 4}(TMBD)] crystals are orthorhombic (space group Pbcn) with a=17.0030(6)A, b=6.6163(2)A, and c=15.9762(6)A. N,N-diethyl-2-methyl-1,4-benzenediammonium hexaiododiargentate(I) monohydrate, [Ag{sub 2}I{sub 6}(CD-2){sub 2}.H{sub 2}O], are monoclinic (C2/c), with unit-cell dimensions, a=21.4691(4)A, b=12.1411(2)A, c=14.3102(2)A, and {beta}=98.657(1){sup o}. The novel structures are members of a class of silver-halide-based organic-inorganic hybrids based upon the assembly of [Ag{sub a}X{sub b}]{sup n-} clusters and protonated organoamines in aqueous mineral acids. The clusters display short intracluster Ag-Ag distances, and computational methods are used to evaluate intracluster Ag-Ag bonding. The diverse stoichiometries and cluster connectivities observed suggest a rich compositional and structural chemistry based upon the general assembly method. We have extended the methodology to include a silver-halide-organoamonium chemistry in which the organic moiety is chosen to serve a specific photographic function and demonstrate the first examples of such materials. The methodology allows for the direct assembly of [Ag{sub a}X{sub b}]{sup n-} clusters with commercial photographic color developer molecules, and we show that development is repressed but can later be 'switched on' in a unique photographic scheme. The photographic properties of Ag{sub 2}Br{sub 6}(PPD){sub 2} are examined and show an extremely facile development rate owing to the fact that the developer molecules are within molecular proximity to the clusters. As a result of their molecular nature, we anticipate that such materials could enable conventional or completely new imaging technologies with very fast image access rates and very high resolution.

  8. Studies of solution-processed organic light-emitting diodes and their materials

    SciTech Connect (OSTI)

    Hellerich, Emily

    2013-05-15

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

  9. Assembly of three organic–inorganic hybrid supramolecular materials based on reduced molybdenum(V) phosphates

    SciTech Connect (OSTI)

    Zhang, He; Yu, Kai; Lv, Jing-Hua; Wang, Chun-Mei; Wang, Chun-Xiao; Zhou, Bai-Bin

    2014-09-15

    Three supramolecular materials based on (P{sub 4}Mo{sub 6}) polyoxoanions, (Hbbi){sub 2}(H{sub 2}bbi)[Cu{sub 3}Mo{sub 12}{sup V}O{sub 24}(OH){sub 6}(H{sub 2}O){sub 6}(HPO{sub 4}){sub 4}(H{sub 2}PO{sub 4}){sub 2}(PO{sub 4}){sub 2}]·3H{sub 2}O (1), (Hbbi){sub 2}(H{sub 2}bbi)[Ni{sub 3}Mo{sub 12}{sup V}O{sub 24}(OH){sub 6}(H{sub 2}O){sub 2}(HPO{sub 4}){sub 4}(H{sub 2}PO{sub 4}){sub 2}(PO{sub 4}){sub 2}]·9H{sub 2}O (2), (Hbpy)(bpy){sub 3}[Ni{sub 2}(H{sub 2}O){sub 10}Na(PCA){sub 2}][NiMo{sub 12}{sup V}O{sub 24}(OH){sub 6}(H{sub 2}PO{sub 4}){sub 6}(PO{sub 4}){sub 2}]·6H{sub 2}O (3) (bbi=1,1?-(1,4-butanediyl)bis(imidazole), bpy=4,4?-bipyridine, PCA=pyridine-4-carboxylic acid), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV–vis, PXRD and the single-crystal X-ray diffraction. Compounds 1 and 2 exhibit covalent 1-D chains constructed from M[P{sub 4}Mo{sub 6}]{sub 2} dimeric cluster and (M(H{sub 2}O){sub n}) (M=Cu, n=3 for 1 and M=Ni, n=1 for 2) linker. Compound 3 possesses an unusual POMMOF supramolecular layers based on [Ni(P{sub 4}Mo{sub 6})]{sub 2} dimeric units and 1-D metal–organic strings [Ni(H{sub 2}O){sub 5}Na(PCA)]{sub n}, in which an in situ ligand of PCA from 1,3-bis(4-pyridyl)propane (bpp) precursor was observed. Furthermore, the electrochemical behavior of 1–3-CPE and magnetic properties of 1–3 have been investigated in detail. - Graphical abstract: As new linking unit, Cu(H{sub 2}O){sub 3}, Ni(H{sub 2}O), and (Ni{sub 2}(H{sub 2}O){sub 10}Na(PCA){sub 2}) are introduced into (TM(P{sub 4}Mo{sub 6}){sub 2}) reaction systems to assemble three supramolecular materials under hydrothermal conditions via changing organic ligand and transition metal. - Highlights: • Tree new supramolecular hybrids based on (P{sub 4}Mo{sub 6}) cluster are reported. • Cu(H{sub 2}O){sub 3} and Ni(H{sub 2}O) as linker are introduced into the (TM(P{sub 4}Mo{sub 6}){sub 2}) systems. • 3 shows unusual layers based on [Ni(P{sub 4}Mo{sub 6})]{sub 2} and 1-D chains [Ni(H{sub 2}O){sub 5}Na(PCA)]{sub n}. • An in situ ligand of PCA from bpp precursor was observed in 3. • The electrochemical and magnetic properties of 1–3 have been studied in detail.

  10. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOE Patents [OSTI]

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  11. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOE Patents [OSTI]

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  12. Environmental barrier material for organic light emitting device and method of making

    DOE Patents [OSTI]

    Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA

    2003-02-18

    An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.

  13. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  14. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.

    2012-09-11

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  15. Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration

    DOE Patents [OSTI]

    Farha, Omar K; Hupp, Joseph T

    2013-06-25

    Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.

  16. Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material

    SciTech Connect (OSTI)

    Heyman, J. N. Alebachew, B. A.; Kaminski, Z. S.; Nguyen, M. D.; Coates, N. E.; Urban, J. J.

    2014-04-07

    We report terahertz and infrared transmission measurements of a high-performance thermoelectric material containing tellurium nanowires in a conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) matrix. The DC electrical conductivity of the hybrid material (41?S/cm) is approximately one hundred times that of pure PEDOT:PSS and more than 400 times that of a film of pure tellurium nanowires, while the terahertz-frequency (THz) conductivity of PEDOT:PSS and the hybrid material are comparable at f???2THz. A frequency-dependent conductivity model indicates that the increased DC conductivity of the hybrid material results from an increase in the DC charge mobility rather than in the free charge density. We suggest that the increased DC conductivity of the hybrid material results from an increase in linkage between PEDOT domains by the tellurium nanowires.

  17. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsyshevsky, Roman; Sharia, Onise; Kuklja, Maija

    2016-02-19

    Our review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our ownmore » first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Lastly, our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.« less

  18. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    SciTech Connect (OSTI)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  19. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    SciTech Connect (OSTI)

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam-damage of the sample are possible to resolve.

  20. Total-scattering pair-distribution function of organic material from powder electron diffraction data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gorelik, Tatiana E.; Billinge, Simon J. L.; Schmidt, Martin U.; Kolb, Ute

    2015-04-01

    This paper shows for the first time that pair-distribution function analyses can be carried out on organic and organo-metallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction (SAED) and nanodiffraction in transmission electron microscopy (TEM) or nanodiffraction in scanning transmission electron microscopy (STEM) modes. The methods were demonstrated on organo-metallic complexes (chlorinated and unchlorinated copper-phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering datamore » and avoiding beam-damage of the sample are possible to resolve.« less

  1. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOE Patents [OSTI]

    Janikowski, Stuart K. (Idaho Falls, ID)

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  2. Experimental Evidence Supported by Simulations of a Very High H{sub 2} Diffusion in Metal Organic Framework Materials

    SciTech Connect (OSTI)

    Salles, F.; Maurin, G.; Jobic, H.; Koza, M. M.; Llewellyn, P. L.; Devic, T.; Serre, C.; Ferey, G.

    2008-06-20

    Quasielastic neutron scattering measurements are combined with molecular dynamics simulations to extract the self-diffusion coefficient of hydrogen in the metal organic frameworks MIL-47(V) and MIL-53(Cr). We find that the diffusivity of hydrogen at low loading is about 2 orders of magnitude higher than in zeolites. Such a high mobility has never been experimentally observed before in any nanoporous materials, although it was predicted in carbon nanotubes. Either 1D or 3D diffusion mechanisms are elucidated depending on the chemical features of the MIL framework.

  3. Catalysts for the hydrodenitrogenation of organic materials and process for the preparation of the catalysts

    DOE Patents [OSTI]

    Laine, Richard M.; Hirschon, Albert S.; Wilson, Jr., Robert B.

    1987-01-01

    The present invention discloses a process for forming a catalyst for the hydrodenitrogenation of an organic feedstock, which includes (a) obtaining a precatalyst comprising cobalt and molybdenum or nickel and molybdenum; (b) adding in a non-oxidizing an atmosphere selected from hydrogen, helium, nitrogen, neon, argon, carbon monoxide or mixtures thereof to the precatalyst of step (a), a transition met ORIGIN OF THE INVENTION This invention was made in the course of research partially sponsored by the Department of Energy through grants DE-FG22-83P C60781 and DE-FG-85-PC80906, and partially supported by grant CHE82-19541 of the National Science Foundation. The invention is subject to Public Law 96-517 (and amendments), and the United States Government has rights in the present invention.

  4. Predicted concentrations in new relocatable classrooms of volatile organic compounds emitted from standard and alternate interior finish materials

    SciTech Connect (OSTI)

    Hodgson, Alfred T.; Fisk, William J.; Shendell, Derek G.; Apte, Michael G.

    2001-07-01

    Relocatable classrooms (RCs) are widely employed by California school districts to satisfy rapidly expanding space requirements due to population growth and class size reduction policies. There is public concern regarding indoor environmental quality (IEQ) in schools, particularly in RCs, but very little data to support or dispel these concerns. Several studies are investigating various aspects of IEQ in California schools. This laboratory-based study focused on evaluating the emissions of toxic and/or odorous volatile organic compounds (VOCs), including formaldehyde and acetaldehyde, from materials used to finish the interiors of new RCs. Furthermore, the study implemented a procedure for VOC source reduction by testing and selecting lower-emitting materials as substitutes for standard materials. In total, 17 standard and alternate floor coverings, wall panels and ceiling panels were quantitatively tested for emissions of VOCs using smallscale environmental chambers. Working with the largest northern California manufacturer of conventional RCs and two school districts, specifications were developed for four new RCs to be produced in early summer 2001. Two of these will be predominantly finished with standard materials. Alternate carpet systems, an alternate wall panel covering and an alternate ceiling panel were selected for the two other RCs based on the results of the laboratory study and considerations of cost and anticipated performance and maintenance. Particular emphasis was placed on reducing the concentrations of VOCs on California agency lists of toxic compounds. Indoor concentrations of toxic and odorous VOCs were estimated for the four classrooms by mass balance using the measured VOC emission factors, exposed surface areas of the materials in the RCs, and three ventilation rate scenarios. Results indicate that reductions in the concentrations of formaldehyde, acetaldehyde phenol, di(ethylene glycol) butyl ether, vinyl acetate, 1,2,4-trimethylbenzene and 1-methyl-2-pyrrolidinone should be achieved as the result of the source reduction procedure.

  5. Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes

    SciTech Connect (OSTI)

    Kondakov, Denis Y.

    2008-10-15

    We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

  6. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    SciTech Connect (OSTI)

    Grebmeier, J.M.; Cooper, L.W. |; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-06-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68{degree}37` N, 149{degree}17` W). Inventories of {sup 137}Cs (102--162 mBq/cm{sup 2}) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of {sup 137}Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70{degree}13` N, 148{degree}30` W). Atmospheric deposition of {sup 137}Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of {sup 137}Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68{degree}38` N, 149{degree}38` W) showed widely varying {sup 137}Cs inventories, from a low of 22 mBq/cm{sup 2} away from the lake inlet, to a high between 140 to >200 mBq/cm{sup 2} near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed.

  7. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  8. THE REINCARNATION OF INTERSTELLAR DUST: THE IMPORTANCE OF ORGANIC REFRACTORY MATERIAL IN INFRARED SPECTRA OF COMETARY COMAE AND CIRCUMSTELLAR DISKS

    SciTech Connect (OSTI)

    Kimura, Hiroshi

    2013-09-20

    We consider the reincarnation of interstellar dust to be reborn in protoplanetary disks as aggregates consisting of submicron-sized grains with a crystalline or amorphous silicate core and an organic-rich carbonaceous mantle. We find that infrared spectra of reincarnated interstellar dust reproduce emission peaks at correct wavelengths where the peaks were observed in cometary comae, debris disks, and protoplanetary disks if the volume fraction of organic refractory meets the constraints on elemental abundances. We discuss what we can learn from the infrared spectra of reincarnated interstellar dust in cometary comae and circumstellar disks.

  9. A method and apparatus for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    SciTech Connect (OSTI)

    Janikowski, Stuart K.

    1997-12-01

    A waste destruction method is described using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  10. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  11. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Organization Organization

  12. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect (OSTI)

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  13. Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities

    SciTech Connect (OSTI)

    Gutov, OV; Bury, W; Gomez-Gualdron, DA; Krungleviciute, V; Fairen-Jimenez, D; Mondloch, JE; Sarjeant, AA; Al-Juaid, SS; Snurr, RQ; Hupp, JT; Yildirim, T; Farha, OK

    2014-08-14

    We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2)g(-1); to our knowledge, currently the highest published for Zr-based MOFs. CH4/CO2/H-2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 gg(-1), which corresponds to 43 gL(-1). The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 v(STP)/v and 0.27 gg(-1), respectively.

  14. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H{sub 2}bpz fragments

    SciTech Connect (OSTI)

    Xie Yiming; Zhao Zhenguo; Wu Xiaoyuan; Zhang Qisheng; Chen Lijuan; Wang Fei; Chen Shanci; Lu Canzhong

    2008-12-15

    A 3-connected dia-f-type metal-organic framework compound {l_brace}[Ag(L){sub 3/2}H{sub 2}PO{sub 4}]{r_brace}{sub n} (1) has been synthesized by self-assembly of 4,4'-H{sub 2}bpz (L=4,4'-H{sub 2}bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag{sub 4}P{sub 2}O{sub 7} under hydrothermal conditions. It crystallizes in the tetragonal space group I4{sub 1}/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz){sub 3/2}H{sub 2}PO{sub 4}] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net.

  15. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Basic Energy Sciences An ASCR / BES / NERSC Workshop February 9-10, 2010 Jim Davenport Program Manager for Theoretical Condensed Material Physics Mark R. Pederson Program Manager for Theoretical and Computational Chemistry Nicholas B. Woodward Program Manager, Geosciences Research Program Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for

  16. Organic Superconductors

    SciTech Connect (OSTI)

    Charles Mielke

    2009-02-27

    Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.

  17. Ordered organic-organic multilayer growth

    DOE Patents [OSTI]

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  18. Ordered organic-organic multilayer growth

    DOE Patents [OSTI]

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  19. Applications Solutions Science Predicting Materials Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 32 Theme: Complex Process ... 48 Theme: Materials Informatics ......... 53 LANL Organizations ...

  20. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  1. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  2. High Throughput Combinatorial Screening of Biometic Metal-Organic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Organic Materials for Military Hydrogen-Storage Materials (New Joint Miami UNREL DoDDLA Project) (presentation) High Throughput Combinatorial Screening of Biometic Metal-Organic ...

  3. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications...

  4. Establishment of the Heavy Isotopes Lead Materials Management...

    Office of Scientific and Technical Information (OSTI)

    Lead Materials Management Organization (LMMO) Citation Details In-Document Search Title: Establishment of the Heavy Isotopes Lead Materials Management Organization (LMMO) ...

  5. Organic containment separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  6. Organic contaminant separator

    DOE Patents [OSTI]

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  7. Electronic & Magnetic Materials & Devices | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser spectroscopy, molecular beam epitaxy, and novel approaches for hybrid, organic and nanoparticle materials synthesis. Research activities include: Low-dimensional materials...

  8. Overcoming the Exciton Diffusion Bottleneck in Organic Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Materials Science, University of Minnesota holmes abstract: Organic materials are ... Department of Chemical Engineering and Materials Science at the University of Minnesota. ...

  9. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee R. Todd Anderson Program Manager, BER Climate and Environmental Sciences Anjuli Barnzai Program Manager, BER Climate and Environmental...

  10. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  11. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan; Rand, Barry P.

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  12. Organic electronic devices with multiple solution-processed layers

    DOE Patents [OSTI]

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  13. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Organization Organization Organization OCIO Organizational Chart (Printable) News & Blog CIO Leadership Organization Contact Us

  14. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  15. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  16. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  2. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos ...

  3. Organic solvent topical report

    SciTech Connect (OSTI)

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  4. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  5. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  6. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  7. Critical Materials:

    Energy Savers [EERE]

    Facilities » Critical Materials Hub Critical Materials Hub Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment 3D printer laser deposition of metal powder alloys. Photo courtesy of The Critical Materials Institute, Ames Laboratory Critical materials, including some rare earth elements that possess unique magnetic,

  8. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive...

  9. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Ted Barnes DOE Office of Nuclear Physics Yukiko Sekine NERSC Program Manager, DOE Office of Advanced Computational Research Kathy Yelick NERSC Director Richard Gerber NERSC User Services Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:21

  10. Fermilab | About | Organization | Fermilab Organization | Explanation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Symbols Line Organization: sectors, divisions, sections Line Organization Matrix Organization: centers, projects and programs utilizing resources spanning the entire...

  11. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  12. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-04-29 11:35:05

  13. Materials Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Researchers in the Materials Characterization Research competency conduct studies of both natural and engineered materials from the micropore (nanometers) to macropore (meters) scale. Research includes, but is not limited to, thermal, chemical, mechanical, and structural (nano to macro) interactions and processes with regard to natural and engineered materials. The primary research investigation tools include SEM, XRD, micro XRD, core logging, medical CT, industrial

  14. PROJECT PROFILE: Utilizing Emergent Material Properties and Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Emergent Material Properties and Novel Device Architectures for Advancing Organic Photovoltaics PROJECT PROFILE: Utilizing Emergent Material Properties and Novel Device ...

  15. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research An ASCR / NERSC Workshop January 5-6, 2011 Dr. Karen Pao ASCR Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services John Shalf NERSC Advanced Technologies Group Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:22

  16. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee R. Todd Anderson Program Manager, BER Climate and Environmental Sciences Anjuli Barnzai Program Manager, BER Climate and Environmental Sciences Susan Gregurick Program Manager, BER Biological Systems Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Harvey Wasserman NERSC System Architecture Last edited: 2016-04-29 11:35:21

  17. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for Fusion Energy Science August 3-4, 2010 Dr. John Mandrekas Advanced Fusion Simulations; FES HPC Allocations Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Alice Koniges NERSC Advanced Technologies Harvey Wasserman NERSC User Services Last edited: 2016-04-29 11:35:21

  18. Organizing Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizing Committee Organizing Committee Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Amber Boehnlein Division Scientist, Fermi National Accelerator Laboratory, on assignment to DOE Office of HEP. Glen Crawford Program Manager, Research and Technology Division, DOE Office of HEP. Yukiko Sekine NERSC Program Manager, ASCR Kathy Yelick NERSC Director Francesca Verdier NERSC Department Head for Services Richard Gerber NERSC User Services Harvey

  19. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  20. Multifunctional Nanostructured Materials for Processing of Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions...

  1. Fermilab | About | Organization | Fermilab Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Fermilab Organization Fermilab Org Chart International Relations Office Accelerator Division Accelerator Physics Center CMS Center Core Computing Division ESH&Q FESS Finance Section LBNF Project Far-Site LBNF Project Near-Site LBNF Project Office LBNF Project LCLS-II Project Neutrino Division Office of Communication Office of Integrated Planning and Performance Management Office of Project Support Services Office of the CFO Office of the CIO Office of the CPO PIP-II Project PPD

  2. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  3. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F.; Kross, Brian J.

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  4. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  5. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  6. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  7. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  8. Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Chart Organization Chart Organization Chart Printable PDF Mission Leadership

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  10. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-04-29 11:34:54

  11. Reticulated Organic Photovoltaics

    SciTech Connect (OSTI)

    Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

    2012-03-21

    This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

  12. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  13. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  14. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  15. Stacked organic photosensitive devices

    DOE Patents [OSTI]

    Forrest, Stephen; Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.

    2007-03-27

    A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength .lamda..sub.1 and a second photoactive region having a characteristic absorption wavelength .lamda..sub.2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that .lamda..sub.1 is at least about 10% different from .lamda..sub.2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.

  16. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  17. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  18. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  19. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  20. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  2. Advanced Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M NOTICE OF INTENT: Clean Energy Manufacturing Innovation Institute for Reducing Energy of Materials And Decreasing Emissions in M The Energy Department intends to issue a Funding Opportunity Announcement for approximately $70 million entitled "Clean Energy Manufacturing Innovation Institute for Reducing EMbodied-energy And Decreasing

  3. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  4. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  5. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  6. Organic electrophosphorescence device having interfacial layers

    DOE Patents [OSTI]

    Choulis, Stelios A.; Mathai, Mathew; Choong, Vi-En; So, Franky

    2010-08-10

    Techniques are described for forming an organic light emitting diode device with improved device efficiency. Materials having at least one energy level that is similar to those of a phosphorescent light emitting material in the diode are incorporated into the device to directly inject holes or electrons to the light emitting material.

  7. Improved Organic Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2768B (Organic PV) Marketing Summary_1.pdf (146 KB) Technology Marketing Summary Traditionally, photosensitive optoelectronic devices such as solar cells have been constructed of a number of inorganic semiconductors. Purity and crystalline grain size are a large

  8. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Probing Organic Transistors with Infrared Beams Print Wednesday, 26 July 2006 00:00 Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also

  9. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  10. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Training Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Materials Training Materials The following tutorials are produced by NERSC staff and are intended to provide basic instruction on NERSC systems. Sort by: Default | Name | Date (low-high) | Date (high-low) | Source | Category Introduction to Hybrid OpenMP/MPI Programming June 24, 2004 | Author(s): Helen He | Download File: hybridTalk.pdf | pdf | 1005 KB sample managed list Using OpenMP October 20, 2010 | Author(s): Helen He | Introduction to MPI January 11, 2010 | Author(s): Richard

  12. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  13. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOE Patents [OSTI]

    Rand, Barry P.; Forrest, Stephen R.

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  14. Conductive polymer-based material

    DOE Patents [OSTI]

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  15. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Organization Organization Organization Download Printable PDF PDF icon Organization Chart - Dated: 07/12/2015 Key Resources PMCDP EVMS PARS IIe FPD Resource Center PM Newsletter Forms and Templates Leadership Organization History Contact Us

  16. Composite material and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  17. Preparation and screening of crystalline inorganic materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial screening of inorganic and organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  20. Battery structures, self-organizing structures and related methods (Patent)

    Office of Scientific and Technical Information (OSTI)

    | DOEPatents Battery structures, self-organizing structures and related methods Title: Battery structures, self-organizing structures and related methods An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the

  1. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID 412- 11/16/2012 - Page 1 Log No 2012-263 Reference Materials * Transporting Radioactive Waste to the Nevada National Security Site fact sheet (ww.nv.energy.gov/library/factsheets/DOENV_990.pdf) - Generators contract with commercial carriers - U.S. Department of Transportation regulations require carriers to select routes which minimize radiological risk * Drivers Route and Shipment Information Questionnaire completed by drivers to document routes taken to the NNSS upon entry into Nevada -

  2. Blackbody material

    DOE Patents [OSTI]

    Lauf, Robert J.; Hamby, Jr., Clyde; Akerman, M. Alfred; Trivelpiece, Alvin W.

    1994-01-01

    A light emitting article comprises a composite of carbon-bonded carbon fibers, prepared by: blending carbon fibers with a carbonizable organic powder to form a mixture; dispersing the mixture into an aqueous slurry; vacuum molding the aqueous slurry to form a green article; drying and curing the green article to form a cured article; and, carbonizing the cured article at a temperature of at least about 1000.degree. C. to form a carbon-bonded carbon fiber light emitting composite article having a bulk density less than 1 g/cm.sup.3.

  3. Sulfur cathode hosted in porous organic polymeric matrices

    DOE Patents [OSTI]

    Zhang, Zhengcheng; Weng, Wei; Yuan, Shengwen; Amine, Khalil

    2016-02-09

    A composite material includes a porous organic polymer and an electrochemically active material, wherein the porous organic polymer contains a plurality of pores having a diameter of from about 0.1 nm to about 100 nm, and the electrochemically active material is disposed within the pores.

  4. Megahertz organic/polymer diodes

    DOE Patents [OSTI]

    Katz, Howard Edan; Sun, Jia; Pal, Nath Bhola

    2012-12-11

    Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is essentially composed of a material whose characteristics and properties are such that when formed on the first layer, the diode is capable of high frequency rectifications on the order of megahertz rectifications such as for example rectifications at one of above 100KHz, 500KhZ, IMHz, or 10 MHz. In further embodiments, the layers are arranged so as to be exposed to atmosphere.

  5. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R.; Dzugan, Robert; Harrington, Richard M.; Neece, Faurice D.; Singh, Nipendra P.

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  6. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  7. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  8. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  9. Organization Chart - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LSD Logo About Us People & Organization Research News & Events Safety Internal Resources Organization Chart Departments Scientific Staff Directory Committees Organization Chart...

  10. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  11. CRC materials science and engineering handbook. Third edition

    SciTech Connect (OSTI)

    Shackelford, J.F.; Alexander, W.

    1999-01-01

    This definitive reference is organized in an easy-to-follow format based on materials properties. It features new and existing data verified through major professional societies in the materials fields, such as ASM International and the American Ceramic Society. The third edition has been significantly expanded, most notably by the addition of new tabular material for a wide range of nonferrous alloys and various materials. The contents include: Structure of materials; Composition of materials; Phase diagram sources; Thermodynamic and kinetic data; Thermal properties of materials; Mechanical properties of materials; Electrical properties of materials; Optical properties of materials; Chemical properties of materials.

  12. Cybersecurity Awareness Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Awareness Materials Cybersecurity Awareness Materials Open book on top of an open computer. Open book on top of an open computer. The OCIO develops and distributes a variety of materials to enhance cyber awareness campaigns, address emerging cyber threats, and examine hot topics. These materials are available to all DOE organizations, and public and private institutions. Documents Available for Download Cybersecurity Information Awareness Day Survival Guide and Checklist

  13. Neutron detection with single crystal organic scintillators

    SciTech Connect (OSTI)

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  14. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    DOE Patents [OSTI]

    Yang, Fan; Forrest, Stephen R.

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  15. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  16. Hoagland selected as a new Materials Research Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoagland selected as Materials Research Society Fellow Hoagland selected as a new Materials Research Society Fellow Hoagland has made notable contributions in both experimental and computational materials research. July 9, 2013 Richard G. Hoagland Richard G. Hoagland The Materials Research Society (MRS) is an organization of materials researchers that promotes the advancement of interdisciplinary materials research to improve the quality of life. Richard G. Hoagland of the Laboratory's Materials

  17. Hydrogen gettering packing material, and process for making same

    DOE Patents [OSTI]

    LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.

    2001-01-01

    A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

  18. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and thin film solar cells, to explore non-vacuum ink-based approaches to solar cell production, as well as large-scale and low-cost deposition and processing of thin film CdTe material.

  19. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  20. Megahertz organic/polymer diodes (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Megahertz organic/polymer diodes Citation Details In-Document Search Title: Megahertz organic/polymer diodes Featured is an organic/polymer diode having a first layer composed essentially of one of an organic semiconductor material or a polymeric semiconductor material and a second layer formed on the first layer and being electrically coupled to the first layer such that current flows through the layers in one direction when a voltage is applied in one direction. The second layer is

  1. What CMI Does | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lack of secure supply chains for some raw materials critical to clean energy technologies ... labs as if they were a single organization. A pdf version of What CMI Does is ...

  2. Pricing of Departmental Materials and Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-12-18

    The order establishes DOE requirements for prices and charges for materials and services sold or provided to external organizations, other Federal agencies, or the private sector either directly or through a Departmental site/facility management contract.

  3. Method for removing organic liquids from aqueous solutions and mixtures

    DOE Patents [OSTI]

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  4. In silico screening of metal-organic frameworks in separation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    frameworks in separation applications Abstract: Porous materials such as metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs) offer considerable...

  5. Thio-,amine-,nitro-,and macrocyclic containing organic aerogels & xerogels

    DOE Patents [OSTI]

    Fox, Glenn A.; Tillotson, Thomas M.

    2005-08-02

    An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.

  6. Sulfur cathode hosted in porous organic polymeric matrices (Patent...

    Office of Scientific and Technical Information (OSTI)

    Org: USDOE Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

  7. Battery structures, self-organizing structures and related methods...

    Office of Scientific and Technical Information (OSTI)

    Title: Battery structures, self-organizing structures and related methods An energy storage device includes a first electrode comprising a first material and a second electrode ...

  8. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  9. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  10. Probing Organic Transistors with Infrared Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Organic Transistors with Infrared Beams Print Silicon-based transistors are well-understood, basic components of contemporary electronic technology. In contrast, there is growing need for the development of electronic devices based on organic polymer materials. Organic field-effect transistors (FETs) are ideal for special applications that require large areas, light weight, and structural flexibility. They also have the advantage of being easy to mass-produce at very low cost. However,

  11. Mapping the March to Methodical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the March to Methodical Materials Mapping the March to Methodical Materials Computational Chemistry Provides Proof of Popular MOF's Reactivity September 18, 2014 Contact: Kristin Manke, kristin.manke@pnnl.gov, +1 509.372.6011 marchmof Scientists from Pacific Northwest National Laboratory demonstrated the fundamental reactions that occur when synthesizing the building blocks of a metal-organic framework. Image: PNNL Selective and reactive, metal-organic frameworks (MOFs) could replace

  12. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  13. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2011-05-17

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  14. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    Presentations during the Critical Materials Workshop held on April 3, 2012 overviewing critical materials strategies

  15. Producing Beneficial Materials from Biomass and Biodiesel Byproducts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This invention mitigates the high oxygen content in biomass-derived raw materials making ... To: Shanshan Li *Name: *Email Address: Phone Number: Organization: Position: ...

  16. Ultrafast observation of shocked states in a precompressed material...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Word Cloud More Like This Full Text ...

  17. Marketing Materials and Posters for Energy Entrepreneurs | Open...

    Open Energy Info (EERE)

    for Energy Entrepreneurs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Marketing Materials and Posters for Energy Entrepreneurs AgencyCompany Organization: GVEP...

  18. Publishing with NPG and Nature Materials | MIT-Harvard Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Following research on organic electronic materials at the University of Cambridge, Siemens Corporate Technology and Philips Research, he pursued a joint PhD in Applied Physics at ...

  19. Ultrafast observation of shocked states in a precompressed material...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: ... MECHANICS, GENERAL PHYSICS; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

  20. Recovering Americium and Curium from Mark-42 Target Materials...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; AMERICIUM; CURIUM; PROCESSING; ...

  1. Optical Spectroscopy for Materials Applications | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Spectroscopy for Materials Applications The two main objectives of the Smith research group are: (1) to measure the organization and dynamics of biological structures, and...

  2. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  3. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  4. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Hydrogenation process for solid carbonaceous materials

    DOE Patents [OSTI]

    Cox, John L.; Wilcox, Wayne A.

    1979-01-01

    Coal or other solid carbonaceous material is contacted with an organic solvent containing both hydrogen and a transition metal catalyst in solution to hydrogenate unsaturated bonds within the carbonaceous material. This benefaction step permits subsequent pyrolysis or hydrogenolysis of the carbonaceous fuel to form gaseous and liquid hydrocarbon products of increased yield and quality.

  6. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  7. DOE fundamentals handbook: Material science. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

  8. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    DOE Patents [OSTI]

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  9. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  10. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  11. Corrosion resistant ceramic materials

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  12. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  13. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  14. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  15. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? -...

  16. Method of photocatalytic conversion of C-H organics

    DOE Patents [OSTI]

    Camaioni, D.M.; Lilga, M.A.

    1998-01-13

    The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.

  17. Method of photocatalytic conversion of C-H organics

    DOE Patents [OSTI]

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    The present invention is the addition of a semiconductor material and energy to the reaction mixture of organic, acid (for example, trifluoroacetate), and oxygen. A transition metal ion may be added to the reaction mixture. The semiconductor material converts energy to oxidants thereby promoting oxidation of the organic. Alternatively, using metal in combination with exposure to light may be used.

  18. White light-emitting organic electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  19. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOE Patents [OSTI]

    Wertsching, Alan K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Wey, John E. (Idaho Falls, ID)

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  20. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  1. METHOD OF USING AND MANUFACTURING PLASTIC EQUIVALENT TO ORGANIC MATERIALS

    DOE Patents [OSTI]

    Shonka, F.R.; Rose, J.E.; Failla, G.

    1961-10-24

    Compositions of matter that have the radiation response of animal muscle tissue, bone, or air were prepared. These compositions are composed of specific proportions of three or more of the following constituents: polyethylene plastic, polyamide plastic, oil furnace black, silica, and calcium fluoride. (AEC)

  2. Demolitions Produce Recyclable Materials for Organization Promoting Economic Activity

    Broader source: Energy.gov [DOE]

    Demolitions have helped generate more than 8 million pounds of metal at the Piketon site for recycling, further promoting economic activity in the region thanks to the American Recovery and...

  3. Simulation of Neutron Backscattering applied to organic material detection

    SciTech Connect (OSTI)

    Forero, N. C.; Cruz, A. H.; Cristancho, F.

    2007-10-26

    The Neutron Backscattering technique is tested when performing the task of localizing hydrogenated explosives hidden in soil. Detector system, landmine, soil and neutron source are simulated with Geant4 in order to obtain the number of neutrons detected when several parameters like mine composition, relative position mine-source and soil moisture are varied.0.

  4. New electrostriction materials based on organic polymers: A review

    SciTech Connect (OSTI)

    Kochervinskii, V. V.

    2009-12-15

    The nature of very high electrostriction strains in modified fluorine-containing polymer ferroelectrics is considered. The main modification method is the irradiation of vinylidene fluoride (VDF) copolymers with trifluoroethylene (TrFE) by electrons with energies of several MeV. Such treatment leads to the transition of the ferroelectric phase to the relaxor state and paraelectric phase. These structural changes are caused by the formation of new functional groups in PVDF chains at radiolysis. The effect of the structure on the electrostriction strains is considered. It is shown that the increase in the electrostriction strain after irradiation is related to the increase in the amorphous phase fraction. This increased strain (all other factors being equal) in uniaxial films, in comparison with isotropic ones, indicates that the field of the anisotropic amorphous phase (mesomorphic state) regions plays an important role in the reaction. An analysis of the experimental data shows that the structural changes in the field (leading to electrostriction strains) are controlled to a great extent by the features of cooperative (segmental) mobility of amorphous phase chains.

  5. Organic photosensitive devices using subphthalocyanine compounds

    DOE Patents [OSTI]

    Rand, Barry; Forrest, Stephen R.; Mutolo, Kristin L.; Mayo, Elizabeth; Thompson, Mark E.

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  6. Departmental Organization and Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-10

    Effective immediately, the Departmental organization structure reflected in the chart at Attachment 1 has been approved.

  7. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  8. Fluorine-Modified Polyaromatic Hydrocarbons for Organic Electronics -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Fluorine-Modified Polyaromatic Hydrocarbons for Organic Electronics Colorado State University Contact CSU About This Technology Technology Marketing Summary A chemical synthesis that modifies PAHs via addition of perfluoroalkyl groups. The resulting compounds are novel organic semiconductors with potential application to flexible OLED displays and organic photovoltaics (OPVs). Description The

  9. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  10. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOE Patents [OSTI]

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  11. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  12. Protective coatings for sensitive materials

    DOE Patents [OSTI]

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  13. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  14. PROJECT PROFILE: Utilizing Emergent Material Properties and Novel Device

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Architectures for Advancing Organic Photovoltaics | Department of Energy Utilizing Emergent Material Properties and Novel Device Architectures for Advancing Organic Photovoltaics PROJECT PROFILE: Utilizing Emergent Material Properties and Novel Device Architectures for Advancing Organic Photovoltaics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,000,000 This project will design and develop

  15. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  16. Stable blue phosphorescent organic light emitting devices

    DOE Patents [OSTI]

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  17. Mixed crystal organic scintillators

    DOE Patents [OSTI]

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  18. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, Dennis F.

    1997-01-01

    A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  19. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1997-09-02

    A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.

  20. Vitrification of organics-containing wastes

    DOE Patents [OSTI]

    Bickford, D.F.

    1995-01-01

    A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

  1. Photochemical deterioration of the organic/metal contacts in organic optoelectronic devices

    SciTech Connect (OSTI)

    Wang Qi; Williams, Graeme; Aziz, Hany; Tsui Ting

    2012-09-15

    We study the effect of exposure to light on a wide range of organic/metal contacts that are commonly used in organic optoelectronic devices and found that irradiation by light in the visible and UV range results in a gradual deterioration in their electrical properties. This photo-induced contact degradation reduces both charge injection (i.e., from the metal to the organic layer) and charge extraction (i.e., from the organic layer to the metal). X-ray photoelectron spectroscopy (XPS) measurements reveal detectable changes in the interface characteristics after irradiation, indicating that the photo-degradation is chemical in nature. Changes in XPS characteristics after irradiation suggests a possible reduction in bonds associated with organic-metal complexes. Measurements of interfacial adhesion strength using the four-point flexure technique reveal a decrease in organic/metal adhesion in irradiated samples, consistent with a decrease in metal-organic bond density. The results shed the light on a new material degradation mechanism that appears to have a wide presence in organic/metal interfaces in general, and which likely plays a key role in limiting the stability of various organic optoelectronic devices such as organic light emitting devices, organic solar cells, and organic photo-detectors.

  2. A compatibility study of FEFO with various containment materials

    SciTech Connect (OSTI)

    Shepodd, T.J.; Goods, S.H.; Foster, P.

    1994-01-01

    Compatibility between FEFO (bis-(2-fluoro-2,2-dinitroethyl) formal) and a number of organic and metallic materials was evaluated at 22 and 74 C for up to 8 months. The metals included common structural alloys and elemental metals that the extrudable explosive might contact in its service life. The organic materials included flexible materials for use as collapsible extrusion membranes or permeation barriers, rigid engineering resins (matrices for composite vessels), and polymer viscosity modifiers.

  3. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells New Morphological Paradigm Uncovered in Organic Solar Cells Print Wednesday, 27 April 2011 00:00 Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models

  4. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  5. 2D-network of inorganic-organic hybrid material built on Keggin type polyoxometallate and amino acid: [L-C{sub 2}H{sub 6}NO{sub 2}]{sub 3}[(PO{sub 4})Mo{sub 12}O{sub 36}].5H{sub 2}O

    SciTech Connect (OSTI)

    Alizadeh, M.H. Mirzaei, M.; Razavi, H.

    2008-03-04

    A new inorganic-organic hybrid material based on polyoxometallate, [L-C{sub 2}H{sub 6}NO{sub 2}]{sub 3}[(PO{sub 4})Mo{sub 12}O{sub 36}].5H{sub 2}O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P2{sub 1}/c{sub ,} with a = 12.4938 (8) A, b = 19.9326 (12) A, c = 17.9270 (11) A, {beta} = 102.129 (1){sup o}, V = 4364.8 (5) A{sup 3}, Z = 4 and R{sub 1}(wR{sub 2}) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/{infinity} [(PO{sub 4})Mo{sub 12}O{sub 36}]{sup 3-}) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO{sub 4})Mo{sub 12}O{sub 36}]{sup 3-} appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 deg. C.

  6. Corrosion control of metals by organic coatings

    SciTech Connect (OSTI)

    Ooij, W.J. van; Bierwagen, G.P.; Skerry, B.S.; Mills, D.

    1999-01-01

    The authors present a comprehensive treatment of the entire field of corrosion control of metals, from mechanisms and testing procedures to modification of metal surfaces and interfaces by silanes and plasma techniques. They discuss the new, sophisticated analytical tools, such as Time-of-Flight SIMS and electrochemical impedance spectroscopy, and all materials -- metals, pretreatments, and paint systems. The contents include: (1) Corrosion under organic coatings; (2) Mechanisms of corrosion control by organic coatings; (3) Metal pretreatments; (4) Techniques to study organic coating-metal interfaces; (5) Modification of metal surfaces and interfaces; (6) corrosion testing; (7) Adhesion testing; (8) Paint systems; (9) Conclusions and prospects references.

  7. Solid materials for removing metals and fabrication method

    DOE Patents [OSTI]

    Coronado, Paul R.; Reynolds, John G.; Coleman, Sabre J.

    2004-10-19

    Solid materials have been developed to remove contaminating metals and organic compounds from aqueous media. The contaminants are removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the metals and the organics leaving a purified aqueous stream. The materials are sol-gel and or sol-gel and granulated activated carbon (GAC) mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards the contaminant(s). The contaminated solid materials can then be disposed of or the contaminant can be removed and the solids recycled.

  8. Organic photosensitive devices

    DOE Patents [OSTI]

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  9. Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Innovating tomorrow's materials today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make revolutionary advances in the science of materials discovery and synthesis, and is designing new materials with advantageous properties - one atom at a time. Examples of these include Argonne's patented technologies for nanoparticle applications, heat transfer and materials for advanced

  10. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  11. Method for making an energetic material

    DOE Patents [OSTI]

    Fox, Robert V [Idaho Falls, ID

    2008-03-18

    A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.

  12. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  13. Polymer arrays from the combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  14. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon ...

  15. Material Point Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Point Methods and Multiphysics for Fracture and Multiphase Problems Joseph Teran, UCLA and Alice Koniges, LBL Contact: jteran@math.ucla.edu Material point methods (MPM) ...

  16. Materials, Reliability, & Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials, Reliability, & Standards - Sandia Energy Energy Search Icon Sandia Home ... Twitter Google + Vimeo GovDelivery SlideShare Materials, Reliability, & Standards Home...

  17. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  18. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOE Patents [OSTI]

    Marks, Iobin J.; Hains, Alexander W.

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  19. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays...

  20. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earth metals, includes links to a whitepaper "Understanding the Rare Earth Materials Crisis" and "Rare Earths FAQs" Massachusetts Institute of Technology: a comprehensive...

  1. Energetic Material - Explosives - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL has invented a process for creating energetic materials, including trinitrotoluene (TNT). By using a carbon dioxide environment, which reduces the amount of acid generated from the nitration reaction (orthonitrotoluene, ONT and dinitrotoluene, DNT). The process uses a surfactant, a nitrating agent, and a source of organic material to be nitrated. Description The method makes trinitrotoluene by

  2. Work with Us | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Us We are eager to pursue materials science research with partners in industry, universities, and other organizations. Contact Us Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 For lead researcher contacts, see our research areas. To find research group managers or specific researchers, see our listing of research staff. Interested in Joining Our Team? Find an opportunity: Job | Internship | Post-doc Plan Your Visit Map to NREL Golden,

  3. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  4. Energy Materials Network Workshop

    Broader source: Energy.gov [DOE]

    The Energy Materials Network (EMN) is a national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Through targeted consortia offering accessible suites of advanced research and development capabilities, EMN is accelerating materials development to address U.S. manufacturers' most pressing materials challenges.

  5. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  6. Aerogels derived from multifunctional organic monomers

    SciTech Connect (OSTI)

    Pekala, R.W.; Alviso, C.T.; Kong, F.M.; Hulsey, S.S.

    1991-09-01

    Traditional inorganic aerogels are mad via the hydrolysis and condensation of metal alkoxides. Recently, we reported the synthesis of organic aerogels based upon the aqueous polycondensation of (1) resorcinol with formaldehyde and (2) melamine with formaldehyde. The former materials can also be pyrolyzed in an inert atmosphere to form vitreous carbon aerogels. In both the inorganic and organic systems, the structure and properties of the dried aerogel are dictated by polymerization conditions. Factors such as pH, reactant ratio, and temperature influence the crosslinking chemistry and growth processes taking place prior to gelation. The ability to tailor the structure and properties of aerogels at the nanometer scale opens up exciting possibilities for these novel materials. This paper addresses the chemistry-structure-property relationships of organic aerogels. 22 refs., 7 figs.

  7. Materials Analysis and Modeling of Underfill Materials.

    SciTech Connect (OSTI)

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  8. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  9. The Materials Project:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project: computing and sharing a searchable database of materials properties using the Fireworks job management system Data Intensive Computing | June 2014 Energy & Environmental Technologies Berkeley Lab Materials d ata f rom: E agar T., King M. Technology R eview 1 995 What are the properties of known materials? What new, useful materials might exist? How can I optimize a material over multiple criteria? Often, experience' is the only guide. + ) }; ({ ) }; ({ t r H dt t r d i i i Ψ = Ψ

  10. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  11. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  12. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  13. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  14. Fluidizable particulate materials and methods of making same

    SciTech Connect (OSTI)

    Gupta, R.P.

    1999-10-26

    The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

  15. Fluidizable particulate materials and methods of making same

    DOE Patents [OSTI]

    Gupta, Raghubir P.

    1999-01-01

    The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

  16. Method of making organic light emitting devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Janora, Kevin Henry; Parthasarathy, Gautam; Cella, James Anthony; Chichak, Kelly Scott

    2011-03-22

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  17. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Organic electronic devices using phthalimide compounds

    DOE Patents [OSTI]

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  20. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  1. Organic photosensitive devices

    DOE Patents [OSTI]

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  2. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Organization View Office of Management Organization Chart in PDF format. Office of Resource Management and Planning The Office of Resource Management and Planning provides the leadership and centralized management and direction of the Office of Management (MA) planning, budgeting, financial, human resources, and program execution processes; ensures that these processes are effective, and fully integrated and consistent with the Department-wide processes and requirements.

  3. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  4. Electrode material comprising graphene-composite materials in...

    Office of Scientific and Technical Information (OSTI)

    Title: Electrode material comprising graphene-composite materials in a graphite network A durable electrode material suitable for use in Li ion batteries is provided. The material ...

  5. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, Richard A.; Lambrecht, Richard M.; Bloomer, William D.

    1989-05-02

    Methods and kits for incorporating a radioactive astatine isotope (particularly .sup.211 At) into an organic compound by electrophilic astatodestannylation of organostannanes.

  6. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Directorate Staff Org Chart Berkeley Lab Organization Chart ESnet Protective Services ETAESDR ETAEAEI ETA Chief Operating Officer Laboratory Council RIIO...

  7. Astatinated organic compounds

    DOE Patents [OSTI]

    Milius, R.A.; Lambrecht, R.M.; Bloomer, W.D.

    1989-05-02

    Methods and kits for incorporating a radioactive astatine isotope (particularly [sup 211]At) into an organic compound by electrophilic astatodestannylation of organostannanes. 3 figs.

  8. Bisfuel links - Professional organizations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professional organizations http://portal.acs.org/portal/acs/corg/content" target="_blank">American Chemical Society

  9. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  10. Enhanced magnetocaloric effect material

    DOE Patents [OSTI]

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  11. Pricing of Departmental Materials and Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-11-03

    To set forth requirements for establishing prices and charges for materials and services sold or provided to external organizations, other Federal agencies, and the private sector either directly or through the Department's site/facility management contracts. Supersedes DOE O 2110.1A.

  12. Design and synthesis of nucleobase-incorporated metal-organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and synthesis of nucleobase-incorporated metal-organic materials Previous Next List Muwei Zhang, Weigang Lu, Jian-Rong Li, Mathieu Bosch, Ying-Pin Chen, Tian-Fu Liu,...

  13. Design and Synthesis of Nucleobase-Incorporated Metal-Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Synthesis of Nucleobase-Incorporated Metal-Organic Materials Previous Next List Zhang, Muwei; Lu, Weigang; Li, Jian-Rong; Bosch, Mathieu; Chen,Ying-Pin; Liu, Tian-Fu;...

  14. Nanoscience & Technology Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscience & Technology Organization Chart The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials, in addition to performing programmatic science activities. PDF icon NST Org Chart_March2016.pdf

  15. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  16. Recovery of fissile materials from nuclear wastes

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  17. Fossil Energy Materials Program conference proceedings

    SciTech Connect (OSTI)

    Judkins, R.R.

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  18. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  19. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  20. Composite metal foil and ceramic fabric materials

    DOE Patents [OSTI]

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  1. Nanostructured Materials for Improved Photovoltaics

    SciTech Connect (OSTI)

    Morgan, Sarah E.; Cannon, Gordon C.; Heinhorst, Sabine; Rawlins, James W.

    2004-07-18

    This research addresses the fundamental issues of cell morphology and phase dimensions that determine conversion efficiency in polymeric organic photovoltaic devices. The approach will help explain the relationships between morphological control, domain size, and power conversion efficiency in OPV devices, with the goal of providing direction for development of OPV systems with greater efficiency. The program addresses the DOE Office of Energy Efficiency and Renewable Energy goals of providing economically sustainable clean energy technologies to reduce dependence on foreign oil. This research focused on synthesis, fabrication and analysis of both active and protective layers for improved organic and inorganic hybrid PV (PhotoVoltaic) materials. A systematic study of phase size, shape, and distance was conducted to determine the effects of morphology in each process. Four classes of nanostructured materials were studied: 1) functional block copolymers (AB, acceptor-donor blocks) that self-assemble into matched domain sizes 2) synthetic core-shell particles with separate acceptor and donor layers 3) bacterial micro-compartment (BMC) proteins as self-assembling shells for core-shell nanoparticle constructs and 4) polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals for enhanced efficiency and durability.

  2. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  3. Department of Energy Idaho - Organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Last Updated: 11/14/2011

  4. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas, LLC Applicant Organization: Broin Companies

  5. Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization Organization The Office of Economic Impact and Diversity is comprised of: The Office of the Director- contact us Office of Minority Business and Economic Development - contact us Office of Minority Education and Community Development - contact us Office of Civil Rights - contact us Office of Diversity and Inclusion - contact us Stay in Touch Get email updates from our office. Subscribe

  6. Organization Charts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Charts Jefferson Lab Organizational Chart 12 GeV Project Organization Accelerator Operations, Research & Development Division Chief Operating Officer Chief Financial Officer Information Technology Division & Chief Information Office Engineering Division Environment, Safety, Health & Quality Experimental Nuclear Physics Division Theory Center

  7. Magnetoelectroluminescence of organic heterostructures: Analytical...

    Office of Scientific and Technical Information (OSTI)

    we present an analytical theory of magnetoelectroluminescence for organic semiconductors. ... AND SUPERFLUIDITY organic semiconductors; spintronics Word Cloud More Like ...

  8. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  9. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  10. Critical Materials Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Workshop Sheraton Crystal City 1800 Jefferson Davis Highway, ... Hubs 9:35 am - 9:45 am DOE and Critical Materials National Academies Criticality 9:45 am - ...

  11. Metal Hydride Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's (FCTO's) metal hydride storage materials research focuses on improving the volumetric and gravimetric capacities, hydrogen adsorption/desorption kinetics, cycle life, and reaction thermodynamics of potential material candidates.

  12. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  13. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  14. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  15. ARM - Public Information Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  16. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  17. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  18. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  19. Sorbent Storage Materials

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office's sorbent storage materials research focuses on increasing the dihydrogen binding energies and improving the hydrogen volumetric capacity by optimizing the material's pore size, pore volume, and surface area, as well as investigating effects of material densification.

  20. CO2 Induced Phase Transitions in Diamine-Appended Metal-Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of density functional theory and lattice models, we study the effect of CO2 adsorption in an amine functionalized metal-organic framework. These materials exhibit a step...

  1. ACRO: Calculation of Organ Dose from Acute or Chronic Inhalation and Ingestion of

    Energy Science and Technology Software Center (OSTI)

    1982-02-01

    ACRO estimates the burden and dose to the organs or tissues as a result of inhalation or ingestion of radioactive materials.

  2. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  3. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  4. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  5. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  6. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  7. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  8. New Morphological Paradigm Uncovered in Organic Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Morphological Paradigm Uncovered in Organic Solar Cells Print Organic solar cells are made of light, flexible, renewable materials; they require simple and inexpensive processing steps and could produce an economically competitive and environmentally friendly energy source. Understanding the fundamentals of organic solar cell function is therefore vital to uncovering their maximum potential. Models describing critical device functions such as charge separation and transport often depend on

  9. Microbial cleavage of organic C-S bonds

    DOE Patents [OSTI]

    Kilbane, J.J. II.

    1994-10-25

    A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  10. Microbial cleavage of organic C-S bonds

    DOE Patents [OSTI]

    Kilbane, II, John J.

    1994-01-01

    A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.

  11. Luminescent metal-organic frameworks (MOFs); a nanolaboratory for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photophysics | MIT-Harvard Center for Excitonics Luminescent metal-organic frameworks (MOFs); a nanolaboratory for photophysics February 7, 2012 at 3pm/36-428 Mark Allendorf Sandia National Laboratories allendorf001_000 Abstract: Metal-organic frameworks (MOFs) are a diverse class of crystalline supramolecular materials characterized by rigid, nanoporous structures and an exceptional level of synthetic versatility. Since the organic component of MOFs, referred to as the "linker,"

  12. Steering and Separating Excitons in Organic Thin Films and Devices |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Steering and Separating Excitons in Organic Thin Films and Devices October 26, 2010 at 3pm/36-428 Mark Thompson University of Southern California (USC) thompson abstract: We have taken a materials intensive approach to developing an understanding of the mechanism of photocurrent and photovoltage generation in organic photovoltaic devices (OPVs) and electroluminescence in organic LEDs (OLEDs). The exciton is a critical part of each of these processes, and

  13. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  14. Departmental Organization Management System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-08-27

    Public Law 95-91, 42 United States Code 7101, Department of Energy Organization Act, Section 642 gives to the Secretary of the Department of Energy the responsibility to approve organization changes affecting the number, designation, or mission of Departmental Elements and to approve the addition, deletion, or transfer of missions and/or functions of or between Departmental Elements. In order to streamline the organizational change process, the Secretary has delegate to the Heads of Departmental Headquarters and Field Elements the authority to approve organization changes. No cancellations.

  15. Nanosized perpendicular organic spin-valves

    SciTech Connect (OSTI)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Richter, Tim; Fuhrmann, Bodo; Schmidt, Georg

    2015-03-09

    A fabrication process for perpendicular organic spin-valve devices based on the organic semiconductor Alq3 has been developed which offers the possibility to achieve active device areas of less than 500 × 500 nm{sup 2} and is flexible in terms of material choice for the active layers. Characterization of the resulting devices shows a large magnetoresistance of sometimes more than 100%, however with equally large variation from device to device. Comparison with large area spin-valves indicates that the magnetoresistance of both large and small devices most likely originates from tunneling through pinholes and tunneling magnetoresistance.

  16. Volatile organic compound sensing devices

    DOE Patents [OSTI]

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  17. Volatile organic compound sensing devices

    DOE Patents [OSTI]

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  18. Single-layer graphene cathodes for organic photovoltaics

    SciTech Connect (OSTI)

    Cox, Marshall P.; Gorodetsky, Alon A.; Kim, Bumjung; Kim, Keun Soo; Jia, Zhang; Kim, Philip; Nuckolls, Colin; Kymissis, Ioannis

    2011-01-01

    A laminated single-layer graphene is demonstrated as a cathode for organic photovoltaicdevices. The measured properties indicate that graphene offers two potential advantages over conventional photovoltaic electrode materials; work function matching via contact doping, and increased power conversion efficiency due to transparency. These findings indicate that flexible, light-weight all carbon solar cells can be constructed using graphene as the cathode material.

  19. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOE Patents [OSTI]

    Rand, Barry P.; Forrest, Stephen R.; Thompson, Mark E.

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  20. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  1. Low resistance thin film organic solar cell electrodes

    DOE Patents [OSTI]

    Forrest, Stephen (Princeton, NJ); Xue, Jiangeng (Piscataway, NJ)

    2008-01-01

    A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.

  2. Electrodes mitigating effects of defects in organic electronic devices

    DOE Patents [OSTI]

    Heller, Christian Maria Anton

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  3. Public Affairs Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Affairs Organization Chart Public Affairs Communications Community Public Affairs Org Chart Education Creative Services ⇒ Navigate Section Public Affairs Communications Community Public Affairs Org Chart Education Creative Services

  4. ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS

    SciTech Connect (OSTI)

    Tobin J. Marks; R.P.H. Chang; Tom Mason; Ken Poeppelmeier; Arthur J. Freeman

    2008-11-13

    Organic photovoltaic (OPV) cells offer the ultimate promise of low cost, readily manufacturable, and durable solar power. While recent advances have led to cells with impressive performance levels, OPV cells have yet to break the double-digit efficiency barrier. Further gains in efficiency and durability, to that competitive with high-performance inorganic photovoltaics will require breakthroughs in transparent electrode and interfacial materials science and engineering. This project involved an integrated basic research effort carried out by an experienced and highly collaborative interdisciplinary team to address in unconventional ways, critical electrode-interfacial issues underlying OPV performance--controlling band offsets between transparent electrodes and organics, addressing current loss/leakage problems at interfaces, enhancing adhesion, interfacial stability, and device durability while minimizing cost. It synergistically combined materials and interfacial reagent synthesis, nanostructural and photovoltaic characterization, and high level quantum theory. The research foci were: 1) understanding of/development of superior transparent electrode materials and materials morphologies--i.e., better matched electronically and chemically to organic active layers, 2) understanding-based development of inorganic interfacial current-collecting/charge-blocking layers, and 3) understanding-based development of self-assembled adhesion/current-collecting/charge-blocking/cross-linking layers for high-efficiency OPV interfaces. Pursing the goal of developing the fundamental scientific understanding needed to design, fabricate, prototype and ultimately test high-efficiency OPV cells incorporating these new concepts, we achieved a record power conversion efficiency of 5.2% for an organic bulk-heterjunction solar cell.

  5. LANL organic analysis detection capabilities for chemical and biological warfare agents

    SciTech Connect (OSTI)

    Ansell, G.B.; Cournoyer, M.E.; Hollis, K.W.; Monagle, M.

    1996-12-31

    Organic analysis is the analytical arm for several Los Alamos National Laboratory (LANL) research programs and nuclear materials processes, including characterization and certification of nuclear and nonnuclear materials used in weapons, radioactive waste treatment and waste certification programs. Organic Analysis has an extensive repertoire of analytical technique within the group including headspace gas, PCBs/pesticides, volatile organics and semivolatile organic analysis. In addition organic analysis has mobile labs with analytic capabilities that include volatile organics, total petroleum hydrocarbon, PCBs, pesticides, polyaromatic hydrocarbons and high explosive screening. A natural extension of these capabilities can be applied to the detection of chemical and biological agents,

  6. Notice of Intent to Develop DOE G 410.2-1, Nuclear Materials Disposition Guidance

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-01

    DOE O 410.2, Management of Nuclear Materials, identifies the Office of Nuclear Materials Integration (ONMI) asthe organization responsible for nuclear materials management policy, guidance, and integration of DOEagency-wide management, consolidation, and/or disposition of nuclear materials. Specifically,the Order directs ONMI to provide guidance to DOE field elements, as required, for Defined Use and No Defined Use nuclear materials. Further, the Order authorizes this office to review and evaluate justifications for nuclear materials designated as No Defined Use. DOE O 410.2 also requires ONMI to provide guidance to DOE field elements regarding nuclear material discard limits in coordination with relevant DOE headquarters organizations.

  7. Inverted organic photosensitive device

    DOE Patents [OSTI]

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  8. Other Organizations' Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Organizations' Awards Members of the NIF & Photon Science Directorate have been honored with a variety of prestigious awards over the years. Below is a sampling. Name Year Granting Organization Name of Award and Citation Frederico Fiuza 2013 European Physical Society Plasma Physics Ph.D. Research Award for work on his doctoral thesis, "Multi-scale PIC Simulations of High Energy Density Scenarios: from Laboratory to Astrophysics." Frederic Perez 2012 European Physical Society

  9. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  10. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  11. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  12. Organic contaminant separator

    DOE Patents [OSTI]

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  13. Inorganic metal oxide/organic polymer nanocomposites and method thereof

    DOE Patents [OSTI]

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-03-30

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.

  14. Method of making AlInSb by metal-organic chemical vapor deposition

    DOE Patents [OSTI]

    Biefeld, Robert M. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  15. Conversion of cellulosic materials to sugar

    DOE Patents [OSTI]

    Wilke, Charles R.; Mitra, Gautam

    1976-08-03

    A process for the production of sugar, mainly glucose, by the enzymatic degradation of cellulosic materials, particularly cellulosic wastes, which comprises hydrolyzing the cellulosic material in the presence of cellulase enzyme to produce a sugar solution and recovering from the hydrolysis products a major proportion of the cellulase enzyme used in the hydrolysis reaction for re-use. At least a portion of the required makeup cellulase enzyme is produced in a two-stage operation wherein, in the first stage, a portion of the output sugar solution is utilized to grow a cellulase-secreting microorganism, and, in the second stage, cellulase enzyme formation is induced in the microorganism-containing culture medium by the addition of an appropriate inducer, such as a cellulosic material. Cellulase enzyme is precipitated from the culture liquid by the addition of an organic solvent material, such as a low molecular weight alkyl ketone or alcohol, and the cellulase precipitate is then fed to the hydrolysis reaction.

  16. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  17. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Materials in the news Discover more about the wide-ranging scope of materials research at Los Alamos National Laboratory. Contact Us ADEPS Communications Email Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Read more... Materials science at Los

  20. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  1. Spectroscopy of semiconductor materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ag 3 VO 4 as a New p-Type Transparent Conducting Material Using systematic design principles, the Center for Inverse Design is exploring a new class of ternary p-type transparent conducting oxides (TCOs), including the prototypical Ag 3 VO 4 entry-point material. The simultaneous occurrence of transparency and p-type (hole-carrier) conductivity is an elusive materials property that could have high impact on technologies such as photovoltaics and transparent electronics. However, no satisfactory

  2. Critical Materials Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and Technology Policy (OSTP) convened four work groups: * Critical Material Criteria ... 28- 29, 2012) 15 Education and Training: Skills Required Across the Rare Earth Supply ...

  3. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  4. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  5. Fluorinated elastomeric materials

    DOE Patents [OSTI]

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  6. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  7. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  8. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    service) subsurface site for disposition of low-level waste, certain radioactively contaminated infectious waste, asbestos-contaminated material, and polychlorinated biphenyls. ...

  9. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small ... There are no upcoming events in the system. ...

  10. Multi Material Paradigm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept Composites Advanced Steel body Coil-coated shell Steel thin wall casting High ...

  11. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  12. Energy Materials Network Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Material Innovations for Clean Energy 2X Faster and 2X Cheaper Predictive Simulation Across Scales Synthesis & Characterization Rapid Screening End Use Performance Process ...

  13. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  14. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  15. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  16. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forward-looking themes complement one another and build upon our established scientific strengths. Controlled Functionality Accurate description of materials often involves the...

  17. Material Safety Data Sheets

    Broader source: Energy.gov [DOE]

    Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a hazardous substance and other health and safety information.

  18. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  19. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  20. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  1. Material for radioactive protection

    DOE Patents [OSTI]

    Taylor, R.S.; Boyer, N.W.

    A boron containing burn resistant, low-level radiation protection material useful, for example, as a liner for radioactive waste disposal and storage, a component for neutron absorber, and a shield for a neutron source is described. The material is basically composed of borax in the range of 25 to 50%, coal tar in the range of 25 to 37.5%, with the remainder being an epoxy resin mix. A preferred composition is 50% borax, 25% coal tar and 25% epoxy resin. The material is not susceptible to burning and is about 1/5 the cost of existing radiation protection material utilized in similar applications.

  2. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties. In this talk, I will discuss our recent research in the area of nanoscale materials modeling, using various atomistic simulation techniques, aimed at uncovering the...

  3. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  4. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2009 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a ...

  5. Submitting Organization Hongyou Fan Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

     2007 R&D 100 Award Entry Form  Submitting Organization Hongyou Fan Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard SE Albuquerque, NM 87106, USA 505-272-7128 (phone) 505-272-7336 (fax) hfan@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. Submitter's signature_______________________________ Earl Stromberg Lockheed Martin

  6. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOE Patents [OSTI]

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.; Forrest, Stephen

    2015-08-18

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first photoactive organic layer that is a mixture of an organic acceptor material and an organic donor material, wherein the first photoactive organic layer has a thickness not greater than 0.8 characteristic charge transport lengths; a second photoactive organic layer in direct contact with the first organic layer, wherein the second photoactive organic layer is an unmixed layer of the organic acceptor material of the first photoactive organic layer, and the second photoactive organic layer has a thickness not less than about 0.1 optical absorption lengths; and a third photoactive organic layer disposed between the first electrode and the second electrode and in direct contact with the first photoactive organic layer. The third photoactive organic layer is an unmixed layer of the organic donor layer of the first photoactive organic layer and has a thickness not less than about 0.1 optical absorption lengths.

  7. Summary Report for the Development of Materials for Volatile Radionuclides

    SciTech Connect (OSTI)

    Strachan, Denis M.; Chun, Jaehun; Henager, Charles H.; Matyas, Josef; Riley, Brian J.; Ryan, Joseph V.; Thallapally, Praveen K.

    2010-11-22

    The materials development summarized here is in support of the Waste Forms campaign, Volatile Radionuclide task. Specifically, materials are being developed for the removal and immobilization of iodine and krypton, specifically 129I and 85Kr. During FY 2010, aerogel materials were investigated for removal and immobilization of 129I. Two aerogel formulations were investigated, one based on silica aerogels and the second on chalcogenides. For 85Kr, metal organic framework (MOF) structures were investigated.

  8. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  9. Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test

    SciTech Connect (OSTI)

    Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.; Kuo, Li-Jung; Bonheyo, George T.

    2015-10-01

    The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.

  10. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  11. Organic aerogel microspheres

    DOE Patents [OSTI]

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  12. Treatment of organic waste

    DOE Patents [OSTI]

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  13. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  14. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  15. Hydrocarbonaceous material upgrading method

    DOE Patents [OSTI]

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  16. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  17. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    DOE Patents [OSTI]

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen

    2013-11-19

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.

  18. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  19. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  20. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  1. Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization Chart Download Other Organization Charts Computing, Environment, and Life Sciences Energy and Global Security Physical Science and Engineering Photon Sciences PDF icon argonne_org_chart

  2. Project organizations and schedules

    SciTech Connect (OSTI)

    Briggs, R.J.

    1990-07-01

    The Superconducting Super Collider Laboratory (SSCL) faces the challenge of simultaneously carrying out a large-scale construction project with demanding cost, schedule, and performance goals; and creating a scientific laboratory capable of exploiting this unique scientific instrument. This paper describes the status of the laboratory organization developed to achieve these goals, and the major near-term schedule objectives of the project.

  3. NSUF Irradiated Materials Library

    SciTech Connect (OSTI)

    Cole, James Irvin

    2015-09-01

    The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs that are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.

  4. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  5. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  6. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  7. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  8. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  9. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  10. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  11. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOE Patents [OSTI]

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  12. Cookoff of energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  13. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  14. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A.; Wang, Tao; Ebner, Armin D.; Holland, Charles E.

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  15. Hydrogen Compatible Materials Workshop

    Broader source: Energy.gov [DOE]

    Summary of the Hydrogen Compatible Materials Workshop held November, 3, 2010, at Sandia National Laboratories in Livermore, California. Summary includes the workshop agenda, an overview of the morning presentations, a discussion of the afternoon meeting, and a list of participants.

  16. Nuclear Material Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Supersedes DOE M 441.1-1, dated 3-7-08.

  17. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  18. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical...

  19. Small Building Material Loan

    Broader source: Energy.gov [DOE]

    Applicants may borrow up to $100,000 for projects that improve the livability of a home, improve energy efficiency, or expand space. The loan can be applied toward building materials, freight or...

  20. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A New Route to Nano Self-Assembly Proton Channel Orientation in Block-Copolymer ... Two Novel Ultra-Incompressible Materials The Iron Spin Transition in the Earth's Lower ...

  1. 2011 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role that rare earth metals and other key materials play in clean energy technologies such as wind turbines, electric vehicles, solar cells and energy-efficient lighting.

  2. Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    black band, and the central ZnS section exhibits a dense black band. State-of-the-art advances in materials science come from a combination of experiments and computations....

  3. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  4. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tool into a more permanent, flexible and scalable data service built on top of rich modern web interfaces and state-of-the-art NoSQL database technology." The Materials...

  5. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  6. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  7. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  8. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  9. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  10. 2010 Critical Materials Strategy

    Broader source: Energy.gov [DOE]

    This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DOE) based on data collected and research performed during 2010.

  11. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  12. Building Materials Property Table

    SciTech Connect (OSTI)

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  13. Heavy Vehicle Propulsion Materials

    SciTech Connect (OSTI)

    Ray Johnson

    2000-01-31

    The objectives are to Provide Key Enabling Materials Technologies to Increase Energy Efficiency and Reduce Exhaust Emissions. The following goals are listed: Goal 1: By 3rd quarter 2002, complete development of materials enabling the maintenance or improvement of fuel efficiency {ge} 45% of class 7-8 truck engines while meeting the EPA/Justice Department ''Consent Decree'' for emissions reduction. Goal 2: By 4th quarter 2004, complete development of enabling materials for light-duty (class 1-2) diesel truck engines with efficiency over 40%, over a wide range of loads and speeds, while meeting EPA Tier 2 emission regulations. Goal 3: By 4th quarter 2006, complete development of materials solutions to enable heavy-duty diesel engine efficiency of 50% while meeting the emission reduction goals identified in the EPA proposed rule for heavy-duty highway engines.''

  14. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS is risk group 1 or lower with few other complicating issues. ALS has created an umbrella authorization that most users can use for bio-safety level-1 materials. This...

  15. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique facilities CMI recent presentations Photographs via Flick'r: Critical Materials Institute, The Ames Laboratory Videos from The Ames Laboratory Webinars from Colorado School of Mines To offer comments on the CMI website or to ask questions, please contact us via e-mail at CMIdirector@ameslab.gov or call 515-296-4500.

  16. Nano-composite materials

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  17. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  18. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  19. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program

  20. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,

  1. Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Advanced Materials Laboratory Home/Tag:Advanced Materials Laboratory Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine

  2. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  3. Applicant Organization: | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. BlueFire Ethanol Applicant Organization:

  4. Electrode material comprising graphene-composite materials in a graphite

    Office of Scientific and Technical Information (OSTI)

    network (Patent) | DOEPatents Electrode material comprising graphene-composite materials in a graphite network Title: Electrode material comprising graphene-composite materials in a graphite network A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon,

  5. FUNDING BY ORGANIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORGANIZATION FY 2013 FY 2014 FY 2015 Current Enacted Request Department of Energy Budget by Organization National Nuclear Security Administration Weapons Activities 6,966,855 7,781,000 8,314,902 +533,902 +6.9% Defense Nuclear Nonproliferation 2,237,420 1,954,000 1,555,156 -398,844 -20.4% Naval Reactors 994,118 1,095,000 1,377,100 +282,100 +25.8% Federal Salaries and Expenses/1 377,457 377,000 410,842 +33,842 +9.0% Cerro Grande Fire Activities -61 0 0 0 N/A Total, National Nuclear Security

  6. FUNDING BY ORGANIZATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORGANIZATION FY 2014 FY 2014 FY 2015 FY 2016 Enacted Current Enacted Request $ % Department of Energy Budget by Organization National Nuclear Security Administration Weapons Activities 7,781,000 7,790,197 8,180,359 8,846,948 +666,589 +8.1% Defense Nuclear Nonproliferation 1,954,000 1,941,983 1,615,248 1,940,302 +325,054 +20.1% Naval Reactors 1,095,000 1,101,500 1,233,840 1,375,496 +141,656 +11.5% Office of the Administrator 377,000 370,500 0 0 0 N/A Federal Salaries and Expenses 0 0 369,587

  7. TEC Working Group Member Organizations Representatives | Department...

    Office of Environmental Management (EM)

    Member Organizations Representatives TEC Working Group Member Organizations Representatives PDF icon TEC MEMBER ORGANIZATION REPRESENTATIVES TOPIC GROUP PARTICIPATION February 2006...

  8. Organic solvent topical report

    SciTech Connect (OSTI)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  9. ATS materials support

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K.; Holcomb, R.S.; Rawlins, M.H.

    1996-12-31

    The technology based portion of the Advanced Turbine System Program (ATS) contains several subelements which address generic technology issues for land-base gas turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National laboratory (ORNL) for the Department of Energy. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. The materials manufacturing subelement was developed with input from gas turbine manufacturers, material suppliers, government laboratories and universities. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single-crystal airfoil manufacturing technologies, materials characterization and technology information exchange. Westinghouse Power Generation and Pratt and Whitney each have material programs to develop dependable TBCs that enable increased turbine inlet temperatures while maintaining airfoil substrate temperatures at levels to meet the ATS life goals. Howmet and PCC Airfoils each have projects to extend the capability of single-crystal complex-cored airfoil technology to larger sizes so that higher turbine inlet temperatures can be attained in land-based turbines in a cost-effective manner. Materials characterization tasks are ongoing on TBCs in support of the industrial projects. In addition, a project on long-term testing of ceramics and ceramic-matrix composites for gas turbines is being conducted in support of programs at Solar Turbines, Allison Engines, and Westinghouse Power Generation.

  10. PNNL: Center for Molecular Electrocatalysis - Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enlarge Image | PDF version EFRC Organization Chart

  11. Form:Policy Organization | Open Energy Information

    Open Energy Info (EERE)

    Policy Organization Jump to: navigation, search Add a Policy Organization Input your policy organization name below to add to the registry. If your policy organization is already...

  12. AU Organization Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AU Organization Chart AU Organization Chart AU Organization Chart: December 22, 2015 PDF icon AU Organization Chart: December 22, 2015 More Documents & Publications FTCP Senior ...

  13. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  14. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  15. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect (OSTI)

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  16. Thermal properties of organic and inorganic aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.; Pekala, R.W. (Chemistry and Material Science Department, Lawrence Livermore National Laboratory, Livermore, California 94551-9900 (United States))

    1994-03-01

    Aerogels are open-cell foams that have already been shown to be among the best thermal insulating solid materials known. This paper examines the three major contributions to thermal transport through porous materials; solid, gaseous, and radiative, to identify how to reduce the thermal conductivity of air-filled aerogels. We find that significant improvements in the thermal insulation property of aerogels are possible by; (i) employing materials with a low intrinsic solid conductivity, (ii) reducing the average pore size within aerogels, and (iii) affecting an increase of the infrared extinction in aerogels. Theoretically, polystyrene is the best of the organic materials and zirconia is the best inorganic material to use for the lowest achievable conductivity. Significant reduction of the thermal conductivity for all aerogel varieties is predicted with only a modest decrease of the average pore size. This might be achieved by modifying the sol-gel chemistry leading to aerogels. For example, a thermal resistance value of [ital R]=20 per inch would be possible for an air-filled resorcinol-formaldehyde aerogel at a density of 156 kg/m[sup 3], if the average pore size was less than 35 nm. An equation is included which facilitates the calculation of the optimum density for the minimum total thermal conductivity, for all varieties of aerogels.

  17. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  18. Material Protection, Control, & Accounting | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nonproliferation Nuclear and Radiological Material Security Material Protection, Control, & Accounting Material Protection, Control, & Accounting NNSA implements material...

  19. Material bagging device

    DOE Patents [OSTI]

    Wach, Charles G.; Nelson, Robert E.; Brak, Stephen B.

    1984-01-01

    A bagging device for transferring material from one chamber through an opening in a wall to a second chamber includes a cylindrical housing communicating with the opening and defining a passage between the chambers. A cylindrical cartridge is slidably received within the housing. The cartridge has a substantially rigid cylindrical sleeve to which is affixed a pliable tube. The pliable tube is positioned concentrically about the sleeve and has a pleated portion capable of unfolding from the sleeve and a closed end extending over a terminal end of the sleeve. Sealing means are interposed in sealed relationship between the cartridge and the housing. Material from one chamber is inserted into the cartridge secured in the housing and received in the closed end of the tube which unfolds into the other chamber enclosing the material therein. The tube may then be sealed behind the material and then severed to form a bag-like enclosure defined by the tube's closed terminal end and the new seal. The new seal then forms a terminal end for the unsevered portion of the pliable tube into which additional material may be placed and the bagging process repeated.

  20. The necessity for a practical approach to address organic emissions from cement kilns

    SciTech Connect (OSTI)

    Yonley, C.; Schreiber, B.; Kellerman, S.; Kellett, C.

    1998-12-31

    There is an inherent difficulty in monitoring organic emissions from hazardous waste combustion in the cement process. Data gathered by the EPA and the industry indicate that organic emissions at the main stack of cement kilns are principally from process characteristics and/or the desorption of organic constituents contained in the raw materials. Organic emissions are primarily based on the facility design and origin of the raw materials. One would generally conclude that organic emissions from fuels are essentially non-existent. To understand alternatives for monitoring organic emissions, this paper reviews some of the historical background behind the issue and reviews trends of characteristic organic emissions data. Based on this discussion and review, some approaches are presented to address organic emissions testing and monitoring when utilizing hazardous waste fuel in a cement kiln.

  1. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, Calvin J.; Dahlby, Joel W.; Gallimore, Bradford F.; Comer, Bob E.; Stone, Water A.; Carlson, David O.

    1993-01-01

    An enclosure similar to a glovebox for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  2. Material isolation enclosure

    DOE Patents [OSTI]

    Martell, C.J.; Dahlby, J.W.; Gallimore, B.F.; Comer, B.E.; Stone, W.A.; Carlson, D.O.

    1993-04-27

    An enclosure is described, similar to a glove box, for isolating materials from the atmosphere, yet allowing a technician to manipulate the materials and also apparatus which is located inside the enclosure. A portion of a wall of the enclosure is comprised of at least one flexible curtain. An opening defined by a frame is provided for the technician to insert his hands and forearms into the enclosure. The frame is movable in one plane, so that the technician has access to substantially all of the working interior of the enclosure. As the frame is moved by the technician, while he accomplishes work inside the enclosure, the curtain moves such that the only opening through the enclosure wall is the frame. In a preferred embodiment, where a negative pressure is maintained inside the enclosure, the frame is comprised of airfoils so that turbulence is reduced, thereby enhancing material retention within the box.

  3. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  4. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  5. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  6. Apparatus for dispensing material

    DOE Patents [OSTI]

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2011-07-05

    An apparatus capable of dispensing drops of material with volumes on the order of zeptoliters is described. In some embodiments of the inventive pipette the size of the droplets so dispensed is determined by the size of a hole, or channel, through a carbon shell encapsulating a reservoir that contains material to be dispensed. The channel may be formed by irradiation with an electron beam or other high-energy beam capable of focusing to a spot size less than about 5 nanometers. In some embodiments, the dispensed droplet remains attached to the pipette by a small thread of material, an atomic scale meniscus, forming a virtually free-standing droplet. In some embodiments the droplet may wet the pipette tip and take on attributes of supported drops. Methods for fabricating and using the pipette are also described.

  7. Optimized nanoporous materials.

    SciTech Connect (OSTI)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  8. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba; Kocsis, Menyhert

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  9. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  10. Lasers in materials processing

    SciTech Connect (OSTI)

    Davis, J.I.; Rockower, E.B.

    1981-01-01

    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  11. Ultrasonic Processing of Materials

    SciTech Connect (OSTI)

    Meek, Thomas T.; Han, Qingyou; Jian, Xiaogang; Xu, Hanbing

    2005-06-30

    The purpose of this project was to determine the impact of a new breakthrough technology, ultrasonic processing, on various industries, including steel, aluminum, metal casting, and forging. The specific goals of the project were to evaluate core principles and establish quantitative bases for the ultrasonc processing of materials, and to demonstrate key applications in the areas of grain refinement of alloys during solidification and degassing of alloy melts. This study focussed on two classes of materials - aluminum alloys and steels - and demonstrated the application of ultrasonic processing during ingot casting.

  12. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W.; Mattes, Benjamin R.; Koskelo, Aaron C.; Heeger, Alan J.; Robinson, Jeanne M.; Smilowitz, Laura B.; Klimov, Victor I.; Cha, Myoungsik; Sariciftci, N. Serdar; Hummelen, Jan C.

    1998-01-01

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  13. Sandia Material Model Driver

    Energy Science and Technology Software Center (OSTI)

    2005-09-28

    The Sandia Material Model Driver (MMD) software package allows users to run material models from a variety of different Finite Element Model (FEM) codes in a standalone fashion, independent of the host codes. The MMD software is designed to be run on a variety of different operating system platforms as a console application. Initial development efforts have resulted in a package that has been shown to be fast, convenient, and easy to use, with substantialmore » growth potential.« less

  14. Process for impregnating a concrete or cement body with a polymeric material

    DOE Patents [OSTI]

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  15. Process for impregnating a concrete or cement body with a polymeric material

    DOE Patents [OSTI]

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  16. Organic Tanks Safety Program: Waste aging studies

    SciTech Connect (OSTI)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

  17. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  18. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  19. Potentiometric determination of uranium in organic extracts

    SciTech Connect (OSTI)

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  20. FY 2008 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other ...