National Library of Energy BETA

Sample records for organic fuels power

  1. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  2. Clean Fuels/Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  3. Improving Power Production in Acetate-Fed Microbial Fuel Cells via Enrichment of Exoelectrogenic Organisms in Flow-Through Systems

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin

    2009-01-01

    An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.

  4. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  5. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  6. Organic fuels | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Organic fuels Place: Houston, Texas Zip: 77056 Product: Biodiesel producer and distributor Coordinates: 29.76045, -95.369784 Show Map Loading...

  7. Powering Business in Ohio with Cellex Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering Business in Ohio with Cellex Fuel Cells Cellex powered twelve class 3 electric pallet trucks with its fuel cell power units at two Ohio based Wal-Mart distribution centers for four months to demonstrate the commercial viability of hydrogen fuel cells. This project was funded by the Ohio Department of Development's Third Frontier Fuel Cell Program, which provides grants to support the growth of Ohio's fuel cell industry through collaborations between research organizations, businesses

  8. Fuel Cell Powered Lift Truck

    SciTech Connect (OSTI)

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  9. hydrogen-fuel-cell-powered generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers hydrogen-fuel-cell-powered generator Home...

  10. Fuel Cell Power Plants Renewable and Waste Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * ...

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  14. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  15. Organic Power | Open Energy Information

    Open Energy Info (EERE)

    Power Jump to: navigation, search Name: Organic Power Place: Ireland Sector: Biomass, Hydro, Wind energy Product: Irish project developer active in wind energy, combined heat and...

  16. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  17. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes the advantages of using fuel cell technology for application in emergency backup power.

  18. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  19. Less Fuel, More Natural Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Less Fuel, More Natural Power PEVs get a charge out of new solar-powered charging stations. Congratulations to the Tactical Response Force-200 class. Hundreds toured the NNSS to celebrate its 65th year. See page 3. See page 6. NNSS Remedies Fire Suppression Lines at the DAF In January 2012, the Nevada National Security Site (NNSS) initiated a priority project: replace the corroded lead-in lines at the Device Assembly Facility (DAF). This included replacing 27 lead-in lines of underground water

  20. Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-IN-00-030) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory Contact ANL About This Technology <p> Figure 1. Schematic of a functional fuel processor</p> Figure 1. Schematic of a functional fuel processor

  1. Fuel Cells for Critical Communications Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Greg Moreland SENTECH, Inc. Supporting the U.S. Department of Energy August 6, 2008 APCO Annual Conference and Expo 2 2 Fuel cells use hydrogen to create electricity, with only water and heat as byproducts Fuel Cell Overview * An individual fuel cell produces about 1 volt * Hundreds of individual cells can comprise a fuel cell stack * Fuel cells can be used to power a variety of applications -Bibliographic Database * Laptop computers (50-100 W) *

  2. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  3. Fuel cell power supply with oxidant and fuel gas switching

    DOE Patents [OSTI]

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  4. Fuel Cell Backup Power Technology Validation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

    2012-10-01

    Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

  5. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  6. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  7. The Business Case for Fuel Cells 2015: Powering Corporate Sustainabili...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Powering Corporate Sustainability The Business Case for Fuel Cells 2015: Powering ... The Business Case for Fuel Cells 2015: Powering Corporate Sustainability (5.76 MB) More ...

  8. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  9. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  10. BioPower Atlas and BioFuels Atlas | Open Energy Information

    Open Energy Info (EERE)

    Atlas and BioFuels Atlas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BioPower Atlas and BioFuels Atlas AgencyCompany Organization: National Renewable Energy...

  11. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  12. Fuel Cell Power (FCPower) Model

    Broader source: Energy.gov (indexed) [DOE]

    tool for analyzing high-temperature, fuel cell-based tri- generation systems. 1 Key ... Performs hourly energy analysis and detailed grid time of use cost evaluations, which ...

  13. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NRELDOE Biogas and Fuel Cells ...

  14. Fuel cell power system for utility vehicle

    SciTech Connect (OSTI)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  15. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  16. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  17. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  18. Mechanical Analysis of High Power Internally Cooled Annular Fuel...

    Office of Scientific and Technical Information (OSTI)

    Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The ...

  19. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download ...

  20. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This ...

  1. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision ...

  2. AlumiFuel Power Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: AlumiFuel Power Inc. Place: Philadelphia, Pennsylvania Sector: Hydro, Hydrogen Product: Philadelphia-based hydrogen gas generator. References: AlumiFuel Power...

  3. Power Ecalene Fuels Inc PEF | Open Energy Information

    Open Energy Info (EERE)

    Power Ecalene Fuels Inc PEF Jump to: navigation, search Name: Power Ecalene Fuels Inc (PEF) Place: Denver, Colorado Product: PEF owns patented technologis to convert syngas from...

  4. Using Fuel Cell Membranes to Improve Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Membranes to Improve Power As part of its Sustainable Energy Program, Sandia National Laboratories works to find new ways to use fuel cell membranes to improve energy generation and storage. Work in this area explores elements of fuel cell membrane composition and behavior including synthesis of block copolymers for improved separation, cross-linked membranes for greater stability and resonance- stabilized ionic groups that are used in a number of other applications. While Sandia

  5. Power Plant and Industrial Fuel Use Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    Self-certification of power plants in acordance with Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.).

  6. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect (OSTI)

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  7. Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Powers Law Enforcement in Arkansas to someone by E-mail Share Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Facebook Tweet about Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Twitter Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Google Bookmark Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on Delicious Rank Alternative Fuels Data Center: CNG Powers Law Enforcement in Arkansas on

  8. Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Sacramento Powers up with Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Sacramento Powers

  9. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended ...

  10. Stationary power fuel cell commercialization status worldwide

    SciTech Connect (OSTI)

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  11. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  12. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications ... a simple, scalable, and cost-effective "one-pan" ...

  13. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program ...

  14. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  15. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  16. Alternative Fuels Data Center: Companies Power up Through Workplace

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Challenge Companies Power up Through Workplace Charging Challenge to someone by E-mail Share Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Facebook Tweet about Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Twitter Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace Charging Challenge on Google Bookmark Alternative Fuels Data Center: Companies Power up Through Workplace

  17. Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Connecticut Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious

  18. Fuel Cells Providing Power Despite Winter’s Chill

    Broader source: Energy.gov [DOE]

    Fuel cell technologies can help fight the cold and make sure you are toasty warm whether you are driving your fuel cell electric vehicle or using a fuel cell powered generator.

  19. Advanced Materials and Concepts for Portable Power Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Concepts for Portable Power Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 9_lanl_zelenay.pdf (2.69 MB) More Documents & Publications Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts New MEA Materials for Improved DMFC Performance, Durability and

  20. Solid Oxide Fuel Cell and Power System Development at PNNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials ...

  1. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  2. Combined Heat and Power Technology Fact Sheets Series: Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Cells Fuel cells use an electrochemical process to convert the chemical energy in a fuel to electricity. In contrast to recipro- cating engines and gas turbines, fuel cells generate electric- ity without combusting the fuel. The first practical applica- tion for fuel cells emerged in the 1950s when fuel cells were used to provide onboard power for spacecraft. Fuel cells continue to be used in space exploration, but over the past few decades the technology has migrated to other applica- tions,

  3. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  4. DOE Technical Targets for Fuel Cell Systems for Portable Power...

    Energy Savers [EERE]

    Portable Power and Auxiliary Power Applications DOE Technical Targets for Fuel Cell Systems ... specific energy and energy density. d Cost includes material and labor costs ...

  5. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  6. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  7. Partial oxidation fuel reforming for automotive power systems.

    SciTech Connect (OSTI)

    Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

    1999-09-07

    For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

  8. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  9. Fuel Cell Technologies Office Organization Chart and Contacts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Fuel Cell Technologies Office Organization Chart and Contacts Contact Information U.S. Department of Energy - Fuel Cell Technologies Office General Contact Information 202-586-3388 fuelcells@ee.doe.gov Office Contacts Director Sunita Satyapal 202-586-2336 Sunita.Satyapal@ee.doe.gov Operations Supervisor and Technology Acceleration Program Manager Rick Farmer

  10. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  11. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  12. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_8_wolak.pdf (1.51 MB) More Documents & Publications Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective)

  13. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park

  14. Fuel Cell Power Plants Renewable and Waste Fuels | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011 wastewolak.pdf (1.99 MB) More Documents & Publications Fuel Cell ...

  15. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  16. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect (OSTI)

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  17. New Fuel Cell Design Powered by Graphene-Wrapped Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanocrystals Lab researchers have developed a new materials recipe for a battery-like hydrogen fuel cell that shields the ...

  18. Proton Exchange Membrane Fuel Cells for Electrical Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Commercial Airplanes | Department of Energy Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes This report, prepared by Sandia National Laboratories, is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft. The report examines whether on-board airplane fuel cell systems are

  19. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Tuesday, 14 June 2016 00:00 Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell

  20. ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate ...

  1. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewablehydrogenworksho...

  2. DOE-DOD Emergency Backup Power Fuel Cell Installations

    SciTech Connect (OSTI)

    Fuel Cell Technologies Program

    2012-06-01

    Ths fact sheet describes a collaboration between the departments of Energy and Defense to install and operate 18 fuel cell backup power systems across the United States.

  3. DOE-DOD Emergency Backup Power Fuel Cell Installations

    Fuel Cell Technologies Publication and Product Library (EERE)

    Ths fact sheet describes a collaboration between the departments of Energy and Defense to install and operate 18 fuel cell backup power systems across the United States.

  4. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  5. High power density fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Pow, R.; Reindl, M.; Tilmetz, W.

    1996-12-31

    This paper describes the joint development by Daimler-Benz and Ballard Power Systems of a high power-density fuel cell stack and its demonstration in a 6-passenger Minivan.

  6. Fuel Cycle Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  7. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  8. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Broader source: Energy.gov [DOE]

    This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

  9. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  10. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  11. Advanced Materials and Concepts for Portable Power Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Kick-off Meeting, Washington, DC September 28, 2010 Fuel Cell Projects Kick-off Meeting Washington, DC - September 28, 2010 Advanced Materials and Concepts for Portable Power Fuel Cells for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos, New Mexico 87545 This presentation does not contain any proprietary, confidential, or otherwise restricted information - t t Overview Timeline * Start date: September 2010 * End date:

  12. The Business Case for Fuel Cells 2015: Powering Corporate Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Business Case for Fuel Cells 2015: Powering Corporate Sustainability i Authors and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of the Fuel Cell and Hydrogen Energy Association in Washington, D.C. Support was provided by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office. About This Report The report provides an overview of recent private sector fuel cell installations at U.S.

  13. Fuel-cell based power generating system having power conditioning apparatus

    DOE Patents [OSTI]

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  14. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect (OSTI)

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  15. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect (OSTI)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  16. Fuel Cells for Critical Communications Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Critical Communications Backup Power Fuel Cells for Critical Communications Backup Power This presentation provides information about using fuel cells for emergency backup power for critical communications. It was given by Greg Moreland at the Association of Public Communications Officials Annual Conference in August 2008. Posted on this Web site with permission from the author. mt_moreland_apco_presentation.pdf (3.6 MB) More Documents & Publications Overview of the DOE Hydrogen Program

  17. Webinar: Fuel Cells for Portable Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Portable Power Webinar: Fuel Cells for Portable Power Above is the video recording for the webinar, "Fuel Cells for Portable Power," originally held on July 17, 2012. In addition to this recording, you can access the presentation slides from Los Alamos National Laboratory, Arkema, and the University of North Florida. A text version of this recording will be available soon

  18. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  19. Thamna Bio power and Organic Producers Company TBPOPC | Open...

    Open Energy Info (EERE)

    Thamna Bio power and Organic Producers Company TBPOPC Jump to: navigation, search Name: Thamna Bio-power and Organic Producers Company (TBPOPC) Place: Thamna, Gujarat, India...

  20. Power Ecalene Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Arvada, Colorado Zip: 80007 Region: Rockies Area Sector: Biofuels Product: Mixed alcohol transportation fuel Website: www.powerecalene.com Coordinates: 39.862942,...

  1. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  2. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  3. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  4. Beijing Fuyuan Century Fuel Cell Power Co Ltd FCFCP | Open Energy...

    Open Energy Info (EERE)

    Fuyuan Century Fuel Cell Power Co Ltd FCFCP Jump to: navigation, search Name: Beijing Fuyuan Century Fuel Cell Power Co Ltd (FCFCP) Place: Beijing, Beijing Municipality, China Zip:...

  5. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all

  6. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all

  7. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all

  8. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all

  9. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all electric-drive

  10. New Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Design Powered by Graphene-Wrapped Nanoparticles Print Interest in hydrogen fuel for automotive applications has been growing steadily in the scientific and automotive community over the last decade. Recently, researchers working at the ALS and the Molecular Foundry developed a promising new materials recipe based on magnesium nanocrystals and graphene for a battery-like hydrogen fuel cell with improved performance in key areas. Hydrogen Cars The US market share for all electric-drive

  11. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology in Connecticut | Department of Energy with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths, weaknesses, and barriers, deployment phases, military sites, environmental value, and potential partnerships tspi_rinebold.pdf (2.22 MB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

  12. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect (OSTI)

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  13. Hydrogen fuel cells could power ships at port

    SciTech Connect (OSTI)

    Pratt, Joe

    2013-06-27

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  14. Hydrogen fuel cells could power ships at port

    ScienceCinema (OSTI)

    Pratt, Joe

    2013-11-22

    Sandia National Laboratories researcher Joe Pratt conducted a study on the use of hydrogen fuel cells to power docked ships at major ports. He found the potential environmental and cost benefits to be substantial. Here, he discusses the study and explains how hydrogen fuel cells can provide efficient, pollution-free energy to ships at port.

  15. Sandia Energy - Fuel-Cell-Powered Mobile Lights Tested, Proven...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and in other applications. (Photo by Dino Vournas) Mobile lighting systems powered by hydrogen (H2) fuel cells are cleaner, quieter, and now have a proven track record in...

  16. DOE-DOD Emergency Backup Power Fuel Cell Installations | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Ths fact sheet describes a collaboration between the departments of Energy and Defense to install and operate 18 fuel cell backup power systems across the United States. DOE-DOD ...

  17. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  18. PEM fuel cells for transportation and stationary power generation applications

    SciTech Connect (OSTI)

    Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1996-05-01

    We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

  19. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 8, 52, 72, or 176 hours. In this analysis the fuel cell system with incentives ... with the diesel generator, in the 8-hour, ... FCBP systems 1.99 MW Total installed ...

  20. Power-reactor fuel-pin thermomechanics

    SciTech Connect (OSTI)

    Tutnov, A.A.; Ul'yanov, A.I.

    1987-11-01

    The authors describe a method for determining the creep and elongation and other aspects of mechanical behavior of fuel pins and cans under the effects of irradiation and temperature encountered in reactors under loading and burnup conditions. An exhaustive method for testing for fuel-cladding interactions is described. The methodology is shown to be applicable to the design, fabrication, and loading of pins for WWER, SGHWR, and RBMK type reactors, from which much of the experimental data were derived.

  1. DOE-DOD Emergency Backup Power Fuel Cell Installations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-DOD Emergency Backup Power Fuel Cell Installations On July 19, 2011, the U.S. Department of Energy (DOE) announced that, as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOE and DOD will collaborate on a project to install and operate 18 fuel cell backup power systems at eight defense installations across the country. The Departments will test how the fuel cells perform in real

  2. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  3. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect (OSTI)

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  4. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  5. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  6. Fuel Cells: Making Power from Hydrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Calendar Fuel Cells Calendar Events for the Fuel Cell Technologies Office are listed below. September 2016 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1

    CELLS FOR TRANSPORTATION 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our

  7. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOE Patents [OSTI]

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  8. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  9. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  10. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  11. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  12. Biomass to Liquid Fuels and Electrical Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Pd Nanoparticles," Nanotechnology, 23, 29404. 34 Presentations * Adhikari, S., C. Brodbeck, S. Taylor. 2012. Biomass gasification for heat and power applications. ...

  13. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  14. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  15. Power generation with synthetic liquid fuels

    SciTech Connect (OSTI)

    Lebowitz, H.E.; Rovesti, W.C.; Schreiber, H.

    1984-06-01

    Tests performed burning H-Coal and Exxon Donor Solvent (EDS) coal liquids in a utility combustion turbine, and a test burning EDS in a utility boiler are described. The H-Coal was produced by Ashland Synthetic Fuels, Inc. The EDS was produced in a pilot plant by Exxon Corporation in Baytown, Texas. The test objectives, site preparation, and performance results are discussed for both tests. 8 references, 6 tables.

  16. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    SciTech Connect (OSTI)

    Gottesfeld, S.

    1995-09-01

    The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. The low temperature, polymer electrolyte membrane fuel cell (PEMFC) has recently been identified as an attractive option for stationary power generation, based on the relatively simple and benign materials employed, the zero-emission character of the device, and the expected high power density, high reliability and low cost. However, a PEMFC stack fueled by hydrogen with the combined properties of low cost, high performance and high reliability has not yet been demonstrated. Demonstration of such a stack will remove a significant barrier to implementation of this advanced technology for electric power generation from hydrogen. Work done in the past at LANL on the development of components and materials, particularly on advanced membrane/electrode assemblies (MEAs), has contributed significantly to the capability to demonstrate in the foreseeable future a PEMFC stack with the combined characteristics described above. A joint effort between LANL and an industrial stack manufacturer will result in the demonstration of such a fuel cell stack for stationary power generation. The stack could operate on hydrogen fuel derived from either natural gas or from renewable sources. The technical plan includes collaboration with a stack manufacturer (CRADA). It stresses the special requirements from a PEMFC in stationary power generation, particularly maximization of the energy conversion efficiency, extension of useful life to the 10 hours time scale and tolerance to impurities from the reforming of natural gas.

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. DOE Technical Targets for Fuel Cell Systems for Portable Power and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auxiliary Power Applications | Department of Energy Portable Power and Auxiliary Power Applications DOE Technical Targets for Fuel Cell Systems for Portable Power and Auxiliary Power Applications These tables list the U.S. Department of Energy (DOE) technical targets for fuel cell systems for portable power and auxiliary power applications. More information about targets can be found in the Fuel Cells section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and

  19. Integrating fuel cell power systems into building physical plants

    SciTech Connect (OSTI)

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  20. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  1. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect (OSTI)

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power

  2. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  3. Identification and quantification of organic chemicals in supplemental fuel blends

    SciTech Connect (OSTI)

    Salter, F.

    1996-12-31

    Continental Cement Company, Inc. (Continental) burns waste fuels to supplement coal in firing the kiln. It is to be expected that federal and state agencies want an accounting of the chemicals burned. As rules and regulations become more plentiful, a company such as Continental must demonstrate that it has made a reasonable attempt to identify and quantify many specific organic compounds. The chemicals on the SARA 313 list can change frequently. Also the number and concentrations of compounds that can disqualify a material from consideration as a supplemental fuel at Continental continues to change. A quick and reliable method of identifying and quantifying organics in waste fuel blends is therefore crucial. Using a Hewlett-Packard 5972 GC/MS system Continental has developed a method of generating values for the total weight of compounds burned. A similar procedure is used to verify that waste streams meet Continental`s acceptance criteria.

  4. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  5. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  6. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect (OSTI)

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  7. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers

    Broader source: Energy.gov [DOE]

    Presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers.

  8. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers." Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar

  9. DOE Technical Targets for Fuel Cell Backup Power Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Backup Power Systems DOE Technical Targets for Fuel Cell Backup Power Systems This table lists the U.S. Department of Energy (DOE) technical targets for fuel cell backup power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Fuel Cell Backup Power Systems (1-10kWe) Operating on Direct Hydrogen Characteristic Units 2015 Statusa 2020 Targets

  10. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  11. Stationary power applications for polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.; Landgrebe, A.R.

    1996-02-01

    The benefits provided by Polymer Electrolyte Fuel Cells (PEFC) for power generation (e.g. low operating temperatures, and non-corrosive and stable electrolyte), as well as advances in recent years in lowering their cost and improving anode poisoning tolerance, are stimulating interest in the system for stationary power applications. A significant market potentially exists for PEFCs in certain stationary applications where PEFC technology is a more attractive alternative to other fuel cell technologies. A difficulty with the PEFC is its operation on reformed fuels containing CO, which poisons the anode catalyst. This difficulty can be alleviated in several ways. One possible approach is described whereby the product reformate is purified using a relatively low cost, high-throughput hydrogen permselective separator. Preliminary experiments demonstrate the utility of the concept.

  12. Local biofuels power plants with fuel cell generators

    SciTech Connect (OSTI)

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  13. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Date: 10/04/2013 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Jim Alkire, Sara Dillich, Kristen Nawoj, Stephanie Byham Approved by: Sunita Satyapal and Rick Farmer Date: 10/15/2013 Item: Table 1: Number of fuel cell deployments (installed and on-order) for applications in material handling equipment (MHE). The successful deployment of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation

  14. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    SciTech Connect (OSTI)

    Castellano, Felix N.

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 ?s in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a ?s lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  15. Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative

  16. Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Indiana Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank

  17. Petroleum coke: A viable fuel for power generation

    SciTech Connect (OSTI)

    Dymond, R.E.

    1995-09-01

    As the power generation industry struggles to meet the seemingly divergent goals of reduced emissions and increased electricity demand during the 1990s, petroleum coke`s use as a low cost BTU source should be seriously considered. Since this material is produced at petroleum refineries-thus affected by variables unfamiliar to most power generators-industry participants often do not understand what forces drive coke markets. This article will address these forces and provide some insight about petroleum coke`s future as a viable fuel for power generation.

  18. Petroleum coke: A viable fuel for power generation

    SciTech Connect (OSTI)

    Dymond, R.E.

    1994-12-31

    As the power generation industry struggles to meet the seemingly divergent goals of reduced emissions and increased electricity demand during the 1990s, petroleum coke`s use as a low cost BTU source should be seriously considered. since this material is produced at petroleum refineries - thus affected by variables unfamiliar to most power generators - industry participants often do not understand what forces drive coke markets. This article will address these forces and provide some insight about petroleum coke`s future as a viable fuel for power generation.

  19. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J.; Ma, Z.

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  20. Environmental impact of fossil fuel combustion in power generation

    SciTech Connect (OSTI)

    Allen, J.W.; Beal, P.R.

    1996-12-31

    All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

  1. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  2. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  3. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  4. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  5. Water Power Program Contacts and Organization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Program » Water Power Program Contacts and Organization Water Power Program Contacts and Organization The Wind and Water Power Technologies Office within the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) supports the development, deployment, and commercialization of wind and water power technologies. The Wind and Water Power Technologies Office is one Office that contains two distinct Programs: wind and water. The Wind Program and the

  6. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  7. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    SciTech Connect (OSTI)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  8. The Business Case for Fuel Cells 2012. America's Partner in Power

    SciTech Connect (OSTI)

    Curtin, Sandra; Gangi, Jennifer; Skukowski, Ryan

    2012-12-01

    This report, compiled by Fuel Cells 2000 with support from the Fuel Cell Technologies Program, profiles a select group of nationally recognizable companies and corporations that are deploying or demonstrating fuel cells. These businesses are taking advantage of a fuel cell's unique benefits, especially for powering lift trucks and providing combined heat and power to their stores and administrative offices.

  9. Businesses Seek Fuel Cells to Meet Sustainability Goals, Provide Reliable Power

    Broader source: Energy.gov [DOE]

    Businesses of all sizes are increasingly adopting cost-effective fuel cell technology to improve electrical power reliability, increase efficiencies, and reduce carbon emissions of operations, according to The Business Case for Fuel Cells 2015: Powering Corporate Sustainability, a new report from the Fuel Cell Technologies Office, compiled by the Fuel Cell and Hydrogen Energy Association.

  10. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32...

    Office of Scientific and Technical Information (OSTI)

    Lee, G.T.; Sudhoff, F.A. 30 DIRECT ENERGY CONVERSION; 20 FOSSIL-FUELED POWER PLANTS; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; FUEL CELL POWER PLANTS; GAS TURBINE...

  11. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for ...

  12. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department...

    Energy Savers [EERE]

    RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil ...

  13. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handling Equipment | Department of Energy An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of

  14. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  15. Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION...

    Office of Scientific and Technical Information (OSTI)

    carbon capture, utilisation, and storage Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION; POWER GENERATION; CARBON DIOXIDE; CAPTURE; STORAGE; USA; ENHANCED...

  16. Fuel Cell Power Model for CHHP System Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.

    2009-11-16

    Presentation about Fuel Cell Power (FCPower) Model used to analyze the economics and performance of combined heat, hydrogen, and power (CHHP) systems.

  17. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  18. EPA Honors Organizations for Supporting Green Power | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The 24 award-winning partners were chosen from more than 1,300 partner organizations. Utilities, renewable energy project developers, and other green power suppliers were eligible ...

  19. Chapter 4: Advancing Clean Electric Power Technologies | Stationary Fuel Cells Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Stationary Fuel Cells Chapter 4: Technology Assessments Introduction to

  20. Powering Business in Ohio with Cellex Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering Business in Ohio with Cellex Fuel Cells Powering Business in Ohio with Cellex Fuel Cells This document provides information about fuel cell products in large fleets of lift trucks. cellex_report_odod.pdf (209.99 KB) More Documents & Publications Fuel Cells Go Live Specialty Vehicles and Material Handling Equipment Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program

  1. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a

  2. Fuel cell power plants using hydrogen from biomass

    SciTech Connect (OSTI)

    Knight, R.A.; Onischak, M.; Lau, F.S.

    1998-12-31

    This paper discusses a power generation system that offers high energy efficiency, ultra-clean environmental performance, and near-zero greenhouse gas emissions. Biomass from agricultural and forestry wastes or dedicated energy farms can be used efficiently for power generation in integrated biomass gasification-fuel cell (IBGFC) systems. The energy efficiency of these systems has been projected to approach 55% or even higher if cogeneration opportunities can be utilized. Such systems, in addition to being ultra-efficient, can boast very low emissions of SO{sub 2}, NO{sub x}, and particulates, and are essentially CO{sub 2}-neutral. With the mounting concern about greenhouse gas emissions, this approach to renewable energy is very attractive for small distributed generation markets in the US and worldwide. Biomass wastes alone, by current estimates, have the potential to provide as much as 338 GW of electrical power worldwide if utilized in this fashion, and offer the best near- to mid-term market entry opportunities for this technology. Power demand in the US will be driven by the opening of niche markets as a result of deregulation and environmental concerns, and markets in other regions will be driven by economic growth as well. In this paper, the integration of a pressurized fluidized-bed gasifier with a molten carbonate fuel cell and expansion turbine bottoming cycle will be presented. Two cycles are suggested: one using conventional technology for biomass drying, feeding, and gasification, and a second, more advanced cycle using wet feeding direct to the gasifier and in-bed steam reforming to boost cycle efficiency and reduce capital costs. Both cycles use state-of-the-art molten carbonate fuel cells with an expansion turbine bottoming cycle. These options are presented along with recommended technical development activities and targets.

  3. Fuel Use Act: implications for new power generation. [Conference paper

    SciTech Connect (OSTI)

    Schneider, H.S.; Jandegian, G.V.

    1980-01-01

    The electric utility industry has, in general, supported the national goal of an energy shift away from imported oil to coal and other fuels but has felt that the Power Plant and Industrial Fuel Use Act is redundant and largely irrelevant. The industy believes power plant conversions to coal and new base-load plants shifting to coal has been occurring for the past several years as a result of: (1) the rapidly escalating costs associated with foreign oil imports; (2) the Federal Energy Office request for voluntary conversion to coal during the 1973-1974 oil embargo; and (3) the Energy supply and Environmental Coordination Act of 1974 prohibition and construction orders. DOE's position that, without the Fuel Use Act, utilities can continue business as usual, cannot be supported in light of the extraordinary volatile market and reliability aspects of continued use of oil. What the Act has failed to acknowledge is the need for a more-flexible and balanced approach that recognizes the experience, needs, and concerns in distinct regions of the country. What must be examined are the problem areas faced by the industry in forcing coal use in certain regions where there are increasingly stringent environmental and economic concerns to be considered or where there has been historically heavy dependence on oil as a primary energy source. The next five years will be a period of learning for both (ERA) and the electric utility industry, a period that will mold our energy future through the year 2000. 7 references.

  4. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  5. Nation's first fuel cell power plant powered by processed landfill gas

    SciTech Connect (OSTI)

    Leeper, J.D.; Engels, W.W.

    1986-04-01

    Southern California Edison Company (Edison) and the Los Angeles Department of Water and Power (LADWP) installed, and are operating, a 40 kw phosphoric acid fuel cell utilizing processed landfill gas at a hotel and convention complex in the City of Industry, California. This field test aims to establish important electric utility operating criteria of two separate, promising technologies linked together for the first time. Among the key objectives to be established during this project are: (1) operating a fuel cell to establish electric generation equipment criteria, such as fuel efficiency, reliability, siteability, and emission and electric output characteristics; (2) determining whether under-utilized landfill gas can be used in a fuel cell designed to operate on natural gas; and (3) identifying methods to improve the economic viability of such a system.

  6. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million

  7. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect (OSTI)

    Wolk, R

    2004-04-23

    Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power

  8. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    SciTech Connect (OSTI)

    Klingler, James J

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  9. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  10. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  11. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect (OSTI)

    Moses, C.A.; Bernstein, H.

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  12. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  13. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  14. Alternative Fuels Data Center: Florida Schools First in State to Power up

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    With Propane Florida Schools First in State to Power up With Propane to someone by E-mail Share Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Facebook Tweet about Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Twitter Bookmark Alternative Fuels Data Center: Florida Schools First in State to Power up With Propane on Google Bookmark Alternative Fuels Data Center: Florida Schools First in State to Power up

  15. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  16. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  17. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect (OSTI)

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  18. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  19. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  20. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect (OSTI)

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  1. Middle East fuel supply & gas exports for power generation

    SciTech Connect (OSTI)

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  2. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  3. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts | Department of Energy Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_heywood.pdf (261.78 KB) More Documents & Publications An Energy Evolution:Alternative Fueled Vehicle Comparisons Fuel Cell and Battery Electric Vehicles Compared WORKSHOP REPORT:Light-Duty

  4. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Federal Facilities Guide to Fuel Cells May 8, 2012 - Outline * Distributed Generation and Fuel Cell Power Overview (Pete Devlin 1 ) * How Does a Fuel Cell Work (Jacob Spendelow 2 ) * Guide Summary - How FC CHP can help Federal Facilities (Pete Devlin 1 ) - Third Party Financing (Greg Moreland 3 ) - Project Screening (Joe McGervey 3 ) - Detailed Planning (Joe McGervey 3 ) - Model (Michael Penev 4 ) - Project

  5. The Business Case for Fuel Cells 2014: Powering the Bottom Line for Businesses and Communities

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report, written and compiled by Breakthrough Technologies Institute (BTI) with support from the Fuel Cell Technologies Office, provides an overview of fuel cell installations at businesses and municipal buildings or facilities run by non-profit organizations or institutions.

  6. Method of locating a leaking fuel element in a fast breeder power reactor

    DOE Patents [OSTI]

    Honekamp, John R.; Fryer, Richard M.

    1978-01-01

    Leaking fuel elements in a fast reactor are identified by measuring the ratio of .sup.134 Xe to .sup.133 Xe in the reactor cover gas following detection of a fuel element leak, this ratio being indicative of the power and burnup of the failed fuel element. This procedure can be used to identify leaking fuel elements in a power breeder reactor while continuing operation of the reactor since the ratio measured is that of the gases stored in the plenum of the failed fuel element. Thus, use of a cleanup system for the cover gas makes it possible to identify sequentially a multiplicity of leaking fuel elements without shutting the reactor down.

  7. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy

  8. The Business Case for Fuel Cells 2012: America's Partner in Power

    Broader source: Energy.gov (indexed) [DOE]

    The Business Case for Fuel Cells 2012 America's Partner in Power The Business Case for Fuel Cells 2012 Fuel Cells 2000 | Page i Authors and Acknowledgements This report was written and compiled by Sandra Curtin, Jennifer Gangi, and Ryan Skukowski of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, D.C. Support was provided by the U.S. Department of Energy's Fuel Cell Technologies Program. About This Report This report profiles a select group of nationally

  9. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. chp_opportunityfuels.pdf (2.56 MB) More

  10. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Below is the text version of the webinar titled "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers," originally presented on May 8, 2012. In addition to this text version of the audio, you can access the

  11. Small scale biomass fueled gas turbine power plant. Report for February 1992--October 1997

    SciTech Connect (OSTI)

    Purvis, C.R.; Craig, J.D.

    1998-01-01

    The paper discusses a new-generation, small-scale (<20 MWe) biomass-fueled power plant that is being developed based on a gas turbine (Brayton cycle) prime mover. Such power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth material (e.g., straw, grass, rice hulls, animal manure, cotton gin trash, and nut shells) that are not normally considered as fuel for power plants. The paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.

  12. The Business Case for Fuel Cells 2014: Powering the Bottom Line...

    Office of Environmental Management (EM)

    These include wastewater treatment plants, government buildings, universities, military bases, hospitals, and other sites. The Business Case for Fuel Cells 2014: Powering the ...

  13. Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS...

    Office of Scientific and Technical Information (OSTI)

    ACI Committee 229 Rajendran, N. 36 MATERIALS SCIENCE; 20 FOSSIL-FUELED POWER PLANTS; 01 COAL, LIGNITE, AND PEAT; FLY ASH; WASTE PRODUCT UTILIZATION; BACKFILLING; THERMAL...

  14. Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas from Cow Manure Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure to someone by E-mail Share Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Facebook Tweet about Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Twitter Bookmark Alternative Fuels Data Center: Fair Oaks Farm Harnesses the Power of Natural Gas from Cow Manure on Google Bookmark Alternative Fuels

  15. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect (OSTI)

    Steinfeld, G.; Sanderson, R.

    1998-02-01

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  16. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  17. Organic flash cycles for efficient power production

    DOE Patents [OSTI]

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  18. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation...

  19. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  20. Fuel Savings Potential from Future In-motion Wireless Power Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. ... charge or direct power to the motor o Charging efficiencies at high speed o Metrics ...

  1. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  2. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  3. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  4. Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Qualification Program | Department of Energy Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program April 9, 2010 - 12:11pm Addthis KYIV, UKRAINE - Officials from the U.S. Department of Energy's (DOE) Office of Nuclear Energy today (April 8, 2010) participated in a ceremony in Ukraine to mark the insertion of

  5. The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report

    SciTech Connect (OSTI)

    Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B.

    1998-05-01

    As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

  6. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency | Department of Energy Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency. sunline_report.pdf (1.27 MB) More Documents & Publications SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact

  7. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect (OSTI)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  8. Development of a 200kW multi-fuel type PAFC power plant

    SciTech Connect (OSTI)

    Take, Tetsuo; Kuwata, Yutaka; Adachi, Masahito; Ogata, Tsutomu

    1996-12-31

    Nippon Telegraph and Telephone Corporation (NFT) has been developing a 200 kW multi-fuel type PAFC power plant which can generate AC 200 kW of constant power by switching fuel from pipeline town gas to liquefied propane gas (LPG) and vice versa. This paper describes the outline of the demonstration test plant and test results of its fundamental characteristics.

  9. Introduction to DMFCs - Advanced Materials and Concepts for Portable Power Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Webinar July 17, 2012 1 Introduction to DMFCs Advanced Materials and Concepts for Portable Power Fuel Cells Piotr Zelenay Los Alamos National Laboratory, Los Alamos, New Mexico 87545, U.S.A. Fuel Cell Technologies Program Webinar - July 17, 2012 - The Fuel Choice P. Piela and P. Zelenay, Fuel Cell Review, 1, 17, 2004 Fuel Cell Technologies Program Webinar - July 17, 2012 2 Direct Methanol Fuel Cell Anode: Pt-Ru Cathode: Pt Membrane: e.g. Nafion ® 115 e - CH 3 OH H + H 2 O CH 3 OH

  10. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  11. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications U.S. Department of Energy Fuel Cell Technologies Office Presenters: Jeff Casady and John Palmour of Cree Inc. DOE Hosts: Eric Miller and Anant Agarwal 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office covers Research, Development, Demonstration &

  12. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  13. Fuel Cell Combined Cooling, Heating, and Power | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CACP System CACP System Integrated Fuel Cell Integrated Fuel Cell Setup for Heat and Mass ... 300,000 FY16 DOE Funding: 300,000 Cost Share: 100,000 Project Term: February ...

  14. High specific power, direct methanol fuel cell stack

    SciTech Connect (OSTI)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  15. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  16. The Business Case for Fuel Cells 2015: Powering Corporate Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report, written and compiled by the Fuel Cell and Hydrogen Energy Association (FCHEA) with support from the Fuel Cell Technologies Office, provides an overview of private sector fuel cell installations at U.S. businesses, as well as highlights of international deployments up through October 1, 2015.

  17. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect (OSTI)

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  18. Fuel Cells for Backup Power in Telecommunications Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and ...

  19. Chlorine induced corrosion of steels in fossil fuel power plants

    SciTech Connect (OSTI)

    Spiegel, M.; Grabke, H.J.

    1998-12-31

    The corrosion of steels in power plants (coal combustion, waste incineration) is mainly due to condensed chlorides in the ash deposited on the boiler tubes. These chlorides are stabilized by HCl in the combustion gas. In the case of coal as a fuel, chlorine is present as chloride minerals in the raw material which is converted to HCl during the combustion process. Corrosion of steels in chlorine containing environments occurs by the active oxidation mechanism, which is a self-sustaining accelerated oxidation process, catalyzed by chlorine. This study shows that solid chlorides react with the oxide scale of the steels to form chlorine, which initiates active oxidation. In order to prevent chlorine induced corrosion, the deposition of chlorides on the tubes within the coal ash must be avoided. This is possible by the presence of SO{sub 2}, which is present in the combustion gas, converting the chlorides to sulfates in the gas phase. The paper presents an example of a failure case in a coal fired plant in Germany. In this plant, chlorine induced corrosion was observed after effective removal of SO{sub 2} by additions of CaO. From thermodynamic calculations it can be shown that a certain amount of SO{sub 2} is necessary in order to avoid deposition of chlorides and to prevent corrosion.

  20. Special considerations on operating a fuel cell power plant using natural gas with marginal heating value

    SciTech Connect (OSTI)

    Moses, L. Ng; Chien-Liang Lin; Ya-Tang Cheng

    1996-12-31

    In realizing new power generation technologies in Taiwan, a phosphoric acid fuel cell power plant (model PC2513, ONSI Corporation) has been installed in the premises of the Power Research Institute of the Taiwan Power Company in Taipei County of Taiwan. The pipeline gas supplying to the site of this power plant has a high percentage of carbon dioxide and thus a slightly lower heating value than that specified by the manufacturer. Because of the lowering of heating value of input gas, the highest Output power from the power plant is understandably less than the rated power of 200 kW designed. Further, the transient response of the power plant as interrupted from the Grid is also affected. Since this gas is also the pipeline gas supplying to the heavily populated Taipei Municipal area, it is conceivable that the success of the operations of fuel cells using this fuel is of vital importance to the promotion of the use of this power generation technology in Taiwan. Hence, experiments were set up to assess the feasibility of this fuel cell power plant using the existing pipeline gas in this part of Taiwan where fuel cells would most likely find useful.

  1. H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Ever | Department of Energy H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever H2 Refuel H-Prize Aims to Make Fueling Hydrogen Powered Vehicles Easier than Ever December 29, 2014 - 10:15am Addthis A fuel cell electric vehicle is refueled with hydrogen at the National Wind Technology Center in Colorado. The H2 Refuel H-Prize is challenging America’s innovators to develop systems that make it easier and more convenient to fuel hydrogen vehicles. | Photo

  2. Microsoft PowerPoint - 2013_summer_fuels.pptx

    Gasoline and Diesel Fuel Update (EIA)

    S F l O tl k 2013 Summer Fuels Outlook April 9, 2013 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * World liquid fuels consumption growth driven by emerging economies, with continuing consumption declines in OECD economies, with continuing consumption declines in OECD countries. * Non-OPEC supply growth, particularly in North America, pp y g , p y , expected to keep pace with world liquid fuels consumption

  3. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency objectives and sustainability requirements. This guide will help agencies decide whether a fuel cell project may be feasible and economically viable at their site. The guide then presents a four-part process for implementing a fuel cell project.

  4. High power density fuel cell comprising an array of microchannels

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Upadhye, Ravindra S.; Spadaccini, Christopher M.; Park, Hyung Gyu

    2013-10-15

    A fuel cell according to one embodiment includes a porous electrolyte support structure defining an array of microchannels, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and oxidant electrodes formed along other of the microchannels. A method of making a fuel cell according to one embodiment includes forming an array of walls defining microchannels therebetween using at least one of molding, stamping, extrusion, injection and electrodeposition; processing the walls to make the walls porous, thereby creating a porous electrolyte support structure; forming anode electrodes along some of the microchannels; and forming cathode electrodes along other of the microchannels. Additional embodiments are also disclosed.

  5. Cheyenne Light, Fuel and Power Company Smart Grid Project | Open...

    Open Energy Info (EERE)

    System Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability Reduced Ancillary Service Cost Reduced Truck Fleet Fuel Usage Reduced Greenhouse...

  6. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines. ...

  7. Alternative Fuels Data Center: Propane Powers Airport Shuttles...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Electric Ice Resurfacers Improve Air Quality in Minnesota Sept. 14, 2013 Photo ... Fuels Dec. 25, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys Dec. 11, ...

  8. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  9. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-10-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)